WO2001040766A1 - Dispositif de mesure, par diffraction, de tailles de particules sensiblement spheriques, notamment de gouttes opaques - Google Patents

Dispositif de mesure, par diffraction, de tailles de particules sensiblement spheriques, notamment de gouttes opaques Download PDF

Info

Publication number
WO2001040766A1
WO2001040766A1 PCT/FR2000/003318 FR0003318W WO0140766A1 WO 2001040766 A1 WO2001040766 A1 WO 2001040766A1 FR 0003318 W FR0003318 W FR 0003318W WO 0140766 A1 WO0140766 A1 WO 0140766A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
face
lens
optical
drops
Prior art date
Application number
PCT/FR2000/003318
Other languages
English (en)
Inventor
Jean De Metz
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to EP00985341A priority Critical patent/EP1240496A1/fr
Priority to JP2001542182A priority patent/JP2003515738A/ja
Priority to US10/148,354 priority patent/US6850324B1/en
Publication of WO2001040766A1 publication Critical patent/WO2001040766A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • G01N2021/4716Using a ring of sensors, or a combination of diaphragm and sensors; Annular sensor

Definitions

  • the present invention relates to a device for measuring, by diffraction, the sizes of substantially spherical particles.
  • a commercially available device is already known, intended to measure, by diffraction, the sizes of opaque drops whose diameters range from 0.1 ⁇ m to 100 ⁇ m.
  • a set of these drops is illuminated by means of a laser.
  • the drops infinitely diffract the light emitted by the laser.
  • the light thus diffracted admits the optical axis of the device as the axis of symmetry of revolution.
  • the number of drops in the volume illuminated by the laser must be limited.
  • N of drops of 1 ⁇ m in diameter is chosen such that these drops absorb 10% of the light received from the laser. Assuming that the latter illuminates an area of 1 mm 2 , the cross section of the set of N drops is then equal to 0.1 mm 2 and N is equal to 127000. With drops of the same mass (total) but of diameter 10 ⁇ m, there are 1000 times less drops (i.e. 1270 drops) which cause an absorption of 1%. In the focal plane of the device, place the end of an optical fiber whose core has a diameter equal to 100 ⁇ m and suppose that the laser provides a light power of 5W to illuminate the drops.
  • the known measurement technique which has just been explained, has the following drawbacks.
  • the amount of light collected by the optical fiber that is to say the diffracted intensity, is low and ranges from approximately 15 ⁇ near the optical axis of the device up to approximately 50 n for an angle. diffraction equal to 0.5 radians.
  • the drops are distributed randomly in the area illuminated by the laser.
  • the object of the present invention is to remedy the above drawbacks.
  • the invention aims to reduce, even eliminate, the effects of light peaks with a view to a more reliable determination of the various drop sizes and, more generally, of the various sizes of substantially spherical particles, in particular in the range from 0.1 ⁇ m to 1000 ⁇ m.
  • the invention also aims to increase the amount of diffracted light that is collected to obtain a more sensitive device, or usable at a higher rate, than the known device, mentioned above.
  • the subject of the present invention is a device for measuring the sizes of substantially spherical particles, this device being characterized in that it comprises: - a light source capable of providing a light beam intended to illuminate the particles, these beam diffracting particles,
  • Optical concentration and separation means provided to receive the light thus diffracted and capable of separating this diffracted light into a plurality of concentric annular zones and of concentrating the parts of the diffracted light, which correspond respectively to these annular zones, in a plurality of points different from each other, and
  • photodetection means provided for detecting the light intensities corresponding respectively to these points, the particle sizes being determined as a function of these light intensities, a device in which the optical means for concentration and separation comprise:
  • optical concentration means capable of concentrating the diffracted light
  • the optical concentration means comprising an optical focusing having a flat entry face and an aspherical exit face
  • - optical separation means comprising a plurality of annular portions of optical deflection means, these annular portions being provided for intercepting the light thus concentrated and deflecting the light thus intercepted in respective directions different from each other.
  • these optical deflection means are prisms.
  • the angle of each prism is small, less than 20 °, to avoid geometric aberrations.
  • these optical deflection means are light reflection means.
  • these optical deflection means are diffraction gratings ("diffraction gratings").
  • the focusing optic is a lens having a first planar face and a second aspherical face of curvature corresponding to a minimum coma, pierced along its axis with a blind hole opening into the first face of the lens, with a polished wall, and of a depth such that, when a light is sent towards the second face, the hole is crossed by the light rays reflected successively on the first face and the second face of the lens.
  • the focusing optic is a dioptric system capable of focusing a monochromatic light beam substantially parallel to its focus and of a type which only interposes two successive diopters in the path of the rays of the beam, this dioptric system comprising a central lens having a first flat face and a second aspherical face of profile revolution corresponding to a minimum coma, pierced along its axis with a hole opening in the first face of the lens, with a polished wall, and of sufficient depth so that, when a light is sent towards the second face, the hole is crossed by the light rays successively reflected by the first and second faces of the central lens, and an annular lens surrounding the central lens, also having a first flat face and a second aspherical face, extending from the second face of the central lens of a length such that the light rays successively reflected on the first face and the second face of the annular lens have a pseudo-focusing outside the lenses.
  • the device which is the subject of the invention further comprises means preventing the diffraction of light at the interfaces of the annular portions which comprise the optical means of concentration and separation.
  • the number of concentric annular zones in which the light diffracted by the particles is separated is preferably equal to M + 1 where M is the considered number of different sizes of the particles.
  • FIG. 1 shows the variations of the light power diffracted by drops in a fiber as a function of the diffraction angle, for two sizes of drops, and has already been described
  • FIG. 2 schematically illustrates the principle of the invention
  • Figure 3 is a schematic and partial sectional view of a device useful for understanding the invention, using annular portions of converging lenses
  • Figure 4A is a schematic and partial sectional view of a device in accordance to the invention, using annular portions of prisms
  • FIGS. 4B and 4C schematically illustrate examples of focusing optics which can be used in the invention
  • Figure 5 is a schematic and partial sectional view of another device according to the invention, using annular portions of mirrors
  • Figure 6 is a schematic and partial sectional view of another device according to l invention, using annular portions of diffraction gratings
  • FIG. 7 schematically illustrates the manufacture of these annular portions of diffraction gratings
  • FIG. 8 schematically illustrates the possibility of forming chamfers on the annular portions of lenses of FIG. 3 to improve the operation of the corresponding measuring device
  • FIG. 2 The principle of a measuring device according to the invention is schematically illustrated by FIG. 2.
  • This device is intended to measure the sizes of substantially spherical particles, for example the sizes of opaque drops whose diameters range from 0.1 ⁇ m to 100 ⁇ m.
  • the device of FIG. 2 comprises a light source 4, for example a laser, which emits a light beam 6 with parallel rays. This beam 6 is focused by a converging optic 8 in a plane
  • the light beam 6 illuminates a part 12 of the cloud 2 and it is sought to know the sizes of the drops which are in this part 12 of the cloud and diffract the light from the incident beam 6. More precisely, we look for the number of drops per size in this lit part 12.
  • the light diffracted by the drops from part 12 has the reference 16 in FIG. 2.
  • annular zones 18 and 20 there are two annular zones 18 and 20 and we also consider the central zone 22 delimited by the annular zone 18 which is the most internal and is thus included between the zones 20 and 22 .
  • photodetection means of the lights respectively concentrated at points 24, 26 and 28.
  • these photodetection means consist of photodetectors 30, 32 and 34 whose number is equal to the number zones that we have defined. These photodetectors supply electrical signals representative of the intensities of the lights thus concentrated.
  • Electronic means 36 are provided for determining, from these signals, the various sizes of the drops which are found in the part 12 of the cloud 2.
  • Figures 3 to 6 are schematic sectional views of various examples of the optical means of concentration and separation which are provided for receiving the diffracted light 16, separating this light into concentric annular zones and concentrating the parts of the diffracted light, " which correspond respectively to these annular zones, at points or foci 24, 26, 28 which are different from each other.
  • the concentration and the separation take place at the same time.
  • a glass ring 40 is used which is cut from a converging lens 41 seen in dotted lines and which concentrates the light in its focus 24.
  • the set of glass rings 40 and 42 is completed by a central portion of lens 44 whose focal point 28 is distinct from the focal points 24 and 26.
  • the assembly formed by the rings 40 and 42 and by the lens portion 44 is substantially arranged at the focal plane 10.
  • an assembly of fifty rings can be produced in this way plus the central lens portion 44. This assembly can then be reproduced by molding.
  • the concentration and separation functions are carried out by different components.
  • the concentration function is performed by a converging optic 46 disposed substantially at the level of the focal plane 10.
  • an optic glass-planar lens with an optical index of 1.618 is used as the optic.
  • lens 46a having a plane outlet face 46b and an aspherical inlet face 46c of curvature corresponding to a minimum coma, pierced along its axis 46d with a blind hole 46a opening into the exit face of the lens, with a polished wall, and of a depth such that the rays reflected successively on the exit face and the face lens entry.
  • an optic of the kind described in document [2] also cited above is used. It will be recalled, with reference to FIG. 4C, that it is a dioptric system intended to focus at its focal point a substantially parallel monochromatic light beam and of a type interposing only two successive diopters on the path rays of the beam.
  • This dioptric system comprises a central lens 47 having a planar exit face and an aspherical entry face 47a of revolution 47b of profile corresponding to a minimum coma, pierced along its axis 47c with a hole 47d opening into the exit face of the lens, with a polished wall, and of sufficient depth for the rays reflected successively by the exit and entry faces of the central lens to pass through, and an annular lens 47e surrounding the central lens, also having a face flat exit 47f and an aspherical entry face 47g, projecting from the front face of the central lens of a length such that the rays 47h successively reflected on the exit face and the entry face of the annular lens have a pseudofocusing outside the lenses.
  • the two optics described in these documents are reversed: the planar faces of the lenses are used as entry faces of the beam diffracted by the particles and the aspherical faces are used as exit faces so as to form a substantially parallel output beam.
  • the separation function is carried out by a set of prisms, namely two prisms 48 and 50 in the example shown, it being understood that, for each prism, only one part in the form of a ring is kept.
  • the prisms 48 and 50 are shown in dotted lines and the rings corresponding respectively to the prisms 48 and 50 have the references 49 and 51.
  • angles of the prisms are small, less than 20 °, so as not to cause aberrations.
  • angles ⁇ and ⁇ of the prisms 48 and 50 are respectively 10 ° and 5 °.
  • FIG. 4A the prisms are shown joined by one face but the rings, once made, are embedded in each other.
  • the dimensions of the prisms are chosen as a function of the distance from all of the portions 49 and 51 to the optics 46 to precisely cover the desired angular zones.
  • the separation function is carried out by a set of annular mirrors, namely two annular mirrors 52 and 54 in the example shown.
  • the central hole of the set of mirrors lets in part of the light which is focused by optics 46 and corresponds to point 28.
  • the annular mirrors 52 and 54 deflect parts of light corresponding respectively to points 24 and 26.
  • annular mirrors have different inclinations relative to the axis Y of the optic 46 and are pierced with elliptical holes such that the light coming from this optic 46 is separated between circles.
  • the separation function is carried out by a photoresist layer 56 which is deposited on the convex face of the optic 46 and in which annular diffraction gratings are formed. concentric, namely the two diffraction gratings 58 and 60 in the example shown, as well as a central diffraction grating 62, as seen in FIG. 6.
  • These gratings 58, 60 and 62 are holograms intended to deflect the light which comes from optics 46 respectively towards points 24, 26 and 28.
  • the zones of the resin are successively exposed photosensitive corresponding to these networks so as to obtain the holograms.
  • two laser sources are used which are formed - at the level of the zone 12 and at the level of the point 24 to form the network 58,
  • each zone of the layer 56 is made through two appropriate masks which prevent the exposure of the rest of this layer 56 by each of the two laser sources.
  • FIG. 7 diagrammatically illustrates, by way of example, the insolation of the zone of the layer
  • Two masks 64 and 65 prevent the exposure of the rest of the layer 56 by the beams coming respectively from the laser sources 70 and 68 which we see in FIG. 7.
  • a single laser 66 is used to form the laser source 68 at the level from the cloud part of drops 12 and the other laser source 70 at the point or focus 28.
  • a semi-transparent mirror 72 and laser reflectors 74, 76 and 78 are used, which are conveniently arranged as seen in FIG. 7 and as is conventional in the field of holography.
  • the photosensitive resin layer is formed on the flat face of the optics 46.
  • the exposure method provides additional correction of the aberrations already reduced by using an optic of the kind described in document [1] or document [2] and makes it possible to obtain a good image of part 12 of the cloud of drops on each of the photodetectors which are placed respectively at points 24 , 26 and 28 as we saw above.
  • the photosensitive resin layer is formed not on the optic 46 but on a glass plate spaced from this optic 46, the latter then being between the glass plate and the studied part 12 of the cloud of drops.
  • a network for example an array of photodiodes or a CCD type detector.
  • the concentration and separation means are produced so that the various light concentration points (referenced 24, 26 and 28 in FIGS. 3 to 6) have positions allowing this use. For example, if you use a photodiode array, these points must be aligned.
  • the device of FIG. 3 Preferably, in order to have, at the outlet of the set of rings 40, 42, 44, only "useful" light and no stray light capable of being diffracted at level of the internal or external edges or blanks of each ring, diffracted light should be prevented from "licking" these edges.
  • each chamfer thus formed is made opaque, for example by depositing a layer of black paint thereon.
  • FIG. 8 shows the internal edge 80 and the external edge 82 of this ring 40.
  • FIG. 8 shows the chamfers 84 and 86 respectively formed on these edges 80 and 82 and the layer of black paint 88 formed on each chamfer.
  • the procedure is the same in the case where annular portions of prisms are used (FIG. 4A).
  • areas absorbing light are preferably formed between the exposed areas. To do this, we put a ring of black paint on it.
  • a measurement of the opacity indicating 1% absorption would ensure that the diffracting family is formed of 10 ⁇ m drops. A second measurement at another angle would have confirmed this.
  • each ring collects only a fraction approximately equal to 1 / M of all the light received by the means of concentration and separation d 'such a device.
  • all of the diffracted light is collected at optimum angles corresponding to the sizes sought. This eliminates the effect of interference peaks, an effect which hampered the analysis of the measurements in the prior art. It also provides the maximum sensitivity which is used either to measure lower concentrations of particles or to maximize the speed of data acquisition.
  • the present invention is not limited to the measurement of opaque drop sizes, the diameters of which range from 0.1 ⁇ m to 100 ⁇ m.
  • a powder of this kind is then illuminated, placed opposite a device conforming to the invention, on a support which is transparent to the light used and which is kept fixed or moved in front of the device.
  • GB 2044445A (Coulter Electronics) discloses systems for measuring the energy and direction of a light flux coming from particles, in order to identify the characteristics of these particles. These systems essentially comprise concentration-separation devices with non-plane mirrors, in which the concentration means are not separated from the separation means.
  • Such devices allow a correct measurement of the particle sizes only for the particles which are located exactly at the focus of the mirrors. For the other particles, the geometric aberrations due to the mirrors prevent correct measurements.
  • optical concentration means comprising a focusing optic having a plane entry face and an aspherical exit face, and optical separation means, distinct from the optical concentration means. .
  • a good image is thus obtained on an optical field of the order of 1 °.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Dispositif de mesure, par diffraction, de tailles de particules sensiblement sphériques, notamment de gouttes opaques. Ce dispositif comprend des moyens (46, 49, 50, 51) pour recevoir la lumière diffractée par les particules (12) éclairées par un faisceau lumineux, séparer cette lumière diffractée en des zones annulaires concentriques et concentrer les parties de la lumière diffractée, correspondant à ces zones, en des points (24, 26, 28) différents les uns des autres. On détecte les intensités lumineuses correspondant à ces points et les tailles des particules sont déterminées en fonction de ces intensités lumineuses. La découpe angulaire des zones concentriques est choisie selon une loi qui optimise la discrimination des tailles des gouttes.

Description

DISPOSITIF DE MESURE, PAR DIFFRACTION, DE TAILLES DE PARTICULES SENSIBLEMENT SPHERIQUES, NOTAMMENT DE
GOUTTES OPAQUES
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne un dispositif de mesure, par diffraction, de tailles de particules sensiblement sphériques .
Elle s'applique notamment à la mesure de tailles de gouttes opaques mais a aussi de nombreuses applications en granulométrie .
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
On connaît déjà un appareil commercialement disponible, destiné à mesurer, par diffraction, les tailles de gouttes opaques dont les diamètres vont de 0 , 1 μm à 100 μm .
Dans cet appareil connu, on éclaire un ensemble de ces gouttes au moyen d'un laser. Les gouttes diffractent à l'infini la lumière émise par le laser. Pour chaque goutte, supposée sphérique, la lumière ainsi diffractée admet l'axe optique de l'appareil comme axe de symétrie de révolution.
On mesure la lumière diffractée dans le plan focal d'une lentille convergente. On sait que, dans ce plan, 1 ' éclairement E obéit à la loi suivante :
Figure imgf000004_0001
où Z est égal à 2π x R x oc/λ.
Dans l'égalité ci-dessus on a considéré 1 ' eclairement E obtenu, dans le plan focal, pour N gouttes de même rayon R, dont 1 ' eclairement est noté E0 et obtenu avec une lumière de longueur d'onde λ (par exemple égale à 0,5 μm) ; la distance focale F de la lentille vaut par exemple 200 mm, α est l'angle de diffraction et Ji représente la fonction de Bessel d'ordre 1.
Afin d'expliquer les inconvénients de cet appareil connu, considérons par exemple deux familles de gouttes, l'une comprenant des gouttes de 1 μm de diamètre tandis que l'autre comprend des gouttes de 10 μm de diamètre.
Pour éviter un processus de diffraction en cascade, il faut limiter le nombre de gouttes dans le volume éclairé par le laser.
Pour ce faire, on choisit un nombre N de gouttes de 1 μm de diamètre tel que ces gouttes absorbent 10% de la lumière reçue du laser. En supposant que ce dernier éclaire une aire de 1 mm2, la section transversale de l'ensemble des N gouttes vaut alors 0,1 mm2 et N est égal à 127000. Avec des gouttes de même masse (totale) mais de diamètre 10 μm, il y a 1000 fois moins de gouttes (c'est-à-dire 1270 gouttes) qui causent une absorption de 1%. Dans le plan focal de l'appareil, plaçons l'extrémité d'une fibre optique dont le cœur (« core ») a un diamètre égal à 100 μm et supposons que le laser fournisse une puissance lumineuse de 5W pour éclairer les gouttes.
On a représenté sur la figure 1 des dessins annexés les variations de la puissance lumineuse P (exprimée en watts) , qui est diffractée dans la fibre (échelle logarithmique), en fonction de l'angle de diffraction α (exprimé en radians) , et donc en fonction de la position de l'extrémité de la fibre optique dans le plan focal, pour les gouttes de 10 μm de diamètre (courbe I) et pour celles dont le diamètre vaut 1 μm (courbe II) . La courbe III est la « somme » des courbes
I et II.
On note que, en dessous de 0,06 radian, ce sont les gouttes de 10 μm de diamètre qui éclairent le plus et que l'inverse a lieu au-delà. Si les deux familles de gouttes sont présentes et si l'on arrête la mesure à 0,06 radian (abscisse du point A de la figure 1) , on ne met en évidence que la famille des gouttes de 10 μm de diamètre avec un excès de 10% pour le nombre de gouttes.
Avec des familles ayant diverses tailles de gouttes, les « creux » de lumière que l'on observe sur la figure 1 sont comblés et la puissance lumineuse diffractée décroît régulièrement en fonction de α. Pour des gouttes de 1 μm de diamètre, il convient de noter qu'un calcul plus précis nécessiterait l'utilisation des séries de Mie qui sont bien connues .
La technique de mesure connue, que l'on vient d'exposer, présente les inconvénients suivants. La quantité de lumière recueillie par la fibre optique, c'est-à-dire l'intensité diffractée, est faible et va d'environ 15 μ près de l'axe optique de l'appareil jusqu'à environ 50 n pour un angle de diffraction égal à 0,5 radian. De plus, les gouttes sont réparties au hasard dans la zone éclairée par le laser.
Les interférences entre les flux lumineux diffractés par chaque goutte forment des pics de lumière . Les positions respectives de ces pics, qui dépendent des positions des gouttes, ne présentent pas de symétrie de révolution autour de l'axe optique de l'appareil de mesure.
Cela rend difficile le dépouillement des mesures visant à déterminer les tailles des gouttes.
EXPOSÉ DE L'INVENTION
La présente invention a pour but de remédier aux inconvénients précédents.
L'invention vise à réduire, voire à supprimer, les effets des pics de lumière en vue d'une détermination plus sûre des diverses tailles de gouttes et, plus généralement, des diverses tailles de particules sensiblement spheriques, en particulier dans la gamme allant de 0,1 μm à 1000 μm. L'invention vise également à augmenter la quantité de lumière diffractée que l'on recueille pour obtenir un dispositif plus sensible, ou utilisable à cadence plus élevée, que l'appareil connu, mentionné plus haut.
De façon précise, la présente invention a pour objet un dispositif de mesure des tailles de particules sensiblement spheriques, ce dispositif étant caractérisé en ce qu'il comprend : - une source de lumière apte à fournir un faisceau lumineux destiné à éclairer les particules, ces particules diffractant la lumière du faisceau,
- des moyens optiques de concentration et de séparation prévus pour recevoir la lumière ainsi diffractée et aptes à séparer cette lumière diffractée en une pluralité de zones annulaires concentriques et à concentrer les parties de la lumière diffractée, qui correspondent respectivement à ces zones annulaires, en une pluralité de points différents les uns des autres, et
- des moyens de photodétection prévus pour détecter les intensités lumineuses correspondant respectivement à ces points, les tailles des particules étant déterminées en fonction de ces intensités lumineuses, dispositif dans lequel les moyens optiques de concentration et de séparation comprennent :
- des moyens optiques de concentration aptes à concentrer la lumière diffractée, les moyens optiques de concentration comprenant une optique de focalisation ayant une face d'entrée plane et une face de sortie asphérique, et - des moyens optiques de séparation comprenant une pluralité de portions annulaires de moyens optiques de déviation, ces portions annulaires étant prévues pour intercepter la lumière ainsi concentrée et dévier la lumière ainsi interceptée dans des directions respectives différentes les unes des autres . Selon un premier mode de réalisation particulier de l'invention, ces moyens optiques de déviation sont des prismes .
De préférence, l'angle de chaque prisme est faible, inférieur à 20°, pour éviter les aberrations géométriques.
Selon un deuxième mode de réalisation particulier de l'invention, ces moyens optiques de déviation sont des moyens de réflexion de lumière.
Selon un troisième mode de réalisation particulier de l'invention, ces moyens optiques de déviation sont des réseaux de diffraction (« diffraction gratings ») .
Dans ce cas, on utilise de préférence une optique du genre de celle qui est décrite dans le document suivant intégré par référence à la présente description :
[1] Brevet français n°1550406 délivré le 12 novembre 1968 (invention de Jean de Metz et François Millet) ou mieux, dans le document suivant intégré par référence à la présente description : [2] Certificat d'addition n°95885 au brevet français n°1550406, délivré le 4 octobre 1971 (invention de Jean de Metz et François Millet) .
Plus précisément, selon un premier mode de réalisation préféré, l'optique de focalisation est une lentille présentant une première face plane et une deuxième face asphérique de courbure correspondant à une coma minimum, percée suivant son axe d'un trou borgne débouchant dans la première face de la lentille, à paroi polie, et de profondeur telle que, lorsqu'on envoie une lumière vers la deuxième face, le trou soit traversé par les rayons lumineux réfléchis successivement sur la première face et la deuxième face de la lentille. Selon un deuxième mode de réalisation préféré, l'optique de focalisation est un système dioptrique apte à focaliser à son foyer un faisceau de lumière monochromatique sensiblement parallèle et d'un type n'interposant que deux dioptres successifs sur le trajet des rayons du faisceau, ce système dioptrique comprenant une lentille centrale présentant une première face plane et une deuxième face asphérique de révolution de profil correspondant à une coma minimum, percée suivant son axe d'un trou débouchant dans la première face de la lentille, à paroi polie, et de profondeur suffisante pour que, lorsqu'on envoie une lumière vers la deuxième face, le trou soit traversé par les rayons lumineux réfléchis successivement par les première et deuxième faces de la lentille centrale, et une lentille annulaire entourant la lentille centrale, présentant également une première face plane et une deuxième face asphérique, déborbant de la deuxième face de la lentille centrale d'une longueur telle que les rayons lumineux successivement réfléchis sur la première face et la deuxième face de la lentille annulaire présentent une pseudo-focalisation hors des lentilles .
De préférence, le dispositif objet de 1 ' invention comprend en outre des moyens empêchant la diffraction de lumière au niveau des interfaces des portions annulaires que comprennent les moyens optiques de concentration et de séparation.
Dans l'invention, le nombre des zones annulaires concentriques en lesquelles on sépare la lumière diffractée par les particules est de préférence égal à M+l où M est le nombre considéré de tailles différentes des particules.
BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif ' et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :
" la figure 1 montre les variations de la puissance lumineuse diffractée par des gouttes dans une fibre en fonction de l'angle de diffraction, pour deux tailles de gouttes, et a déjà été décrite,
" la figure 2 illustre schématiquement le principe de l'invention, " la figure 3 est une vue en coupe schématique et partielle d'un dispositif utile pour la compréhension de l'invention, utilisant des portions annulaires de lentilles convergentes, " la figure 4A est une vue en coupe schématique et partielle d'un dispositif conforme à l'invention, utilisant des portions annulaires de prismes,
" les figures 4B et 4C illustrent schematiquement des exemples d'optiques de focalisation utilisables dans l'invention,
• la figure 5 est une vue en coupe schématique et partielle d'un autre dispositif conforme à l'invention, utilisant des portions annulaires de miroirs, " la figure 6 est une vue en coupe schématique et partielle d'un autre dispositif conforme à l'invention, utilisant des portions annulaires de réseaux de diffraction,
" la figure 7 illustre schematiquement la fabrication de ces portions annulaires de réseaux de diffraction,
* la figure 8 illustre schematiquement la possibilité de former des chanfreins sur les portions annulaires de lentilles de la figure 3 pour améliorer le fonctionnement du dispositif de mesure correspondant, et
" les figures 9 et 10 montrent des courbes destinées à expliquer la détermination des limites angulaires d'anneaux utilisés dans l'invention. EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Le principe d'un dispositif de mesure conforme à l'invention est schematiquement illustré par la figure- 2. Ce dispositif est destiné à mesurer les tailles de particules sensiblement spheriques, par exemple les tailles de gouttes opaques dont les diamètres vont de 0,1 μm à 100 μm.
Il s'agit par exemple de gouttes d'un métal fondu, qui forment un nuage 2, ce nuage 2 étant engendré par des moyens non représentés .
Le dispositif de la figure 2 comprend une source de lumière 4, par exemple un laser, qui émet un faisceau lumineux 6 à rayons parallèles . Ce faisceau 6 est focalisé par une optique convergente 8 dans un plan
10 qui constitue un plan focal de cette optique 8.
En outre, comme on le voit sur la figure 2, le faisceau lumineux 6 éclaire une partie 12 du nuage 2 et l'on cherche à connaître les tailles des gouttes qui se trouvent dans cette partie 12 du nuage et diffractent la lumière du faisceau incident 6. Plus précisément, on cherche le nombre de gouttes par taille dans cette partie éclairée 12.
La lumière diffractée par les gouttes de la partie 12 a la référence 16 sur la figure 2.
On décompose la région d'intersection de cette lumière 16 et du plan focal 10 (qui est perpendiculaire à l'axe X du faisceau 6) en une pluralité de zones annulaires concentriques qui sont circulaires et présentent donc une symétrie de révolution autour d'un axe perpendiculaire au plan 10 (l'axe X dans l'exemple représenté).
Dans l'exemple de la figure 2, il y a deux zones annulaires 18 et 20 et l'on considère également la zone centrale 22 délimitée par la zone annulaire 18 qui est la plus interne et se trouve ainsi comprise entre les zones 20 et 22.
Concentrons (par des moyens optiques non représentés) la lumière de chaque zone en un point ou plus exactement une petite zone, de façon que les points obtenus soient différents les uns des autres.
Dans l'exemple de la figure 1, il y a ainsi trois points 24, 26 et 28 correspondant respectivement aux zones 18, 20 et 22. Dans ces conditions, la suite formée par les valeurs des quantités de lumière provenant respectivement des zones 18, 20 et 22, que l'on a définies dans le plan focal 10, ne comporte plus les pics d'interférences qui gênaient le dépouillement des mesures dans l'art antérieur.
De plus, on recueille beaucoup plus de lumière aux angles importants, là où la lumière provient surtout des petites gouttes et dépasse plus difficilement le niveau du bruit de fond. On voit aussi sur la figure 2 des moyens de photodétection des lumières respectivement concentrées en les points 24, 26 et 28. Dans l'exemple représenté, ces moyens de photodétection sont constitués de photodétecteurs 30, 32 et 34 dont le nombre est égal au nombre des zones que l'on a définies. Ces photodétecteurs fournissent des signaux électriques représentatifs des intensités des lumières ainsi concentrées.
Des moyens électroniques 36 sont prévus pour déterminer, à partir de ces signaux, les diverses tailles des gouttes qui se trouvent dans la partie 12 du nuage 2.
Cette détermination se fait par exemple selon la méthode décrite dans le document suivant : B. Arad, New method for studying débris from laser induced spall in metals, Review of Scientific Instruments, vol.66 n°12, décembre 1995, p.5590 à 5597.
On voit aussi des moyens 38 d'affichage des résultats dont sont munis les moyens électroniques de traitement 36.
Les figures 3 à 6 sont des vues en coupe schématiques de divers exemples des moyens optiques de concentration et de séparation qui sont prévus pour recevoir la lumière diffractée 16, séparer cette lumière en zones annulaires concentriques et concentrer les parties de la lumière diffractées, "qui correspondent respectivement à ces zones annulaires, en des points ou foyers 24, 26, 28 qui sont différents les uns des autres.
Dans l'exemple de la figure 3, utile pour la compréhension de l'invention, la concentration et la séparation ont lieu en même temps . Comme on le voit sur cette figure 3, on utilise un anneau de verre 40 qui est découpé dans une lentille convergente 41 vue en pointillés et qui concentre la lumière en son foyer 24. On utilise aussi un autre anneau de verre
42 qui est découpé dans une autre lentille convergente
43 vue en pointillés et qui concentre la lumière en son foyer 26. La coupe de l'anneau 42 est désaxée pour que le foyer 26 soit différent du foyer 24 comme on le voit sur la figure 3.
L'ensemble des anneaux de verre 40 et 42 est complété par une portion centrale de lentille 44 dont le foyer 28 est distinct des foyers 24 et 26.
L'ensemble formé par les anneaux 40 et 42 et par la portion de lentille 44 est sensiblement disposé au niveau du plan focal 10.
A titre d'exemple, on peut réaliser de cette façon un assemblage de cinquante anneaux plus la portion centrale de lentille 44. Cet assemblage peut ensuite être reproduit par moulage.
Dans l'exemple de la figure 4A, les fonctions de concentration et de séparation sont réalisées par des composants différents.
La fonction de concentration est réalisée par une optique convergente 46 disposée sensiblement au niveau du plan focal 10.
De préférence, on utilise en tant qu'optique une lentille plan-asphérique en verre, d'indice optique 1,618, du genre de la lentille décrite dans le document [1] mentionné plus haut.
On rappelle, en faisant référence à la figure 4B, qu'il s'agit d'une lentille unique 46a présentant une face de sortie plane 46b et une face d'entrée asphérique 46c de courbure correspondant à une coma minimum, percée suivant son axe 46d d'un trou borgne 46a débouchant dans la face de sortie de la lentille, à paroi polie, et de profondeur telle qu'il soit traversé par les rayons réfléchis successivement sur la face de sortie et la face d'entrée de la lentille.
En variante on utilise une optique du genre de celle qui est décrite dans le document [2] également cité plus haut. On rappelle, en faisant référence à la figure 4C, qu'il s'agit d'un système dioptrique destiné à focaliser à son foyer un faisceau de lumière monochromatique sensiblement parallèle et d'un type n'interposant que deux dioptres successifs sur le trajet des rayons du faisceau. Ce système dioptrique comprend une lentille centrale 47 présentant une face de sortie plane et une face 47a d'entrée asphérique de révolution 47b de profil correspondant à une coma minimum, percée suivant son axe 47c d'un trou 47d débouchant dans la face de sortie de la lentille, à paroi polie, et de profondeur suffisante pour qu'il soit traversé par les rayons réfléchis successivement par les faces de sortie et d'entrée de la lentille centrale, et une lentille annulaire 47e entourant la lentille centrale, présentant également une face de sortie plane 47f et une face d'entrée asphérique 47g, débordant de la face avant de la lentille centrale d'une longueur telle que les rayons 47h successivement réfléchis sur la face de sortie et la face d'entrée de la lentille annulaire présentent une pseudofocalisation hors des lentilles. Dans la présente invention, les deux optiques décrites dans ces documents sont inversées : les faces planes des lentilles sont utilisées en tant que faces d'entrée du faisceau diffracté par les particules et les faces aspheriques sont utilisées en tant que faces de sortie de façon à former un faisceau de sortie sensiblement parallèle.
De telles optiques conduisent à un minimum d'aberrations géométriques pour une image peu étendue. Dans l'exemple de la figure 4A, la fonction de séparation est réalisée par un ensemble de prismes, à savoir deux prismes 48 et 50 dans l'exemple représenté, étant entendu que, pour chaque prisme, seul une partie en forme d'anneau est conservée. Les prismes 48 et 50 sont représentés en pointillés et les anneaux correspondant respectivement aux prismes 48 et 50 ont les références 49 et 51.
Il convient de noter que les orientations des prismes sont différentes pour obtenir les foyers séparés 24, 26 et 28.
De plus, les angles des prismes sont faibles, inférieurs à 20°, pour ne pas provoquer d'aberrations. Dans l'exemple, les angles α et β des prismes 48 et 50 valent respectivement 10° et 5°. Sur la figure 4A, les prismes sont présentés accolés par une face mais les anneaux une fois réalisés sont enchâssés les uns dans les autres.
Les dimensions des prismes sont choisies en fonction de la distance de l'ensemble des portions 49 et 51 à l'optique 46 pour recouvrir précisément les zones angulaires voulues . Dans l'exemple de la figure 5, la fonction de séparation est réalisée par un ensemble de miroirs annulaires, à savoir deux miroirs annulaires 52 et 54 dans l'exemple représenté. Le trou central de l'ensemble des miroirs laisse passer une partie de la lumière qui est focalisée par l'optique 46 et correspond au point 28.
Les miroirs annulaires 52 et 54 dévient des parties de lumière correspondant respectivement aux points 24 et 26.
On précise que les miroirs annulaires ont des inclinaisons différentes par rapport à l'axe Y de l'optique 46 et sont percés de trous elliptiques tels que la lumière issue de cette optique 46 soit séparée entre des cercles.
Dans l'exemple de la figure 6, la fonction de séparation est réalisée par une couche de résine photosensible (« photoresist layer ») 56 qui est déposée sur la face convexe de l'optique 46 et dans laquelle on forme des réseaux de diffraction annulaires concentriques, à savoir les deux réseaux de diffraction 58 et 60 dans l'exemple représenté, ainsi qu'un réseau de diffraction central 62, comme on le voit sur la figure 6. Ces réseaux 58, 60 et 62 sont des hologrammes prévus pour dévier la lumière qui est issue de l'optique 46 respectivement vers les points 24, 26 et 28.
Pour obtenir ces réseaux 58, 60 et 62, on insole successivement les zones de la résine photosensible correspondant à ces réseaux de manière à obtenir les hologrammes .
Pour chaque insolation on utilise deux sources lasers que l'on forme - au niveau de la zone 12 et au niveau du point 24 pour former le réseau 58,
— au niveau de la zone 12 et au niveau du point 26 pour former le réseau 60, et
- au niveau de la zone 12 et au niveau du point 28 pour former le réseau 62 et qui créent dans chacun de ces trois cas des interférences dans la zone souhaitée de la couche de résine photosensible pour y former l'hologramme correspondant . On choisit une couche de résine photosensible assez épaisse pour n'avoir qu'un ordre d'interférence utile dans chaque cas.
On précise que l'insolation de chaque zone de la couche 56 est faite à travers deux masques appropriés qui empêchent l'insolation du reste de cette couche 56 par chacune des deux sources lasers.
La figure 7 illustre schematiquement, à titre d'exemple, l'insolation de la zone de la couche
56 dans laquelle on veut former le réseau de diffraction central 62.
Deux masques 64 et 65 empêchent l'insolation du reste de la couche 56 par les faisceaux venant respectivement des sources lasers 70 et 68 que l'on voit sur la figure 7. On utilise un seul laser 66 pour former la source laser 68 au niveau de la partie du nuage de gouttes 12 et l'autre source laser 70 au niveau du point ou foyer 28.
Pour ce faire, on utilise un miroir semi- transparent 72 et des réflecteurs lasers 74, 76 et 78 que l'on dispose convenablement comme on le voit sur la figure 7 et comme cela est classique dans le domaine de 1 'holographie.
Après développement de la couche 56 insolée on obtient les trois réseaux - hologrammes qui concentrent la lumière respectivement aux points 24, 26 et 28.
Dans un autre mode de réalisation particulier (non représenté) , la couche de résine photosensible est formée sur la face plane de l'optique 46. Dans ce cas, le procédé d'insolation assure une correction supplémentaire des aberrations déjà réduites par utilisation d'une optique du genre de celle qui est décrite dans le document [1] ou le document [2] et permet d'obtenir une bonne image de la partie 12 du nuage de gouttes sur chacun des photodétecteurs que l'on place respectivement aux points 24, 26 et 28 comme on l'a vu plus hau .
Dans un autre mode de réalisation particulier (non représenté) , la couche de résine photosensible est formée non pas sur l'optique 46 mais sur une lame de verre espacée de cette optique 46, cette dernière étant alors comprise entre la lame de verre et la partie étudiée 12 du nuage de gouttes .
En ce qui concerne chacun des dispositifs, qui sont schematiquement et partiellement représentés sur les figures 3 à 6, on précise que, pour dépouiller les mesures permettant de connaître les diverses tailles des gouttes, il faut étalonner ce dispositif quant à la luminosité produite par chaque anneau et vérifier que chaque anneau n'éclaire qu'un photodétecteur.
En vue de l'informatisation des mesures, il est préférable d'utiliser un réseau (« array ») de photodétecteurs, par exemple une barrette de photodiodes ou un détecteur du genre CCD. Dans ce cas, on réalise les moyens de concentration et de séparation de manière que les divers points de concentration de lumière (référencés 24, 26 et 28 sur les figures 3 à 6) aient des positions permettant cette utilisation. Par exemple, si l'on utilise une barrette de photodiodes, il faut que ces points soient alignés. Revenons au dispositif de la figure 3. De préférence, afin de n'avoir, à la sortie de l'ensemble d'anneaux 40, 42, 44, que la lumière « utile » et pas de lumière parasite susceptible d'être diffractée au niveau des bords ou flans interne et externe de chaque anneau, il convient d'empêcher la lumière diffractée de « lécher » ces bords.
Pour ce faire, on forme par exemple des chanfreins sur ces bords interne et externe, du côté où arrive la lumière diffractée, et l'on rend opaque chaque chanfrein ainsi formé, par exemple en y déposant une couche de peinture noire.
On illustre cela en faisant référence à la figure 8 et en prenant l'exemple de l'anneau 40 de la figure 3. On voit sur la figure 8 le bord interne 80 et le bord externe 82 de cet anneau 40. On voit également les chanfreins 84 et 86 respectivement formés sur ces bords 80 et 82 et la couche de peinture noire 88 formée sur chaque chanfrein.
De préférence, on procède de la même façon dans le cas où l'on utilise des portions annulaires de prismes (figure 4A) .
De même, dans le cas où l'on utilise les réseaux de diffraction de la figure 6, on forme de préférence des zones absorbant la lumière entre les zones insolées . Pour ce faire, on y dépose un anneau de peinture noire.
Considérons maintenant la détermination des limites angulaires des anneaux.
Nous avons vu (figure 1) que la lumière venait aux petits angles des grosses gouttes et aux grands angles des petites gouttes.
Traçons, avec l'aide de la formule (1) mentionnée plus haut, une série de courbes (figure 9) correspondant à dix tailles allant de 1 μm à 10 μm, échelonnées de μm en μm, au lieu des deux courbes I et II de la figure 1.
L'enveloppe de ces courbes ayant l'allure d'une hyperbole, on présente à la figure 10 la même série de courbes mais en portant en abscisses les inverses α"1 (exprimés en radians "1) des angles α. L'enveloppe devient un segment de droite correspondant à Z peu différent de 1,36, où Z=2πxRx /λ a été défini plus haut. On voit que chaque taille éclaire le plus dans un intervalle particulier d'angles . Cet intervalle est défini par la valeur et l'expression de Z que l'on a données ci-dessus. C'est donc dans la zone du plan focal 10, zone correspondant à cet intervalle, qu'il faut placer un anneau pour avoir le meilleur eclairement pour cette taille. C'est là où la discrimination est la meilleure.
On obtient ainsi une loi de « découpage » du plan focal.
A titre d'exemple, un assemblage de 11 anneaux prévus pour recevoir la lumière des particules de tailles allant de 0,84 μm à 9 μm est donné par le tableau I ci-dessous, pour une lumière diffractée ayant une longueur d'onde de 0,5 μm. le découpage angulaire optimal des anneaux est fait suivant la loi : α
1,36 = 2πR — . λ
Cette loi optimise la discrimination des tailles des gouttes.
Tableau I
Figure imgf000024_0001
Considérons maintenant la détermination du nombre préféré d'anneaux. La figure 1 montre aussi qu'une seule mesure de 1 ' eclairement E, faite par exemple à α=0,06 radian, ne permet pas de savoir si la famille de gouttes a 1 μm ou 10 μm de diamètre, ni de connaître le nombre de points. En utilisant la mesure de 1 ' eclairement E0 des gouttes on aurait deux solutions pour ce nombre : 127000 gouttes de 1 μm ou 1270 gouttes de 10 μm.
Une mesure de l'opacité indiquant 1% d'absorption assurerait que la famille diffractante est formée des gouttes de 10 μm. Une seconde mesure à un autre angle aurait confirmé cela.
De manière générale, il faut M+l mesures (angles, opacité, eclairement des gouttes) pour avoir le nombre de gouttes diffractantes dans chaque taille parmi M tailles.
On utilise donc de préférence M+l anneaux. Il ne faut pas trop augmenter ce nombre d'anneaux car, dans un dispositif conforme à l'invention, chaque anneau ne recueille qu'une fraction environ égale à 1/M de toute la lumière reçue par les moyens de concentration et de séparation d'un tel dispositif . Dans l'invention, toute la lumière diffractée est recueillie aux angles optima correspondant aux tailles recherchées . Cela supprime l'effet des pics d'interférences, effet qui gênait le dépouillement des mesures dans l'art antérieur. Cela fournit aussi le maximum de sensibilité qui sert soit à mesurer des concentrations moindres de particules soit à maximiser la vitesse d'acquisition des données.
La présente invention n'est pas limitée à la mesure de tailles de gouttes opaques, dont les diamètres vont de 0 , 1 μm à 100 μm.
Elle s'applique à la mesure des tailles de toutes sortes de particules de formes sensiblement spheriques, ces particules étant transparentes ou translucides ou opaques et ayant des tailles appartenant à l'intervalle allant de 0,1 μm à 1 mm.
On peut par exemple utiliser l'invention pour la granulometrie de poudres de matériaux tels que le plâtre, le ciment et le minerai de fer. On éclaire alors une poudre de ce genre, placée en regard d'un dispositif conforme à l'invention, sur un support qui est transparent à la lumière utilisée et que l'on maintient fixe ou que l'on déplace devant le dispositif.
Certes, on connaît par le document GB 2044445A (Coulter Electronics) des systèmes de mesure de l'énergie et de la direction d'un flux lumineux provenant de particules, pour identifier les caractéristiques de ces particules. Ces systèmes comprennent essentiellement des dispositifs de concentration-séparation à miroirs non plans, dans lesquels on ne sépare pas les moyens de concentration des moyens de séparation.
De tels dispositifs ne permettent une mesure correcte des tailles de particules que pour les particules qui sont situées exactement au foyer des miroirs. Pour les autres particules, les aberrations géométriques dues aux miroirs empêchent des mesures correctes .
La présente invention remédie à cet inconvénient grâce à l'utilisation de moyens optiques de concentration, comprenant une optique de focalisation ayant une face d'entrée plane et une face de sortie asphérique, et de moyens optiques de séparation, distincts des moyens optiques de concentration. On obtient ainsi une bonne image sur un champ optique de l'ordre de 1°.

Claims

REVENDICATIONS
1. Dispositif de mesure des tailles de particules sensiblement spheriques, ce dispositif étant caractérisé en ce qu'il comprend : - une source de lumière (4) apte à fournir un faisceau lumineux (6) destiné à éclairer les particules (12), ces particules diffractant la lumière du faisceau,
- des moyens optiques de concentration et de séparation (46, 49-51 ; 46, 52-54 ; 46, 58-60-62) prévus pour recevoir la lumière ainsi diffractée et aptes à séparer cette lumière diffractée en une pluralité de zones annulaires concentriques et à concentrer les parties de la lumière diffractée, qui correspondent respectivement à ces zones annulaires, en une pluralité de points (24, 26, 28) différents les uns des autres, et
- des moyens de photodétection (30, 32, 34) prévus pour détecter les intensités lumineuses correspondant respectivement à ces points, les tailles des particules étant déterminées en fonction de ces intensités lumineuses, dispositif dans lequel les moyens optiques de concentration et de séparation comprennent :
- des moyens optiques de concentration (46) aptes à concentrer la lumière diffractée, les moyens optiques de concentration comprenant une optique de focalisation ayant une face d'entrée plane et une face de sortie asphérique, et
- des moyens optiques de séparation comprenant une pluralité de portions annulaires (49-51, 52-54, 58-
60-62) de moyens optiques de déviation, ces portions annulaires étant prévues pour intercepter la lumière ainsi concentrée et dévier la lumière ainsi interceptée dans des directions respectives différentes les unes des autres .
2. Dispositif selon la revendication 1, dans lequel les moyens optiques de déviation sont des prismes (48, 50) .
3. Dispositif selon la revendication 2, dans lequel l'angle (α, β) de chaque prisme est inférieur à 20°.
4. Dispositif selon la revendication 1, dans lequel les moyens optiques de déviation sont des moyens de réflexion de lumière.
5. Dispositif selon la revendication 1, dans lequel les moyens optiques de déviation sont des réseaux de diffraction.
6. Dispositif selon l'une quelconque des revendications 1 à 5, comprenant en outre des moyens
(84-86, 88) empêchant la diffraction de lumière au niveau des interfaces des portions annulaires que comprennent les moyens optiques de concentration et de séparation.
7. Dispositif selon l'une quelconque des revendications 1 à 6, dans lequel le nombre des zones annulaires concentriques est égal à M+l où M est le nombre considéré de tailles différentes des particules (12) .
8. Dispositif selon l'une quelconque des revendications 1 à 7, dans lequel l'optique de focalisation est une lentille présentant une première face plane et deuxième face asphérique de courbure correspondant à une coma minimum, percée suivant son axe d'un trou borgne débouchant dans la première face de la lentille, à paroi polie, et de profondeur telle que, lorsqu'on envoie une lumière vers la deuxième face, le trou soit traversé par les rayons lumineux réfléchis successivement sur la première face et la deuxième face de la lentille.
9. Dispositif selon l'une quelconque des revendications 1 à 7, dans lequel l'optique de focalisation est un système dioptrique apte à focaliser à son foyer un faisceau de lumière monochromatique sensiblement parallèle et d'un type n'interposant que deux dioptres successifs sur le trajet des rayons du faisceau, ce système dioptrique comprenant une lentille centrale présentant une première face plane et une deuxième face asphérique de révolution de profil correspondant à une coma minimum, percée suivant son axe d'un trou débouchant dans la première face de la lentille, à paroi polie, et de profondeur suffisante pour que, lorsqu'on envoie une lumière vers la deuxième face, le trou soit traversé par les rayons lumlineux réfléchis successivement par les première et deuxième faces de la lentille centrale, et une lentille annulaire entourant la lentille centrale, présentant également une première face plane et une deuxième face asphérique, débordant de la deuxième face de la lentille centrale d'une longueur telle que les rayons lumineux successivement réfléchis sur la première face et la deuxième face de la lentille annulaire présentent une pseudo-focalisation hors des lentilles.
PCT/FR2000/003318 1999-11-29 2000-11-28 Dispositif de mesure, par diffraction, de tailles de particules sensiblement spheriques, notamment de gouttes opaques WO2001040766A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00985341A EP1240496A1 (fr) 1999-11-29 2000-11-28 Dispositif de mesure, par diffraction, de tailles de particules sensiblement spheriques, notamment de gouttes opaques
JP2001542182A JP2003515738A (ja) 1999-11-29 2000-11-28 特に不透明液滴といったような実質的に球形の粒子のサイズを回折によって測定するための装置
US10/148,354 US6850324B1 (en) 1999-11-29 2000-11-28 Device for measuring, by diffraction, the sizes of substantially spherical particles, in particular opaque drops

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9914992A FR2801671B1 (fr) 1999-11-29 1999-11-29 Dispositif de mesure, par diffraction, de tailles de particules sensiblement spheriques, notamment de gouttes opaques
FR99/14992 1999-11-29

Publications (1)

Publication Number Publication Date
WO2001040766A1 true WO2001040766A1 (fr) 2001-06-07

Family

ID=9552647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003318 WO2001040766A1 (fr) 1999-11-29 2000-11-28 Dispositif de mesure, par diffraction, de tailles de particules sensiblement spheriques, notamment de gouttes opaques

Country Status (5)

Country Link
US (1) US6850324B1 (fr)
EP (1) EP1240496A1 (fr)
JP (1) JP2003515738A (fr)
FR (1) FR2801671B1 (fr)
WO (1) WO2001040766A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9453849B2 (en) 2005-02-01 2016-09-27 Premium Genetics (Uk) Limited Methods for staining cells for identification and sorting
US11187224B2 (en) 2013-07-16 2021-11-30 Abs Global, Inc. Microfluidic chip
US11193879B2 (en) 2010-11-16 2021-12-07 1087 Systems, Inc. Use of vibrational spectroscopy for microfluidic liquid measurement
US11243494B2 (en) 2002-07-31 2022-02-08 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US11331670B2 (en) 2018-05-23 2022-05-17 Abs Global, Inc. Systems and methods for particle focusing in microchannels
US11415503B2 (en) 2013-10-30 2022-08-16 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
US11628439B2 (en) 2020-01-13 2023-04-18 Abs Global, Inc. Single-sheath microfluidic chip
US11889830B2 (en) 2019-04-18 2024-02-06 Abs Global, Inc. System and process for continuous addition of cryoprotectant

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4429314B2 (ja) * 2004-05-27 2010-03-10 三菱電機株式会社 光ヘッド装置及び光ディスク装置
US7355696B2 (en) * 2005-02-01 2008-04-08 Arryx, Inc Method and apparatus for sorting cells
US7843563B2 (en) * 2005-08-16 2010-11-30 Honeywell International Inc. Light scattering and imaging optical system
JP5160154B2 (ja) * 2007-06-29 2013-03-13 北斗電子工業株式会社 液体中の粒子のサイズの検出方法および装置
JP5366727B2 (ja) * 2009-09-14 2013-12-11 北斗電子工業株式会社 液体中の粒子のサイズの検出方法および装置並びに光学装置
JP5533055B2 (ja) 2010-03-10 2014-06-25 ソニー株式会社 光学的測定装置及び光学的測定方法
DE102012201423B4 (de) * 2012-02-01 2013-10-31 Siemens Aktiengesellschaft Anordnung zur Detektion von Partikeln
WO2014144585A1 (fr) * 2013-03-15 2014-09-18 Beckman Coulter, Inc. Filtration de lumière rayonnée pour un cytomètre en flux
USD742059S1 (en) * 2014-02-28 2015-10-27 Leeo, Inc. Nightlight and air sensor
USD741728S1 (en) * 2014-02-28 2015-10-27 Leeo, Inc. Nightlight and air sensor
DE202016009104U1 (de) 2015-02-16 2022-04-04 Tsi, Incorporated Luft- und Gasströmungsgeschwindigkeits- und Temperaturfühler
JP6618269B2 (ja) * 2015-04-17 2019-12-11 学校法人 東洋大学 粒径測定システムおよび粒径測定方法
KR20210089291A (ko) * 2020-01-07 2021-07-16 삼성디스플레이 주식회사 표시 장치의 제조장치 및 표시 장치의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037965A (en) * 1976-03-23 1977-07-26 Leeds & Northrup Company Method and optical means for determining dimensional characteristics of the particle distribution in a collection of particles
GB2044445A (en) * 1979-01-02 1980-10-15 Coulter Electronics Measuring scatter distribution
US4735504A (en) * 1983-10-31 1988-04-05 Technicon Instruments Corporation Method and apparatus for determining the volume & index of refraction of particles
EP0864853A2 (fr) * 1997-03-11 1998-09-16 Nihon Kohden Corporation Analyseur de particules et lentille-composite formée de lentilles de distance focal différente

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1550406A (fr) 1967-11-08 1968-12-20
FR95885E (fr) 1968-11-04 1971-11-12 Commissariat Energie Atomique Systeme dioptrique.
US4341471A (en) * 1979-01-02 1982-07-27 Coulter Electronics, Inc. Apparatus and method for measuring the distribution of radiant energy produced in particle investigating systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037965A (en) * 1976-03-23 1977-07-26 Leeds & Northrup Company Method and optical means for determining dimensional characteristics of the particle distribution in a collection of particles
GB2044445A (en) * 1979-01-02 1980-10-15 Coulter Electronics Measuring scatter distribution
US4735504A (en) * 1983-10-31 1988-04-05 Technicon Instruments Corporation Method and apparatus for determining the volume & index of refraction of particles
EP0864853A2 (fr) * 1997-03-11 1998-09-16 Nihon Kohden Corporation Analyseur de particules et lentille-composite formée de lentilles de distance focal différente

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11243494B2 (en) 2002-07-31 2022-02-08 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US11415936B2 (en) 2002-07-31 2022-08-16 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US11422504B2 (en) 2002-07-31 2022-08-23 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US9453849B2 (en) 2005-02-01 2016-09-27 Premium Genetics (Uk) Limited Methods for staining cells for identification and sorting
US11193879B2 (en) 2010-11-16 2021-12-07 1087 Systems, Inc. Use of vibrational spectroscopy for microfluidic liquid measurement
US11965816B2 (en) 2010-11-16 2024-04-23 1087 Systems, Inc. Use of vibrational spectroscopy for microfluidic liquid measurement
US11512691B2 (en) 2013-07-16 2022-11-29 Abs Global, Inc. Microfluidic chip
US11187224B2 (en) 2013-07-16 2021-11-30 Abs Global, Inc. Microfluidic chip
US11415503B2 (en) 2013-10-30 2022-08-16 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
US11639888B2 (en) 2013-10-30 2023-05-02 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
US11796449B2 (en) 2013-10-30 2023-10-24 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
US11331670B2 (en) 2018-05-23 2022-05-17 Abs Global, Inc. Systems and methods for particle focusing in microchannels
US11889830B2 (en) 2019-04-18 2024-02-06 Abs Global, Inc. System and process for continuous addition of cryoprotectant
US11628439B2 (en) 2020-01-13 2023-04-18 Abs Global, Inc. Single-sheath microfluidic chip

Also Published As

Publication number Publication date
FR2801671A1 (fr) 2001-06-01
US6850324B1 (en) 2005-02-01
EP1240496A1 (fr) 2002-09-18
FR2801671B1 (fr) 2001-12-21
JP2003515738A (ja) 2003-05-07

Similar Documents

Publication Publication Date Title
WO2001040766A1 (fr) Dispositif de mesure, par diffraction, de tailles de particules sensiblement spheriques, notamment de gouttes opaques
EP0744613B1 (fr) Dispositif d'inspection optique d'un fluide, notamment pour analyses hématologiques
EP0165868B1 (fr) Dispositif optique à rendement de collection élevé et cytofluorimètre en faisant application
JP2013511041A (ja) 減衰全反射に基づいた光センサシステムおよび感知方法
EP2364438A1 (fr) Procede et systeme d'analyse de particules solides dans un milieu
EP3574301A1 (fr) Détecteur optique de particules
FR2654513A1 (fr) Procede et dispositif pour la determiantion des caracteristiques d'un lentille, et, notamment, de sa puissance.
EP3583402B1 (fr) Detecteur optique de particules et procede de fabrication d'un detecteur de particules
FR2535053A1 (fr) Appareil d'identification optique des proprietes multiparametriques individuelles de particules ou objets en flux continu
FR2671872A1 (fr) Spectrophotometre portatif pour l'etude in situ du spectre d'absorption d'une substance.
EP3598102A1 (fr) Détecteur optique de particules
EP0052551B1 (fr) Réfractomètre utilisant la méthode de l'angle limite
EP0234997A1 (fr) Procédé de détermination sans contact du relief d'une surface
EP2565627B1 (fr) Dispositif d'éclairage d'un objet avec une source de lumière munie d'un moyen de prélèvement d'une portion de la lumière pour mesurer des variations de flux de la source
WO2021078805A1 (fr) Détecteur optique de particules
EP0083268B1 (fr) Procédé de réglage automatique de la netteté d'images projetées sur un écran et dispositifs pour la mise en oeuvre dudit procédé
EP0551222B1 (fr) Dispositif indicateur à aiguille éclairante
FR2841983A1 (fr) Procede et dispositif permettant de mesurer un flux lumineux retrodiffuse par un milieu disperse, non perturbe par les reflexions aux interfaces
CH653132A5 (en) Flow cell for apparatus for analysis of individual particles in suspension in a liquid and analysis apparatus using this cell
EP1141668B1 (fr) Dispositif a rejet spectral de formation d'une image sur un capteur optique
EP1376101A1 (fr) Dispositif de mesure de caractéristiques photométriques d'un matériau
FR2479975A1 (fr) Telemetre perfectionne fonctionnant dans l'infrarouge
CH425265A (fr) Système optique auto-collimateur
FR2723451A1 (fr) Sensitometre spectral pour surface photosensible
FR2727524A1 (fr) Systeme de mesure de mouvement d'un objet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000985341

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 542182

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10148354

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000985341

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000985341

Country of ref document: EP