WO2001040325A1 - Multiple catalyst system - Google Patents

Multiple catalyst system Download PDF

Info

Publication number
WO2001040325A1
WO2001040325A1 PCT/US2000/027235 US0027235W WO0140325A1 WO 2001040325 A1 WO2001040325 A1 WO 2001040325A1 US 0027235 W US0027235 W US 0027235W WO 0140325 A1 WO0140325 A1 WO 0140325A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metallocene
groups
metal compound
activator
Prior art date
Application number
PCT/US2000/027235
Other languages
English (en)
French (fr)
Inventor
Rex E. Murray
Simon Mawson
John F. Szul
Kersten Anne Erickson
Tae Hoon Kwack
Frederick J. Karol
David James Schreck
Original Assignee
Univation Technologies Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univation Technologies Llc filed Critical Univation Technologies Llc
Priority to BR0016197-7A priority Critical patent/BR0016197A/pt
Priority to EP00967279A priority patent/EP1252199A1/en
Priority to AU77499/00A priority patent/AU775512B2/en
Priority to CA002393446A priority patent/CA2393446A1/en
Priority to JP2001541079A priority patent/JP2003515628A/ja
Publication of WO2001040325A1 publication Critical patent/WO2001040325A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/38Radicals substituted by singly-bound nitrogen atoms having only hydrogen or hydrocarbon radicals attached to the substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Definitions

  • This invention relates to the use of two or more different metal compounds, preferably in the same reactor, used to produce polyolefins.
  • Metallocene compounds are of particular interest in the polyolef ⁇ n industry today for their use as polymerization catalysts.
  • biscyclopentadienyl and monocyclopentadienyl transition metal compounds are of particular interest in the polyolef ⁇ n industry today for their use as polymerization catalysts.
  • biscyclopentadienyl and monocyclopentadienyl transition metal compounds are of particular interest in the polyolef ⁇ n industry today for their use as polymerization catalysts.
  • biscyclopentadienyl and monocyclopentadienyl transition metal compounds are of particular interest in the polyolef ⁇ n industry today for their use as polymerization catalysts.
  • monocyclopentadienyl transition metal compounds are of particular interest in the polyolef ⁇ n industry today for their use as polymerization catalysts.
  • copending United States patent application 09/103,620 filed June 23, 1998 (published as WO 99/01460) assigned to Union Carbide discloses new transition metal compounds based on bidentate ligands containing pyridine or quinoline moieties for use on olefin polymerizations.
  • These new catalysts such as the metallocene polymerization catalysts (i.e. those containing a transition metal bound to at least one cyclopentadienyl, indenyl or fluorenyl group), have recently been used to produce new resins having desirable product properties.
  • metallocene catalyst systems are used by Exxon Chemical Company to produce EXCEEDTM type polyethylene resins.
  • WO 98/02247 discloses a dual catalyst system of a metallocene and a non-metallocene (TiCl 4 + alcohol) treated with the contact product of dialkylmagnesium and trialkylsilanol.
  • WO 98/02247 discloses dual metallocene systems and describes the idea that the two different transition metal sources exhibit a different hydrogen response under the same polymerization and hydrogen conditions as critical. Hydrogen response is the sensitivity ofthe catalyst to manipulation by adding or subtracting hydrogen to or from the polymerization system to produce different products.
  • US 4,935,474 discloses olefin polymerization in the presence of two or more metallocenes (activated with alumoxane) each having a different propagation and termination rate constants.
  • US 5,464,905 discloses a molding polymer composition which comprises a copolymer blend produced from a copolymer produced from two different metallocenes combined with alumoxane and a second copolymer produced with a metallocene and alumoxane.
  • Liquid mixtures of many classes of catalysts are disclosed for use in gas phase polymerization in US 5,693,727.
  • US '727 discloses that more than one liquid metallocene may be employed.
  • EP 0 770 629 A discloses a process to produce bimodal polymers using two reactors in series. In some circumstances only the reaction conditions and monomer feeds are changed in the second reactor. In other circumstances a second different catalyst is added to the second reactor.
  • Mitsui for example, and others produce a processable bimodal molecular weight distribution (MWD) high density polyethylene product under the Tradename HIZEXTM which is considered a worldwide standard for this type of HDPE product.
  • HIZEXTM is produced in two or more reactors at a substantial cost. While bimodal MWD HDPE products have these desirable characteristics, they can be inherently costly to produce because they require a series- or cascade- reactor system. In such systems, each reactor in a multiple reactor process produces a single component ofthe final product. Thus, there is a need in the art to produce a processable polyethylene having a good balance of haze and gloss with improved physical properties in one reactor.
  • This invention provides a dual catalyst system that can be used in one reactor to produce processable polyethylene.
  • This mvention relates to a process to polymerize olefins comprising reacting one or more olefins with a catalyst system comprising at least two metal compounds and an activator in a gas or slurry phase reactor.
  • the first metal compound is preferably a metallocene and the second metal compound is preferably a transition metal compound based on bidentate ligands containing heterocycle moieties.
  • the metal compounds are selected in such a way that one produces high molecular weight polymer and another produces lower molecular weight polymer.
  • Figure 1 is the SEC graph for Example 1.
  • Figure 2 is the SEC graph for Example 2.
  • Figure 3 is the SEC graph for Example 5.
  • this invention relates to a process to polymerize olefins comprising contacting olefins with a catalyst system comprising at least two metal compounds and at least one activator in a slurry phase or gas phase reactor wherein the first metal compound is a metallocene catalyst (for purposes of this invention metallocene is defined to include those compounds containing a transition metal bound to at least one cyclopentadienyl, indenyl or fluorenyl group or other similar functioning structure, preferably a group 4,5 or 6 metal bound to a cyclopentadienyl, indenyl or fluorenyl group) and the second metal compound is a transition metal compound based on bidentate ligands containing pyridine or quinoline moieties.
  • metallocene for purposes of this invention metallocene is defined to include those compounds containing a transition metal bound to at least one cyclopentadienyl, indenyl or fluorenyl group or other similar functioning structure,
  • the metallocenes comprise bulky ligand transition metallocene-type catalyst compounds including half and full sandwich compounds having one or more bulky ligands including cyclopentadienyl structures or other similar functioning structure such as pentadiene, cyclooctatetraendiyl and imides.
  • the bulky ligands are capable of ⁇ -5 bonding to a transition metal atom, for example from Group 4, 5 and 6 of the Periodic Table of Elements.
  • Bulky ligand transition metallocene-type catalyst systems of the invention are formed from the bulky ligand metallocene-type catalyst compound represented by the formula: (LP) m M(Aq) n (E (III) where L is a bulky ligand, substituted or unsubstituted; M is a transition metal (preferably a group 4, 5 or 6 transition metal), p is the anionic charge of L and m is the number of L ligands and m is 1, 2 or 3, A is a ligand bonded to M and capable of inserting an olefin between the M-A bond, q is the anionic charge of A and n is the number of A ligands and n is 1, 2, 3 or 4, and E is an anionic leaving group such as but not limited to hydrocarbyl, hydride, halide, carboxylate or combination thereof or any other anionic ligands; r is the anionic charge of E and o is the number of E ligands and o is 1, 2, 3
  • the bulky ligand transition metallocene-type catalyst systems are preferably those complexes represented by the formula: where L is a substituted or unsubstituted bulky ligand bonded to M, p is the anionic charge of L and m is the number of L ligands and m is 1, 2 or 3; A is a ligand bonded to M and capable of inserting an olefin between the M-A bond, q is the anionic charge of A and n is the number of A ligands and n is 1, 2, 3 or 4, M is a transition metal, and (p x m) + (q x n) + k corresponds to the formal oxidation state ofthe metal center; where k is the charge on the cation and k is 1, 2, 3 or 4, and B' is a chemically stable, non-nucleophillic anionic complex, preferably having a molecular diameter of 4 A or greater and j is the anionic charge
  • any two L and/or A ligands may be bridged to each other and/or unbridged.
  • the catalyst compound may be full- sandwich compounds having two or more ligands L. which are cyclopentadienyl derived ligands or substituted cyclopentadienyl derived ligands, or half-sandwich compounds having one ligand L, which is a cyclopentadienyl derived ligand or heteroatom substituted cyclopentadienyl derived ligand or hydrocarbyl substituted cyclopentadienyl derived ligand or moiety such as an indenyl ligand, a benzindenyl ligand or a fluorenyl ligand, an octahydro fluorenyl ligand, a cyclooctatetraendiyl ligand, an azenyl ligand and the like, including hydrogenated versions thereof or
  • each L can be substituted with a combination, which can be the same or different.
  • substituents include hydrogen or linear, branched alkyl radicals or cyclic alkyl, alkenyl, alkynl or aryl radicals or combination thereof having from 1 to 30 carbon atoms or other substituents having up to 50 non-hydrogen atoms that can also be substituted.
  • Non-limiting examples of alkyl substituents include methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, cyclohexyl, benzyl or phenyl groups and the like, including all their isomers, for example tertiary butyl, iso propyl etc.
  • Non-hydrogen substituents include the atoms carbon, silicon, nitrogen, oxygen, tin, germanium and the like including olefins.
  • L may also be other types of bulky ligands including but not limited to bulky amides, phosphides, alkoxides, aryloxides, imides, carbolides, borollides, porphyrins, phthalocyanines, corrins and other polyazomacrocycles.
  • the metal atom, from the Periodic Table ofthe Elements, may be a Group 3 to 10 metal, preferably, a Group 4, 5 or 6 transition metal or a metal from the lanthanide or actinide series, more preferably the transition metal is from Group 4.
  • ligands may be bonded to the transition metal, such as a leaving group, such as but not limited to weak bases such as amines, phosphines, ether, carboxylates, dienes, hydrocarbyl radicals having from 1 to 20 carbon atoms or halogens and the like. In addition to the transition metal, these ligands may be optionally bonded to A or L.
  • a leaving group such as but not limited to weak bases such as amines, phosphines, ether, carboxylates, dienes, hydrocarbyl radicals having from 1 to 20 carbon atoms or halogens and the like.
  • these ligands may be optionally bonded to A or L.
  • Non-limiting examples of such catalyst components and catalyst systems are discussed in for example, U.S. Patent Nos.
  • the bulky ligand transition metallocene-type catalyst systems ofthe invention include monocyclopentadienyl heteroatom containing transition metal metallocene-type compounds. These metallocene-type compounds are activated by an alumoxane, modified alumoxane, a non-coordinating anion, a Lewis acid or a combination thereof to form an active polymerization catalyst system.
  • alumoxane modified alumoxane
  • a non-coordinating anion a Lewis acid or a combination thereof
  • Lewis acid or a combination thereof
  • the preferred transition metal component ofthe metallocene-type catalyst ofthe invention are those of Group 4, particularly, titanium, zirconium and hafnium.
  • the transition metal may be in any formal oxidation state, preferably +2, +3 or +4 or a mixture thereof, more preferably +4.
  • the metallocene is represented by the formula:
  • M is a Group 4, 5, 6 transition metal
  • (C5H5_ ( j.fR" c j) is the same or different unsubstituted or substituted cyclopentadienyl ligand bonded to M
  • each R" which can be the same or different, is hydrogen or a substituent group containing up to 50 non-hydrogen atoms or substituted or unsubstituted hydrocarbyl having from 1 to 30 carbon atoms or combinations thereof, or two or more carbon atoms are joined together to form a part of a substituted or unsubstituted ⁇ ng or ⁇ ng system having 4 to 30 carbon atoms
  • R'" is one or more or a combination of carbon, germanium, silicon, tin, phosphorous or nitrogen atoms containing radical b ⁇ dging two (C5H5_ c ⁇ .fR" c j) lig
  • (C5H5_y_ x R x ) is a cyclopentadienyl ⁇ ng which is substituted with from 0 to 5 substituent groups R, "x" is 0, 1, 2, 3, 4 or 5 denoting the degree of substitution, and each substituent group R is, independently, a radical selected from a group consisting of C1-C20 hydrocarbyl radicals, substituted C1 -C20 hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a heteroatom, such as a halogen atom, C1 -C20 hydrocarbyl- substituted metalloid radicals wherein the metalloid is selected from the Group 14 of the Pe ⁇ odic Table of Elements, and halogen radicals or (C5H5_y_ x R x ) is a cyclopentadienyl ⁇ ng in which two adjacent R-groups are joined forming C4-C20 ⁇ ng to give a saturated or unsaturated
  • JR'z-i-y is a heteroatom ligand in which J is an element with a coordination number of three from Group 15 or an element with a coordination number of two from Group 16 of the Pe ⁇ odic Table of Elements, preferably nitrogen, phosphorus, oxygen or sulfur with nitrogen being preferred, and each R' is, independently a radical selected from a group consisting of C1-C20 hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, y is 0 or 1, and "z" is the coordination number of the element J; each Q is, independently any univalent anionic ligand such as halogen, hydride, or substituted or unsubstituted Cj -C30 hydrocarbyl, alkoxide, aryloxide, amide or phosphide, provided that two Q may be an alkylidene, a cyclometallated hydrocarbyl or any other divalent anionic chelating ligand; and n may be 0,1 or 2
  • L' is a Lewis base such as diethylether, tetraethylammonium chloride, tetrahydrofuran, dimethylaniline, aniline, trimethylphosphine, n-butylamine, and the like; and w is a number from 0 to 3. Additionally, L' may be bonded to any of R, R' or Q and n is 0, 1, 2 or 3.
  • the bulky ligands of the metallocene-type catalyst compound of the invention described above are asymmetrically substituted in terms of additional substituents or types of substituents, and/or unbalanced in terms ofthe number of additional substituents on the bulky ligands or the bulky ligands themselves are different.
  • the metallocene-type catalysts of the invention include their structural or optical or enantiomeric isomers and mixtures thereof.
  • the metallocene is a compound as described in U.S. Patent No. 5,527,752 and 5,747,406 and EP-B1-0 735 057, all of which are herein fully incorporated by reference.
  • the metallocene compound is represented by one ofthe following formulae:
  • M is a transition metal from Group 4, 5 or 6, preferably titanium, zirconium or hafnium, most preferably zirconium or hafnium;
  • L is a substituted or unsubstituted, pi-bonded ligand coordinated to M, preferably L is a cycloalkadienyl bulky ligand, for example cyclopentadienyl, indenyl or fluorenyl bulky ligands, optionally substituted with one or more hydrocarbyl substituent groups having from 1 to 20 carbon atoms;
  • each Q is independently selected from the group consisting of -O-, -NR-, -CR2- and - S-, preferably oxygen;
  • Y is either C or S, preferably carbon;
  • Z is selected from the group consisting of -OR, -NR.2, -CR3, -SR, -S1R3, -PR2, -H, and substituted or unsubstituted aryl groups, with the proviso that
  • Z is selected from the group consisting of -OR, - CR3 and -NR2; n is 1 or 2, preferably 1; A is a univalent anionic group when n is 2 or A is a divalent anionic group when n is 1, preferably A is a carbamate, carboxylate, or other heteroallyl moiety described by the Q, Y and Z combination; and each R is independently a group containing carbon, silicon, nitrogen, oxygen, and/or phosphorus where one or more R groups may be attached to the L substituent, preferably R is a hydrocarbon group containing from 1 to 20 carbon atoms, most preferably an alkyl, cycloalkyl, or an aryl group and one or more may be attached to the L substituent; and T is a bridging group selected from the group consisting of alkylene and arylene groups containing from 1 to 10 carbon atoms optionally substituted with carbon or heteroatom(s), germanium,
  • the supportive substituent formed by Q, Y and Z is a unicharged polydentate ligand exerting electronic effects due to its high polarizability, similar to the cyclopentadienyl ligand.
  • the disubstituted carbamates and the carboxylates are employed.
  • Non-limiting examples of these mono-bulky ligand metallocene- type catalyst compounds include indenyl zirconium tris(diethylcarbamate), indenyl zirconium tris(trimethylacetate), indenyl zirconium tris(p-toluate), indenyl zirconium tris(benzoate), (l-methylindenyl)zirconium tris(trimethylacetate), (2- methylindenyl) zirconium tris(diethylcarbamate), (methylcyclopentadienyl) zirconium tris(trimethylacetate), cyclopentadienyl tris(trimethylacetate), tetrahydroindenyl zirconium tris(trimethylacetate), and (pentamethyl- cyclopentadienyl) zirconium tris(benzoate).
  • Preferred examples are indenyl zirconium tris(diethylcarbamate), indenyl zirconium tris(trimethylacetate), indenyl zirconiumtrispivalate and (methylcyclopentadienyl) zirconium tris(trimethylacetate).
  • the second metal compound is represented by the formula: ((Z)XA t (YJ)) q MQ n (I) where M is a metal selected from Group 3 to 13 or lanthanide and actinide series ofthe Periodic Table of Elements; Q is bonded to M and each Q is a monovalent, divalent or trivalent anion; X and Y are bonded to M; X and Y are independently carbon or a heteroatom, provided that at least one of X and Y is a heteroatom, preferably both X and Y are heteroatoms; Y is contained in a heterocyclic ring J, where J comprises from 2 to 50 non-hydrogen atoms, preferably 2 to 30 carbon atoms; Z is bonded to X, where Z comprises 1 to 50 non-hydrogen atoms, preferably 1 to 50 carbon atoms or a silyl group, an alkyl silyl group such as a trialkyl silyl, preferably Z is a
  • the second metal compounds are represented by the formula:
  • M is a metal selected from Group 3 to 13 ofthe Periodic Table of Elements, preferably a Group 4 to 12 transition metal, more preferably a Group 4, 5 or 6 transition metal, even more preferably a Group 4 transition metal such as titanium, zirconium or hafnium, and most preferably zirconium;
  • each Q is bonded to M and each Q is a monovalent, divalent or trivalent anion.
  • each Q is independently selected from the group consisting of halogens, hydrogen, alkyl, aryl, alkenyl, alkylaryl, arylalkyl, hydrocarboxy or phenoxy radicals having 1-20 carbon atoms.
  • Each Q may also be amides, phosphides, sulfides, silylalkyls, diketonates, and carboxylates.
  • each Q may contain one or more heteroatoms, more preferably each Q is selected from the group consisting of halides, alkyl radicals and arylalkyl radicals.
  • each Q is selected from the group consisting of arylalkyl radicals such as benzyl.
  • X and Y are both bound to M and are independently carbon or a heteroatom, provided that at least one of X and Y is a heteroatom, X and Y are preferably each heteroatoms, more preferably X and Y are independently selected from the group consisting of nitrogen, oxygen, sulfur and phosphorous, even more preferably nitrogen or phosphorous, and most preferably nitrogen; Y is contained in a heterocyclic ring or ring system J. J contains from 2 to 30 carbon atoms, preferably from 2 to 7 carbon atoms, more preferably from 3 to 6 carbon atoms, and most preferably 4 or 5 carbon atoms.
  • the heterocyclic ring J containing Y may contain additional heteroatoms.
  • R" groups that are independently selected from the group consisting of hydrogen or linear, branched, cyclic, alkyl radicals, or alkenyl, alkynyl, alkoxy, aryl or aryloxy radicals.
  • two or more R" groups may be joined to form a cyclic moiety such as an aliphatic or aromatic ring.
  • R" is hydrogen or an aryl group, most preferably R" is hydrogen.
  • R" is an aryl group and Y is nitrogen, a quinoline group is formed.
  • an R" may be joined to A;
  • Z is a hydrocarbyl group bonded to X, preferably Z is a hydrocarbyl group of from 1 to 50 carbon atoms, preferably Z is a cyclic group having from 3 to 30 carbon atoms, preferably Z is a substituted or unsubstituted cyclic group containing from 3 to 30 carbon atoms, optionally including one or more heteroatoms, more preferably Z is an aryl group, most preferably a substituted aryl group in another embodiment Z may be silyl or an alkyl silyl, preferably a trialkyl silyl; Z may be substituted with R' groups that are independently selected from group consisting of hydrogen or linear, branched, alkyl radicals or cyclic alkyl, alkenyl, alkynyl or aryl radicals.
  • R' is an alkyl group having from 1 to 20 carbon atoms, more preferably R' is methyl, ethyl, propyl, butyl, pentyl and the like, including isomers thereof, more preferably R' is a methyl group, or a primary, secondary or tertiary hydrocarbon, including isopropyl, t-butyl and the like, most preferably R' is an isopropyl group.
  • an R' group may be joined to A. It is prefe ⁇ ed that at least one R' is ortho to X; A is a bridging group joined to at least one of, preferably both of, X and J.
  • Bridging group A contains one or more Group 13 to 16 elements from Periodic Table of Elements. More preferably A contains one or more Group 14 elements, most preferably A is a substituted carbon group, a di-substituted carbon group or vinyl group; and
  • n and p are independently an integer from 0 to 5, preferably m is 2; n is the oxidation state of M minus q minus 1 if Q is a monovalent anion, n is (the oxidation state of M -q)/2, if Q is a bivalent anion or n is (the oxidation state of M - q)/3 if Q is a trivalent anion, preferably n is an integer from 1 to 4; and q is 1 or 2, and where q is 2, the two ((R' m Z)XA(YJR" m )) of formula (II) are bridged to each other via a bridging group, preferably a bridging group containing a Group 14 element.
  • one Q group is a hydrocarboxy group, a boronate or an amide.
  • one Q group is an alkoxide, phenoxide, acetylacetonate, carboxylate, cyclopentadienyl, flourenyls or an indenyl group.
  • the second metal compound is represented by the formula:
  • R a and R ⁇ are each independently selected from the group consisting of alkyl, aryl, heterocyclic groups, and hydrogen;
  • R c and R ⁇ are each independently selected from the group consisting of alkyl, aryl, and hydrogen; and each L is a monovalent, bivalent, or trivalent anion, preferably independently selected from the group consisting of halogens; hydrogen; alkyl, aryl, alkenyl, alkylaryl, arylalkyl, hydrocarboxy radicals having 1-20 carbon atoms; amides; phosphides; sulfides; silylalkyls; diketonates; and carboxylates.
  • each L is selected from the group consisting of halides, alkyl radicals, and arylalkyl radicals. Most preferably, each L is selected from the group consisting of arylalkyl radicals such as benzyl. Each L may contain one or more heteroatoms.
  • the second metal compound is represented by the formula:
  • R a , Rt ⁇ ; R C ⁇ R ⁇ , and L have the meanings stated above.
  • the second metal compound is represented by the formula:
  • R a , R b , R c , d , and L have the meanings stated above.
  • the second metal compound is represented by the formula:
  • the second metal compound is represented by the formula:
  • the second metal compound is represented by the formula:
  • Ph phenyl
  • the metallocene and the second metal compound are based upon the same metal, preferably a group 4 metal, preferably Zr, Hf or Ti, preferably Zr.
  • the metal compounds described herein are preferably combined with one or more activators to form an olefin polymerization catalyst system.
  • Prefe ⁇ ed activators include alkyl aluminum compounds (such as diethylaluminum chloride), alumoxanes, modified alumoxanes, non-coordinating anions, non- coordinating group 13 metal or metalloid anions. boranes, borates and the like.
  • alumoxane or modified alumoxane as an activator, and or to also use ionizing activators, neutral or ionic, such as tri (n- butyl) ammonium tetrakis (pentafluorophenyl) boron or a trisperfluorophenyl boron metalloid precursor which ionize the neutral metallocene compound.
  • ionizing activators neutral or ionic, such as tri (n- butyl) ammonium tetrakis (pentafluorophenyl) boron or a trisperfluorophenyl boron metalloid precursor which ionize the neutral metallocene compound.
  • Other useful compounds include triphenyl boron, triethyl boron, tri-n-butyl ammonium tetraethylborate, triaryl borane and the like.
  • Other useful compounds include aluminate salts as well.
  • modified alumoxanes are combined with the first and second metal compounds to form a catalyst system.
  • MMAO3A 7.0 wt % Al in heptane, commercially available from Akzo Chemicals, Inc. under the trade name Modified Methylalumoxane type 3A , covered under patent number US 5,041,584
  • Ionizing compounds may contain an active proton, or some other cation associated with but not coordinated to or only loosely coordinated to the remaining ion ofthe ionizing compound.
  • activators include those described in PCT publication WO 98/07515 such as tris (2, 2', 2"- nonafluorobiphenyl) fluoroaluminate, which is fully inco ⁇ orated herein by reference.
  • Combinations of activators are also contemplated by the invention, for example, alumoxanes and ionizing activators in combinations, see for example, PCT publications WO 94/07928 and WO 95/14044 and U.S. Patent Nos. 5,153,157 and 5,453,410 all of which are herein fully inco ⁇ orated by reference.
  • methods of activation such as using radiation and the like are also contemplated as activators for the pu ⁇ oses of this invention.
  • activator is defined to be any compound or component which can activate a catalyst compounds as described above, for example, a Lewis acid or a non- coordinating ionic activator or ionizing activator or any other compound that can convert a neutral metallocene catalyst component to a metallocene cation.
  • alumoxane or modified alumoxane as an activator, and/or to also use ionizing activators, neutral or ionic, such as tri (n- butyl) ammonium tetrakis (pentafluorophenyl) boron or a trisperfluorophenyl boron metalloid precursor which ionize the neutral metallocene compound.
  • ionizing activators neutral or ionic, such as tri (n- butyl) ammonium tetrakis (pentafluorophenyl) boron or a trisperfluorophenyl boron metalloid precursor which ionize the neutral metallocene compound.
  • MMAO3A commercially available from Akzo Chemicals, Inc. under the trade name Modified Methylalumoxane type 3A and covered under patent number US 5,041,584, is used as an activator.
  • the catalysts/activators/catalyst systems can be combined in situ or before being placed in the polymerization reactor. Further one metal compound can be activated and the other metal compound just added to the already activated polymerization mixture. Likewise one or more ofthe catalyst systems may be supported on an organic or inorganic support. Typical supports include silica, clay, talc magnesium chloride and the like.
  • the metal compounds with or without the activator may be placed on separate supports or may be placed on the same support. Likewise the activator may be placed on the same support as the metal compound or may be placed on a separate support.
  • the metal compounds/catalyst systems and/or their components need not be fed into the reactor in the same manner. For example, one metal compound or its components may slurried into the reactor on a support while the other metal compound or its components are provided in a solution.
  • the first and second metal catalyst compounds may be combined at molar ratios of 1:1000 to 1000:1, preferably 1 :99 to 99:1, preferably 10:90 to 90:10, more preferably 20:80 to 80:20, more preferably 30:70 to 70:30, more preferably 40:60 to 60:40.
  • the particular ratio chosen will depend on the end product desired and/or the method of activation. One practical method to determine which ratio is best to obtain the desired polymer is to start with a 1 : 1 ratio, measure the desired property in the product produced and adjust the ratio accordingly.
  • the hydrogen concentration in the reactor is about 200-2000 ppm, preferably 250-1900 ppm, preferably 300-1800 ppm, preferably 350-1700 ppm, preferably 400-1600 ppm, preferably 500-1500 ppm, preferably 500-1400 ppm, preferably 500-1200 ppm, preferably 600-1200 ppm, preferably 700-1100 ppm, more preferably 800-1000 ppm.
  • the first metal compound is selected because when used alone it produces a high weight average molecular weight polymer (such as for example above 100, 000, preferably above 150, 000, preferably above 200,000, preferably above 250,000, more preferably above 300,000) and the second metal compound is selected because when used alone it produces a low molecular weight polymer (such as for example below 80,000, preferably below 70,000, preferably below 60,000, more preferably below 50,000, more preferably below 40,000, more preferably below 30,000, more preferably below 20,000 and above 5,000, more preferably below 20,000 and above 10,000).
  • a high weight average molecular weight polymer such as for example above 100, 000, preferably above 150, 000, preferably above 200,000, preferably above 250,000, more preferably above 300,000
  • the second metal compound is selected because when used alone it produces a low molecular weight polymer (such as for example below 80,000, preferably below 70,000, preferably below 60,000, more preferably below 50,000, more preferably below 40,000, more preferably
  • the combined metal compounds and the activator are combined in ratios of about 1000:1 to about 0.5:1.
  • the metal compounds and the activator are combined in a ratio of about 300:1 to about 1 :1, preferably about 150:1 to about 1:1, for boranes, borates, aluminates, etc. the ratio is preferably about 1: 1 to about 10:1 and for alkyl aluminum compounds (such as diethylaluminum chloride combined with water) the ratio is preferably about 0.5:1 to about 10:1.
  • the catalysts and catalyst systems described above are suitable for use a solution, gas or slurry polymerization process or a combination thereof, most preferably a gas or slurry phase polymerization process.
  • this invention is directed toward the solution, slurry or gas phase polymerization reactions involving the polymerization of one or more of monomers having from 2 to 30 carbon atoms, preferably 2-12 carbon atoms, and more preferably 2 to 8 carbon atoms.
  • Prefe ⁇ ed monomers include one or more of ethylene, propylene, butene-1, pentene-1 , 4-methyl-pentene-l, hexene-1, octene-1, decene-1, 3-methyl-pentene-l, and cyclic olefins or a combination thereof.
  • Other monomers can include vinyl monomers, diolefins such as dienes, polyenes, norbornene, norbornadiene monomers.
  • a homopolymer of ethylene is produced.
  • a copolymer of ethylene and one or more ofthe monomers listed above is produced.
  • ethylene or propylene is polymerized with at least two different comonomers to form a te ⁇ olymer.
  • the prefe ⁇ ed comonomers are a combination of alpha-olefin monomers having 4 to 10 carbon atoms, more preferably 4 to 8 carbon atoms, optionally with at least one diene monomer.
  • the prefe ⁇ ed te ⁇ olymers include the combinations such as ethylene/butene-1/hexene- 1, ethylene/propylene/butene-1, propylene/ethylene/hexene-1, ethylene/propylene/ norbomene and the like.
  • the process ofthe invention relates to the polymerization of ethylene and at least one comonomer having from 4 to 8 carbon atoms, preferably 4 to 7 carbon atoms.
  • the comonomers are butene-1, 4-methyl-pentene-l,3-methyl-pentene-l, hexene-1 and octene-1, the most prefe ⁇ ed being hexene-1.
  • a continuous cycle is employed where in one part ofthe cycle of a reactor system, a cycling gas stream, otherwise known as a recycle stream or fluidizing medium, is heated in the reactor by the heat of polymerization.
  • This heat is removed from the recycle composition in another part ofthe cycle by a cooling system external to the reactor.
  • a gas fluidized bed process for producing polymers a gaseous stream containing one or more monomers is continuously cycled through a fluidized bed in the presence of a catalyst under reactive conditions. The gaseous stream is withdrawn from the fluidized bed and recycled back into the reactor. Simultaneously, polymer product is withdrawn from the reactor and fresh monomer is added to replace the polymerized monomer.
  • the reactor pressure in a gas phase process may vary from about 10 psig (69 kPa) to about 500 psig (3448 kPa), preferably in the range of from about 200 psig (1379 kPa) to about 400 psig (2759 kPa), more preferably in the range of from about 250 psig (1724 kPa) to about 350 psig (2414 kPa).
  • the reactor temperature in the gas phase process may vary from about 30° C to about 120°C, preferably from about 60°C to about 115°C, more preferably in the range of from about 75°C to 110°C, and most preferably in the range of from about 85°C to about 105°C.
  • the productivity of the catalyst or catalyst system in a gas phase system is influenced by the main monomer partial pressure.
  • the prefe ⁇ ed mole percent of the main monomer, ethylene or propylene, preferably ethylene, is from about 25 to 90 mole percent and the monomer partial pressure is in the range of from about 75 psia (517 kPa) to about 300 psia (2069 kPa), which are typical conditions in a gas phase polymerization process.
  • the reactor utilized in the present invention is capable and the process ofthe invention is producing greater than 500 lbs of polymer per hour (227 Kg/hr) to about 200,000 lbs/hr (90,900 Kg/hr) or higher of polymer, preferably greater than 1000 lbs/hr (455 Kg/hr), more preferably greater than 10,000 lbs/hr (4540 Kg hr), even more preferably greater than 25.000 lbs/hr (11,300 Kg/hr), still more preferably greater than 35,000 lbs/hr (15,900 Kg/hr), still even more preferably greater than 50,000 lbs/hr (22,700 Kg/hr) and most preferably greater than 65,000 lbs/hr (29,000 Kg/hr) to greater than 100.000 lbs/hr (45,500 Kg/hr).
  • a slurry polymerization process generally uses pressures in the range of from about 1 to about 50 atmospheres and even greater and temperatures in the range of 0°C to about 120°C.
  • a suspension of solid, particulate polymer is formed in a liquid polymerization diluent medium to which ethylene and comonomers along with catalyst are added.
  • the suspension including diluent is intermittently or continuously removed from the reactor where the volatile components are separated from the polymer and recycled, optionally after a distillation, to the reactor.
  • the liquid diluent employed in the polymerization medium is typically an alkane having from 3 to 7 carbon atoms, preferably a branched alkane.
  • the medium employed should be liquid under the conditions of polymerization and relatively inert. When a propane medium is used the process must be operated above the reaction diluent critical temperature and pressure. Preferably, a hexane or an isobutane medium is employed.
  • a prefe ⁇ ed polymerization technique ofthe invention is refe ⁇ ed to as a particle form polymerization, or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution. Such technique is well known in the art, and described in for instance U.S. Patent No. 3,248,179 which is fully inco ⁇ orated herein by reference.
  • the prefe ⁇ ed temperature in the particle form process is within the range of about
  • Two prefe ⁇ ed polymerization methods for the slurry process are those employing a loop reactor and those utilizing a plurality of sti ⁇ ed reactors in series, parallel, or combinations thereof.
  • Non- limiting examples of slurry processes include continuous loop or sti ⁇ ed tank processes.
  • other examples of slurry processes are described in U.S. Patent No. 4,613,484, which is herein fully inco ⁇ orated by reference.
  • the slurry process is carried out continuously in a loop reactor.
  • the catalyst as a slurry in isobutane or as a dry free flowing powder is injected regularly to the reactor loop, which is itself filled with circulating slurry of growing polymer particles in a diluent of isobutane containing monomer and comonomer.
  • Hydrogen optionally, may be added as a molecular weight control.
  • the reactor is maintained at pressure of about 525 psig to 625 psig (3620 kPa to 4309 kPa) and at a temperature in the range of about 140 °F to about 220 °F (about 60 °C to about 104 °C) depending on the desired polymer density.
  • Reaction heat is removed through the loop wall since much ofthe reactor is in the form of a double-jacketed pipe.
  • the slurry is allowed to exit the reactor at regular intervals or continuously to a heated low pressure flash vessel, rotary dryer and a nitrogen purge column in sequence for removal ofthe isobutane diluent and all unreacted monomer and comonomers.
  • the resulting hydrocarbon free powder is then compounded for use in various applications.
  • the reactor used in the slurry process ofthe invention is capable of and the process ofthe invention is producing greater than 2000 lbs of polymer per hour (907 Kg/hr), more preferably greater than 5000 lbs/hr (2268 Kg/hr), and most preferably greater than 10,000 lbs/hr (4540 Kg/hr).
  • the slurry reactor used in the process of the invention is producing greater than 15,000 lbs of polymer per hour (6804 Kg/hr), preferably greater than 25,000 lbs/hr (11 ,340 Kg/hr) to about 100,000 lbs/hr (45,500 Kg/hr).
  • the total reactor pressure is in the range of from 400 psig (2758 kPa) to 800 psig (5516 kPa), preferably 450 psig (3103 kPa) to about 700 psig (4827 kPa), more preferably 500 psig (3448 kPa) to about 650 psig (4482 kPa), most preferably from about 525 psig (3620 kPa) to 625 psig (4309 kPa).
  • the concentration of ethylene in the reactor liquid medium is in the range of from about 1 to 10 weight percent, preferably from about 2 to about 7 weight percent, more preferably from about 2.5 to about 6 weight percent, most preferably from about 3 to about 6 weight percent.
  • a prefe ⁇ ed process ofthe invention is where the process, preferably a slurry or gas phase process is operated in the absence of or essentially free of any scavengers, such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like.
  • any scavengers such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like.
  • the one or more ofthe supported catalysts are combined with up to 10 weight % of a metal stearate, (preferably an aluminum stearate, more preferably aluminum distearate) based upon the weight ofthe catalyst, any support and the stearate, preferably 2 to 6 weight %.
  • a solution or slurry ofthe metal stearate is fed into the reactor. These agents may be dry tumbled with the supported catalyst or may be fed into the reactor in a solution or slurry with or without the catalyst system or its components.
  • the stearate is fed into the reactor as slurry in mineral oil, preferably at about 10 weight %. More information on using aluminum stearate type additives may be found m USSN 09/113,261 filed July 10, 1998, which is inco ⁇ orated by reference herein
  • the molecular weight of the polymer produced ( and other properties) may be changed by manipulating the polyme ⁇ zation system by
  • the polyolef ⁇ n recovered typically has a melt index as measured by ASTM D-1238, Condition E, at 190°C of 10 g/10 mm or less, preferably 1 g/10 min or less, preferably between 0 01 and 0 5 g/10 min
  • the polyolefin is ethylene homopolymer or copolymer
  • the comonomer is preferably a C 3 to C 2 o linear branched or cyclic monomer, and in one embodiment is a C3 to C ⁇ 2 linear or branched alpha-olefin, preferably propylene, hexene, pentene, hexene, heptene, octene, nonene, decene, dodecene, 4-methyl-pentene- 1 , 3-methyl pentene- 1, 3,5,5-trimethyl hexene 1, and the like.
  • the catalyst system described above is used to make a high density polyethylene having a density of between 0.930 and 0.970 g/cm 3 (as measured by ASTM 2839), a melt index of 0.5 or less g/lOmin or less (as measured by ASTM D-1238, Condition E, at 190°C).
  • the polyolefins then can be made into films, molded articles, pipes, wire and cable coating, sheets and the like.
  • the films may be formed by any of the conventional technique known in the art including extrusion, co-extrusion, lamination, blowing and casting.
  • the film may be obtained by the flat film or tubular process which may be followed by orientation in an uniaxial direction or in two mutually pe ⁇ endicular directions in the plane of the film to the same or different extents.
  • Particularly prefe ⁇ ed methods to form the polymers into films include extrusion or coextrusion on a blown or cast film line.
  • the films produced may further contain additives such as slip, antiblock, antioxidants, pigments, fillers, antifog, UV stabilizers, antistats, polymer processing aids, neutralizers, lubricants, surfactants, pigments, dyes and nucleating agents.
  • additives such as slip, antiblock, antioxidants, pigments, fillers, antifog, UV stabilizers, antistats, polymer processing aids, neutralizers, lubricants, surfactants, pigments, dyes and nucleating agents.
  • Prefe ⁇ ed additives include silicon dioxide, synthetic silica, titanium dioxide, polydimethylsiloxane, calcium carbonate, metal stearates. calcium stearate, zinc stearate, talc, BaSO , diatomaceous earth, wax, carbon black, flame retarding additives, low molecular weight resins, glass beads and the like.
  • the additives may be present in the typically effective amounts well known in the art, such as 0.001 weight % to
  • Mn and Mw were measured by gel permeation chromatography on a waters 150°C GPC instrument equipped with differential refraction index detectors.
  • the GPC columns were calibrated by running a series of na ⁇ ow polystyrene standards and the molecular weights were calculated using Mark Houwink coefficients for the polymer in question.
  • Density was measured according to ASTM D 1505.
  • MI Melt Index
  • Melt Index Ratio is the ratio of I 2 ⁇ over I 2 as determined by ASTM D-1238.
  • Weight % comonomer was measured by proton NMR.
  • MWD Mw/Mn I 2 ⁇ was measured according to ASTM D-1238, Condition E, at 190°C.
  • MD and TD Tear were measured according to ASTM D 1922.
  • MD and TD 1% Secant modulus were measured according to ASTM D 882.
  • MD and TD ultimate tensile strength were measured according to
  • PPH pounds per hour.
  • mPPH millipounds per hour,
  • ppmw parts per million by weight.
  • Catalyst A is [l-(2-Pyridyl)N-l -Methylethyl][l -N-2,6-Diisopropylphenyl Amido] Zirconium Tribenzyl and was produced as follows:
  • Example 2 In a darkened room and darkened dry box, 5.0 mmol (1.45 g) of the ligand made in Example 1 were charged to a 100 mL Schlenk tube equipped with a stir bar. The ligand was dissolved in 5 mL of toluene. To a second vessel equipped with a stir bar was charged 5.5 mmol (2.5g) tetrabenzyl zirconium and 10 mL toluene.
  • the ligand solution was transfe ⁇ ed into the tetrabenzyl zirconium solution.
  • the vessel was covered with foil and allowed to stir at room temperature in the dry box. After 6 hours at room temperature 80 mL dry hexane was added to the reaction solution and allowed to stir overnight.
  • the reaction mixture was filtered through a medium porosity frit with approximately 2g pale yellow solids collected.
  • Catalyst B (tetrahydroindenyl zirconium tris pivalate) is prepared as follows:
  • EXAMPLE 1 An ethylene hexene copolymer was produced in a 14-inch (35.6 cm) pilot plant scale gas phase reactor operating at 85° C and 350 psig (2.4 MPa) total reactor pressure having a water cooled heat exchanger Ethylene was fed to the reactor at a rate of about 40 pounds per hour (18 kg/hr), hexene was fed to the reactor at a rate of about 0.9 pounds per hour (0.41 kg/hr) and hydrogen was fed to the reactor at a rate of 13 mPPH. Nitrogen was fed to the reactor as a make-up gas at about 5-8 PPH. The production rate was about 21 PPH. The reactor was equipped with a plenum having about 1 ,600 PPH of recycle gas flow.
  • the plenum is a device used to create a particle lean zone in a fluidized bed gas-phase reactor. See US Patent 5,693,727.
  • a tapered catalyst injection nozzle having a 0.055 inch (0.14 cm) hole size was position in the plenum gas flow.
  • a toluene solution containing 0.02 Moles zirconium/Liter (1 : 1 molar ratio of Catalyst A/Catalyst B) was contacted with 0.20 PPH of 1-hexene and MMAO-3A (1.8 wt % Aluminum in 25% heptane/75% hexane solution) in-line prior to being passing through the injection nozzle into the fluidized bed.
  • MMAO to catalyst was controlled so that the Al:Zr molar ratio was 300: 1. Nitrogen was also fed to the injection nozzle as needed to maintain a stable average particle size. A bimodal molecular weight distribution polymer having nominal 0.45 dg/min (I 2 ⁇ ) and 0.9401 g/cc properties was obtained. The polymer was found to be approximately 70 % high molecular weight (472,298) when analyzed by SEC (Size Exclusion Chromotography). Mw/Mn was 25. -SI-
  • An ethylene hexene copolymer was produced in a 14-inch (35.6 cm) pilot plant scale gas phase reactor operating at 85° C and 350 psig (2.4 MPa) total reactor pressure having a water cooled heat exchanger
  • Ethylene was fed to the reactor at a rate of about 40 pounds per hour (18 kg/hr)
  • hexene was fed to the reactor at a rate of about 0.6 pounds per hour (0.27 kg/hr)
  • hydrogen was fed to the reactor at a rate of 30 mPPH.
  • Nitrogen was fed to the reactor as a make-up gas at about 5-8 PPH. The production rate was about 15 PPH.
  • the reactor was equipped with a plenum having about 1,850 PPH of recycle gas flow.
  • the plenum is a device used to create a particle lean zone in a fluidized bed gas-phase reactor. See US Patent 5,693,727.
  • a tapered catalyst injection nozzle having a 0.055 inch (0.14 cm) hole size was position in the plenum gas flow.
  • a toluene solution containing 0.02 Moles zirconium/Liter (0.43:1 molar ratio of Catalyst A/Catalyst B) was contacted with 0.20 PPH of 1 -hexene and MMAO-3A (1 wt % Aluminum) in-line prior to being passing through the injection nozzle into the fluidized bed.
  • MMAO to catalyst was controlled so that the Al:Zr molar ratio was 300: 1.
  • Nitrogen was also fed to the injection nozzle as needed to maintain a stable average particle size.
  • a bimodal molecular weight distribution polymer having nominal 1 1.5 dg/min (I 2] ), 0.114 dg/min (I 2 ), 102 I 2 ⁇ /I 2 ratio and 0.9523 g/cc properties was obtained.
  • the polymer was found to be approximately 50 % high molecular weight (474,200) when analyzed by SEC.
  • the granular resin was tumble-mixed with 1,000 ppm of Irganox 1076, 1,500 ppm of Irgafos 168, and 1,500 ppm of Calcium Stearate. They were compounded on a 2.5 inch (1 cm) single screw Prodex line at 410°F (227°C). The screw had one single mixing head at the end of it. The compound was evaluated on a 50mm Alpine film extrusion line which was equipped with 100mm die with 1 mm die gap. Both 1.0 mil (25.4 ⁇ m) and 0.5 mil (12.7 ⁇ m) film was produced with excellent film appearance rate at BUR (blow up ratio)of 4.0 with a frost line height of 36 and 40 inches (91.4 cm and 101.6cm), respectively. Extrudability was very good with good bubble stability. The aged 0.5 mil (12.7 ⁇ m) film's dart impact strength was 210g. Other film mechanical properties are shown in a table below.
  • An ethylene hexene copolymer was produced in a 14-inch (35.6 cm) pilot plant scale gas phase reactor operating at 85° C and 350 psig (2.4 MPa) total reactor pressure having a water cooled heat exchanger
  • Ethylene was fed to the reactor at a rate of about 42 pounds per hour (19.1 kg/hr)
  • hexene was fed to the reactor at a rate of about 0.8 pounds per hour (0.36 kg/hr)and hydrogen was fed to the reactor at a rate of 22 mPPH.
  • Nitrogen was fed to the reactor as a make-up gas at about 5-8 PPH. The production rate was about 19 PPH.
  • the reactor was equipped with a plenum having about 1,300 PPH of recycle gas flow.
  • the plenum is a device used to create a particle lean zone in a fluidized bed gas-phase reactor. See US Patent 5,693,727.
  • a tapered catalyst injection nozzle having a 0.055 inch (0.14 cm) hole size was position in the plenum gas flow.
  • a toluene solution containing 0.02 Moles zirconium/Liter (0.43:1 molar ratio of Catalyst A/Catalyst B) was contacted with 0.20 PPH of 1-hexene and MMAO-3A (1.8 wt % Aluminum in 25 % heptane/75 % hexane solution) in-line prior to being passed through the injection nozzle into the fluidized bed.
  • MMAO to catalyst was controlled so that the Al:Zr molar ratio was 300: 1. Nitrogen was also fed to the injection nozzle as needed to maintain a stable average particle size. A bimodal molecular weight distribution polymer having nominal 8.01 dg/min (I 2 ⁇ ), 0.1 dg/min (I 2 ), 80 I 2 j/I ratio and 0.9479 g/cc properties was obtained. The polymer was found to be approximately 56.8 % high molecular weight (Mw: 448,700) when analyzed by SEC.
  • the granular resin was tumble-mixed with 1,000 ppm of Irganox 1076, 1,500 ppm of Irgafos 168, and 1,500 ppm of Calcium Stearate. They were compounded on a 2.5 inch (1 cm) single screw Prodex line at 410°F (227°C). The screw had one single mixing head at the end of it. The compound was evaluated on a 50mm Alpine film extrusion line which was equipped with 100mm die with 1 mm die gap. Both 1.0 mil (25.4 ⁇ m) and 0.5 mil (12.7 ⁇ m) film was produced with excellent film appearance rate at BUR (blow up ratio)of 4.0 with a frost line height of 36 and 40 inches (91.4 cm and 101.6cm), respectively. Extrudabihty was very good with good bubble stability. The aged 0.5 mil (12.7 ⁇ m) film's dart impact strength was 260g.
  • An ethylene hexene copolymer was produced in a 14-inch (35.6 cm) pilot plant scale gas phase reactor operating at 85° C and 350 psig (2.4 MPa) total reactor pressure having a water cooled heat exchanger.
  • Ethylene was fed to the reactor at a rate of about 48 pounds per hour (21.8 kg/hr)
  • hexene was fed to the reactor at a rate of about 1 pound per hour (0.45 kg/hr)
  • hydrogen was fed to the reactor at a rate of 22 mPPH.
  • Nitrogen was fed to the reactor as a make-up gas at about 5-8 PPH. The production rate was about 25 PPH.
  • the reactor was equipped with a plenum having about 1,600 PPH of recycle gas flow.
  • the plenum is a device used to create a particle lean zone in a fluidized bed gas-phase reactor. See US Patent 5,693,727.
  • a tapered catalyst injection nozzle having a 0.055 inch (0.14 cm) hole size was position in the plenum gas flow.
  • Two catalyst solutions were prepared in the glovebox, the first being a 0.02 Moles/Liter Catalyst A catalyst in toluene solution and the second being a 2.0 weight % solution of Catalyst B in n-hexane.
  • the Catalyst B was contacted with a cocatalyst solution of MMAO-3A (1.8 wt % Aluminum in 25 % heptane/75 % hexane solution) in a continuous on-line fashion.
  • MMAO-3A to Catalyst B was controlled so that the Al:Zr molar ratio was 300: 1.
  • a 0.20 PPH flow of 1-hexene was also present during the contacting period.
  • the Catalyst A catalyst was likewise contacted with a cocatalyst solution of MMAO-3A (1.8 wt % Al).
  • MMAO-3A to Catalyst A was controlled so that the Al:Zr molar ratio was 300:1.
  • the Catalyst B catalyst solution feed was set at a specified ratio to the Catalyst A (the exact ratio is unknown because the feeders malfunctioned).
  • the two activated catalyst solutions were mixed in-line prior to passing through the injection nozzle into the fluidized bed. Nitrogen was also fed to the injection nozzle as needed to maintain a stable average particle size.
  • a bimodal molecular weight distribution polymer having nominal 307 dg/min (I 21 ), 1.4 dg/min (I 2 ), 220 I 21 /I 2 ratio and 0.9531 g/cc properties was obtained.
  • An ethylene hexene copolymer was produced in a 14-inch (35.6 cm) pilot plant scale gas phase reactor operating at 85° C and 350 psig (2.4 MPa) total reactor pressure having a water cooled heat exchanger
  • Ethylene was fed to the reactor at a rate of about 43 pounds per hour (19.5 kg/hr)
  • hexene was fed to the reactor at a rate of about 1.1 pound per hour (0.5 kg/hr)
  • hydrogen was fed to the reactor at a rate of 15 mPPH.
  • Nitrogen was fed to the reactor as a make-up gas at about 5-8 PPH.
  • the production rate was about 22.5 PPH.
  • the reactor was equipped with a plenum having about 1,050 PPH of recycle gas flow.
  • the plenum is a device used to create a particle lean zone in a fluidized bed gas-phase reactor. See US Patent 5,693,727.
  • a tapered catalyst injection nozzle having a 0.055 inch (0.14 cm) hole size was position in the plenum gas flow.
  • a 0.02 Moles/Liter Catalyst A catalyst in toluene solution was contacted with a cocatalyst solution of MMAO-3A (1.8 wt % Aluminum in 25 % heptane/75 % hexane solution) in a continuous on-line fashion.
  • MMAO-3A to Catalyst A was controlled so that the Al:Zr molar ratio was 300: 1.
  • the activated catalyst solution was passed through the injection nozzle into the fluidized bed. Nitrogen was also fed to the injection nozzle as needed to maintain a stable average particle size. A unimodal molecular weight distribution polymer having nominal 0.23 dg/min (I 2] ) and 0.9298 g/cc properties was obtained.
  • EXAMPLE 6 An ethylene hexene copolymer was produced in a 14-inch (35.6 cm) pilot plant scale gas phase reactor operating at 85° C and 350 psig (2.4 MPa) total reactor pressure having a water cooled heat exchanger. Ethylene was fed to the reactor at a rate of about 43 pounds per hour (19.5 kg/hr), hexene was fed to the reactor at a rate of about 1.4 pound per hour (0.64 kg/hr)and hydrogen was fed to the reactor at a rate of 18 mPPH Nitrogen was fed to the reactor as a make-up gas at about 5-8 PPH. The production rate was about 23 PPH. The reactor was equipped with a plenum having about 1,600 PPH of recycle gas flow.
  • the plenum is a device used to create a particle lean zone in a fluidized bed gas-phase reactor. See US Patent 5,693,727.
  • a tapered catalyst injection nozzle having a 0.055 inch (0.14 cm) hole size was position in the plenum gas flow.
  • a 2 weight % solution of Catalyst B in hexane solution was contacted with a 0.20 PPH flow of 1 -hexene and a cocatalyst solution of MMAO-3A (1.0 wt % Al in hexane) in a continuous on-line fashion.
  • MMAO-3A to Catalyst B was controlled so that the Al:Zr molar ratio was 300:1.
  • the activated catalyst solution was passed through the injection nozzle into the fluidized bed. Nitrogen and isopentane were also fed to the injection nozzle as needed to maintain a stable average particle size. A unimodal molecular weight distribution polymer having nominal >2,000 dg/min (I 2 ) and 0.9588 g/cc properties was obtained. The I 2 measurement could only be estimated since the material passed through the indexer very quickly.
  • Table 1 Table 1
PCT/US2000/027235 1999-12-06 2000-10-03 Multiple catalyst system WO2001040325A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR0016197-7A BR0016197A (pt) 1999-12-06 2000-10-03 Sistema catalisador múltiplo
EP00967279A EP1252199A1 (en) 1999-12-06 2000-10-03 Multiple catalyst system
AU77499/00A AU775512B2 (en) 1999-12-06 2000-10-03 Multiple catalyst system
CA002393446A CA2393446A1 (en) 1999-12-06 2000-10-03 Multiple catalyst system
JP2001541079A JP2003515628A (ja) 1999-12-06 2000-10-03 多成分触媒系

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/455,883 1999-12-06
US09/455,883 US6340730B1 (en) 1999-12-06 1999-12-06 Multiple catalyst system

Publications (1)

Publication Number Publication Date
WO2001040325A1 true WO2001040325A1 (en) 2001-06-07

Family

ID=23810631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/027235 WO2001040325A1 (en) 1999-12-06 2000-10-03 Multiple catalyst system

Country Status (7)

Country Link
US (2) US6340730B1 (US06340730-20020122-C00014.png)
EP (1) EP1252199A1 (US06340730-20020122-C00014.png)
JP (1) JP2003515628A (US06340730-20020122-C00014.png)
AU (1) AU775512B2 (US06340730-20020122-C00014.png)
BR (1) BR0016197A (US06340730-20020122-C00014.png)
CA (1) CA2393446A1 (US06340730-20020122-C00014.png)
WO (1) WO2001040325A1 (US06340730-20020122-C00014.png)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038628A2 (en) * 2000-11-07 2002-05-16 Symyx Technologies, Inc. Substituted pyridyl amine ligands, complexes and catalysts therefrom; processes for producing polyolefins therewith
EP1423438A1 (en) * 2001-08-31 2004-06-02 LG Chem, Ltd. Catalyst for olefin polymerization and method for preparing polyolefins
US7094848B2 (en) 2003-05-13 2006-08-22 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system
WO2010022228A2 (en) * 2008-08-21 2010-02-25 Dow Global Technologies, Inc. Metal-ligand complexes and catalysts
EP2173794A1 (en) * 2007-07-30 2010-04-14 Fina Technology, Inc. Polyethylene films
US8202954B2 (en) 2010-02-19 2012-06-19 Dow Global Technologies Llc Metal-ligand complexes and catalysts
US8729201B2 (en) 2010-02-19 2014-05-20 Dow Global Technologies Llc Process for polymerizing an olefin monomer and catalyst therefor
US8957159B2 (en) 2002-10-15 2015-02-17 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
CN108472989A (zh) * 2015-12-01 2018-08-31 米其林集团总公司 由sec-mals测定的具有双峰分子量分布的天然橡胶制成的橡胶组合物、制备方法及轮胎部件
US10961329B2 (en) 2014-10-17 2021-03-30 Shanghai Chemrun Co. Ltd. Polyolefin catalyst and use thereof

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635715B1 (en) * 1997-08-12 2003-10-21 Sudhin Datta Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers
US7232871B2 (en) * 1997-08-12 2007-06-19 Exxonmobil Chemical Patents Inc. Propylene ethylene polymers and production process
US6921794B2 (en) * 1997-08-12 2005-07-26 Exxonmobil Chemical Patents Inc. Blends made from propylene ethylene polymers
US6489261B1 (en) * 1997-12-01 2002-12-03 Dsm N.V. Catalyst composition comprising a reduced transition metal complex and a cocatalyst
DE69935815T2 (de) * 1998-07-01 2007-12-27 Exxonmobil Chemical Patents Inc., Baytown Elastische Mischung mit Kristallpolymeren und kristallisierbaren Polymeren des Propens
SG83222A1 (en) * 1999-12-27 2001-09-18 Sumitomo Chemical Co Catalyst component for addition polymerization, catalyst for addition polymerization, and process for producing addition polymer
US6723675B1 (en) * 2000-05-25 2004-04-20 Univation Technologies, Llc Catalyst for the production of olefin polymers
US7829646B2 (en) * 2000-08-18 2010-11-09 Chevron Phillips Chemical Company Lp Olefin polymers, method of making, and use thereof
KR100445185B1 (ko) * 2000-11-20 2004-09-13 충남대학교산학협력단 올레핀 중합용 촉매
JP5156167B2 (ja) * 2001-04-12 2013-03-06 エクソンモービル・ケミカル・パテンツ・インク プロピレン−エチレンポリマー及び製造法
US6960635B2 (en) * 2001-11-06 2005-11-01 Dow Global Technologies Inc. Isotactic propylene copolymers, their preparation and use
US20060004157A1 (en) * 2002-09-17 2006-01-05 Arriola Daniel J Process for manufacture of polymers
US7550528B2 (en) * 2002-10-15 2009-06-23 Exxonmobil Chemical Patents Inc. Functionalized olefin polymers
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US7223822B2 (en) * 2002-10-15 2007-05-29 Exxonmobil Chemical Patents Inc. Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom
US7459500B2 (en) * 2002-11-05 2008-12-02 Dow Global Technologies Inc. Thermoplastic elastomer compositions
KR100469470B1 (ko) * 2003-01-30 2005-02-02 엘지전자 주식회사 열변형을 이용한 댐퍼 및 이를 구비한 세탁기
US6953764B2 (en) * 2003-05-02 2005-10-11 Dow Global Technologies Inc. High activity olefin polymerization catalyst and process
US7288596B2 (en) 2003-12-22 2007-10-30 Univation Technologies, Llc Polyethylene compositions having improved tear properties
US20050182210A1 (en) 2004-02-17 2005-08-18 Natarajan Muruganandam De-foaming spray dried catalyst slurries
BRPI0508173B1 (pt) * 2004-03-17 2016-03-15 Dow Global Technologies Inc copolímeros em multibloco, polímero, copolímero, um derivado funcional, mistura homogênea de polímero, processo para a preparação de um copolímero em multibloco contendo propileno e processo para preparar um copolímero em multibloco contendo 4-metil-1-penteno
BRPI0508148B1 (pt) * 2004-03-17 2015-09-01 Dow Global Technologies Inc Interpolímero de etileno em multibloco, derivado reticulado e composição”
KR100646249B1 (ko) * 2004-04-08 2006-11-23 주식회사 엘지화학 혼성 담지 메탈로센 촉매를 이용한 가공성 및 내압 특성이뛰어난 급수관 파이프용 폴리에틸렌 및 그의 제조방법
US7193017B2 (en) * 2004-08-13 2007-03-20 Univation Technologies, Llc High strength biomodal polyethylene compositions
CN101044172B (zh) * 2004-10-21 2010-09-29 巴塞尔聚烯烃股份有限公司 1-丁烯聚合物及其制备方法
TW200631965A (en) * 2004-12-07 2006-09-16 Fina Technology Random copolymers and formulations useful for thermoforming and blow molding applications
US7312279B2 (en) * 2005-02-07 2007-12-25 Univation Technologies, Llc Polyethylene blend compositions
CN100441603C (zh) * 2005-04-22 2008-12-10 中国石油化工股份有限公司 一种用于制备宽/双峰分布高密度聚乙烯的复合催化体系
US7081285B1 (en) 2005-04-29 2006-07-25 Fina Technology, Inc. Polyethylene useful for blown films and blow molding
US7645834B2 (en) * 2005-04-29 2010-01-12 Fina Technologies, Inc. Catalyst system for production of polyolefins
US20060247394A1 (en) * 2005-04-29 2006-11-02 Fina Technology, Inc. Process for increasing ethylene incorporation into random copolymers
US7220806B2 (en) * 2005-04-29 2007-05-22 Fina Technology, Inc. Process for increasing ethylene incorporation into random copolymers
US7282546B2 (en) * 2005-06-22 2007-10-16 Fina Technology, Inc. Cocatalysts for reduction of production problems in metallocene-catalyzed polymerizations
CN101248133B (zh) * 2005-06-24 2012-11-21 埃克森美孚化学专利公司 官能化丙烯共聚物粘合剂组合物
US7683002B2 (en) 2006-04-04 2010-03-23 Fina Technology, Inc. Transition metal catalyst and formation thereof
US20070299222A1 (en) 2006-04-04 2007-12-27 Fina Technology, Inc. Transition metal catalysts and formation thereof
US20070235896A1 (en) * 2006-04-06 2007-10-11 Fina Technology, Inc. High shrink high modulus biaxially oriented films
US7893181B2 (en) * 2006-07-11 2011-02-22 Fina Technology, Inc. Bimodal film resin and products made therefrom
US20080051538A1 (en) * 2006-07-11 2008-02-28 Fina Technology, Inc. Bimodal pipe resin and products made therefrom
US7449529B2 (en) * 2006-07-11 2008-11-11 Fina Technology, Inc. Bimodal blow molding resin and products made therefrom
US7514510B2 (en) 2006-07-25 2009-04-07 Fina Technology, Inc. Fluorenyl catalyst compositions and olefin polymerization process
US7470759B2 (en) * 2006-07-31 2008-12-30 Fina Technology, Inc. Isotactic-atactic polypropylene and methods of making same
US20080061468A1 (en) * 2006-09-07 2008-03-13 Frank Li Fiber processing of high ethylene level propylene-ethylene random copolymers by use of nucleators
US7538167B2 (en) * 2006-10-23 2009-05-26 Fina Technology, Inc. Syndiotactic polypropylene and methods of preparing same
US20080114130A1 (en) * 2006-11-10 2008-05-15 John Ashbaugh Resin composition for production of high tenacity slit film, monofilaments and fibers
KR20090093981A (ko) 2006-12-15 2009-09-02 피나 테크놀러지, 인코포레이티드 폴리프로필렌 블로운 필름
CN101573388A (zh) * 2006-12-29 2009-11-04 弗纳技术股份有限公司 用于制备聚丙烯薄膜级树脂的使用正丁基甲基二甲氧基硅烷的含琥珀酸酯的聚合催化剂体系
US8859084B2 (en) * 2008-01-29 2014-10-14 Fina Technology, Inc. Modifiers for oriented polypropylene
US8003741B2 (en) 2008-02-07 2011-08-23 Fina Technology, Inc. Ziegler-Natta catalyst
US20090202770A1 (en) * 2008-02-08 2009-08-13 Fengkui Li Polypropylene/polyisobutylene blends and films prepared from same
US7740070B2 (en) * 2008-06-16 2010-06-22 Halliburton Energy Services, Inc. Wellbore servicing compositions comprising a density segregation inhibiting composite and methods of making and using same
US8268913B2 (en) * 2008-06-30 2012-09-18 Fina Technology, Inc. Polymeric blends and methods of using same
US8545971B2 (en) * 2008-06-30 2013-10-01 Fina Technology, Inc. Polymeric compositions comprising polylactic acid and methods of making and using same
US8759446B2 (en) 2008-06-30 2014-06-24 Fina Technology, Inc. Compatibilized polypropylene and polylactic acid blends and methods of making and using same
US9334342B2 (en) 2008-10-01 2016-05-10 Fina Technology, Inc. Polypropylene for reduced plate out in polymer article production processes
US20100087602A1 (en) * 2008-10-08 2010-04-08 Fina Technology, Inc. Long chain branched polypropylene for cast film applications
US8022154B2 (en) * 2008-11-06 2011-09-20 Exxonmobil Chemical Patents Inc. Ethylene polymers, their production and use
US9090000B2 (en) 2009-03-26 2015-07-28 Fina Technology, Inc. Injection stretch blow molded articles and random copolymers for use therein
US8653198B2 (en) 2009-03-26 2014-02-18 Fina Technology, Inc. Method for the preparation of a heterophasic copolymer and uses thereof
US20100247887A1 (en) 2009-03-26 2010-09-30 Fina Technology, Inc. Polyolefin films for in-mold labels
US8455602B2 (en) * 2009-08-24 2013-06-04 University Of The Witwatersrand, Johannesburg Supramolecular functional materials
US9174384B2 (en) * 2009-09-01 2015-11-03 Fina Technology, Inc. Multilayer polypropylene films and methods of making and using same
US8592535B2 (en) 2010-01-11 2013-11-26 Fina Technology, Inc. Ziegler-natta catalyst systems and polymers formed therefrom
US10351640B2 (en) 2010-04-22 2019-07-16 Fina Technology, Inc. Formation of Ziegler-Natta catalyst using non-blended components
MX2012012469A (es) 2010-04-27 2012-11-21 Baker Hughes Inc Metodo para formar compactos policristalinos.
US8278403B2 (en) 2010-07-08 2012-10-02 Fina Technology, Inc. Multi-component catalyst systems and polymerization processes for forming broad composition distribution polymers
US20120046429A1 (en) 2010-08-23 2012-02-23 Fina Technology, Inc. Sequential Formation of Ziegler-Natta Catalyst Using Non-blended Components
CN102453157B (zh) * 2010-10-22 2014-12-10 中国石油化工股份有限公司 用于在单一反应器中制备宽/双峰聚乙烯的催化剂体系
US10711077B2 (en) 2011-02-07 2020-07-14 Fina Technology, Inc. Ziegler-natta catalyst composition with controlled morphology
US8586192B2 (en) 2011-02-15 2013-11-19 Fina Technology, Inc. Compatibilized polymeric compositions comprising polyolefin-polylactic acid copolymers and methods of making the same
US9382347B2 (en) 2011-02-16 2016-07-05 Fina Technology Inc Ziegler-Natta catalysts doped with non-group IV metal chlorides
US8651203B2 (en) 2011-02-17 2014-02-18 Baker Hughes Incorporated Polycrystalline compacts including metallic alloy compositions in interstitial spaces between grains of hard material, cutting elements and earth-boring tools including such polycrystalline compacts, and related methods
US8628718B2 (en) 2011-02-18 2014-01-14 Fina Technology, Inc. Modified polylactic acid, polymeric blends and methods of making the same
US8580893B2 (en) 2011-12-22 2013-11-12 Fina Technology, Inc. Methods for improving multimodal polyethylene and films produced therefrom
US9206293B2 (en) 2014-01-31 2015-12-08 Fina Technology, Inc. Polyethyene and articles produced therefrom
WO2015191721A1 (en) 2014-06-11 2015-12-17 Fina Technology, Inc. Chlorine-resistant polyethylene compound and articles made therefrom
US9650448B2 (en) 2014-06-13 2017-05-16 Fina Technology, Inc. Formation of a Ziegler-Natta catalyst
US9624321B2 (en) 2014-06-13 2017-04-18 Fina Technology, Inc. Formation of a Ziegler-Natta catalyst
KR102411877B1 (ko) 2016-10-28 2022-06-22 피나 테크놀러지, 인코포레이티드 Bopp 적용을 위한 폴리프로필렌 속의 결정화도를 감소시키기 위한 제제의 용도
EP3692079A1 (en) * 2017-10-06 2020-08-12 ExxonMobil Chemical Patents Inc. Polyethylene extrudates and methods of making the same
CN110387003B (zh) * 2018-04-20 2022-03-01 中国石油化工股份有限公司 聚烯烃弹性体及其制备方法
US20200087495A1 (en) 2018-09-14 2020-03-19 Fina Technology, Inc. Polyethylene and controlled rheology polypropylene polymer blends and methods of use
KR20210127954A (ko) 2019-02-20 2021-10-25 피나 테크놀러지, 인코포레이티드 휨이 적은 중합체 조성물
CN117222697A (zh) 2021-04-26 2023-12-12 弗纳技术股份有限公司 单位点催化的聚合物薄片材

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881515A (ja) * 1994-09-13 1996-03-26 Mitsubishi Chem Corp エチレン重合体の製造法
WO1999001460A1 (en) * 1997-07-02 1999-01-14 Union Carbide Chemicals & Plastics Technology Corporation Catalyst for the production of olefin polymers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US5464905A (en) 1992-11-19 1995-11-07 Mitsui Petrochemical Industries, Ltd. Ethylene/α-olefin copolymer composition, graft modified ethylene/α-olefin copolymer composition, ethylene copolymer composition, and multi-stage olefin polymerization process
US5527752A (en) 1995-03-29 1996-06-18 Union Carbide Chemicals & Plastics Technology Corporation Catalysts for the production of polyolefins
CA2188722A1 (en) 1995-10-26 1997-04-27 George Norris Foster Process for preparing an in situ polyethylene blend
US5693727A (en) 1996-06-06 1997-12-02 Union Carbide Chemicals & Plastics Technology Corporation Method for feeding a liquid catalyst to a fluidized bed polymerization reactor
WO1998002247A1 (en) 1996-07-15 1998-01-22 Mobil Oil Corporation Comonomer pretreated bimetallic catalyst for blow molding and film applications
US6136748A (en) * 1997-07-02 2000-10-24 Union Carbide Chemicals & Plastics Technology Corporation Catalyst composition for the polymerization of olefins
US6051525A (en) 1997-07-14 2000-04-18 Mobil Corporation Catalyst for the manufacture of polyethylene with a broad or bimodal molecular weight distribution
US6069213A (en) * 1997-12-16 2000-05-30 Union Carbide Chemicals & Plastics Technology Corporation Mixed catalyst system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881515A (ja) * 1994-09-13 1996-03-26 Mitsubishi Chem Corp エチレン重合体の製造法
WO1999001460A1 (en) * 1997-07-02 1999-01-14 Union Carbide Chemicals & Plastics Technology Corporation Catalyst for the production of olefin polymers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199622, Derwent World Patents Index; Class A17, AN 1996-217262, XP002156624 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018949B2 (en) 2000-11-07 2006-03-28 Symyx Technologies, Inc. Substituted pyridyl amine catalysts and processes for polymerizing and polymers
WO2002038628A3 (en) * 2000-11-07 2003-05-22 Symyx Technologies Inc Substituted pyridyl amine ligands, complexes and catalysts therefrom; processes for producing polyolefins therewith
US6713577B2 (en) 2000-11-07 2004-03-30 Symyx Technologies, Inc. Substituted pyridyl amine catalysts and processes for polymerizing and polymers
US6727361B2 (en) 2000-11-07 2004-04-27 Symyx Technologies, Inc. Phosphino substituted pyridine amine ligands
WO2002038628A2 (en) * 2000-11-07 2002-05-16 Symyx Technologies, Inc. Substituted pyridyl amine ligands, complexes and catalysts therefrom; processes for producing polyolefins therewith
US6750345B2 (en) 2000-11-07 2004-06-15 Symyx Technologies, Inc. Substituted pyridyl amine catalysts, complexes and compositions
US6828397B2 (en) 2000-11-07 2004-12-07 Symyx Technologies, Inc. Methods of copolymerizing ethylene and isobutylene and polymers made thereby
US7087690B2 (en) 2000-11-07 2006-08-08 Symyx Technologies, Inc. Substituted pyridyl amine catalysts and processes for polymerizing crystalline polymers
US6900321B2 (en) 2000-11-07 2005-05-31 Symyx Technologies, Inc. Substituted pyridyl amine complexes, and catalysts
EP1423438A1 (en) * 2001-08-31 2004-06-02 LG Chem, Ltd. Catalyst for olefin polymerization and method for preparing polyolefins
EP1423438A4 (en) * 2001-08-31 2005-01-19 Lg Chemical Ltd CATALYST FOR OLEFIN POLYMERIZATION AND METHOD FOR THE PRODUCTION OF POLYOLEFINES
US8957159B2 (en) 2002-10-15 2015-02-17 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
US7094848B2 (en) 2003-05-13 2006-08-22 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system
US7285609B2 (en) 2003-05-13 2007-10-23 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system useful for polar monomers
US7479531B2 (en) 2003-05-13 2009-01-20 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system useful for polar monomers
EP2173794A4 (en) * 2007-07-30 2011-12-21 Fina Technology POLYETHYLENE FILMS
EP2173794A1 (en) * 2007-07-30 2010-04-14 Fina Technology, Inc. Polyethylene films
WO2010022228A2 (en) * 2008-08-21 2010-02-25 Dow Global Technologies, Inc. Metal-ligand complexes and catalysts
US8372927B2 (en) 2008-08-21 2013-02-12 Dow Global Technologies, Llc Metal-ligand complexes and catalysts
WO2010022228A3 (en) * 2008-08-21 2010-04-15 Dow Global Technologies, Inc. Metal-ligand complexes and catalysts
EP2315788B1 (en) * 2008-08-21 2019-11-13 Dow Global Technologies LLC Metal-ligand complexes and catalysts
US8202954B2 (en) 2010-02-19 2012-06-19 Dow Global Technologies Llc Metal-ligand complexes and catalysts
CN102822180A (zh) * 2010-02-19 2012-12-12 陶氏环球技术有限责任公司 金属配体配合物和催化剂
US8729201B2 (en) 2010-02-19 2014-05-20 Dow Global Technologies Llc Process for polymerizing an olefin monomer and catalyst therefor
CN102822180B (zh) * 2010-02-19 2016-06-15 陶氏环球技术有限责任公司 金属配体配合物和催化剂
US10961329B2 (en) 2014-10-17 2021-03-30 Shanghai Chemrun Co. Ltd. Polyolefin catalyst and use thereof
CN108472989A (zh) * 2015-12-01 2018-08-31 米其林集团总公司 由sec-mals测定的具有双峰分子量分布的天然橡胶制成的橡胶组合物、制备方法及轮胎部件
CN108472989B (zh) * 2015-12-01 2020-07-28 米其林集团总公司 由sec-mals测定的具有双峰分子量分布的天然橡胶制成的橡胶组合物、制备方法及轮胎部件

Also Published As

Publication number Publication date
CA2393446A1 (en) 2001-06-07
US6566462B2 (en) 2003-05-20
US20020107341A1 (en) 2002-08-08
BR0016197A (pt) 2002-08-13
EP1252199A1 (en) 2002-10-30
AU775512B2 (en) 2004-08-05
AU7749900A (en) 2001-06-12
JP2003515628A (ja) 2003-05-07
US6340730B1 (en) 2002-01-22

Similar Documents

Publication Publication Date Title
US6340730B1 (en) Multiple catalyst system
US6258903B1 (en) Mixed catalyst system
AU767697B2 (en) Catalyst compositions, methods of polymerization, and polymers therefrom
AU773207B2 (en) Solution feed of multiple catalysts
EP1185563B1 (en) Method of polymerization
US6696537B2 (en) Method of polymerization and polymer produced therefrom
NO327079B1 (no) Spraytorket sammensetning og fremgangsmate for polymerisasjon
AU763705B2 (en) Start up methods for multiple catalyst systems
US6372868B1 (en) Start up methods for multiple catalyst systems
AU754627B2 (en) Germanium bridged metallocenes producing polymers with increased melt strength
JP2009120748A (ja) エチレン系重合体および製造方法
AU2004200889A1 (en) Monocyclopentadienyl metal catalyst composition for the polymerization of olefins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2393446

Country of ref document: CA

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 541079

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 77499/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2000967279

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000967279

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 77499/00

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 2000967279

Country of ref document: EP