WO2001030519A1 - Mg ALLOY PRECISION PRESSURE MOLDING METHOD AND MOLDING DEVICE THEREFOR AND Mg ALLOY MOLDING PRODUCED THEREBY - Google Patents

Mg ALLOY PRECISION PRESSURE MOLDING METHOD AND MOLDING DEVICE THEREFOR AND Mg ALLOY MOLDING PRODUCED THEREBY Download PDF

Info

Publication number
WO2001030519A1
WO2001030519A1 PCT/JP2000/007227 JP0007227W WO0130519A1 WO 2001030519 A1 WO2001030519 A1 WO 2001030519A1 JP 0007227 W JP0007227 W JP 0007227W WO 0130519 A1 WO0130519 A1 WO 0130519A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
alloy
movable
precision pressure
product
Prior art date
Application number
PCT/JP2000/007227
Other languages
French (fr)
Japanese (ja)
Inventor
Manabu Matsumoto
Shigefumi Matsumoto
Original Assignee
Matsumoto Seisakusho Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Seisakusho Co., Ltd. filed Critical Matsumoto Seisakusho Co., Ltd.
Priority to AU79475/00A priority Critical patent/AU7947500A/en
Publication of WO2001030519A1 publication Critical patent/WO2001030519A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/26Mechanisms or devices for locking or opening dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/11Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of mechanical pressing devices

Definitions

  • the present invention relates to a Mg alloy precision pressure forming method, a forming apparatus therefor, and a Mg alloy formed product produced by the method, and more particularly, to a formed product made of a Mg alloy having poor formability, particularly a thin-walled portion. It is intended to reduce molding defects in molded products (eg, notebook personal computer housings, mobile phone cases, etc.) and produce precise products. Background art
  • Mg alloys are known to have extremely poor workability because their crystal structure is made of hexagonal close-packed ceramics. Die-casting of Mg alloy requires advanced technology, and particularly in the case of thin-walled parts, the run of the molten metal is poor and many cavities are formed, which is a major cause of the failure. Also, in aluminum die-casting, a hydraulic cylinder is provided in the mold to eliminate the nest of thick-walled parts, and a part of the product or a part of the outside of the product, such as a pool, is compressed with a squeeze pin By doing so, there was a device to make the product denser and eliminate nests. However, the effect was good for thick parts, but it was difficult for thin parts. Even good products require post-processing such as hand finishing, padding of surface irregularities, polishing, etc., resulting in high product costs.
  • a product made of a molten Mg alloy has a crystal grain size of about 200 to 500 m.
  • Disclosure of the invention In the die-casting manufacturing, it is difficult to precisely manufacture thin-walled parts without hot water lines or nests by the conventional technology, and the defect rate is extremely high.
  • the purpose of the present invention is to eliminate the above disadvantages. In other words, by improving the die-casting method and by reducing the crystal grain size of the Mg alloy, high-speed superplastic working is realized, and high workability and high strength are achieved.
  • by compressing even thick-walled parts it provides a molded article with reduced hot water wrinkles and nests, increased strength and reduced surface roughness.
  • the present invention solves the above-mentioned problems by increasing the thickness of the cavity in the cavity during primary clamping at low pressure to improve the flow of molten metal, reducing nests due to poor molten metal flow, and increasing the pressure of the secondary mold.
  • Mg alloy precision pressure forming method and device capable of obtaining high-density molded products while crushing to a predetermined thickness by compressing at a predetermined pressure and eliminating defects caused by poor molten metal flow And a Mg alloy molded article produced thereby.
  • the Mg alloy precision pressure molding method of the present invention uses the mold clamp of the molding machine to perform primary mold clamping at a low pressure until it is set to be 0.1% to 20% thicker than the product wall thickness. Injecting molten Mg alloy into the cavity and then performing one or more secondary clamping at high pressure to compress or forge the product part to produce a Mg alloy molded product It is.
  • the secondary mold clamping should be performed with the temperature of the Mg alloy in the cavity at 150 ° C to the melting temperature, and the temperature of the Mg alloy in the cavity should be 200 ° C to 3 ° C. It is more preferable to perform secondary mold clamping at a temperature of 50 ° C.
  • the present invention provides a Mg alloy precision pressure forming method in which a molten Mg alloy is injected into a cavity by a hot chamber die casting method, a cold chamber die casting method, or a thixo molding method. is there.
  • the term “molding” is used as a concept including both molding by a die casting method and molding by a thixomolding method.
  • the crystal grain size of the Mg alloy is reduced to the range of 0.5 to 10 ⁇ by the rapid solidification of the molten metal in the cavity and by the stress when passing through the runner gate.
  • a molded product is produced by superplasticity.
  • the Mg alloy precision pressure forming apparatus of the present invention is configured such that the movable-side mold is Mold driving means for moving the mold, injection means for injecting the molten Mg alloy into the cavity formed by the fixed mold and the movable mold, and a temperature controller for adjusting the temperature of the mold.
  • the primary mold clamping is performed at a low pressure to a state where the thickness is set to be about 0.1% to 20% thicker than the product thickness by using the knot means and the mold clamping means of the movable mold by the mold driving means.
  • the molten Mg alloy is injected into the mold, it is equipped with a mold gap adjusting means for performing secondary clamping at high pressure to compress or forge the product part.
  • a direct pressure method is adopted in which at least two stages of mold clamps can be set as the mold driving means, and the movable mold is formed on the back plate that transmits the mold clamps to the surface of the product.
  • a movable-side insert is fixed, and a movable-side base plate joined to the fixed-side mold is provided around the movable-side insert so as to be movable in a mold-clamping direction.
  • An elastic body is interposed between the back plate and the movable-side base plate;
  • a bolt which defines the maximum distance between the back plate opened by the elastic body and the movable base plate, is attached to the back plate by penetrating the movable base plate, and the mold distance adjusting means is provided. It is provided for.
  • the first clamping force of the mold driving means is smaller than the elastic force of the elastic body and sufficiently larger than the injection pressure of the molten metal of the Mg alloy, and the elastic force of the elastic body. And at least two stages of a second mold clamping force for squeezing the elastic body and advancing the movable side insert by the distance between the back plate and the movable base plate to apply a sufficient compressive force to the product portion. It is possible.
  • the elastic body is formed as a dish panel.
  • a toggle system is adopted as the mold driving means, and the movable mold is fixed to a movable side insert forming a surface of a product on a back plate transmitting a mold clamping force, and a fixed side is provided around the movable insert.
  • the movable base plate to be joined to the mold is provided so as to be movable in the mold clamping direction, and a tapered groove that expands laterally is formed between the back plate and the periphery of the movable base plate.
  • a gap maintaining wedge member is interposed in the groove, and the gap is adjusted by the degree of insertion of the wedge member into the tapered groove, and the mold gap adjusting means is provided.
  • the injection means for injecting the molten Mg alloy into the cavity is an injection machine using a hot chamber die casting method or a thixo molding method. Then, the crystal grain size of the Mg alloy is 0.5 to 1
  • the product is made into a Mg alloy molded product by superplasticity by refining it to the range of 0 m, and the present invention uses the above-mentioned Mg alloy precision pressure forming method or the Mg alloy precision pressure forming device Then, the Mg alloy is compressed to produce a Mg alloy molded product that covers the details, is dense, has good dimensional accuracy, and does not require a smooth surface finish.
  • “superplasticity” means “in the tensile deformation of a polycrystalline material, the deformation stress shows a high strain rate dependence, and a huge 100% or more with no local contraction (necking).
  • Phenomenon indicating elongation (from Japanese Industrial Standards ⁇ Metallic superplastic material terminology (JISH 707)).
  • Mg alloys generally have poor ductility and very poor plastic workability due to their close-packed hexagonal lattice structure.However, refinement of crystal grains improves room temperature strength, ductility and workability due to superplasticity.
  • the strain rate of the Mg alloy material in the superplastic state increases with decreasing crystal grain size. If the crystal grain size is reduced by one order of magnitude, the superplastic strain rate increases from 100 to 100 times.
  • the main deformation mechanism of the Mg alloy material in the superplastic state is the grain boundary torsion, and there is a liquid phase in addition to diffusion flow and dislocation as an auxiliary adjustment mechanism that plays a role in maintaining the superplastic flow. In other words, due to the sliding at the grain boundary, a huge elongation is exhibited without causing macroscopic fracture.However, the mechanism that relaxes the local stress concentration generated between the fine crystal grains due to the sliding of the grain boundary Is the associated adjustment mechanism described above.
  • the present invention provides a hot chamber die casting method or a cold chamber die casting method. Injects molten Mg alloy into cavities by thixomolding method. When the Mg alloy material passes through a channel such as a runner gate and the like and moves inside the cavity, stress is applied to the crystal grains, and the crystal grains are refined. After performing primary clamping at low pressure until the thickness is set to about 20% to 20% thick, perform single or multiple secondary clamping at high pressure to compress or forge the product part to produce a molded product. Thus, the crystal grains are further refined, and a high-speed superplastic state with a crystal grain size in the range of 0.5 to ⁇ 0 / m is realized.
  • FIG. 1 is a cross-sectional view showing a state in which the mold of the present invention is mounted and the mold is opened.
  • FIG. 2 is a cross-sectional view showing a state in which low-pressure primary clamping has been performed and an Mg alloy has been injected.
  • FIG. 3 is a cross-sectional view showing a state where a high-pressure secondary mold is clamped and the Mg alloy molded product is crushed.
  • FIG. 4 is an enlarged view of a main part of the molding apparatus.
  • FIG. 4 (a) is a partially enlarged sectional view of FIG. 2
  • FIG. 4 (b) is a partially enlarged sectional view of FIG.
  • FIG. 5 is a schematic diagram of a molding apparatus using a hot chamber die casting injector.
  • FIG. 6 is a schematic diagram of a molding apparatus using an injection machine for thixomolding.
  • FIG. 7 is a cross-sectional view showing a state in which a low-pressure primary mold has been clamped and a Mg alloy has been injected in a molding apparatus according to another embodiment of the present invention.
  • FIG. 8 is a total pole figure of the molded product at the time of the low-pressure primary mold clamping measured by an automatic X-ray diffractometer.
  • FIG. 9 is a total pole figure of the molded product at the time of high-pressure secondary mold clamping measured by an automatic X-ray diffractometer.
  • FIGS. 1 to 3 are views showing a molding apparatus for carrying out the precision pressure molding method of an Mg alloy according to the present invention.
  • FIG. 1 shows a state in which the mold is opened, and
  • FIG. 2 shows primary clamping by low pressure.
  • Fig. 3 shows a state in which secondary clamping by high pressure has been performed.
  • FIG. 4 (a) is a partially enlarged view of FIG. 2
  • FIG. 4 (b) is a partially enlarged view of FIG.
  • the Mg alloy precision pressure forming apparatus of the present invention includes a mold driving means (not shown) for moving the movable mold B with respect to the fixed mold A, and a fixed mold A and a movable mold B.
  • Injecting means C for injecting the molten Mg alloy into the cavity formed by the above, temperature adjusting means (not shown) for adjusting the temperature of the mold, and a mold for the movable mold by the mold driving means.
  • temperature adjusting means for adjusting the temperature of the mold
  • a mold for the movable mold by the mold driving means Using a clamp, perform primary clamping under low pressure until the product is set to a thickness of about 0.1% to 20%, more preferably about 2% to 5%, so that the molten Mg alloy is in the cavity.
  • a mold gap adjusting means for performing secondary clamping at a high pressure to compress or forge the product part is provided.
  • the mold clamp of the molding machine primary clamping is performed at a low pressure until it is set to be 0.1% to 20% thicker than the product wall thickness, and the molten Mg alloy is poured into the cavity.
  • the molded part of the Mg alloy can be manufactured by compressing or forging the product part by performing one or more times of secondary mold clamping at a high pressure.
  • the secondary mold clamping should be performed in a state where the temperature of the Mg alloy in the cavity is 150 ° C to the melting temperature, and more preferably, the secondary mold clamping should be performed in the state of 200 ° C to 350 ° C. It is.
  • Mg alloy used in the present invention As the Mg alloy used in the present invention, AZ91D (Mg: 9% by weight, AI: 90% by weight, Zn: ⁇ % by weight) was used.
  • the melting point of this Mg alloy is between 620 ° C and 700 ° C. It is also preferable to add Ca to the Mg alloy by up to 2% by weight. In that case, the flash point of the Mg alloy is increased by about 200 ° C., which simplifies the apparatus configuration and is preferable.
  • the temperature at which the molten Mg alloy is injected into the cavity may be in a completely molten state or a semi-solid semi-solid state (solid solution) at around 500 ° C.
  • the mold temperature at this time is preferably as low as 150 ° C or higher because a quenching action utilizing the difference between the casting temperature and the mold temperature can be realized.
  • the mold temperature is 200 ° C to 350 ° C. Set to C.
  • the fixed mold A has a structure in which a fixing cavity insert 3 is inserted into a fixing base plate 2 and molten Mg alloy is injected through a filling port 4. .
  • the fixing base plate 2 is attached to the die plate 1 of the molding machine.
  • the movable mold B has a movable base plate 5 and movable movable inserts 6 and 15 incorporated therein.
  • the shunt 8 is used to create a gap between the hot water and the hot water 4 and to inject the hot water.
  • the back plate 7 is a plate that supports the movable base plate 5 and the movable inserts 6 and 15 during molding.
  • the movable base plate 5 and the back plate 7 are attached to the movable side plate 12 of the molding machine via the spacer 9.
  • the extruded plates 10 and 11 are moved by the return pin 18 to take out the product.
  • the fixed mold A and the movable mold B are positioned by the guide pin 20 and the guide bush 19, and come into close contact with each other when the mold is clamped.
  • the fixed mold insert 3 and the movable mold 15 The gap is filled with molten Mg alloy into a product.
  • the movable die plate 12 is moved to the fixed side, and the mold is clamped at a low pressure while positioning with the guide pins 20 and the guide bush 19.
  • the gap ⁇ is set between the back plate 7 and the movable base plate 5 having the movable insert 6 integrated with the disc spring 13.
  • This gap ⁇ can be changed in the range of 0.1% to 20% of the thickness of the molded product.
  • the operation shall be performed by the bolt 21.
  • the countersunk panel 13 should be strong enough to maintain the gap ⁇ with the primary clamping force.
  • the molten Mg alloy is injected into the cavity from the sleeve 14 through the inlet 4 to make the product part 17.
  • Figure 2 illustrates this situation.
  • the product section 16 is thicker than the predetermined product thickness by ⁇ .
  • a vacuum pump may be used to evacuate the air or a chill-vent device may be used to prevent air or the like from being caught in the product.
  • the gap ⁇ secured by the dish panel 13 is moved by moving the molding machine plate 12 until the gap ⁇ becomes 0, so that the product section 16 becomes the product section. It is crushed by ⁇ to 17 If the molten metal is completely solidified, it will not be possible to crush the product 16 to the product 17 with the mold clamper of the molding machine, so high-pressure secondary clamping is performed in the molten or semi-molten state. It is desirable. However, the clamping force of the molding machine is large. In a severe case, even after the Mg alloy melt is solidified, compression can be performed at a temperature of at least 150 ° C or more, preferably from 200 ° C to 350 ° C. Adding supersonic waves to the Mg alloy may also be advantageous for densification.
  • a direct pressure system is adopted in which at least two stages of mold clampers can be set as the mold driving means.
  • the movable mold B is fixed to a back plate 7 for transmitting a mold clamp to the movable mold insert 15 forming the surface of the product, and the movable mold B is joined to the fixed mold A around the movable mold insert B.
  • a plate 5 is provided so as to be movable in the mold clamping direction.
  • An elastic body (dish panel 13) is interposed between the back plate 7 and the movable base plate 5 and the back plate 7 opened by the elastic body 13.
  • a bolt 21 that defines the maximum distance a between the movable base plate 5 and the movable base plate 5 is attached to the back plate 7 through the movable base plate 5.
  • an appropriate spring such as a compression coil panel or a leaf spring can be used in addition to the disc spring 13 depending on the mold structure.
  • a first clamping force smaller than the elastic force of the elastic body 13 and sufficiently larger than the injection pressure of the molten Mg alloy;
  • the elastic body 13 is larger than the elastic force 13 and the elastic body 13 is crushed to move the movable side insert 15 by a distance between the back plate 7 and the movable base plate 5 to apply a sufficient compressive force to the product portion. It can be set to at least two steps with the mold clamping force.
  • an injection machine using a hot chamber die casting method, a cold chamber die casting method, or a thixomolding method can be used as an injection means C for injecting the molten Mg alloy into the cavity.
  • the hot chamber die cast injection machine has a gooseneck 31 and a built-in biston 32 inside a heating vessel 30 containing a molten Mg alloy.
  • the molten metal taken in 31 is pressurized by the intake piston 32 and supplied from the nozzle 33 to the intake cavity 4.
  • the thixomolding injection machine uses the Mg alloy injected from the raw material hopper 40 to convert the frictional heat of rotation between the cylinder 41 and the screw 42 into an outer circumferential surface of the cylinder 41.
  • a semi-molten and semi-solidified (solid solution) state is established with the heater 43 provided in the nozzle, and the liquid is injected from the nozzle 45 to the inlet 4 by the high injection system 44 provided behind.
  • a cold-chamber die-casting injection machine is also conventionally known, and a description thereof will be omitted.
  • the movable side mold B is changed as follows by adopting the mold driving means of the system, that is, the movable side mold B is provided on the back plate 7 for transmitting the mold clamp to the surface of the product. And a movable base plate 5 for joining to the fixed mold A is provided around the movable base insert 5 so as to be movable in the mold clamping direction.
  • a tapered groove 22 is formed between the periphery of the tapered groove 5 and a wedge member 23 for maintaining an interval is interposed between the tapered groove 22 and the wedge member 23 is inserted into the tapered groove 22.
  • the taper groove 22 and the wedge member 23 adjust the distance ⁇ depending on the condition. Than is configured the adjusting means.
  • FIGS. 8 and 9 show the results of measuring the total pole figure of the molded product 16 at the time of the low-pressure primary mold clamping and the molded product 17 at the time of the high-pressure secondary mold clamping by the X-ray transmission method and the reflection method, respectively.
  • an automatic X-ray diffractometer manufactured by Rigaku Corporation: RINT 2000
  • the measurement conditions were as follows: X-ray (Mo / 50kVZ30mA), K3 filter, Sintellation counter, Schullz transmission method with concentric measurement mode, and FT scanning mode.
  • the Schulz reflection method was used.
  • the processing conditions were calculated and normalized using the actually measured linear absorption coefficient t (6.97335 cm- 1 ).
  • the texture allows the crystal orientation of a polycrystalline material and its strength to be known.
  • the X-ray diffraction intensity of a specific crystal plane is determined by measuring the omnidirectional orientation of the sample, and the diffraction intensity is expressed as a so-called 'positive dot diagram' that is displayed two-dimensionally on the sample coordinate system. It is known that the texture changes due to the rotation of the crystal generated during plastic working, forming a so-called processed texture.
  • FIG. 8 shows the state of the working texture of the molded product 16 at the time of the low-pressure primary mold clamping.
  • the processed assembly formed for the high-pressure secondary mold-formed product ⁇ 7 produced by applying 8% compression deformation in the thickness direction at 300 ° C to the low-pressure primary mold-formed product 16 described above.
  • the Mg alloy molded article produced by the high-pressure secondary mold clamping of the present invention has a high-pressure It was shown that the mechanical and crystallographic properties changed compared to the molded product without secondary clamping.
  • the primary mold clamping is performed at a low pressure during the formation of the Mg alloy, which has an effect of improving the flow of the molten metal when pouring the molten metal.
  • a high-pressure secondary mold clamp to compress or forge the molded product, the molded product can be crushed, making it possible to produce a dense molded product without nests.
  • the Mg alloy precision pressure forming apparatus of the present invention it is possible to produce a high-density and high-precision die-casting product having a small number of hot spots and burrs, a low defect rate, and the like. Furthermore, if the primary mold clamping using a strong dish panel is performed and the movable insert is moved in the direction to increase the thickness of the cavity while the PL is in close contact, the device structure can be simplified. .

Abstract

A Mg alloy precision pressure molding method and a molding device therefor and a Mg alloy molding produced thereby which can eliminate such conventional technique-based defects in Mg alloy die casting that compact thin-walled parts free from surface folds and cavities are difficult to cast and are cast with a very high fraction defective. In the case of thick-walled parts, moldings with reduced surface folds and cavities, increased strength and reduced surface roughness can be provided by compression. A method of producing a Mg alloy molding, wherein a primary mold clamping is performed, using the mold clamping force of a molding machine, at a low pressure up to a status where a thickness is set about 0.1% to 20% larger than a product thickness, Mg alloy molten metal is poured into a cavity, and then a secondary mold clamping is performed one or a plurality of times at a high pressure to compress or forge the parts of a product.

Description

明 細  Detail
M g合金精密圧力成形法及びその成形装置並びにそれによリ作製された M g合金 成形品 技術分野 Mg alloy precision pressure forming method and forming apparatus and Mg alloy molded product manufactured by the method
本発明は、 M g合金精密圧力成形法及びその成形装置並びにそれにより作製さ れた M g合金成形品に係わり、 更に詳しくは成形性の悪い M g合金で作製した成 形品、 特に薄肉部分を有する成形品 (例: ノー卜型パーソナルコンピュータの匡 体や、 携帯電話機のケース等) の成形不良を減らし、 緻密な製品を作るためのも のである。 背景技術  The present invention relates to a Mg alloy precision pressure forming method, a forming apparatus therefor, and a Mg alloy formed product produced by the method, and more particularly, to a formed product made of a Mg alloy having poor formability, particularly a thin-walled portion. It is intended to reduce molding defects in molded products (eg, notebook personal computer housings, mobile phone cases, etc.) and produce precise products. Background art
M g合金は、 その結晶構造が六方最密搆造からなるので、 極めて加工性が悪い ことが知られている。 M g合金のダイカス卜錶造は、 高度な技術を必要とし、 特 に薄肉部分の錶造においては、 湯まわりが悪く、 巣等も多く発生し、 不良の大き な原因となっていた。 又、 アルミダイカス卜錶造においては、 厚肉部の巣を解消 するため、 金型に油圧シリンダをもうけることにより、 製品内一部又は、 製品外 の湯だまり等の一部をスクイズピンにて圧縮することにより製品を緻密にし、 巣 を解消する工夫はあった。 しかし、 厚肉部では効果があつたが、 薄肉部品では効 果は難しかった。 また、 良品と言えども、 手仕上げ、 表面の凹凸のパテ埋め、 磨 きなどの後工程が必要であるのが現状であり、 そのため製品コス卜が高いものと なっている。  Mg alloys are known to have extremely poor workability because their crystal structure is made of hexagonal close-packed ceramics. Die-casting of Mg alloy requires advanced technology, and particularly in the case of thin-walled parts, the run of the molten metal is poor and many cavities are formed, which is a major cause of the failure. Also, in aluminum die-casting, a hydraulic cylinder is provided in the mold to eliminate the nest of thick-walled parts, and a part of the product or a part of the outside of the product, such as a pool, is compressed with a squeeze pin By doing so, there was a device to make the product denser and eliminate nests. However, the effect was good for thick parts, but it was difficult for thin parts. Even good products require post-processing such as hand finishing, padding of surface irregularities, polishing, etc., resulting in high product costs.
また、 一般的に M g合金の溶湯による錶造品は、 結晶粒径が 2 0 0〜5 0 0 m程度であることが知られており、 更に M g合金ダイカスト錶造品も結晶粒径が 1 0 0 /x m以上であり、 M g合金ダイカス卜錶造では高速超塑性領域はないとい う認識が一般的であった。 発明の開示 ダイカス卜錶造において、 従来技術では、 薄肉部品を湯じわや巣が無く緻密に錶 造することは困難で、 非常に不良率が高く、 困っているのが現状であり、 本発明 は、 以上の様な欠点をなくすためになされたものである。 つまり、 ダイカス卜錶 造法に工夫を加えて、 M g合金の結晶粒径を微細化することにより、 高速超塑性 加工を実現して高い加工性と高強度を達成するのである。 また、 厚肉部品におい ても圧縮することにより、 湯じわ、 巣等が減り、 強度の増加と表面粗さが少ない 成形品を提供するものである。 In general, it is known that a product made of a molten Mg alloy has a crystal grain size of about 200 to 500 m. However, it was generally recognized that there is no high-speed superplastic region in the Mg alloy die cast structure. Disclosure of the invention In the die-casting manufacturing, it is difficult to precisely manufacture thin-walled parts without hot water lines or nests by the conventional technology, and the defect rate is extremely high. The purpose of the present invention is to eliminate the above disadvantages. In other words, by improving the die-casting method and by reducing the crystal grain size of the Mg alloy, high-speed superplastic working is realized, and high workability and high strength are achieved. In addition, by compressing even thick-walled parts, it provides a molded article with reduced hot water wrinkles and nests, increased strength and reduced surface roughness.
本発明は、 前述の課題解決のために、 低圧にて一次型締時、 キヤビティ内の肉 厚を厚くして湯流れを良くし、 湯流れ不良による巣等を減らし、 高圧の二次型締 にて圧縮することにより、 所定の厚み迄押しつぶし、 溶湯の湯流れ不良に起因す る不具合を解消しつつ、 密度の高い成形品を得ることが可能な M g合金精密圧力 成形法及びその成形装置を提供し、 並びにそれにより作製された M g合金成形品 を提供するものである。  The present invention solves the above-mentioned problems by increasing the thickness of the cavity in the cavity during primary clamping at low pressure to improve the flow of molten metal, reducing nests due to poor molten metal flow, and increasing the pressure of the secondary mold. Mg alloy precision pressure forming method and device capable of obtaining high-density molded products while crushing to a predetermined thickness by compressing at a predetermined pressure and eliminating defects caused by poor molten metal flow And a Mg alloy molded article produced thereby.
つまり、 本発明の M g合金精密圧力成形法は、 成形機の型締カを利用し、 製品 肉厚より 0 . 1 %〜2 0 %程度厚く設定した状態まで低圧で一次型締を行い、 キ ャビティ内に M g合金の溶湯の注入を行った後、 高圧で単又は複数回の二次型締 を行って製品部分を圧縮若しくは鍛造することにより、 M g合金の成形品を作製 するものである。  In other words, the Mg alloy precision pressure molding method of the present invention uses the mold clamp of the molding machine to perform primary mold clamping at a low pressure until it is set to be 0.1% to 20% thicker than the product wall thickness. Injecting molten Mg alloy into the cavity and then performing one or more secondary clamping at high pressure to compress or forge the product part to produce a Mg alloy molded product It is.
ここで、 キヤビティ内の M g合金の温度が、 1 5 0 °C〜溶融温度の状態で二次 型締を行うこと、 更にキヤビティ内の M g合金の温度が、 2 0 0 °C~ 3 5 0 °Cの 状態で二次型締を行うことがより好ましいのである。 また、 本発明は、 キヤビテ ィ内に M g合金の溶湯を注入する方式が、 ホッ卜チャンバダイカス卜法又はコー ルドチャンバダイカス卜法又はチキソモールディング法である M g合金精密圧力 成形法である。 本発明において、 「成形」 とは、 ダイカスト法による錶造と、 チキ ソモールディング法による成形の両方を含む概念として使用している。 そして、 キヤビティ内での溶湯の急速凝固により、 またランナーゲー卜等を通過する際に ストレスを受けることにより、 M g合金の結晶粒径を 0 . 5 ~ 1 0 μ ηιの範囲に 微細化して超塑性によって成形品を作製するのである。  Here, the secondary mold clamping should be performed with the temperature of the Mg alloy in the cavity at 150 ° C to the melting temperature, and the temperature of the Mg alloy in the cavity should be 200 ° C to 3 ° C. It is more preferable to perform secondary mold clamping at a temperature of 50 ° C. Further, the present invention provides a Mg alloy precision pressure forming method in which a molten Mg alloy is injected into a cavity by a hot chamber die casting method, a cold chamber die casting method, or a thixo molding method. is there. In the present invention, the term “molding” is used as a concept including both molding by a die casting method and molding by a thixomolding method. The crystal grain size of the Mg alloy is reduced to the range of 0.5 to 10 μηι by the rapid solidification of the molten metal in the cavity and by the stress when passing through the runner gate. A molded product is produced by superplasticity.
そして、 本発明の M g合金精密圧力成形装置は、 固定側金型に対して可動側金 型を移動させる金型駆動手段と、 固定側金型と可動側金型とで形成されるキヤビ ティ内に M g合金の溶湯の注入を行う注入手段と、 金型の温度を調節する温度調 節手段と、 前記金型駆動手段による可動側金型の型締カを利用して製品肉厚より 0 . 1 %〜 2 0 %程度厚く設定した状態まで低圧で一次型締を行い、 キヤビティ 内に M g合金の溶湯を注入後、 製品部分を圧縮若しくは鍛造すべく高圧で二次型 締を行うための金型間隔調整手段とを備えたものである。 And, the Mg alloy precision pressure forming apparatus of the present invention is configured such that the movable-side mold is Mold driving means for moving the mold, injection means for injecting the molten Mg alloy into the cavity formed by the fixed mold and the movable mold, and a temperature controller for adjusting the temperature of the mold. The primary mold clamping is performed at a low pressure to a state where the thickness is set to be about 0.1% to 20% thicker than the product thickness by using the knot means and the mold clamping means of the movable mold by the mold driving means. After the molten Mg alloy is injected into the mold, it is equipped with a mold gap adjusting means for performing secondary clamping at high pressure to compress or forge the product part.
更に詳しくは、 前記金型駆動手段として少なくとも二段階の型締カを設定可能 な直圧方式を採用し、 前記可動側金型を、 型締カを伝達する背板に製品の表面を 形成する可動側入子を固定するとともに、 その周囲に固定側金型と接合する可動 側ベースプレートを型締方向へ可動となして設け、 前記背板と可動側ベースプレ 一卜間に弾性体を介在させ且つ該弾性体によって開いた背板と可動側ベースプレ 一卜の最大間隔を規定するボル卜を、 該可動側ベースプレー卜を貫通させて背板 に取付けた構造となして前記金型間隔調整手段を備えさせてなるものである。 また、 前記金型駆動手段の型締カを、 該弾性体の弾性力よりも小さく且つ M g 合金の溶湯の注入圧よりも十分に大きな第 1型締力と、 前記弾性体の弾性力より も大きく且つ該弾性体を押し潰して背板と可動側ベースプレー卜の間隔だけ可動 側入子を前進させて製品部分に十分な圧縮力を与える第 2型締力との少なくとも 二段階に設定可能なものである。 ここで、 前記弾性体を皿パネとしてなることが 好ましい。  More specifically, a direct pressure method is adopted in which at least two stages of mold clamps can be set as the mold driving means, and the movable mold is formed on the back plate that transmits the mold clamps to the surface of the product. A movable-side insert is fixed, and a movable-side base plate joined to the fixed-side mold is provided around the movable-side insert so as to be movable in a mold-clamping direction. An elastic body is interposed between the back plate and the movable-side base plate; A bolt, which defines the maximum distance between the back plate opened by the elastic body and the movable base plate, is attached to the back plate by penetrating the movable base plate, and the mold distance adjusting means is provided. It is provided for. In addition, the first clamping force of the mold driving means is smaller than the elastic force of the elastic body and sufficiently larger than the injection pressure of the molten metal of the Mg alloy, and the elastic force of the elastic body. And at least two stages of a second mold clamping force for squeezing the elastic body and advancing the movable side insert by the distance between the back plate and the movable base plate to apply a sufficient compressive force to the product portion. It is possible. Here, it is preferable that the elastic body is formed as a dish panel.
又は、 前記金型駆動手段としてトグル方式を採用し、 前記可動側金型を、 型締 力を伝達する背板に製品の表面を形成する可動側入子を固定するとともに、 その 周囲に固定側金型と接合する可動側ベースプレー卜を型締方向へ可動となして設 け、 前記背板と可動側ベースプレー卜の周囲間に側方へ拡開したテーパ溝を形成 し、 該テ一パ溝に間隔保持用の楔部材を介在させ、 該楔部材のテーパ溝への挿入 具合によって間隔を調節する構造となして、 前記金型間隔調整手段を備えさせて なるものである。  Alternatively, a toggle system is adopted as the mold driving means, and the movable mold is fixed to a movable side insert forming a surface of a product on a back plate transmitting a mold clamping force, and a fixed side is provided around the movable insert. The movable base plate to be joined to the mold is provided so as to be movable in the mold clamping direction, and a tapered groove that expands laterally is formed between the back plate and the periphery of the movable base plate. A gap maintaining wedge member is interposed in the groove, and the gap is adjusted by the degree of insertion of the wedge member into the tapered groove, and the mold gap adjusting means is provided.
以上の M g合金精密圧力成形装置において、 キヤビティ内に M g合金の溶湯を 注入する注入手段が、 ホッ卜チャンバダイカス卜法又はチキソモールディング法 による注入機であることが好ましい。 そして、 M g合金の結晶粒径を 0 . 5〜1 0 mの範囲に微細化して超塑性によって M g合金の成形品を作製するのである, そして、 本発明は、 前述の M g合金精密圧力成形法又は M g合金精密圧力成形 装置を用いて作製され、 M g合金が圧縮されることにより細部迄行き渡り、 緻密 で寸法精度が良く、 表面の平滑化仕上げが不要な M g合金成形品を作製するので ある。 In the above-mentioned Mg alloy precision pressure forming apparatus, it is preferable that the injection means for injecting the molten Mg alloy into the cavity is an injection machine using a hot chamber die casting method or a thixo molding method. Then, the crystal grain size of the Mg alloy is 0.5 to 1 The product is made into a Mg alloy molded product by superplasticity by refining it to the range of 0 m, and the present invention uses the above-mentioned Mg alloy precision pressure forming method or the Mg alloy precision pressure forming device Then, the Mg alloy is compressed to produce a Mg alloy molded product that covers the details, is dense, has good dimensional accuracy, and does not require a smooth surface finish.
ここで、 「超塑性」 とは、 「多結晶材料の引張変形において、 変形応力が高いひ ずみ速度依存性を示し、 局部収縮 (ネッキング) を生じることなく数 1 0 0 %以 上の巨大な伸びを示す現象」 (日本工業規格 ·金属系超塑性材料用語( J I S H 7 0 0 7 ) より) と定義されている。 M g合金は、 最密六方格子構造のため、 一 般に延性に乏しく、塑性加工性が非常に悪いが、結晶粒を微細化することにより、 室温強度、 延性の向上及び超塑性による加工性の大幅な向上が達成されることが 知られている。 超塑性状態における M g合金材料のひずみ速度は、 結晶粒径の減 少とともに増加し、 結晶粒径が 1オーダー微細になれば、 超塑性ひずみ速度は 1 0 0倍から 1 0 0 0倍近く増加する。 また、 超塑性状態における M g合金材料の 主変形機構は、 粒界すベリであり、 超塑性流動を継続させる役割を担う付随調整 機構として拡散流動や転位に加えて液相の存在がある。 つまり、 粒界すベり変形 によって、 マクロな破断に至ることなく、 巨大な伸びを示すのであるが、 粒界が すべることによつて微細結晶粒間に生じる局所的な応力集中を緩和する機構が前 述の付随調整機構である。  Here, “superplasticity” means “in the tensile deformation of a polycrystalline material, the deformation stress shows a high strain rate dependence, and a huge 100% or more with no local contraction (necking). Phenomenon indicating elongation ”(from Japanese Industrial Standards · Metallic superplastic material terminology (JISH 707)). Mg alloys generally have poor ductility and very poor plastic workability due to their close-packed hexagonal lattice structure.However, refinement of crystal grains improves room temperature strength, ductility and workability due to superplasticity. It is known that a significant improvement in The strain rate of the Mg alloy material in the superplastic state increases with decreasing crystal grain size.If the crystal grain size is reduced by one order of magnitude, the superplastic strain rate increases from 100 to 100 times. To increase. The main deformation mechanism of the Mg alloy material in the superplastic state is the grain boundary torsion, and there is a liquid phase in addition to diffusion flow and dislocation as an auxiliary adjustment mechanism that plays a role in maintaining the superplastic flow. In other words, due to the sliding at the grain boundary, a huge elongation is exhibited without causing macroscopic fracture.However, the mechanism that relaxes the local stress concentration generated between the fine crystal grains due to the sliding of the grain boundary Is the associated adjustment mechanism described above.
また、 条件の良い実験室レベルでの引張り試験では、 結晶粒径が 1 O O ^ mォ ーダ一の粗大な結晶粒径を有する M g系材料でも 2 0 0 %程度の大きな伸びが得 られることが分かっているが、 市販の M g合金材料をダイカス卜錶造又はチキソ モールディングによって超塑性加工することは実用化されていない。 更に、 M g 合金では、 予備加工として温間押出し、 温間圧延を行うことによって、 動的再結 晶による組織の微細化ができるが、 より低温での超塑性成形を実現するには、 粒 界構造そのものを制御するような予備加工が必要であることも知られている。 つ まり、 M g合金をより低温で超塑性成形するには、 非常によく制御された予備加 ェと特殊な静圧加工装置が必要である。  In a tensile test at a laboratory level with good conditions, a large elongation of about 200% can be obtained even with Mg-based material having a coarse crystal grain size of 100 ^ m order. However, superplastic working of a commercially available Mg alloy material by die casting or thixo molding has not been put to practical use. Furthermore, in the case of Mg alloy, microstructure can be refined by dynamic recrystallization by performing warm extrusion and warm rolling as pre-processing, but in order to realize superplastic forming at lower temperature, It is also known that preliminary processing is required to control the boundary structure itself. This means that superplastic forming of Mg alloys at lower temperatures requires very well controlled preloading and special hydrostatic processing equipment.
本発明は、 ホッ卜チャンバダイカス卜法又はコールドチャンバダイカス卜法又 はチキソモールディング法により、 キヤビティ内に M g合金の溶湯の注入を行う が、 キヤビティ内での溶湯の急速凝固により組織が微細化される現象と、 付随的 には M g合金材料が高速射出される際と、 M g合金材料がランナーゲー卜等の流 路を通過しキヤビティ内を移動する際にストレスを受けることで結晶粒が微細化 する現象を利用し、 更に製品肉厚より 0 . 1 %〜2 0 %程度厚く設定した状態ま で低圧で一次型締を行った後、 高圧で単又は複数回の二次型締を行って製品部分 を圧縮若しくは鍛造して成形品を作製することで、 結晶粒を更に微細化し、 結晶 粒径が 0 . 5〜〗 0 / mの範囲の高速超塑性状態を実現するのである。 図面の簡単な説明 The present invention provides a hot chamber die casting method or a cold chamber die casting method. Injects molten Mg alloy into cavities by thixomolding method. When the Mg alloy material passes through a channel such as a runner gate and the like and moves inside the cavity, stress is applied to the crystal grains, and the crystal grains are refined. After performing primary clamping at low pressure until the thickness is set to about 20% to 20% thick, perform single or multiple secondary clamping at high pressure to compress or forge the product part to produce a molded product. Thus, the crystal grains are further refined, and a high-speed superplastic state with a crystal grain size in the range of 0.5 to〗 0 / m is realized. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の金型を取付けて、 型開き状態を示す断面図である。  FIG. 1 is a cross-sectional view showing a state in which the mold of the present invention is mounted and the mold is opened.
第 2図は、 低圧一次型締を行い、 M g合金が注入された状態を示す断面図であ る。  FIG. 2 is a cross-sectional view showing a state in which low-pressure primary clamping has been performed and an Mg alloy has been injected.
第 3図は、 高圧二次型締を行い、 M g合金成形品を押しつぶした所を示す断面 図である。  FIG. 3 is a cross-sectional view showing a state where a high-pressure secondary mold is clamped and the Mg alloy molded product is crushed.
第 4図は、成形装置の要部を拡大して示したものであり、 (a )は図 2の部分拡 大断面図、 (b ) は図 3の部分拡大断面図である。  4 is an enlarged view of a main part of the molding apparatus. FIG. 4 (a) is a partially enlarged sectional view of FIG. 2, and FIG. 4 (b) is a partially enlarged sectional view of FIG.
第 5図は、 ホッ卜チャンバダイカス卜用注入機を用いた成形装置の概略図であ る。  FIG. 5 is a schematic diagram of a molding apparatus using a hot chamber die casting injector.
第 6図は、 チキソモールディング用注入機を用いた成形装置の概略図である。 第 7図は、 本発明の他の実施形態を示す成形装置で、 低圧一次型締を行い、 M g合金が注入された状態を示す断面図である。  FIG. 6 is a schematic diagram of a molding apparatus using an injection machine for thixomolding. FIG. 7 is a cross-sectional view showing a state in which a low-pressure primary mold has been clamped and a Mg alloy has been injected in a molding apparatus according to another embodiment of the present invention.
第 8図は、 低圧一次型締時成形品を自動 X線回折装置で測定した全極点図であ る。  FIG. 8 is a total pole figure of the molded product at the time of the low-pressure primary mold clamping measured by an automatic X-ray diffractometer.
第 9図は、 高圧二次型締時成形品を自動 X線回折装置で測定した全極点図であ る。 発明を実施するための最良の形態  FIG. 9 is a total pole figure of the molded product at the time of high-pressure secondary mold clamping measured by an automatic X-ray diffractometer. BEST MODE FOR CARRYING OUT THE INVENTION
以下、この発明の M g合金の精密圧力成形法について、さらに詳細に説明する。 図 1から図 3は、 本発明の M g合金の精密圧力成形法を実施するための成形装置 を示す図であり、 図 1 は型開き時の状態で、 図 2は低圧による一次型締を行って いる時の図であり、 図 3は高圧による二次型締を行った状態である。 また、 図 4 (a) は図 2の部分拡大図、 図 4 (b) は図 3の部分拡大図を示している。 本発明の Mg合金精密圧力成形装置は、 固定側金型 Aに対して可動側金型 Bを 移動させる金型駆動手段 (図示せず) と、 固定側金型 Aと可動側金型 Bとで形成 されるキヤビティ内に M g合金の溶湯の注入を行う注入手段 Cと、 金型の温度を 調節する温度調節手段 (図示せず) と、 前記金型駆動手段による可動側金型の型 締カを利用して製品肉厚より 0. 1 %〜20 %程度、 更に好ましくは 2 %〜 5 % 程度厚く設定した状態まで低圧で一次型締を行い、 キヤビティ内に Mg合金の溶 湯を注入後、 製品部分を圧縮若しくは鍛造すべく高圧で二次型締を行うための金 型間隔調整手段とを備えたものである。 Hereinafter, the precision pressure forming method of the Mg alloy of the present invention will be described in more detail. FIGS. 1 to 3 are views showing a molding apparatus for carrying out the precision pressure molding method of an Mg alloy according to the present invention. FIG. 1 shows a state in which the mold is opened, and FIG. 2 shows primary clamping by low pressure. Fig. 3 shows a state in which secondary clamping by high pressure has been performed. FIG. 4 (a) is a partially enlarged view of FIG. 2, and FIG. 4 (b) is a partially enlarged view of FIG. The Mg alloy precision pressure forming apparatus of the present invention includes a mold driving means (not shown) for moving the movable mold B with respect to the fixed mold A, and a fixed mold A and a movable mold B. Injecting means C for injecting the molten Mg alloy into the cavity formed by the above, temperature adjusting means (not shown) for adjusting the temperature of the mold, and a mold for the movable mold by the mold driving means. Using a clamp, perform primary clamping under low pressure until the product is set to a thickness of about 0.1% to 20%, more preferably about 2% to 5%, so that the molten Mg alloy is in the cavity. After injection, a mold gap adjusting means for performing secondary clamping at a high pressure to compress or forge the product part is provided.
それにより、 成形機の型締カを利用し、 製品肉厚より 0. 1 %〜20 %程度厚 く設定した状態まで低圧で一次型締を行い、 キヤビティ内に M g合金の溶湯の注 入を行った後、 高圧で単又は複数回の二次型締を行って製品部分を圧縮若しくは 鍛造することによリ、 Mg合金の成形品を作製することが可能となる。 ここで、 キヤビティ内の M g合金の温度が、 1 50°C〜溶融温度の状態で二次型締を行う こと、 更に好ましくは 200°C〜 350°Cの状態で二次型締を行うのである。 本発明において使用する M g合金は、 AZ 9 1 D (Mg : 9重量%、 A I : 9 0重量%、 Z n : 〗重量%) を用いた。 この M g合金の融点は、 620°C〜70 0°Cである。 尚、 M g合金に C aを 〜 2重量%添加することも好ましく、 その 場合には Mg合金の引火点が約 200°C上昇するので、 装置構成が簡単になって 好ましい。 また、 M g合金の溶湯をキヤビティに注入する際の温度は、 完全に溶 融した状態の他、 500°C前後の半溶融半凝固 (固溶体) 状態でも良い。 また、 その際の金型温度は、 1 50°C以上でなるべく低い方が、 錶込温度と金型温度の 差を利用した急冷作用を実現できるので好ましく、 実際には 200°C~ 350°C に設定する。 そして、 Mg合金が固化した後に、 二次型締を行う場合には、 型締 の際に金型を少し開くようにすることも好ましく、 それから単又は複数回型締を 行うことによって、 熱間にて成形品を鍛造することができ、 更に緻密で表面が平 滑な成形品を作製できる。 As a result, using the mold clamp of the molding machine, primary clamping is performed at a low pressure until it is set to be 0.1% to 20% thicker than the product wall thickness, and the molten Mg alloy is poured into the cavity. After performing the above, the molded part of the Mg alloy can be manufactured by compressing or forging the product part by performing one or more times of secondary mold clamping at a high pressure. Here, the secondary mold clamping should be performed in a state where the temperature of the Mg alloy in the cavity is 150 ° C to the melting temperature, and more preferably, the secondary mold clamping should be performed in the state of 200 ° C to 350 ° C. It is. As the Mg alloy used in the present invention, AZ91D (Mg: 9% by weight, AI: 90% by weight, Zn:〗% by weight) was used. The melting point of this Mg alloy is between 620 ° C and 700 ° C. It is also preferable to add Ca to the Mg alloy by up to 2% by weight. In that case, the flash point of the Mg alloy is increased by about 200 ° C., which simplifies the apparatus configuration and is preferable. The temperature at which the molten Mg alloy is injected into the cavity may be in a completely molten state or a semi-solid semi-solid state (solid solution) at around 500 ° C. In addition, the mold temperature at this time is preferably as low as 150 ° C or higher because a quenching action utilizing the difference between the casting temperature and the mold temperature can be realized.In practice, the mold temperature is 200 ° C to 350 ° C. Set to C. When the secondary mold clamping is performed after the Mg alloy has solidified, it is also preferable to slightly open the mold at the time of mold clamping, and then to perform hot clamping by performing mold clamping one or more times. Can be forged, and the surface is more dense and flat A smooth molded product can be produced.
具体的には、 固定側金型 Aは、 固定用ベースプレー卜 2内に固定用キヤビティ 入子 3が挿入され、 錶込み口 4を介して M g合金溶湯が注入される構造となって いる。 尚、 固定用べ一スプレー卜 2は、 成形機のダイプレー卜 1 に取付けられて いる。 可動側金型 Bは、 可動用べ一スプレー卜 5内に、 可動側入子 6, 1 5が組 み込まれている。 又、 分流子 8は、 錶込ロ 4との間に、 湯の流れる隙間を作り注 入するためのものである。 背板 7は、 可動側ベースプレー卜 5、 可動側入子 6, 1 5を成形時支える板である。 可動用ベースプレート 5、 背板 7は、 スぺーサー 9を介して、 成形機の可動側ダイプレー卜 1 2に取付けられる。 押出板 1 0, 1 1は、 リターンピン 1 8により移動し、 製品取出しを行う。 尚、 固定側金型 Aと 可動側金型 Bは、 ガイドピン 2 0と、 ガイドブッシュ 1 9により位置決めされ、 型締時に密着し、 固定側キヤビティ入子 3と、 可動側入子 1 5よりなる隙間 (キ ャビティ) に M g合金の溶湯が充填され製品となる。  Specifically, the fixed mold A has a structure in which a fixing cavity insert 3 is inserted into a fixing base plate 2 and molten Mg alloy is injected through a filling port 4. . The fixing base plate 2 is attached to the die plate 1 of the molding machine. The movable mold B has a movable base plate 5 and movable movable inserts 6 and 15 incorporated therein. In addition, the shunt 8 is used to create a gap between the hot water and the hot water 4 and to inject the hot water. The back plate 7 is a plate that supports the movable base plate 5 and the movable inserts 6 and 15 during molding. The movable base plate 5 and the back plate 7 are attached to the movable side plate 12 of the molding machine via the spacer 9. The extruded plates 10 and 11 are moved by the return pin 18 to take out the product. The fixed mold A and the movable mold B are positioned by the guide pin 20 and the guide bush 19, and come into close contact with each other when the mold is clamped. The fixed mold insert 3 and the movable mold 15 The gap is filled with molten Mg alloy into a product.
先ず、 可動ダイプレー卜 1 2が固定側に移動し、 ガイドピン 2 0、 ガイドブッ シュ 1 9により位置決めを行いながら、 低圧での型締を行う。 この時、 皿バネ 1 3により、 可動側入子 6を一体化した可動側ベースプレー卜 5は、 背板 7との間 に隙間 αが設定される。 この隙間 αは、 成形製品肉厚の 0 . 1 %〜2 0 %で変更 可能とする。 その操作は、 ボル卜 2 1 により行うものとする。 皿パネ 1 3は、 一 次型締力では隙間 αが維持される強さとする。  First, the movable die plate 12 is moved to the fixed side, and the mold is clamped at a low pressure while positioning with the guide pins 20 and the guide bush 19. At this time, the gap α is set between the back plate 7 and the movable base plate 5 having the movable insert 6 integrated with the disc spring 13. This gap α can be changed in the range of 0.1% to 20% of the thickness of the molded product. The operation shall be performed by the bolt 21. The countersunk panel 13 should be strong enough to maintain the gap α with the primary clamping force.
スリーブ 1 4より錶込ロ 4を介して、 M g合金溶湯がキヤビティ内に注入され、 製品部 1 7を作る。 図 2は、 この状態を表したものである。 製品部 1 6は、 α分 だけ所定製品肉厚より、 厚くなつている。  The molten Mg alloy is injected into the cavity from the sleeve 14 through the inlet 4 to make the product part 17. Figure 2 illustrates this situation. The product section 16 is thicker than the predetermined product thickness by α.
尚、 その時、 空気等を製品内に巻込まない様、 真空ポンプで空気を抜いたり、 チルベン卜装置なるものを使用することもある。  At that time, a vacuum pump may be used to evacuate the air or a chill-vent device may be used to prevent air or the like from being caught in the product.
溶湯注入後、 皿パネ 1 3にて確保されていた隙間 αを、 成形機ダイプレー卜 1 2を移動させて、 隙間 αが 0になる迄動かすことによリ、 製品部 1 6が、 製品部 1 7へと、 α分押しつぶされる。 尚、 溶湯が完全に固化すれば、 成形機の型締カ では、 製品 1 6が、 製品 1 7迄押しつぶすことが不可能になるため、 高圧二次型 締は溶湯又は、 半溶湯状態で行うことが望ましい。 しかし、 成形機の型締力が大 きい場合には、 M g合金溶湯が固化した後でも、 少なくとも 1 5 0 °C以上、 好ま しくは 2 0 0 °C〜 3 5 0 °Cの温度の状態であれば圧縮は可能である。 また、 超音 波を M g合金に加えることも緻密化に有利な場合がある。 After the molten metal is poured, the gap α secured by the dish panel 13 is moved by moving the molding machine plate 12 until the gap α becomes 0, so that the product section 16 becomes the product section. It is crushed by α to 17 If the molten metal is completely solidified, it will not be possible to crush the product 16 to the product 17 with the mold clamper of the molding machine, so high-pressure secondary clamping is performed in the molten or semi-molten state. It is desirable. However, the clamping force of the molding machine is large. In a severe case, even after the Mg alloy melt is solidified, compression can be performed at a temperature of at least 150 ° C or more, preferably from 200 ° C to 350 ° C. Adding supersonic waves to the Mg alloy may also be advantageous for densification.
更に詳しくは、 前記金型駆動手段として少なくとも二段階の型締カを設定可能 な直圧方式を採用する。 前記可動側金型 Bを、 型締カを伝達する背板 7に製品の 表面を形成する可動側入子 1 5を固定するとともに、 その周囲に固定側金型 Aと 接合する可動側べ一スプレー卜 5を型締方向へ可動となして設け、 前記背板 7と 可動側ベースプレー卜 5間に弾性体 (皿パネ 1 3 ) を介在させ且つ該弾性体 1 3 によって開いた背板 7と可動側ベースプレー卜 5の最大間隔 aを規定するボル卜 2 1を、 該可動側ベースプレー卜 5を貫通させて背板 7に取付けた構造となして いる。 尚、 前記弾性体は、 皿バネ 1 3の他、 金型構造に応じて圧縮コイルパネや 板バネ等の適宜なバネを用いることが可能である。 そして、 前述の金型駆動手段 の型締カを、 該弾性体 1 3の弾性力よりも小さく且つ M g合金の溶湯の注入圧よ リも十分に大きな第 1型締力と、 前記弾性体 1 3の弾性力よりも大きく且つ該弾 性体 1 3を押し潰して背板 7と可動側ベースプレート 5の間隔だけ可動側入子 1 5を前進させて製品部分に十分な圧縮力を与える第 2型締力との少なくとも二段 階に設定可能となしている。  More specifically, a direct pressure system is adopted in which at least two stages of mold clampers can be set as the mold driving means. The movable mold B is fixed to a back plate 7 for transmitting a mold clamp to the movable mold insert 15 forming the surface of the product, and the movable mold B is joined to the fixed mold A around the movable mold insert B. A plate 5 is provided so as to be movable in the mold clamping direction. An elastic body (dish panel 13) is interposed between the back plate 7 and the movable base plate 5 and the back plate 7 opened by the elastic body 13. A bolt 21 that defines the maximum distance a between the movable base plate 5 and the movable base plate 5 is attached to the back plate 7 through the movable base plate 5. In addition, as the elastic body, an appropriate spring such as a compression coil panel or a leaf spring can be used in addition to the disc spring 13 depending on the mold structure. And a first clamping force smaller than the elastic force of the elastic body 13 and sufficiently larger than the injection pressure of the molten Mg alloy; The elastic body 13 is larger than the elastic force 13 and the elastic body 13 is crushed to move the movable side insert 15 by a distance between the back plate 7 and the movable base plate 5 to apply a sufficient compressive force to the product portion. It can be set to at least two steps with the mold clamping force.
また、 キヤビティ内に M g合金の溶湯を注入する注入手段 Cとして、 ホットチ ヤンバダイカスト法又はコールドチヤンバダイカス卜法又はチキソモールディン グ法による注入機を用いることができる。ホッ卜チャンバダイカス卜用注入機は、 図 5に示すように、 M g合金の溶湯を溜めた加熱容器 3 0の内部に、 グースネッ ク 3 1 と錶込ビストン 3 2を配し、 ダースネック 3 1 内に取り込んだ溶湯を錶込 ピストン 3 2で加圧して、ノズル 3 3から錶込ロ 4へ供給するものである。また、 チキソモールディング用注入機は、 図 6に示すように、 原料ホッパー 4 0から投 入された M g合金を、 シリンダー 4 1 とスクリュー 4 2との回転摩擦熱と、 シリ ンダー 4 1の外周に設けたヒーター 4 3とで半溶融半凝固(固溶体)状態となし、 背後に設けた高射出システム 4 4によってノズル 4 5から錶込ロ 4へ射出するも のである。 また、 コールドチャンバダイカスト用注入機も従来から公知のもので あり、 その説明は省略する。 また、 本発明の他の実施形態として、 図 7に示した M g合金精密圧力成形装置 は、 前述の直圧方式の金型駆動手段と皿パネ 1 3 (弾性体) を用いる代わりに、 トグル方式の金型駆動手段を採用し、 前記可動側金型 Bを次のように変更したも のである、 つまり、 この可動側金型 Bは、 型締カを伝達する背板 7に製品の表面 を形成する可動側入子 1 5を固定するとともに、 その周囲に固定側金型 Aと接合 する可動側ベースプレー卜 5を型締方向へ可動となして設け、 前記背板 7と可動 側ベースプレート 5の周囲間に側方へ拡開したテーパ溝 2 2を形成し、 該テーパ 溝 2 2に間隔保持用の楔部材 2 3を介在させ、 該楔部材 2 3のテーパ溝 2 2への 挿入具合によって間隔 αを調節する構造となしたものであり、 このテーパ溝 2 2 と楔部材 2 3で前記金型間隔調整手段を構成したのである。 Further, as an injection means C for injecting the molten Mg alloy into the cavity, an injection machine using a hot chamber die casting method, a cold chamber die casting method, or a thixomolding method can be used. As shown in Fig. 5, the hot chamber die cast injection machine has a gooseneck 31 and a built-in biston 32 inside a heating vessel 30 containing a molten Mg alloy. The molten metal taken in 31 is pressurized by the intake piston 32 and supplied from the nozzle 33 to the intake cavity 4. In addition, as shown in FIG. 6, the thixomolding injection machine uses the Mg alloy injected from the raw material hopper 40 to convert the frictional heat of rotation between the cylinder 41 and the screw 42 into an outer circumferential surface of the cylinder 41. A semi-molten and semi-solidified (solid solution) state is established with the heater 43 provided in the nozzle, and the liquid is injected from the nozzle 45 to the inlet 4 by the high injection system 44 provided behind. In addition, a cold-chamber die-casting injection machine is also conventionally known, and a description thereof will be omitted. Further, as another embodiment of the present invention, the Mg alloy precision pressure forming apparatus shown in FIG. 7 employs a toggle instead of using the above-described direct-pressure type mold driving means and a counter panel 13 (elastic body). The movable side mold B is changed as follows by adopting the mold driving means of the system, that is, the movable side mold B is provided on the back plate 7 for transmitting the mold clamp to the surface of the product. And a movable base plate 5 for joining to the fixed mold A is provided around the movable base insert 5 so as to be movable in the mold clamping direction. A tapered groove 22 is formed between the periphery of the tapered groove 5 and a wedge member 23 for maintaining an interval is interposed between the tapered groove 22 and the wedge member 23 is inserted into the tapered groove 22. The taper groove 22 and the wedge member 23 adjust the distance α depending on the condition. Than is configured the adjusting means.
図 8及び図 9は、 それぞれ低圧一次型締時成形品 1 6と高圧二次型締時成形品 1 7を X線透過法及び反射法で全極点図を測定した結果を示している。 この測定 には、 自動 X線回折装置 (理学電機製: R I N T 2 0 0 0 ) を用いた。 測定条件 は、 X線 (M o / 5 0 k V Z 3 0 m A )、 K 3フィルタ、 シンテレーシヨンカウン タを用い、測定モードを同心円とした Schu l zの透過法と、走査モードを F Tとし た Schu l zの反射法とした。 処理条件は、 実測した線吸収係数 t ( 6 . 9 7 3 5 c m- 1 ) を用い、 計算規格化処理で行った。 FIGS. 8 and 9 show the results of measuring the total pole figure of the molded product 16 at the time of the low-pressure primary mold clamping and the molded product 17 at the time of the high-pressure secondary mold clamping by the X-ray transmission method and the reflection method, respectively. For this measurement, an automatic X-ray diffractometer (manufactured by Rigaku Corporation: RINT 2000) was used. The measurement conditions were as follows: X-ray (Mo / 50kVZ30mA), K3 filter, Sintellation counter, Schullz transmission method with concentric measurement mode, and FT scanning mode. The Schulz reflection method was used. The processing conditions were calculated and normalized using the actually measured linear absorption coefficient t (6.97335 cm- 1 ).
一般的に、 集合組織により多結晶材料の結晶配向性とその強度を知ることがで きる。 通常は、 特定の結晶面の X線回折強度を試料の全方位について測定する方 法で求められ、回折強度が試料座標系上に二次元表示されるいわゆる '正極点図' として表現される。 集合組織は塑性加工時に生じる結晶の回転により変化し、 い わゆる加工集合組織を形成することが知られている。 この低圧一次型締時成形品 1 6の加工集合組織の状態は、 図 8に示されている。  In general, the texture allows the crystal orientation of a polycrystalline material and its strength to be known. Normally, the X-ray diffraction intensity of a specific crystal plane is determined by measuring the omnidirectional orientation of the sample, and the diffraction intensity is expressed as a so-called 'positive dot diagram' that is displayed two-dimensionally on the sample coordinate system. It is known that the texture changes due to the rotation of the crystal generated during plastic working, forming a so-called processed texture. FIG. 8 shows the state of the working texture of the molded product 16 at the time of the low-pressure primary mold clamping.
前述の低圧一次型締時成形品 1 6に、 3 0 0 °Cで厚さ方向に 8 %の圧縮変形を 与えて作製した高圧二次型締時成形品〗 7について、 形成された加工集合組織を ( 0 0 0 2 ) 面について測定した結果、 変形前には板面 (正極点図の中心) から 9 0度回転した板側面 (正極点図の周囲) まで広く分布していた (0 0 0 2 ) 面 が (図 8参照)、 変形後には板面に集中していることが判明した (図 9参照)。 こ のように、 本発明の高圧二次型締によって作製された M g合金製成形品は、 高圧 二次型締をしない成形品に比べて、 機械的性質及び結晶学的特性が変化している ことが示された。 また、 高圧二次型締時成形品 1 7の結晶粒径は 1 Ο μ ηι以下と なっていることが、 組織の顕微鏡写真により確認でき、 超塑性加工が実現できた ものと判断できる。 産業上の利用可能性 The processed assembly formed for the high-pressure secondary mold-formed product〗 7 produced by applying 8% compression deformation in the thickness direction at 300 ° C to the low-pressure primary mold-formed product 16 described above. As a result of measuring the structure on the (00002) plane, it was found that before the deformation, it was widely distributed from the plate surface (the center of the positive pole diagram) to the side surface rotated 90 degrees (around the positive pole diagram) (0 It was found that the (002) plane was concentrated on the plate surface after the deformation (see Fig. 8) (see Fig. 9). As described above, the Mg alloy molded article produced by the high-pressure secondary mold clamping of the present invention has a high-pressure It was shown that the mechanical and crystallographic properties changed compared to the molded product without secondary clamping. In addition, it can be confirmed from the micrograph of the structure that the crystal grain size of the molded product 17 at the time of the high-pressure secondary mold clamping is 1 μμηι or less, and it can be judged that superplastic working was realized. Industrial applicability
以上にしてなる本発明の M g合金精密圧力成形法によれば、 M g合金成形時、 低圧にて一次型締を行うことで、 溶湯を注入時、 湯流れを良くする効果をもたら し、 湯じわ、 巣のない製品を成形しやすくし、 高圧二次型締にて圧縮若しくは鍛 造することで成形品を押しつぶすことにより、 尚一層、 巣のない、 緻密な成形品 が出来る。  According to the Mg alloy precision pressure forming method of the present invention configured as described above, the primary mold clamping is performed at a low pressure during the formation of the Mg alloy, which has an effect of improving the flow of the molten metal when pouring the molten metal. By using a high-pressure secondary mold clamp to compress or forge the molded product, the molded product can be crushed, making it possible to produce a dense molded product without nests.
また、 本発明の M g合金精密圧力成形装置によれば、 前記同様に湯じわ、 巣の 少ない、 不良率の低い、 高密度 ·高精密ダイカスト成形品を作ることが出来る。 更に、 強力な皿パネを利用した一次型締を行い、 P Lは密着した状態にてキヤビ ティ内の肉厚を厚くする方向に可動側入子を移動させれば、 装置構造が簡単にな る。  Further, according to the Mg alloy precision pressure forming apparatus of the present invention, it is possible to produce a high-density and high-precision die-casting product having a small number of hot spots and burrs, a low defect rate, and the like. Furthermore, if the primary mold clamping using a strong dish panel is performed and the movable insert is moved in the direction to increase the thickness of the cavity while the PL is in close contact, the device structure can be simplified. .

Claims

請 求 の 範 囲 The scope of the claims
1 . 成形機の型締カを利用し、 製品肉厚より 0 . 1 %〜2 0 %程度厚く設定し た状態まで低圧で一次型締を行い、キヤビティ内に M g合金の溶湯の注入を行 つた後、高圧で単又は複数回の二次型締を行って製品部分を圧縮若しくは鍛造 することにより、 M g合金の成形品を作製することを特徴とする M g合金精密 圧力成形法。 1. Using the mold clamping tool of the molding machine, perform primary clamping under low pressure until the thickness is set to 0.1% to 20% thicker than the product wall thickness, and inject molten Mg alloy into the cavity. An Mg alloy precision pressure forming method characterized by producing a Mg alloy molded product by performing secondary clamping one or more times at a high pressure and compressing or forging the product part.
2 . キヤビティ内の M g合金の温度が、 1 5 0 °C〜溶融温度の状態で二次型締 を行う請求の範囲第 1項記載の M g合金精密圧力成形法。  2. The Mg alloy precision pressure forming method according to claim 1, wherein the secondary mold clamping is performed in a state where the temperature of the Mg alloy in the cavity is 150 ° C. to a melting temperature.
3 . キヤビティ内の M g合金の温度が、 2 0 0 °C ~ 3 5 0 °Cの状態で二次型締 を行う請求の範囲第 2項記載の M g合金精密圧力成形法。 3. The Mg alloy precision pressure forming method according to claim 2, wherein the secondary mold clamping is performed in a state where the temperature of the Mg alloy in the cavity is 200 ° C. to 350 ° C.
4. キヤビティ内に M g合金の溶湯を注入する方式が、ホッ卜チャンバダイ力 ス卜法又はコールドチャンバダイカス卜法又はチキソモールディング法であ る請求の範囲第 1〜 3項何れかに記載の M g合金精密圧力成形法。 4. The method according to any one of claims 1 to 3, wherein the method of injecting the molten Mg alloy into the cavity is a hot chamber die casting method, a cold chamber die casting method, or a thixomolding method. Mg alloy precision pressure forming method.
5 . M g合金の結晶粒径を 0 . 5〜 1 0 mの範囲に微細化して超塑性によつ て成形品を作製してなる請求の範囲第 1 〜 4項何れかに記載の M g合金精密 圧力成形法。 5. The magnesium alloy according to any one of claims 1 to 4, wherein the crystal grain size of the Mg alloy is refined to a range of 0.5 to 10 m to produce a molded product by superplasticity. g Alloy precision pressure forming method.
6 . 固定側金型に対して可動側金型を移動させる金型駆動手段と、固定側金型 と可動側金型とで形成されるキヤビティ内に M g合金の溶湯の注入を行う注 入手段と、金型の温度を調節する温度調節手段と、 前記金型駆動手段による可 動側金型の型締カを利用して製品肉厚より 0 . 1 %〜2 0 %程度厚く設定した 状態まで低圧で一次型締を行い、キヤビティ内に M g合金の溶湯を注入後、製 品部分を圧縮若しくは鍛造すべく高圧で二次型締を行うための金型間隔調整 手段とを備えたことを特徴とする M g合金精密圧力成形装置。  6. Inject the molten Mg alloy into the mold formed by the fixed mold and the movable mold. The mold drive means moves the movable mold relative to the fixed mold. Means, a temperature adjusting means for adjusting the temperature of the mold, and a mold clamping means for the movable mold by the mold driving means, wherein the thickness is set to be 0.1% to 20% thicker than the product thickness. Primary mold clamping was performed at low pressure until the state was reached, and after the molten Mg alloy was injected into the cavity, mold spacing adjustment means was provided to perform secondary clamping at high pressure to compress or forge the product part. An Mg alloy precision pressure forming machine characterized by the following.
7 . 前記金型駆動手段として少なくとも二段階の型締カを設定可能な直圧方 式を採用し、 前記可動側金型を、型締カを伝達する背板に製品の表面を形成す る可動側入子を固定するとともに、その周囲に固定側金型と接合する可動側べ 一スプレー卜を型締方向へ可動となして設け、前記背板と可動側ベースプレー 卜間に弾性体を介在させ且つ該弾性体によって開いた背板と可動側ベースプ レー卜の最大間隔を規定するボル卜を、該可動側ベースプレー卜を貫通させて 背板に取付けた構造となして前記金型間隔調整手段を備えさせてなる請求の 範囲 6記載の M g合金精密圧力成形装置。 7. Adopt a direct pressure method that can set at least two stages of mold clamps as the mold driving means, and form the movable mold with a back plate that transmits the mold clamp to the surface of the product. The movable insert is fixed, and a movable base plate that is joined to the fixed mold is provided movably in the mold clamping direction around the movable insert, and an elastic body is provided between the back plate and the movable base plate. A back plate interposed and opened by the elastic body and a movable base 7. The Mg according to claim 6, wherein a bolt for defining the maximum interval between the plates is attached to a back plate by penetrating the movable base plate, and the mold gap adjusting means is provided. Alloy precision pressure forming equipment.
8 . 前記金型駆動手段の型締カを、該弾性体の弾性力よりも小さく且つ M g合 金の溶湯の注入圧よリも十分に大きな第 1型締力と、前記弾性体の弾性力より も大きく且つ該弾性体を押し潰して背板と可動側ベースプレー卜の間隔だけ 可動側入子を前進させて製品部分に十分な圧縮力を与える第 2型締力との少 なくとも二段階に設定可能である請求の範囲第 7項記載の M g合金精密圧力 成形装置。 8. The first clamping force of the mold driving means is smaller than the elastic force of the elastic body and sufficiently larger than the injection pressure of the molten metal of Mg alloy; At least the second mold clamping force that squeezes the elastic body and squeezes the elastic body to advance the movable side insert by the distance between the back plate and the movable side base plate to apply a sufficient compressive force to the product part. 8. The Mg alloy precision pressure forming apparatus according to claim 7, which can be set in two stages.
9 . 前記弾性体を皿バネとしてなる請求の範囲第 7又は 8項記載の M g合金 精密圧力成形装置。 9. The Mg alloy precision pressure forming apparatus according to claim 7, wherein the elastic body is a disc spring.
1 0 . 前記金型駆動手段として卜ダル方式を採用し、 前記可動側金型を、 型締カ を伝達する背板に製品の表面を形成する可動側入子を固定するとともに、その 周囲に固定側金型と接合する可動側ベースプレー卜を型締方向へ可動となし て設け、前記背板と可動側ベースプレー卜の周囲間に側方へ拡開したテーパ溝 を形成し、該テーパ溝に間隔保持用の楔部材を介在させ、該楔部材のテーパ溝 への挿入具合によって間隔を調節する構造となして、前記金型間隔調整手段を 備えさせてなる請求の範囲第 6項記載の M g合金精密圧力成形装置。  10. Adopting the sliding method as the mold driving means, fixing the movable mold to the movable mold insert forming the surface of the product on the back plate that transmits the mold clamp, and surrounding the mold. A movable base plate to be joined to the fixed mold is provided so as to be movable in the mold clamping direction, and a tapered groove which expands laterally is formed between the back plate and the periphery of the movable base plate. 7. The structure according to claim 6, wherein a wedge member for maintaining an interval is interposed in the groove, the interval is adjusted by the degree of insertion of the wedge member into the tapered groove, and the mold interval adjusting means is provided. Mg alloy precision pressure forming equipment.
1 1 . キヤビティ内に M g合金の溶湯を注入する注入手段が、ホッ卜チャンバダ ィカスト法又はコールドチャンバダイカス卜法又はチキソモールディング法 による注入機である請求の範囲第 6〜 1 0項何れかに記載の M g合金精密圧 力成形装置。  11. The injection means for injecting the molten Mg alloy into the cavity is an injection machine using a hot chamber die casting method, a cold chamber die casting method, or a thixo molding method. The Mg alloy precision pressure forming equipment described in (1).
1 2 . M g合金の結晶粒径を 0 . 5 ~ 1 0 mの範囲に微細化して超塑性によつ て成形品を作製してなる請求の範囲第 6〜 1 〗項何れかに記載の M g合金精 密圧力成形装置。  12.A method according to any one of claims 6 to 1, wherein the crystal grain size of the Mg alloy is reduced to a range of 0.5 to 10 m to produce a molded product by superplasticity. Mg alloy precision pressure forming equipment.
1 3 . 前記請求の範囲第 〜 5項何れかに記載の M g合金精密圧力成形法又は 前記請求の範囲第 6〜 1 2項何れかに記載の M g合金精密圧力成形装置を用 いて作製されたことを特徴とする M g合金成形品。  13. Magnesium alloy precision pressure forming method according to any one of claims 1 to 5, or using the Mg alloy precision pressure forming apparatus according to any one of claims 6 to 12. An Mg alloy molded product characterized by being made.
PCT/JP2000/007227 1999-10-22 2000-10-18 Mg ALLOY PRECISION PRESSURE MOLDING METHOD AND MOLDING DEVICE THEREFOR AND Mg ALLOY MOLDING PRODUCED THEREBY WO2001030519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU79475/00A AU7947500A (en) 1999-10-22 2000-10-18 Mg alloy precision pressure molding method and molding device therefor and mg alloy molding produced thereby

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP11/338378 1999-10-22
JP33837899 1999-10-22
JP2000/171143 2000-06-07
JP2000171143 2000-06-07
JP2000295680A JP2002059252A (en) 1999-10-22 2000-09-28 Mg ALLOY PRECISION PRESSURE-FORMING METHOD AND ITS FORMING APPARATUS, AND Mg ALLOY FORMED PRODUCT PRODUCED BY THIS METHOD
JP2000/295680 2000-09-28

Publications (1)

Publication Number Publication Date
WO2001030519A1 true WO2001030519A1 (en) 2001-05-03

Family

ID=27340877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007227 WO2001030519A1 (en) 1999-10-22 2000-10-18 Mg ALLOY PRECISION PRESSURE MOLDING METHOD AND MOLDING DEVICE THEREFOR AND Mg ALLOY MOLDING PRODUCED THEREBY

Country Status (4)

Country Link
JP (1) JP2002059252A (en)
AU (1) AU7947500A (en)
TW (1) TW527239B (en)
WO (1) WO2001030519A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327993C (en) * 2005-08-02 2007-07-25 陆如辉 Press casting mould of magnesium alloy gear box
US8828158B2 (en) 2007-06-28 2014-09-09 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
CN110722125A (en) * 2019-11-27 2020-01-24 深圳市昊翔压铸制品有限公司 Casting and forging integrated die-casting method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2723075C (en) * 2004-06-30 2015-10-06 Sumitomo Electric Industries, Ltd. Magnesium alloy cast material
JP2006297433A (en) * 2005-04-19 2006-11-02 Kyocera Chemical Corp Method for molding magnesium alloy, and molding die for magnesium alloy
NO20063703L (en) * 2006-08-18 2008-02-19 Magontec Gmbh Magnesium stop process and alloy composition
JP5556108B2 (en) * 2009-09-25 2014-07-23 トヨタ自動車株式会社 Semi-molten metal casting method and semi-molten metal casting apparatus
JP5713709B2 (en) * 2011-01-31 2015-05-07 クロダイト工業株式会社 Cast iron casting method
CN105014045B (en) * 2015-08-05 2017-03-01 中北大学 A kind of Compound Extrusion casting method of magnesium alloy special-shaped part
CN105108112A (en) * 2015-09-06 2015-12-02 无锡贺邦金属制品有限公司 Metal die casting technology
JP6544270B2 (en) * 2016-03-02 2019-07-17 株式会社デンソー Casting apparatus and method of manufacturing cast product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299758A (en) * 1989-05-15 1990-12-12 Kobe Steel Ltd Hot chamber type die casting machine for magnesium
JPH079106A (en) * 1993-06-25 1995-01-13 Olympus Optical Co Ltd Compression casting method
JPH10263781A (en) * 1997-03-24 1998-10-06 Asahi Tec Corp Die casting device for mg alloy
JPH11156513A (en) * 1997-11-28 1999-06-15 Asahi Tec Corp Casting method of metallic member and mold for casting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299758A (en) * 1989-05-15 1990-12-12 Kobe Steel Ltd Hot chamber type die casting machine for magnesium
JPH079106A (en) * 1993-06-25 1995-01-13 Olympus Optical Co Ltd Compression casting method
JPH10263781A (en) * 1997-03-24 1998-10-06 Asahi Tec Corp Die casting device for mg alloy
JPH11156513A (en) * 1997-11-28 1999-06-15 Asahi Tec Corp Casting method of metallic member and mold for casting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327993C (en) * 2005-08-02 2007-07-25 陆如辉 Press casting mould of magnesium alloy gear box
US8828158B2 (en) 2007-06-28 2014-09-09 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
US9499887B2 (en) 2007-06-28 2016-11-22 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
CN110722125A (en) * 2019-11-27 2020-01-24 深圳市昊翔压铸制品有限公司 Casting and forging integrated die-casting method

Also Published As

Publication number Publication date
AU7947500A (en) 2001-05-08
TW527239B (en) 2003-04-11
JP2002059252A (en) 2002-02-26

Similar Documents

Publication Publication Date Title
US5279349A (en) Process for casting amorphous alloy member
US10493521B2 (en) Die casting machine
US5979535A (en) Methods for semi-melting injection molding
WO2001030519A1 (en) Mg ALLOY PRECISION PRESSURE MOLDING METHOD AND MOLDING DEVICE THEREFOR AND Mg ALLOY MOLDING PRODUCED THEREBY
JP2010519418A (en) Apparatus and method for producing fine grain metal sheets for forming net shape parts
WO2018196263A1 (en) Upsetting process and apparatus for billet with ultrahigh height to diameter ratio
CN110315018B (en) Ultrahigh-temperature soft core forging method for efficiently eliminating defects of holes in blank
EP0904875B1 (en) Method of injection molding a light alloy
US4990310A (en) Creep-resistant die cast zinc alloys
CN109128078B (en) Preparation method of isothermal semi-solid structure slurry of aluminum alloy die-casting billet
GB2056338A (en) Die-casting method and apparatus
CN115415504A (en) Casting equipment and process method of high-strength and high-toughness aluminum alloy
CN109127756A (en) A kind of extrusion die and magnesium alloy extrusion method of high-strength magnesium alloy
CN109136703A (en) A kind of ZK60 magnesium alloy and preparation method thereof
CN109175058A (en) A kind of plate semisolid air pressure thixotropic forming method
CN109926564B (en) Pulping and forming integrated device and method for ZCuSn10P1 alloy semi-solid slurry
KR100268359B1 (en) A zinc base alloy with high tensile strength and die casting
Xue et al. Study on processing and structure property of Al-Cu-Mg-Zn alloy cup-shaped part produced by radial-backward extrusion
CN111283175A (en) Device and method for casting heterogeneous metal bar
Azpilgain et al. Servomechanical press: A new press concept for semisolid forging
KR100756422B1 (en) Method for fabricating metal wire rod by melt extrusion and machine for its method
JP2832662B2 (en) Manufacturing method of high strength structural member
RU2674543C1 (en) Internal combustion engines from aluminum alloys pistons manufacturing method
Kang et al. Control of liquid segregation of semi-solid aluminum alloys during intelligent compression test
JPH0288735A (en) Composite material combining ductility and wear resistance, its manufacture and its application

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase