JP2002059252A - Mg ALLOY PRECISION PRESSURE-FORMING METHOD AND ITS FORMING APPARATUS, AND Mg ALLOY FORMED PRODUCT PRODUCED BY THIS METHOD - Google Patents

Mg ALLOY PRECISION PRESSURE-FORMING METHOD AND ITS FORMING APPARATUS, AND Mg ALLOY FORMED PRODUCT PRODUCED BY THIS METHOD

Info

Publication number
JP2002059252A
JP2002059252A JP2000295680A JP2000295680A JP2002059252A JP 2002059252 A JP2002059252 A JP 2002059252A JP 2000295680 A JP2000295680 A JP 2000295680A JP 2000295680 A JP2000295680 A JP 2000295680A JP 2002059252 A JP2002059252 A JP 2002059252A
Authority
JP
Japan
Prior art keywords
alloy
mold
movable
product
precision pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000295680A
Other languages
Japanese (ja)
Inventor
Manabu Matsumoto
学 松本
Shigefumi Matsumoto
成史 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUMOTO SEISAKUSHO KK
Matsumoto Manufacturing Co Ltd
Original Assignee
MATSUMOTO SEISAKUSHO KK
Matsumoto Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUMOTO SEISAKUSHO KK, Matsumoto Manufacturing Co Ltd filed Critical MATSUMOTO SEISAKUSHO KK
Priority to JP2000295680A priority Critical patent/JP2002059252A/en
Priority to PCT/JP2000/007227 priority patent/WO2001030519A1/en
Priority to AU79475/00A priority patent/AU7947500A/en
Priority to TW89122128A priority patent/TW527239B/en
Publication of JP2002059252A publication Critical patent/JP2002059252A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/26Mechanisms or devices for locking or opening dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/11Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of mechanical pressing devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Forging (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Mg alloy precision pressure-forming method and its forming apparatus, and an Mg alloy formed product produced by using this method with which such defects are eliminated that the thin parts are difficult to densely cast without developing surface folds or cavities and thus, the strength defective is actually very high in the conventional technique, and to provide a formed product reducing the surface roughness, the cavities, etc., increasing the strength and having little surface roughness by compressing even in the thick parts in the casting of the Mg alloy with a die casting. SOLUTION: A primary die clamping is performed at low pressure into the state setting the thickness greater by about 0.1-20% than the thickness of the product by utilizing the clamping force of the forming machine. After pouring the molten Mg alloy into a cavity, single or more times of secondary die clampings are performed at high pressure and the product is compressed or forged to produce the formed product of the Mg alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Mg合金精密圧力
成形法及びその成形装置並びにそれにより作製されたM
g合金成形品に係わり、更に詳しくは成形性の悪いMg
合金で作製した成形品、特に薄肉部分を有する成形品
(例:ノートパソコンの匡体や、携帯電話機のケース
等)の成形不良を減らし、緻密な製品を作るためのもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of precision pressure forming of an Mg alloy, an apparatus for forming the same, and an M formed by the method.
Related to g-alloy molded products, more specifically Mg
This is intended to reduce molding defects of molded products made of an alloy, particularly molded products having a thin portion (eg, a case of a notebook computer, a case of a mobile phone, etc.), and to produce a dense product.

【0002】[0002]

【従来の技術】Mg合金は、その結晶構造が六方最密構
造からなるので、極めて加工性が悪いことが知られてい
る。Mg合金のダイカスト鋳造は、高度な技術を必要と
し、特に薄肉部分の鋳造においては、湯まわりが悪く、
巣等も多く発生し、不良の大きな原因となっていた。
又、アルミダイカスト鋳造においては、厚肉部の巣を解
消するため、金型に油圧シリンダをもうけることによ
り、製品内一部又は、製品外の湯だまり等の一部をスク
イズピンにて圧縮することにより製品を緻密にし、巣を
解消する工夫はあつた。しかし、厚肉部では効果があっ
たが、薄肉部品では効果は難しかった。また、良品と言
えども、手仕上げ、表面の凹凸のパテ埋め、磨きなどの
後工程が必要であるのが現状であり、そのため製品コス
トが高いものとなっている。
2. Description of the Related Art It is known that the workability of an Mg alloy is extremely poor because its crystal structure is a hexagonal close-packed structure. Die-casting of Mg alloy requires advanced technology, especially in casting of thin-walled parts, the running of the molten metal is poor,
Many nests also occurred, which was a major cause of failure.
In addition, in aluminum die casting, in order to eliminate nests in thick parts, a hydraulic cylinder is provided in the mold to compress a part of the product or a part of the pool outside the product with a squeeze pin. By doing so, the product was made more elaborate and the nest was devised. However, although the effect was effective in the thick part, the effect was difficult in the thin part. In addition, even though it is a good product, post-processing such as hand finishing, padding of surface irregularities, polishing, etc. is required at present, and the product cost is high.

【0003】また、一般的にMg合金の溶湯による鋳造
品は、結晶粒径が200〜500μm程度であることが
知られており、更にMg合金ダイカスト鋳造品も結晶粒
径が100μm以上であり、Mg合金ダイカスト鋳造で
は高速超塑性領域はないという認識が一般的であった。
It is generally known that a casting made of a molten Mg alloy has a crystal grain size of about 200 to 500 μm, and a die casting of an Mg alloy also has a crystal grain size of 100 μm or more. It was common to recognize that there is no high-speed superplastic region in Mg alloy die casting.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明が前述
の問題に鑑み、解決しようとするところは、Mg合金の
ダイカスト鋳造において、従来技術では、薄肉部品を湯
じわや巣が無く緻密に鋳造することは困難で、非常に不
良率が高く、困っているのが現状であり、本発明は、以
上の様な欠点をなくすためになされたものである。つま
り、ダイカスト鋳造法に工夫を加えて、Mg合金の結晶
粒径を微細化することにより、高速超塑性加工を実現し
て高い加工性と高強度を達成するのである。また、厚肉
部品においても圧縮することにより、湯じわ、巣等が減
り、強度の増加と表面粗さが少ない成形品を提供するも
のである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention seeks to solve the problems described above. In the prior art, in the case of die casting of Mg alloy, thin parts are densely formed without hot lines or nests. Casting is difficult, the defect rate is extremely high, and the present situation is inconvenient. The present invention has been made to eliminate the above-mentioned disadvantages. That is, by devising the die-casting method to refine the crystal grain size of the Mg alloy, high-speed superplastic working is achieved and high workability and high strength are achieved. Further, the present invention also provides a molded article having reduced thickness, burrs, etc., increased strength, and reduced surface roughness by compressing even a thick-walled part.

【0005】[0005]

【課題を解決するための手段】本発明は、前述の課題解
決のために、低圧にて一次型締時、キャビティ内の肉厚
を厚くして湯流れを良くし、湯流れ不良による巣等を減
らし、高圧の二次型締にて圧縮することにより、所定の
厚み迄押しつぶし、溶湯の湯流れ不良に起因する不具合
を解消しつつ、密度の高い成形品を得ることが可能なM
g合金精密圧力成形法及びその成形装置を提供し、並び
にそれにより作製されたMg合金成形品を提供するもの
である。
According to the present invention, in order to solve the above-mentioned problems, the thickness of the cavity is increased by thickening the cavity in the primary mold at a low pressure to improve the flow of molten metal, and the nest due to poor flow of molten metal. And pressurized by high-pressure secondary clamping to squeeze to a predetermined thickness and eliminate the problems caused by poor flow of the molten metal and obtain a molded product with high density.
An object of the present invention is to provide a g-alloy precision pressure forming method and a forming apparatus therefor, and a Mg alloy molded product produced thereby.

【0006】つまり、本発明のMg合金精密圧力成形法
は、成形機の型締力を利用し、製品肉厚より0.1%〜
20%程度厚く設定した状態まで低圧で一次型締を行
い、キャビティ内にMg合金の溶湯の注入を行った後、
高圧で単又は複数回の二次型締を行って製品部分を圧縮
若しくは鍛造することにより、Mg合金の成形品を作製
するものである。
[0006] That is, the Mg alloy precision pressure forming method of the present invention utilizes the mold clamping force of the forming machine to reduce the product thickness by 0.1% or more.
After the primary mold clamping is performed at a low pressure until the thickness is set to about 20%, the molten Mg alloy is injected into the cavity.
The molded part of the Mg alloy is manufactured by compressing or forging a product part by performing secondary clamping one or more times at a high pressure.

【0007】ここで、キャビティ内のMg合金の温度
が、150℃〜溶融温度の状態で二次型締を行うこと、
更にキャビティ内のMg合金の温度が、200℃〜35
0℃の状態で二次型締を行うことがより好ましいのであ
る。また、本発明は、キャビティ内にMg合金の溶湯を
注入する方式が、ホットチャンバダイカスト法又はコー
ルドチャンバダイカスト法又はチキソモールディング法
であるMg合金精密圧力成形法である。本発明におい
て、「成形」とは、ダイカスト法による鋳造と、チキソ
モールディング法による成形の両方を含む概念として使
用している。そして、キャビティ内での溶湯の急速凝固
により、またランナーゲート等を通過する際にストレス
を受けることにより、Mg合金の結晶粒径を0.5〜1
0μmの範囲に微細化して超塑性によって成形品を作製
するのである。
Here, the secondary mold clamping is performed in a state where the temperature of the Mg alloy in the cavity is 150 ° C. to the melting temperature.
Further, the temperature of the Mg alloy in the cavity is 200 ° C. to 35 ° C.
It is more preferable to perform secondary mold clamping at 0 ° C. Further, the present invention is an Mg alloy precision pressure forming method in which a method of injecting a molten Mg alloy into a cavity is a hot chamber die casting method, a cold chamber die casting method, or a thixo molding method. In the present invention, “forming” is used as a concept including both casting by a die casting method and forming by a thixo molding method. Then, by the rapid solidification of the molten metal in the cavity and by receiving stress when passing through the runner gate or the like, the crystal grain size of the Mg alloy is reduced to 0.5 to 1 mm.
The molded product is produced by superplasticity with the fineness in the range of 0 μm.

【0008】そして、本発明のMg合金精密圧力成形装
置は、固定側金型に対して可動側金型を移動させる金型
駆動手段と、固定側金型と可動側金型とで形成されるキ
ャビティ内にMg合金の溶湯の注入を行う注入手段と、
金型の温度を調節する温度調節手段と、前記金型駆動手
段による可動側金型の型締力を利用して製品肉厚より
0.1%〜20%程度厚く設定した状態まで低圧で一次
型締を行い、キャビティ内にMg合金の溶湯を注入後、
製品部分を圧縮若しくは鍛造すべく高圧で二次型締を行
うための金型間隔調整手段とを備えたものである。
The Mg alloy precision pressure forming apparatus of the present invention is formed by a mold driving means for moving the movable mold with respect to the fixed mold, and the fixed mold and the movable mold. Injection means for injecting a molten Mg alloy into the cavity;
A temperature adjusting means for adjusting the temperature of the mold and a primary pressure at a low pressure until the thickness is set to be about 0.1% to 20% thicker than the product thickness by utilizing the mold clamping force of the movable mold by the mold driving means. After clamping the mold and pouring the molten Mg alloy into the cavity,
Die spacing adjusting means for performing secondary clamping at a high pressure to compress or forge the product part.

【0009】更に詳しくは、前記金型駆動手段として少
なくとも二段階の型締力を設定可能な直圧方式を採用
し、前記可動側金型を、型締力を伝達する背板に製品の
表面を形成する可動側入子を固定するとともに、その周
囲に固定側金型と接合する可動側ベースプレートを型締
方向へ可動となして設け、前記背板と可動側ベースプレ
ート間に弾性体を介在させ且つ該弾性体によって開いた
背板と可動側ベースプレートの最大間隔を規定するボル
トを、該可動側ベースプレートを貫通させて背板に取付
けた構造となして前記金型間隔調整手段を備えさせてな
るものである。
More specifically, a direct pressure system capable of setting at least two stages of mold clamping force is adopted as the mold driving means, and the movable mold is attached to a back plate for transmitting the mold clamping force to the surface of the product. The movable side insert forming the fixed side mold is fixed, and a movable side base plate joined to the fixed side mold is provided around the periphery so as to be movable in the mold clamping direction, and an elastic body is interposed between the back plate and the movable side base plate. In addition, a bolt that defines the maximum distance between the back plate opened by the elastic body and the movable base plate is attached to the back plate by penetrating the movable base plate, and the mold distance adjusting means is provided. Things.

【0010】また、前記金型駆動手段の型締力を、該弾
性体の弾性力よりも小さく且つMg合金の溶湯の注入圧
よりも十分に大きな第1型締力と、前記弾性体の弾性力
よりも大きく且つ該弾性体を押し潰して背板と可動側ベ
ースプレートの間隔だけ可動側入子を前進させて製品部
分に十分な圧縮力を与える第2型締力との少なくとも二
段階に設定可能なものである。ここで、前記弾性体を皿
バネとしてなることが好ましい。
In addition, the first mold clamping force of the mold driving means is smaller than the elastic force of the elastic body and sufficiently larger than the injection pressure of the molten Mg alloy; The force is greater than the force and the elastic body is crushed to move the movable side insert by a distance between the back plate and the movable side base plate to set at least two stages of the second mold clamping force for applying a sufficient compressive force to the product portion. It is possible. Here, it is preferable that the elastic body is a disc spring.

【0011】又は、前記金型駆動手段としてトグル方式
を採用し、前記可動側金型を、型締力を伝達する背板に
製品の表面を形成する可動側入子を固定するとともに、
その周囲に固定側金型と接合する可動側ベースプレート
を型締方向へ可動となして設け、前記背板と可動側ベー
スプレートの周囲間に側方へ拡開したテーパ溝を形成
し、該テーパ溝に間隔保持用の楔部材を介在させ、該楔
部材のテーパ溝への挿入具合によって間隔を調節する構
造となして、前記金型間隔調整手段を備えさせてなるも
のである。
Alternatively, a toggle system is adopted as the mold driving means, and the movable mold is fixed to a back plate for transmitting a mold clamping force by a movable insert forming a surface of a product.
A movable base plate to be joined to the fixed mold is provided movably in the mold clamping direction around the periphery thereof, and a tapered groove which expands laterally is formed between the back plate and the periphery of the movable base plate. And a mold spacing adjusting means provided with a spacing adjusting wedge member interposed therebetween and adjusting the spacing by the degree of insertion of the wedge member into the tapered groove.

【0012】以上のMg合金精密圧力成形装置におい
て、キャビティ内にMg合金の溶湯を注入する注入手段
が、ホットチャンバダイカスト法又はチキソモールディ
ング法による注入機であることが好ましい。そして、M
g合金の結晶粒径を0.5〜10μmの範囲に微細化し
て超塑性によってMg合金の成形品を作製するのであ
る。
In the above-described Mg alloy precision pressure forming apparatus, it is preferable that the injection means for injecting the molten metal of the Mg alloy into the cavity is an injection machine using a hot chamber die casting method or a thixo molding method. And M
The crystal grain size of the g alloy is refined to a range of 0.5 to 10 μm, and a molded product of the Mg alloy is produced by superplasticity.

【0013】そして、本発明は、前述のMg合金精密圧
力成形法又はMg合金精密圧力成形装置を用いて作製さ
れ、Mg合金が圧縮されることにより細部迄行き渡り、
緻密で寸法精度が良く、表面の平滑化仕上げが不要なM
g合金成形品を作製するのである。
Further, the present invention is manufactured using the above-mentioned Mg alloy precision pressure forming method or the Mg alloy precision pressure forming apparatus, and the Mg alloy is compressed so that the details are spread out.
M that is dense and has good dimensional accuracy and does not require a smooth surface finish
A g-alloy molded product is produced.

【0014】ここで、「超塑性」とは、「多結晶材料の
引張変形において、変形応力が高いひずみ速度依存性を
示し、局部収縮(ネッキング)を生じることなく数10
0%以上の巨大な伸びを示す現象」(日本工業規格・金
属系超塑性材料用語(JISH 7007)より)と定
義されている。Mg合金は、最密六方格子構造のため、
一般に延性に乏しく、塑性加工性が非常に悪いが、結晶
粒を微細化することにより、室温強度、延性の向上及び
超塑性による加工性の大幅な向上が達成されることが知
られている。超塑性状態におけるMg合金材料のひずみ
速度は、結晶粒径の減少とともに増加し、結晶粒径が1
オーダー微細になれば、超塑性ひずみ速度は100倍か
ら1000倍近く増加する。また、超塑性状態における
Mg合金材料の主変形機構は、粒界すべりであり、超塑
性流動を継続させる役割を担う付随調整機構として拡散
流動や転位に加えて液相の存在がある。つまり、粒界す
べり変形によって、マクロな破断に至ることなく、巨大
な伸びを示すのであるが、粒界がすべることによって微
細結晶粒間に生じる局所的な応力集中を緩和する機構が
前述の付随調整機構である。
Here, the term "superplasticity" means "in the tensile deformation of a polycrystalline material, the deformation stress exhibits a high strain rate dependence, and does not cause local shrinkage (necking).
Phenomenon showing huge elongation of 0% or more "(from Japanese Industrial Standards, Metallic Superplastic Material Term (JISH 7007)). Mg alloy has a close-packed hexagonal lattice structure,
It is generally known that ductility is poor and plastic workability is very poor. However, it is known that, by making crystal grains fine, improvement in room temperature strength, ductility and workability due to superplasticity are significantly improved. The strain rate of the Mg alloy material in the superplastic state increases as the crystal grain size decreases, and
As the order of magnitude decreases, the superplastic strain rate increases by a factor of 100 to nearly 1000. Further, the main deformation mechanism of the Mg alloy material in the superplastic state is grain boundary sliding, and there is a liquid phase in addition to the diffusion flow and the dislocation as an accompanying adjustment mechanism that plays a role of continuing the superplastic flow. In other words, due to the sliding at the grain boundary, a large elongation is exhibited without causing macro-fracture.However, the mechanism for relaxing the local stress concentration generated between the fine crystal grains due to the sliding at the grain boundary is described above. It is an adjustment mechanism.

【0015】また、条件の良い実験室レベルでの引張り
試験では、結晶粒径が100μmオーダーの粗大な結晶
粒径を有するMg系材料でも200%程度の大きな伸び
が得られることが分かっているが、市販のMg合金材料
をダイカスト鋳造又はチキソモールディングによって超
塑性加工することは実用化されていない。更に、Mg合
金では、予備加工として温間押出し、温間圧延を行うこ
とによって、動的再結晶による組織の微細化ができる
が、より低温での超塑性成形を実現するには、粒界構造
そのものを制御するような予備加工が必要であることも
知られている。つまり、Mg合金をより低温で超塑性成
形するには、非常によく制御された予備加工と特殊な静
圧加工装置が必要である。
Further, in a tensile test at a laboratory level under good conditions, it has been found that a large elongation of about 200% can be obtained even with an Mg-based material having a coarse crystal grain size of the order of 100 μm. Superplastic working of a commercially available Mg alloy material by die casting or thixo molding has not been put to practical use. Further, in the case of Mg alloys, the structure can be refined by dynamic recrystallization by performing warm extrusion and warm rolling as preliminary processing. However, in order to realize superplastic forming at a lower temperature, the grain boundary structure is required. It is also known that pre-processing is required to control the processing itself. In other words, superplastic forming of a Mg alloy at a lower temperature requires very well-controlled preliminary processing and a special static pressure processing apparatus.

【0016】 本発明は、ホットチャンバダイカスト法又
はコールドチャンバダイカスト法又はチキソモールディ
ング法により、キャビティ内にMg合金の溶湯の注入を
行うが、キャビティ内での溶湯の急速凝固により組織が
微細化される現象と、付随的にはMg合金材料が高速射
出される際と、Mg合金材料がランナーゲート等の流路
を通過しキャビティ内を移動する際にストレスを受ける
ことで結晶粒が微細化する現象を利用し、更に製品肉厚
より0.1%〜20%程度厚く設定した状態まで低圧で
一次型締を行った後、高圧で単又は複数回の二次型締を
行って製品部分を圧縮若しくは鍛造して成形品を作製す
ることで、結晶粒を更に微細化し、結晶粒径が0.5〜
10μmの範囲の高速超塑性状態を実現するのである。
[0016] The present invention relates to a hot chamber die casting method or
Means cold chamber die casting or thixomolding
Injection of molten Mg alloy into the cavity
However, the rapid solidification of the molten metal in the cavity
The phenomenon of miniaturization and incidental high-speed irradiation of Mg alloy material
When it is discharged, the Mg alloy material passes through a flow path such as a runner gate.
When moving through a cavity through a cavity
Utilizing the phenomenon that crystal grains become finer,
0.1% to 20% thicker than at low pressure
After performing primary clamping, perform secondary clamping one or more times at high pressure.
Go to compress or forge the product part to make a molded product
By doing so, the crystal grains are further refined, and the crystal grain size is 0.5 to
A high-speed superplastic state in the range of 10 μm is realized.

【0017】[0017]

【発明の実施の形態】以下、この発明のMg合金の精密
圧力成形法について、さらに詳細に説明する。図1から
図3は、本発明のMg合金の精密圧力成形法を実施する
ための成形装置を示す図であり、図1は型開き時の状態
で、図2は低圧による一次型締を行っている時の図であ
り、図3は高圧による二次型締を行った状態である。ま
た、図4(a)は図2の部分拡大図、図4(b)は図3
の部分拡大図を示している。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the method of precision pressure forming of an Mg alloy according to the present invention will be described in more detail. 1 to 3 are views showing a forming apparatus for carrying out the precision pressure forming method of an Mg alloy according to the present invention. FIG. 1 shows a state in which the mold is opened, and FIG. FIG. 3 shows a state in which secondary clamping by high pressure has been performed. FIG. 4A is a partially enlarged view of FIG. 2, and FIG.
Is a partially enlarged view of FIG.

【0018】本発明のMg合金精密圧力成形装置は、固
定側金型Aに対して可動側金型Bを移動させる金型駆動
手段(図示せず)と、固定側金型Aと可動側金型Bとで
形成されるキャビティ内にMg合金の溶湯の注入を行う
注入手段Cと、金型の温度を調節する温度調節手段(図
示せず)と、前記金型駆動手段による可動側金型の型締
力を利用して製品肉厚より0.1%〜20%程度、更に
好ましくは2%〜5%程度厚く設定した状態まで低圧で
一次型締を行い、キャビティ内にMg合金の溶湯を注入
後、製品部分を圧縮若しくは鍛造すべく高圧で二次型締
を行うための金型間隔調整手段とを備えたものである。
The Mg alloy precision pressure forming apparatus of the present invention comprises a mold driving means (not shown) for moving the movable mold B with respect to the fixed mold A, a fixed mold A and a movable mold. Injecting means C for injecting the molten Mg alloy into the cavity formed by the mold B, temperature adjusting means (not shown) for adjusting the temperature of the mold, and the movable mold by the mold driving means. The primary mold clamping is performed at a low pressure until the thickness is set to about 0.1% to 20%, more preferably about 2% to 5% thicker than the product thickness by using the mold clamping force, and the molten Mg alloy in the cavity. After injection of the mold, a mold gap adjusting means for performing secondary mold clamping at a high pressure in order to compress or forge the product part.

【0019】それにより、成形機の型締力を利用し、製
品肉厚より0.1%〜20%程度厚く設定した状態まで
低圧で一次型締を行い、キャビティ内にMg合金の溶湯
の注入を行った後、高圧で単又は複数回の二次型締を行
って製品部分を圧縮若しくは鍛造することにより、Mg
合金の成形品を作製することが可能となる。ここで、キ
ャビティ内のMg合金の温度が、150℃〜溶融温度の
状態で二次型締を行うこと、更に好ましくは200℃〜
350℃の状態で二次型締を行うのである。
Thus, the primary clamping is performed at a low pressure to a state where the thickness is set to about 0.1% to 20% thicker than the product thickness by utilizing the clamping force of the molding machine, and the molten Mg alloy is injected into the cavity. After performing the secondary clamping one or more times at high pressure to compress or forge the product part, Mg
It becomes possible to produce a molded article of the alloy. Here, the secondary mold clamping is performed in a state where the temperature of the Mg alloy in the cavity is from 150 ° C. to the melting temperature, more preferably from 200 ° C. to
The secondary mold clamping is performed at 350 ° C.

【0020】本発明において使用するMg合金は、AZ
91D(Mg:9重量%、Al:90重量%、Zn:1
重量%)を用いた。このMg合金の融点は、620℃〜
700℃である。尚、Mg合金にCaを1〜2重量%添
加することも好ましく、その場合にはMg合金の引火点
が約200℃上昇するので、装置構成が簡単になって好
ましい。また、Mg合金の溶湯をキャビティに注入する
際の温度は、完全に溶融した状態の他、500℃前後の
半溶融半凝固(固溶体)状態でも良い。また、その際の
金型温度は、150℃以上でなるべく低い方が、鋳込温
度と金型温度の差を利用した急冷作用を実現できるので
好ましく、実際には200℃〜350℃に設定する。そ
して、Mg合金が固化した後に、二次型締を行う場合に
は、型締の際に金型を少し開くようにすることも好まし
く、それから単又は複数回型締を行うことによって、熱
間にて成形品を鍛造することができ、更に緻密で表面が
平滑な成形品を作製できる。
The Mg alloy used in the present invention is AZ
91D (Mg: 9% by weight, Al: 90% by weight, Zn: 1)
% By weight). The melting point of this Mg alloy is 620 ° C.
700 ° C. It is also preferable to add 1 to 2% by weight of Ca to the Mg alloy. In this case, the flash point of the Mg alloy increases by about 200 ° C., which is preferable because the apparatus configuration is simplified. The temperature at which the molten Mg alloy is injected into the cavity may be in a completely molten state or a semi-molten semi-solid state (solid solution) at about 500 ° C. The mold temperature at that time is preferably as low as possible at 150 ° C. or higher because a quenching effect utilizing the difference between the casting temperature and the mold temperature can be realized. Actually, the temperature is set to 200 ° C. to 350 ° C. . When the secondary mold clamping is performed after the Mg alloy has solidified, it is also preferable to slightly open the mold at the time of mold clamping, and then to perform hot clamping by performing mold clamping one or more times. Thus, a molded article can be forged, and a denser and more smooth molded article can be produced.

【0021】具体的には、固定側金型Aは、固定用ベー
スプレート2内に固定用キャビティ入子3が挿入され、
鋳込み口4を介してMg合金溶湯が注入される構造とな
っている。尚、固定用べースブレート2は、成形機のダ
イプレート1に取付けられている。可動側金型Bは、可
動用ベースプレート5内に、可動側入子6,15が組み
込まれている。又、分流子8は、鋳込口4との間に、湯
の流れる隙間を作り注入するためのものである。背板7
は、可動側ベースプレート5、可動側入子6,15を成
形時支える板である。可動用ベースプレート5、背板7
は、スペーサー9を介して、成形機の可動側ダイプレー
ト12に取付けられる。押出板10,11は、リターン
ピン18により移動し、製品取出しを行う。尚、固定側
金型Aと可動側金型Bは、ガイドピン20と、ガイドブ
ッシュ19により位置決めされ、型締時に密着し、固定
側キャビティ入子3と、可動側入子15よりなる隙間
(キャビティ)にMg合金の溶湯が充填され製品とな
る。
Specifically, in the fixed mold A, a fixed cavity insert 3 is inserted into a fixed base plate 2,
The structure is such that the molten Mg alloy is injected through the casting hole 4. The fixing base plate 2 is attached to the die plate 1 of the molding machine. The movable die B has movable inserts 6 and 15 incorporated in a movable base plate 5. In addition, the shunt 8 is used to create a gap between the casting port 4 and the hot water, and to inject the gap. Backboard 7
Is a plate that supports the movable base plate 5 and the movable inserts 6 and 15 during molding. Movable base plate 5, back plate 7
Is mounted on the movable die plate 12 of the molding machine via the spacer 9. The push plates 10 and 11 are moved by the return pins 18 to take out products. The fixed mold A and the movable mold B are positioned by the guide pin 20 and the guide bush 19, are in close contact with each other when the mold is clamped, and have a gap formed by the fixed cavity insert 3 and the movable insert 15. Cavity) is filled with a molten Mg alloy to form a product.

【0022】先ず、可動ダイプレート12が固定側に移
動し、ガイドピン20、ガイドブッシュ19により位置
決めを行いながら、低圧での型締を行う。この時、皿バ
ネ13により、可動側入子6を一体化した可動側ベース
プレート5は、背板7との間に隙間αが設定される。こ
の隙間αは、成形製品肉厚の0.1%〜20%で変更可
能とする。その操作は、ボルト21により行うものとす
る。皿バネ13は、一次型締力では隙間αが維持される
強さとする。
First, the movable die plate 12 moves to the fixed side, and the mold is clamped at a low pressure while being positioned by the guide pins 20 and the guide bushes 19. At this time, a gap α is set between the movable side base plate 5 and the back plate 7 by the disc spring 13 and the movable side insert 6. The gap α can be changed between 0.1% and 20% of the thickness of the molded product. The operation is performed by the bolt 21. The disc spring 13 has such a strength that the gap α is maintained by the primary clamping force.

【0023】スリーブ14より鋳込口4を介して、Mg
合金溶湯がキャビティ内に注入され、製品部17を作
る。図2は、この状態を表したものである。製品部16
は、α分だけ所定製品肉厚より、厚くなっている。
From the sleeve 14 through the casting port 4, Mg
The molten alloy is injected into the cavity to form the product part 17. FIG. 2 shows this state. Product Division 16
Is thicker than a predetermined product thickness by α.

【0024】尚、その時、空気等を製品内に巻込まない
様、真空ポンプで空気を抜いたり、チルベント装置なる
ものを使用することもある。
At this time, a vacuum pump may be used to evacuate the air or a chill vent device may be used to prevent air or the like from being caught in the product.

【0025】溶湯注入後、皿バネ13にて確保されてい
た隙間αを、成形機ダイプレート12を移動させて、隙
間αが0になる迄動かすことにより、製品部16が、製
品部17へと、α分押しつぶされる。尚、溶湯が完全に
固化すれば、成形機の型締力では、製品16が、製品1
7迄押しつぶすことが不可能になるため、高圧二次型締
は溶湯又は、半溶湯状態で行うことが望ましい。しか
し、成形機の型締力が大きい場合には、Mg合金溶湯が
固化した後でも、少なくとも150℃以上、好ましくは
200℃〜350℃の温度の状態であれば圧縮は可能で
ある。また、超音波をMg合金に加えることも緻密化に
有利な場合がある。
After the molten metal is poured, the gap α secured by the disc spring 13 is moved until the gap α becomes zero by moving the molding machine die plate 12, so that the product section 16 is moved to the product section 17. Is crushed by α. Incidentally, if the molten metal is completely solidified, the product 16 becomes the product 1 by the mold clamping force of the molding machine.
Since it is impossible to crush up to 7, the high-pressure secondary mold clamping is desirably performed in a molten or semi-molten state. However, when the mold clamping force of the molding machine is large, even after the Mg alloy melt is solidified, compression can be performed at a temperature of at least 150 ° C., preferably 200 ° C. to 350 ° C. Adding ultrasonic waves to the Mg alloy may also be advantageous for densification.

【0026】更に詳しくは、前記金型駆動手段として少
なくとも二段階の型締力を設定可能な直圧方式を採用す
る。前記可動側金型Bを、型締力を伝達する背板7に製
品の表面を形成する可動側入子15を固定するととも
に、その周囲に固定側金型Aと接合する可動側ベースプ
レート5を型締方向へ可動となして設け、前記背板7と
可動側ベースプレート5間に弾性体(皿バネ13)を介
在させ且つ該弾性体13によって開いた背板7と可動側
ベースプレート5の最大間隔αを規定するボルト21
を、該可動側ベースプレート5を貫通させて背板7に取
付けた構造となしている。尚、前記弾性体は、皿バネ1
3の他、金型構造に応じて圧縮コイルバネや板バネ等の
適宜なバネを用いることが可能である。そして、前述の
金型駆動手段の型締力を、該弾性体13の弾性力よりも
小さく且つMg合金の溶湯の注入圧よりも十分に大きな
第1型締力と、前記弾性体13の弾性力よりも大きく且
つ該弾性体13を押し潰して背板7と可動側ベースプレ
ート5の間隔だけ可動側入子15を前進させて製品部分
に十分な圧縮力を与える第2型締力との少なくとも二段
階に設定可能となしている。
More specifically, a direct pressure system capable of setting at least two stages of mold clamping force is employed as the mold driving means. The movable mold B is fixed to a back plate 7 for transmitting a mold clamping force, with a movable insert 15 forming the surface of the product, and a movable base plate 5 joined to the fixed mold A around the movable mold insert 15. The elastic member (disc spring 13) is interposed between the back plate 7 and the movable base plate 5, and the maximum distance between the back plate 7 and the movable base plate 5 opened by the elastic member 13. Bolt 21 that defines α
Is attached to the back plate 7 through the movable base plate 5. The elastic body is a disc spring 1.
In addition to 3, it is possible to use an appropriate spring such as a compression coil spring or a leaf spring according to the mold structure. The first mold clamping force of the mold driving means is smaller than the elastic force of the elastic body 13 and sufficiently larger than the injection pressure of the molten Mg alloy; The second mold clamping force which is larger than the force and squeezes the elastic body 13 to advance the movable insert 15 by the distance between the back plate 7 and the movable base plate 5 to apply a sufficient compressive force to the product portion. It can be set in two stages.

【0027】また、キャビティ内にMg合金の溶湯を注
入する注入手段Cとして、ホットチャンバダイカスト法
又はコールドチャンバダイカスト法又はチキソモールデ
ィング法による注入機を用いることができる。ホットチ
ャンバダイカスト用注入機は、図5に示すように、Mg
合金の溶湯を溜めた加熱容器30の内部に、グースネッ
ク31と鋳込ピストン32を配し、グースネック31内
に取り込んだ溶湯を鋳込ピストン32で加圧して、ノズ
ル33から鋳込口4へ供給するものである。また、チキ
ソモールディング用注入機は、図6に示すように、原料
ホッパー40から投入されたMg合金を、シリンダー4
1とスクリュー42との回転摩擦熱と、シリンダー41
の外周に設けたヒーター43とで半溶融半凝固(固溶
体)状態となし、背後に設けた高射出システム44によ
ってノズル45から鋳込口4へ射出するものである。ま
た、コールドチャンバダイカスト用注入機も従来から公
知のものであり、その説明は省略する。
Further, as an injection means C for injecting the molten Mg alloy into the cavity, an injection machine using a hot chamber die casting method, a cold chamber die casting method or a thixo molding method can be used. As shown in FIG.
A gooseneck 31 and a casting piston 32 are arranged inside a heating vessel 30 in which a molten alloy is stored, and the molten metal taken into the gooseneck 31 is pressurized by the casting piston 32 and supplied from the nozzle 33 to the casting port 4. Is what you do. In addition, as shown in FIG. 6, the thixomolding injection machine transfers the Mg alloy supplied from the raw material hopper 40 to the cylinder 4.
The frictional heat of rotation between the screw 1 and the screw 42 and the cylinder 41
And a heater 43 provided on the outer periphery of the cylinder to form a semi-molten and semi-solidified (solid solution) state, and injects from a nozzle 45 to the casting port 4 by a high injection system 44 provided behind. Further, the cold chamber die casting injection machine is also conventionally known, and the description thereof will be omitted.

【0028】また、本発明の他の実施形態として、図7
に示したMg合金精密圧力成形装置は、前述の直圧方式
の金型駆動手段と皿バネ13(弾性体)を用いる代わり
に、トグル方式の金型駆動手段を採用し、前記可動側金
型Bを次のように変更したものである、つまり、この可
動側金型Bは、型締力を伝達する背板7に製品の表面を
形成する可動側入子15を固定するとともに、その周囲
に固定側金型Aと接合する可動側ベースプレート5を型
締方向へ可動となして設け、前記背板7と可動側ベース
プレート5の周囲間に側方へ拡開したテーパ溝22を形
成し、該テーパ溝22に間隔保持用の楔部材23を介在
させ、該楔部材23のテーパ溝22への挿入具合によっ
て間隔αを調節する構造となしたものであり、このテー
パ溝22と楔部材23で前記金型間隔調整手段を構成し
たのである。
FIG. 7 shows another embodiment of the present invention.
The Mg alloy precision pressure forming apparatus shown in (1) employs a toggle-type mold driving means instead of the direct-pressure-type mold driving means and the disc spring 13 (elastic body) described above. B is changed as follows, that is, this movable-side mold B fixes the movable-side insert 15 forming the surface of the product to the back plate 7 that transmits the mold clamping force, and surrounds the periphery thereof. The movable base plate 5 to be joined to the fixed mold A is provided so as to be movable in the mold clamping direction, and a tapered groove 22 that expands laterally is formed between the back plate 7 and the periphery of the movable base plate 5. A wedge member 23 for maintaining a space is interposed in the tapered groove 22, and the space α is adjusted by the degree of insertion of the wedge member 23 into the tapered groove 22. Thus, the mold interval adjusting means is configured.

【0029】図8及び図9は、それぞれ低圧一次型締時
成形品16と高圧二次型締時成形品17をX線透過法及
び反射法で全極点図を測定した結果を示している。この
測定には、自動X線回折装置(理学電機製:RINT2
000)を用いた。測定条件は、X線(Mo/50kV
/30mA)、Kβフィルタ、シンチレーションカウン
タを用い、測定モードを同心円としたSchulzの透過法
と、走査モードをFTとしたSchulzの反射法とした。処
理条件は、実測した線吸収係数μ(6.9735c
-1)を用い、計算規格化処理で行った。
FIGS. 8 and 9 show the results of measuring the total pole figure of the molded product 16 at the time of the low pressure primary mold clamping and the molded product 17 at the time of the high pressure secondary mold clamping by the X-ray transmission method and the reflection method, respectively. For this measurement, an automatic X-ray diffractometer (RINT2 manufactured by Rigaku Denki) was used.
000) was used. The measurement conditions were X-ray (Mo / 50 kV
/ 30 mA), using a Kβ filter and a scintillation counter, a Schulz transmission method in which the measurement mode is concentric, and a Schulz reflection method in which the scanning mode is FT. The processing conditions are as follows: the measured linear absorption coefficient μ (6.9735c
m -1 ), and was performed by calculation normalization processing.

【0030】一般的に、集合組織により多結晶材料の結
晶配向性とその強度を知ることができる。通常は、特定
の結晶面のX線回折強度を試料の全方位について測定す
る方法で求められ、回折強度が試料座標系上に二次元表
示されるいわゆる‘正極点図’として表現される。集合
組織は塑性加工時に生じる結晶の回転により変化し、い
わゆる加工集合組織を形成することが知られている。こ
の低圧一次型締時成形品16の加工集合組織の状態は、
図8に示されている。
Generally, the crystal orientation and the strength of the polycrystalline material can be known from the texture. Normally, the X-ray diffraction intensity of a specific crystal plane is determined by a method of measuring all directions of the sample, and the diffraction intensity is expressed as a so-called “positive electrode spot diagram” that is two-dimensionally displayed on the sample coordinate system. It is known that the texture changes due to the rotation of the crystal generated during plastic working, forming a so-called processed texture. The state of the working texture of the molded product 16 at the time of the low-pressure primary mold clamping is as follows:
This is shown in FIG.

【0031】前述の低圧一次型締時成形品16に、30
0℃で厚さ方向に8%の圧縮変形を与えて作製した高圧
二次型締時成形品17について、形成された加工集合組
織を(0002)面について測定した結果、変形前には
板面(正極点図の中心)から90度回転した板側面(正
極点図の周囲)まで広く分布していた(0002)面が
(図8参照)、変形後には板面に集中していることが判
明した(図9参照)。このように、本発明の高圧二次型
締によって作製されたMg合金製成形品は、高圧二次型
締をしない成形品に比べて、機械的性質及び結晶学的特
性が変化していることが示された。また、高圧二次型締
時成形品17の結晶粒径は10μm以下となっているこ
とが、組織の顕微鏡写真により確認でき、超塑性加工が
実現できたものと判断できる。
The above-described molded article 16 at the time of the low-pressure primary mold clamping has 30
As a result of measuring the formed texture of the (0002) plane of the molded article 17 at the time of high-pressure secondary clamping produced by giving 8% compression deformation in the thickness direction at 0 ° C. The (0002) plane that was widely distributed from the (center of the positive electrode dot diagram) to the side surface of the plate (around the positive electrode dot diagram) rotated 90 degrees (see FIG. 8), and that it was concentrated on the plate surface after deformation. It turned out (see FIG. 9). As described above, the molded product made of the Mg alloy manufactured by the high-pressure secondary mold clamping of the present invention has a change in mechanical properties and crystallographic properties as compared with the molded product without the high-pressure secondary mold clamping. It has been shown. Further, it can be confirmed from the micrograph of the structure that the crystal grain size of the molded product 17 at the time of the high-pressure secondary mold clamping is 10 μm or less, and it can be determined that superplastic working has been realized.

【0032】[0032]

【発明の効果】以上にしてなる本発明のMg合金精密圧
力成形法によれば、Mg合金成形時、低圧にて一次型締
を行うことで、溶湯を注入時、湯流れを良くする効果を
もたらし、湯じわ、巣のない製品を成形しやすくし、高
圧二次型締にて圧縮若しくは鍛造することで成形品を押
しつぶすことにより、尚一層、巣のない、緻密な成形品
が出来る。
According to the Mg alloy precision pressure forming method of the present invention as described above, the primary mold clamping is performed at a low pressure during the formation of the Mg alloy, thereby improving the flow of the molten metal when pouring the molten metal. This makes it easier to mold products without hot lines and burrs, and by crushing the molded product by compressing or forging with a high-pressure secondary mold clamp, a dense molded product with no nests can be obtained.

【0033】また、本発明のMg合金精密圧力成形装置
によれば、前記同様に湯じわ、巣の少ない、不良率の低
い、高密度・高精密ダイカスト成形品を作ることが出来
る。更に、強力な皿バネを利用した一次型締を行い、P
Lは密着した状態にてキャビティ内の肉厚を厚くする方
向に可動側入子を移動させれば、装置構造が簡単にな
る。
Further, according to the Mg alloy precision pressure forming apparatus of the present invention, it is possible to produce a high-density and high-precision die-casting product having a small number of hot spots and cavities, a low defect rate, and the like. Furthermore, primary clamping using a strong disc spring is performed,
If the movable insert is moved in the direction of increasing the thickness of the cavity in a state where L is in close contact, the device structure is simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の金型を取付けて、型開き状態を示す断
面図である。
FIG. 1 is a sectional view showing a state in which a mold of the present invention is mounted and a mold is opened.

【図2】低圧一次型締を行い、Mg合金が注入された状
態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state where low-pressure primary mold clamping has been performed and an Mg alloy has been injected.

【図3】高圧二次型締を行い、Mg合金成形品を押しつ
ぶした所を示す断面図である。
FIG. 3 is a cross-sectional view showing a place where a high-pressure secondary mold is clamped and a Mg alloy molded product is crushed.

【図4】成形装置の要部を拡大して示したものであり、
(a)は図2の部分拡大断面図、(b)は図3の部分拡
大断面図である。
FIG. 4 is an enlarged view of a main part of the molding apparatus;
(A) is a partial enlarged sectional view of FIG. 2, and (b) is a partial enlarged sectional view of FIG.

【図5】ホットチャンバダイカスト用注入機を用いた成
形装置の概略図である。
FIG. 5 is a schematic view of a molding apparatus using a hot chamber die casting injecting machine.

【図6】チキソモールディング用注入機を用いた成形装
置の概略図である。
FIG. 6 is a schematic view of a molding apparatus using an injection machine for thixomolding.

【図7】本発明の他の実施形態を示す成形装置で、低圧
一次型締を行い、Mg合金が注入された状態を示す断面
図である。
FIG. 7 is a cross-sectional view showing a state in which a low-pressure primary mold clamping is performed and a Mg alloy is injected in a molding apparatus according to another embodiment of the present invention.

【図8】低圧一次型締時成形品を自動X線回折装置で測
定した全極点図である。
FIG. 8 is a total pole figure obtained by measuring a molded product at the time of low-pressure primary mold clamping with an automatic X-ray diffractometer.

【図9】高圧二次型締時成形品を自動X線回折装置で測
定した全極点図である。
FIG. 9 is a total pole figure obtained by measuring a molded product at the time of high-pressure secondary mold clamping with an automatic X-ray diffractometer.

【符号の説明】[Explanation of symbols]

A 固定側金型 B 可動側金型 C 注入機 1 成形機ダイプレート固定 2 固定型ベースプレート 3 固定側キャビティ入子 4 鋳込口 5 可動側ベースプレート 6 可動側入子(1) 7 背板 8 分流子 9 スペーサー 10 押出板(1) 11 押出板(2) 12 可動側成形機ダイプレート 13 皿バネ 14 スリーブ 15 可動側入子(2) 16 低圧一次型締時成形品 17 高圧二次型締時成形品(圧縮品) 18 リターンピン 19 ガイドプッシュ 20 ガイドピン 21 ボルト 22 テーパ溝 23 楔部材 Reference Signs List A fixed-side mold B movable-side mold C Injector 1 Molding machine die plate fixation 2 Fixed-type base plate 3 Fixed-side cavity insert 4 Casting port 5 Moveable-side base plate 6 Moveable-side insert (1) 7 Back plate 8 Shunting Child 9 Spacer 10 Extruded plate (1) 11 Extruded plate (2) 12 Die plate for movable side molding machine 13 Disc spring 14 Sleeve 15 Movable side insert (2) 16 Molded product for low pressure primary mold clamping 17 For high pressure secondary mold clamping Molded product (compressed product) 18 Return pin 19 Guide push 20 Guide pin 21 Bolt 22 Tapered groove 23 Wedge member

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 27/04 B22D 27/04 Z 27/09 27/09 A // H05K 5/02 H05K 5/02 J (72)発明者 松本 学 大阪府寝屋川市新家1丁目12番1号 株式 会社松本製作所内 (72)発明者 松本 成史 大阪府寝屋川市高柳2−48−10 高柳マン ション326 Fターム(参考) 4E360 EE15 GA52 GB46 GC04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B22D 27/04 B22D 27/04 Z 27/09 27/09 A // H05K 5/02 H05K 5/02 J (72) Inventor Manabu Matsumoto 1-12-1 Shinya, Neyagawa-shi, Osaka Pref. Matsumoto Seisakusho Co., Ltd. (72) Inventor Shigefumi Matsumoto 2-48-10 Takayanagi, Neyagawa-shi, Osaka Pref. 326 F-term (reference) 4E360 EE15 GA52 GB46 GC04

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 成形機の型締力を利用し、製品肉厚より
0.1%〜20%程度厚く設定した状態まで低圧で一次
型締を行い、キャビティ内にMg合金の溶湯の注入を行
った後、高圧で単又は複数回の二次型締を行って製品部
分を圧縮若しくは鍛造することにより、Mg合金の成形
品を作製することを特徴とするMg合金精密圧力成形
法。
1. Using a mold-clamping force of a molding machine, perform primary mold-clamping at a low pressure until it is set to be 0.1% to 20% thicker than a product thickness, and inject a molten Mg alloy into a cavity. A Mg alloy precision pressure forming method characterized in that a single or plural times of secondary mold clamping is performed at a high pressure, and then a product part is compressed or forged to produce a Mg alloy molded product.
【請求項2】 キャビティ内のMg合金の温度が、15
0℃〜溶融温度の状態で二次型締を行う請求項1記載の
Mg合金精密圧力成形法。
2. The temperature of the Mg alloy in the cavity is 15
The method according to claim 1, wherein the secondary mold clamping is performed at a temperature of 0 ° C. to a melting temperature.
【請求項3】 キャビティ内のMg合金の温度が、20
0℃〜350℃の状態で二次型締を行う請求項2記載の
Mg合金精密圧力成形法。
3. The temperature of the Mg alloy in the cavity is 20 or less.
The Mg alloy precision pressure forming method according to claim 2, wherein the secondary mold clamping is performed at a temperature of 0C to 350C.
【請求項4】 キャビティ内にMg合金の溶湯を注入す
る方式が、ホットチャンバダイカスト法又はコールドチ
ャンバダイカスト法又はチキソモールディング法である
請求項1〜3何れかに記載のMg合金精密圧力成形法。
4. The Mg alloy precision pressure forming method according to claim 1, wherein the method of injecting the molten Mg alloy into the cavity is a hot chamber die casting method, a cold chamber die casting method, or a thixo molding method.
【請求項5】 Mg合金の結晶粒径を0.5〜10μm
の範囲に微細化して超塑性によって成形品を作製してな
る請求項1〜4何れかに記載のMg合金精密圧力成形
法。
5. The Mg alloy has a crystal grain size of 0.5 to 10 μm.
The Mg alloy precision pressure forming method according to any one of claims 1 to 4, wherein a molded product is produced by superplasticity after being refined to the range described in (1).
【請求項6】 固定側金型に対して可動側金型を移動さ
せる金型駆動手段と、固定側金型と可動側金型とで形成
されるキャビティ内にMg合金の溶湯の注入を行う注入
手段と、金型の温度を調節する温度調節手段と、前記金
型駆動手段による可動側金型の型締力を利用して製品肉
厚より0.1%〜20%程度厚く設定した状態まで低圧
で一次型締を行い、キャビティ内にMg合金の溶湯を注
入後、製品部分を圧縮若しくは鍛造すべく高圧で二次型
締を行うための金型間隔調整手段とを備えたことを特徴
とするMg合金精密圧力成形装置。
6. A mold driving means for moving the movable mold relative to the fixed mold, and injection of molten Mg alloy into a cavity formed by the fixed mold and the movable mold. Injecting means, temperature adjusting means for adjusting the temperature of the mold, and a state in which the thickness is set to be about 0.1% to 20% thicker than the product thickness by utilizing the mold clamping force of the movable mold by the mold driving means. Primary mold clamping at a low pressure until then, and after injecting the molten Mg alloy into the cavity, the mold is equipped with mold spacing adjustment means for secondary clamping at a high pressure to compress or forge the product part. Mg alloy precision pressure forming equipment.
【請求項7】 前記金型駆動手段として少なくとも二段
階の型締力を設定可能な直圧方式を採用し、前記可動側
金型を、型締力を伝達する背板に製品の表面を形成する
可動側入子を固定するとともに、その周囲に固定側金型
と接合する可動側ベースプレートを型締方向へ可動とな
して設け、前記背板と可動側ベースプレート間に弾性体
を介在させ且つ該弾性体によって開いた背板と可動側ベ
ースプレートの最大間隔を規定するボルトを、該可動側
ベースプレートを貫通させて背板に取付けた構造となし
て前記金型間隔調整手段を備えさせてなる請求項6記載
のMg合金精密圧力成形装置。
7. A direct pressure system in which at least two stages of mold clamping force can be set as the mold driving means, and the movable mold is formed on a back plate for transmitting the mold clamping force. The movable side insert to be fixed is fixed, and a movable side base plate joined to the fixed side mold is provided movably in the mold clamping direction around the movable side insert, and an elastic body is interposed between the back plate and the movable side base plate. A bolt, which defines the maximum distance between the back plate opened by the elastic body and the movable base plate, is attached to the back plate by penetrating the movable base plate, and the mold distance adjusting means is provided. 7. The Mg alloy precision pressure forming apparatus according to 6.
【請求項8】 前記金型駆動手段の型締力を、該弾性体
の弾性力よりも小さく且つMg合金の溶湯の注入圧より
も十分に大きな第1型締力と、前記弾性体の弾性力より
も大きく且つ該弾性体を押し潰して背板と可動側ベース
プレートの間隔だけ可動側入子を前進させて製品部分に
十分な圧縮力を与える第2型締力との少なくとも二段階
に設定可能である請求項7記載のMg合金精密圧力成形
装置。
8. The first mold clamping force of the mold driving means is smaller than the elastic force of the elastic body and sufficiently larger than the injection pressure of the molten Mg alloy; The force is greater than the force and the elastic body is crushed to move the movable side insert by a distance between the back plate and the movable side base plate to set at least two stages of the second mold clamping force for applying a sufficient compressive force to the product portion. The Mg alloy precision pressure forming apparatus according to claim 7, which is capable of being used.
【請求項9】 前記弾性体を皿バネとしてなる請求項7
又は8記載のMg合金精密圧力成形装置。
9. The spring according to claim 7, wherein the elastic body is a disc spring.
Or the Mg alloy precision pressure forming apparatus according to 8.
【請求項10】 前記金型駆動手段としてトグル方式を
採用し、前記可動側金型を、型締力を伝達する背板に製
品の表面を形成する可動側入子を固定するとともに、そ
の周囲に固定側金型と接合する可動側ベースプレートを
型締方向へ可動となして設け、前記背板と可動側ベース
プレートの周囲間に側方へ拡開したテーパ溝を形成し、
該テーパ溝に間隔保持用の楔部材を介在させ、該楔部材
のテーパ溝への挿入具合によって間隔を調節する構造と
なして、前記金型間隔調整手段を備えさせてなる請求項
6記載のMg合金精密圧力成形装置。
10. A toggle system is adopted as said mold driving means, and said movable mold is fixed to a movable insert for forming a surface of a product on a back plate transmitting a mold clamping force. A movable base plate to be joined to the fixed mold is provided so as to be movable in the mold clamping direction, and a tapered groove that expands laterally is formed between the back plate and the periphery of the movable base plate,
7. The mold gap adjusting means according to claim 6, wherein a wedge member for maintaining a gap is interposed in said tapered groove, and the gap is adjusted by the degree of insertion of said wedge member into said tapered groove. Mg alloy precision pressure forming equipment.
【請求項11】 キャビティ内にMg合金の溶湯を注入
する注入手段が、ホットチャンバダイカスト法又はコー
ルドチャンバダイカスト法又はチキソモールディング法
による注入機である請求項6〜10何れかに記載のMg
合金精密圧力成形装置。
11. The Mg according to claim 6, wherein the injecting means for injecting the molten Mg alloy into the cavity is an injector using a hot chamber die casting method, a cold chamber die casting method, or a thixo molding method.
Alloy precision pressure forming equipment.
【請求項12】 Mg合金の結晶粒径を0.5〜10μ
mの範囲に微細化して超塑性によって成形品を作製して
なる請求項6〜11何れかに記載のMg合金精密圧力成
形装置。
12. The Mg alloy has a crystal grain size of 0.5 to 10 μm.
The Mg alloy precision pressure forming apparatus according to any one of claims 6 to 11, wherein a molded product is produced by superplasticizing the product in a range of m.
【請求項13】 前記請求項1〜5何れかに記載のMg
合金精密圧力成形法又は前記請求項6〜12何れかに記
載のMg合金精密圧力成形装置を用いて作製されたこと
を特徴とするMg合金成形品。
13. The Mg according to claim 1, wherein
A Mg alloy molded product produced using an alloy precision pressure molding method or the Mg alloy precision pressure molding device according to any one of claims 6 to 12.
JP2000295680A 1999-10-22 2000-09-28 Mg ALLOY PRECISION PRESSURE-FORMING METHOD AND ITS FORMING APPARATUS, AND Mg ALLOY FORMED PRODUCT PRODUCED BY THIS METHOD Pending JP2002059252A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000295680A JP2002059252A (en) 1999-10-22 2000-09-28 Mg ALLOY PRECISION PRESSURE-FORMING METHOD AND ITS FORMING APPARATUS, AND Mg ALLOY FORMED PRODUCT PRODUCED BY THIS METHOD
PCT/JP2000/007227 WO2001030519A1 (en) 1999-10-22 2000-10-18 Mg ALLOY PRECISION PRESSURE MOLDING METHOD AND MOLDING DEVICE THEREFOR AND Mg ALLOY MOLDING PRODUCED THEREBY
AU79475/00A AU7947500A (en) 1999-10-22 2000-10-18 Mg alloy precision pressure molding method and molding device therefor and mg alloy molding produced thereby
TW89122128A TW527239B (en) 1999-10-22 2000-10-20 Mg alloy precision pressure-forming method and its forming apparatus, and Mg alloy formed product produced by this method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP33837899 1999-10-22
JP2000-171143 2000-06-07
JP11-338378 2000-06-07
JP2000171143 2000-06-07
JP2000295680A JP2002059252A (en) 1999-10-22 2000-09-28 Mg ALLOY PRECISION PRESSURE-FORMING METHOD AND ITS FORMING APPARATUS, AND Mg ALLOY FORMED PRODUCT PRODUCED BY THIS METHOD

Publications (1)

Publication Number Publication Date
JP2002059252A true JP2002059252A (en) 2002-02-26

Family

ID=27340877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000295680A Pending JP2002059252A (en) 1999-10-22 2000-09-28 Mg ALLOY PRECISION PRESSURE-FORMING METHOD AND ITS FORMING APPARATUS, AND Mg ALLOY FORMED PRODUCT PRODUCED BY THIS METHOD

Country Status (4)

Country Link
JP (1) JP2002059252A (en)
AU (1) AU7947500A (en)
TW (1) TW527239B (en)
WO (1) WO2001030519A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297433A (en) * 2005-04-19 2006-11-02 Kyocera Chemical Corp Method for molding magnesium alloy, and molding die for magnesium alloy
JP2010501721A (en) * 2006-08-18 2010-01-21 マグオンテック ゲーエムベーハー Casting method and alloy composition
JP2011067838A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp Method of casting semi-molten metal and apparatus of casting semi-molten metal
JP2012157887A (en) * 2011-01-31 2012-08-23 Kurodite Kogyo Kk Mold structure
CN105108112A (en) * 2015-09-06 2015-12-02 无锡贺邦金属制品有限公司 Metal die casting technology
JP2017030050A (en) * 2015-08-05 2017-02-09 中北大学 Composite pressing casting method of one kind of magnesium alloy odd-shaped part
JP2017154158A (en) * 2016-03-02 2017-09-07 株式会社デンソー Casting apparatus and manufacturing method for cast product
US9943904B2 (en) * 2004-06-30 2018-04-17 Sumitomo Electric Industries, Ltd. Producing method for magnesium alloy material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327993C (en) * 2005-08-02 2007-07-25 陆如辉 Press casting mould of magnesium alloy gear box
EP3026137B1 (en) * 2007-06-28 2018-02-21 Sumitomo Electric Industries, Ltd. Magnesium alloy plate
CN110722125A (en) * 2019-11-27 2020-01-24 深圳市昊翔压铸制品有限公司 Casting and forging integrated die-casting method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299758A (en) * 1989-05-15 1990-12-12 Kobe Steel Ltd Hot chamber type die casting machine for magnesium
JPH079106A (en) * 1993-06-25 1995-01-13 Olympus Optical Co Ltd Compression casting method
JPH10263781A (en) * 1997-03-24 1998-10-06 Asahi Tec Corp Die casting device for mg alloy
JPH11156513A (en) * 1997-11-28 1999-06-15 Asahi Tec Corp Casting method of metallic member and mold for casting

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9943904B2 (en) * 2004-06-30 2018-04-17 Sumitomo Electric Industries, Ltd. Producing method for magnesium alloy material
JP2006297433A (en) * 2005-04-19 2006-11-02 Kyocera Chemical Corp Method for molding magnesium alloy, and molding die for magnesium alloy
JP2010501721A (en) * 2006-08-18 2010-01-21 マグオンテック ゲーエムベーハー Casting method and alloy composition
JP2011067838A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp Method of casting semi-molten metal and apparatus of casting semi-molten metal
JP2012157887A (en) * 2011-01-31 2012-08-23 Kurodite Kogyo Kk Mold structure
JP2017030050A (en) * 2015-08-05 2017-02-09 中北大学 Composite pressing casting method of one kind of magnesium alloy odd-shaped part
CN105108112A (en) * 2015-09-06 2015-12-02 无锡贺邦金属制品有限公司 Metal die casting technology
JP2017154158A (en) * 2016-03-02 2017-09-07 株式会社デンソー Casting apparatus and manufacturing method for cast product

Also Published As

Publication number Publication date
AU7947500A (en) 2001-05-08
TW527239B (en) 2003-04-11
WO2001030519A1 (en) 2001-05-03

Similar Documents

Publication Publication Date Title
JP2002059252A (en) Mg ALLOY PRECISION PRESSURE-FORMING METHOD AND ITS FORMING APPARATUS, AND Mg ALLOY FORMED PRODUCT PRODUCED BY THIS METHOD
WO2015053373A1 (en) Semisolid casting and forging device and method, and cast and forged product
JP3475707B2 (en) Method and apparatus for semi-solid injection molding of metal
CN106378432B (en) A method of aluminium alloy knuckle is produced with Horizontal type extrusion casting machine
WO2018196263A1 (en) Upsetting process and apparatus for billet with ultrahigh height to diameter ratio
EP0968781B1 (en) Method and apparatus for semi-molten metal injection molding
US6334478B2 (en) Mold structure for injection molding of a light alloy and method of injection molding a light alloy using the same
CN109794590B (en) Device and method for casting castings by semi-solid double extrusion assisted by local ultrasound
US20160250684A1 (en) Die-casting apparatus, die-casting method, and diecast article
CN107900305A (en) A kind of production method of automobile control arm
GB2056338A (en) Die-casting method and apparatus
JP2004122146A (en) High-pressure casting method for thick-walled product
CN109136703A (en) A kind of ZK60 magnesium alloy and preparation method thereof
CN109926564B (en) Pulping and forming integrated device and method for ZCuSn10P1 alloy semi-solid slurry
US7165598B2 (en) Magnesium alloy and methods for making
Sharma A Research Paper on Squeeze Casting
KR100756422B1 (en) Method for fabricating metal wire rod by melt extrusion and machine for its method
US20030219618A1 (en) Ribbed die cast product
CN108913970A (en) A kind of WE43 magnesium alloy and preparation method thereof
CN219944515U (en) Die with adjustable size
CN219924515U (en) Die casting die for producing thick-wall parts of high-strength electric bicycle folder
JPH09241784A (en) Die cast product
JP2002079363A (en) Low velocity high pressure casting method
JPS63215361A (en) Casting method
KR20240145266A (en) Internal defect control method of die-casting body parts