WO2001029888A1 - Method for the cleaning of a monocrystalline silicon semi-conductor disk - Google Patents

Method for the cleaning of a monocrystalline silicon semi-conductor disk Download PDF

Info

Publication number
WO2001029888A1
WO2001029888A1 PCT/DE2000/003498 DE0003498W WO0129888A1 WO 2001029888 A1 WO2001029888 A1 WO 2001029888A1 DE 0003498 W DE0003498 W DE 0003498W WO 0129888 A1 WO0129888 A1 WO 0129888A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
main surface
semiconductor wafer
temperature treatment
getter layer
Prior art date
Application number
PCT/DE2000/003498
Other languages
German (de)
French (fr)
Inventor
Joachim HÖPFNER
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2001029888A1 publication Critical patent/WO2001029888A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species

Definitions

  • the invention relates to a method for cleaning a monocrystalline silicon semiconductor wafer from metal and / or rare earth metal substances according to the preamble of patent claim 1.
  • DRAMs microelectronic memory elements
  • oxide or nitride layers as the storage dielectric, which have a dielectric constant of at most about 8.
  • FRAMs non-volatile memories
  • new capacitor materials dielectrics or ferroelectrics
  • Pb (Zr, Ti) 0 3 [PZT], SrBi 2 Ta 2 0 9 [SBT], SrTi0 3 [ST] and (Ba, Sr) Ti0 3 [BST] are known .
  • the structure of such structures requires the deposition of the novel high-epsilon dielectrics / ferroelectrics in an oxygen atmosphere, and that - usually multiple - annealing of the partially processed Si semiconductor wafer at temperatures above 550 ° C.
  • a major problem in this connection is the contamination of the silicon crystal with platinum. Even relatively low contamination of platinum in silicon can lead to a reduction in the charge carrier lifespan by orders of magnitude. In the case of certain components, such as SIPMOS components, this fact is exploited by specifically induced platinum impurities in order to specifically reduce the lifespan of minority charge carriers. With other components, however, undesirable higher platinum contamination, ie> 10 12 atoms / cm 2, can already lead to total failure of the components. In addition to process-related contamination, cross-contamination from the devices (vacuum tweezers, storage plates, chucks) can also occur and thereby contaminate the back of the afer.
  • a getter process is known in which, after the component production, a protective layer made of BPSG or PSG is applied to a front side of a semiconductor wafer and the back side of the wafer is roughened using a chemical mechanical planarization and a getter substance , such as phosphorus, to be applied thereon and introduced into the back of the wafer.
  • the wafer is then subjected to a temperature treatment in order to drive the getter substance deeper into the wafer and to cause mobile contaminants, such as platinum, to accumulate at the phosphorus getter centers. Since two types of getter centers are created with this method, namely, on the one hand, the dislocations generated by the chemical-mechanical planarization and, on the other hand, the phosphorus impurities introduced by the diffusion, undesirable substances can be saved efficiently.
  • such a cleaning process is characterized in that a getter layer near the surface is produced by introducing ions of at least one specific element through at least one main surface of the semiconductor wafer into a zone near the surface,
  • the metal and / or rare earth metal substances and the introduced ions are gettered in a temperature treatment step at crystal dislocations to form complexes,
  • the getter layer is removed from the at least one main surface in a wet chemical etching step.
  • This method is particularly efficient in the case of platinum as an impurity and phosphorus and / or boron as the element of the ions introduced.
  • This is based on the knowledge that the introduction of P + or B + ions into the silicon crystal creates dislocations and that the introduced P + ions or the B + ions form complexes with the platinum atoms preferably at the dislocations, which can be removed from the main surface of the semiconductor wafer in the subsequent etching step, for example using an HF / HN0 3 mixture and optionally aftertreatment with HN0 3 .
  • the ions can be introduced by plasma doping (plasma doping) or by ion implantation.
  • Plasma doping can generally achieve a higher surface concentration.
  • An ion implantation is carried out, for example, with a dose of 10 18 -10 20 atoms / cm 2 .
  • the method according to the invention can be used on the one hand as an isolated cleaning method on a semiconductor wafer. However, it can also be integrated into a processing method of a semiconductor component, a semiconductor component being processed on a main surface of a silicon semiconductor wafer and a cleaning method according to the invention being carried out on the other main surface in the course of processing.
  • the temperature treatment step can advantageously be carried out at a suitable point in time, so that it simultaneously causes gettering of the foreign substances and fulfills a function provided in the processing of the semiconductor component.
  • the invention is explained below on the basis of an exemplary embodiment of the processing of a DRAM memory cell.
  • the layer sequence of a DRAM memory cell formed in an Si semiconductor wafer with a switching transistor and high-epsilon or ferroelectric stack capacitor is shown in a schematic manner.
  • An N-channel MOS transistor is built on a p-doped Si semiconductor substrate 1 by means of conventional planar-technical methods (layer deposition, layer structuring using lithography and etching techniques, layer doping).
  • n + -doped drain region 2 is separated from an n + -doped source region 3 via an intermediate channel 4 made of substrate material.
  • a thin gate oxide layer 5 lies above the channel 4.
  • a polysilicon gate electrode 6 is attached to the gate oxide layer 5.
  • a cover oxide layer 7 is deposited, which comprises a contact hole 8.
  • the contact hole 8 is connected to an electrical Closing structure 9 (so-called "plug") consisting of polysilicon filled.
  • a capacitor 10 is implemented above the cover oxide layer 7.
  • the capacitor 10 has a lower electrode 11 (so-called “bottom electrode”), an upper electrode 12 and, in between, a high-epsilon dielectric / ferroelectric 13.
  • MOD Metal Organic Deposition
  • MOCVD Metal Organic Chemical Vapor Deposition
  • the high-epsilon dielectric / ferroelectric 13 may have to be annealed several times (“conditioned”) in an oxygen-containing atmosphere at temperatures of about 550-800 ° C. To avoid an undesired chemical reaction of the high epsilon
  • Dielectric / ferroelectric 13 with electrodes 11, 12 are made of Pt (or another sufficiently temperature-stable and inert material).
  • Bi, Ba, Sr can diffuse out of the high-epsilon dielectric / ferroelectric material 13 through the lower Pt electrode 11.
  • Pt also has a high diffusibility at temperatures above about 550 ° C. in Si.
  • a continuous and highly conductive barrier layer 14 made of TiN, TaN, Ir, Ir0 2 , Mo-Si 2 or another suitable material is therefore provided below the lower Pt electrode 11.
  • the barrier layer 14 is also produced by a deposition process (and possibly a subsequent tempering step), which is carried out according to the layer sequence shown before the deposition of the Pt electrodes 11, 12 and the high-epsilon dielectric / ferroelectric 13.
  • a getter layer 15 is produced on the rear side of the Si semiconductor wafer before such a temperature treatment step.
  • This getter layer 15 is produced, for example, by implanting phosphorus or boron ions to a depth close to the surface of the back of the semiconductor wafer.
  • Typical implantation doses are in the range 10 18 -10 20 atoms / cm 2 , whereby the surface concentration should be an order of magnitude higher.
  • plasma doping plasma doping (plasma doping) can also be carried out.
  • phosphorus and boron induces internal stress in the silicon crystal, which causes dislocations. These dislocations are the nucleus for Pt-P or Pt-B complexes. These complexes can be removed relatively easily in wet chemical solutions without platinum re-attaching to silicon. In this wet chemical etching step, for example, an HF / HN0 3 mixture can be used. However, there are other acid mixtures, such as aqua regia. Aftertreatment with HN0 3 may be desirable or necessary.
  • the high-epsilon dielectric / ferroelectric 13 has to be annealed several times in an oxygen-containing atmosphere at temperatures of about 550-800 ° C.
  • These temperature treatment steps can be used in such a way that they simultaneously serve to ensure that the foreign substances diffuse to the getter centers in the cleaning process according to the invention. It is thus possible to carry out an ion implantation on the back of the wafer to produce a getter layer 15 before each temperature treatment provided for the component production and after the temperature treatment step the getter layer 15, or mainly the Pt-P complexes in the getter Layer 15 can be removed by a wet chemical etching step. As a result, the temperature treatment steps required anyway when processing the semiconductor component can additionally be used in the getter process.
  • the getter layer 15 can accordingly be generated before, during or after the manufacture of the MOS transistor 2, 3, 4, 5, 6 by ion implantation and removed by a wet chemical etching step, a temperature treatment step being always interposed.

Abstract

The invention relates to a method for cleaning platinum impurities or other metal and/or rare earth metal substances from a monocrystalline silicium semi-conductor disk (1). A getter layer (15) is produced on a main surface by application of predefined ions. Non-desired substances, together with inserted ions, are gettered to crystal dislocations in a temperature treatment step to form complexes. Said getter layer (15) is removed from the main surface in a final wet chemical etching step.

Description

Beschreibungdescription
Verfahren zur Reinigung einer monokristallinen Silizium- HalbleiterscheibeProcess for cleaning a monocrystalline silicon semiconductor wafer
Die Erfindung betrifft ein Verfahren zur Reinigung einer monokristallinen Silizium-Halbleiterscheibe von Metall - und/oder Seltenerdmetall -Substanzen nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for cleaning a monocrystalline silicon semiconductor wafer from metal and / or rare earth metal substances according to the preamble of patent claim 1.
Konventionelle mikroelektronische Speicherelemente (DRAMs) benutzen als Speicherdielektrikum meist Oxid- oder Nitridschichten, die eine Dielekrizitätskonstante von maximal etwa 8 aufweisen. Zur Verkleinerung des Speicherkondensators sowie zur Herstellung von nichtfluchtigen Speichern (FRAMs) werden "neuartige" Kondensatormaterialien (Dielektrika oder Ferro- elektrika) mit deutlich höheren Dielektrizitätskonstanten benötigt. Hierfür sind aus der gattungsbildenden Publikation "Neue Dielektrika für Gbit-Speicherchips" von . Hönlein, Phys. Bl . 55 (1999), Seiten 51-53 die Kondensatormaterialien Pb(Zr,Ti)03 [PZT] , SrBi2Ta209 [SBT] , SrTi03 [ST] und (Ba,Sr)Ti03 [BST] bekannt.Conventional microelectronic memory elements (DRAMs) mostly use oxide or nitride layers as the storage dielectric, which have a dielectric constant of at most about 8. To reduce the size of the storage capacitor and to manufacture non-volatile memories (FRAMs), "new" capacitor materials (dielectrics or ferroelectrics) with significantly higher dielectric constants are required. The generic publication "New Dielectrics for Gbit Memory Chips" by. Hönlein, phys. Bl. 55 (1999), pages 51-53 the capacitor materials Pb (Zr, Ti) 0 3 [PZT], SrBi 2 Ta 2 0 9 [SBT], SrTi0 3 [ST] and (Ba, Sr) Ti0 3 [BST] are known ,
Die Verwendung dieser neuartigen Hoch-Epsilon-Dielektri- ka/Ferroelektrika bereitet aus verschiedenen Gründen Probleme. Zunächst lassen sich diese neuartigen Materialien nicht mehr mit dem traditionellen Elektrodenmaterial (Poly-) Silizium kombinieren. Deshalb müssen inerte Elektrodenmaterialien wie beispielsweise Pt oder leitfähige Oxide (z.B. Ru02) ein- gesetzt werden. Ferner muß zwischen dem Elektrodenmaterial und der leitfähigen Anschlußstruktur (Plug) zum Transistor eine Diffusionsbarriere (z.B. aus TiN, TaN, Ir, Ir02 und Mo- Si2) eingefügt werden.The use of these new high-epsilon dielectrics / ferroelectrics presents problems for various reasons. First of all, these new materials can no longer be combined with the traditional electrode material (poly) silicon. Inert electrode materials such as Pt or conductive oxides (eg Ru0 2 ) must therefore be used. Furthermore, a diffusion barrier (eg made of TiN, TaN, Ir, Ir0 2 and Mo-Si 2 ) must be inserted between the electrode material and the conductive connection structure (plug) to the transistor.
Schließlich erfordert der Aufbau solcher Strukturen das Abscheiden der neuartigen Hoch-Epsilon-Dielektrika/Ferroelek- trika in einer Sauerstoff-Atmosphäre und das - üblicherweise mehrfache - Tempern der bereits teilweise prozessierten Si-Halbleiterscheibe bei Temperaturen oberhalb 550 °C.Finally, the structure of such structures requires the deposition of the novel high-epsilon dielectrics / ferroelectrics in an oxygen atmosphere, and that - usually multiple - annealing of the partially processed Si semiconductor wafer at temperatures above 550 ° C.
Der Einsatz dieser neuartigen Substanzen (Metalle und Sel- tenerdmetalle) für das Hoch-Epsilon-Dielektrikum/Ferroelek- trikum, die Elektroden und die Barriereschicht in Verbindung mit dem Erfordernis, hohe, Diffusionsvorgänge begünstigende Prozeßtemperaturen verwenden zu müssen, bedeutet in der Praxis ein erheblich erhöhtes Verunreinigungs- oder Konta- minationsrisiko der Si-Halbleiterscheibe bei der Fertigung.In practice, the use of these novel substances (metals and rare earth metals) for the high-epsilon dielectric / ferroelectric, the electrodes and the barrier layer in connection with the need to use high process temperatures which favor diffusion processes means a considerable amount increased risk of contamination or contamination of the Si semiconductor wafer during production.
Ein großes Problem stellt in diesem Zusammenhang die Kontamination des Siliziumkristalls mit Platin dar. Bereits relativ geringe Verunreinigungen von Platin in Silizium können zu ei- ner Verringerung der Ladungsträgerlebensdauer um Größenordnungen führen. Bei bestimmten Bauelementen, wie beispielsweise SIPMOS-Bauelementen, wird diese Tatsache durch gezielt herbeigeführte Platin-Verunreinigungen dazu ausgenutzt, die Lebensdauer von Minoritätsladungsträgern gezielt zu verrin- gern. Bei anderen Bauelementen können jedoch unerwünscht auftretende höhere Platin-Verunreinigungen, d.h. > 1012 Atome/cm2 bereits zu Totalausfällen der Bauelemente führen. Außer prozeßbedingten Kontaminationen können auch Querkontaminationen durch die Geräte (Vakuum-Pinzetten, Ablage- teller, Chucks) selbst auftreten und dabei auch die afer- Rückseite verunreinigen.A major problem in this connection is the contamination of the silicon crystal with platinum. Even relatively low contamination of platinum in silicon can lead to a reduction in the charge carrier lifespan by orders of magnitude. In the case of certain components, such as SIPMOS components, this fact is exploited by specifically induced platinum impurities in order to specifically reduce the lifespan of minority charge carriers. With other components, however, undesirable higher platinum contamination, ie> 10 12 atoms / cm 2, can already lead to total failure of the components. In addition to process-related contamination, cross-contamination from the devices (vacuum tweezers, storage plates, chucks) can also occur and thereby contaminate the back of the afer.
Da Platin bereits bei Temperaturen ab 550°C relativ schnell über Zwischengitterplätze im Silizium diffundiert, können Temperaturbehandlungsschritte im Bauelement-Herstellungsverfahren, die höhere Temperaturen verwenden, dazu führen, daß in der Umgebung des afers vorhandene Platin-Verunreinigungen in den Kristall eindringen oder bereits im Kristall vorhandene Platin-Verunreinigungen in die Bauelementregionen diffun- dieren und diese somit unbrauchbar machen. Aufwendige Reinigungsversuche auf gezielt verunreinigten Silizium-Scheiben (spin-on Solutions) haben gezeigt, daß ganz besonders Platin nicht mehr vollständig von der Silizium-Oberfläche entfernt werden kann. Es tritt eine Art Wiederanlagerung auf, bei welcher an gezielt verunreinigten Silizium-Scheiben nach Abtragen von bis zu 5 μm Silizium noch immer die gleiche Verunrei- nigung von 3 x 1012 Atome/cm2 Platin gemessen wird. Auch Komplexbildner, wie TEFO, die den Ätzlösungen beigemischt werden, brachten bisher nicht das gewünschte Ergebnis.Since platinum diffuses relatively quickly through interstitial sites in silicon even at temperatures from 550 ° C, temperature treatment steps in the component manufacturing process that use higher temperatures can lead to platinum impurities present in the area surrounding it penetrating into the crystal or already into the crystal Existing platinum contaminants diffuse into the component regions and thus make them unusable. Extensive cleaning tests on specifically contaminated silicon wafers (spin-on solutions) have shown that platinum in particular cannot be completely removed from the silicon surface. A kind of redeposition occurs, in which the same contamination of 3 x 10 12 atoms / cm 2 platinum is still measured on selectively contaminated silicon wafers after removal of up to 5 μm silicon. Even complexing agents such as TEFO, which are added to the etching solutions, have so far not achieved the desired result.
Es ist bereits seit längerem bekannt, unerwünschte Substanzen in Halbleiter-Kristallen zu gettern, d.h. an gezielt erzeugten Störstellen, wie implantierten Fremdatomen oder -ionen, aus diesen untereinander und/oder mit den Atomen des Wirts- gitters gebildeten Komplexen, Kristallversetzungen oder sonstigen Kristallfehlern oder dergleichen fernab von der Bau- elementregion anzulagern.It has long been known to getter unwanted substances in semiconductor crystals, i.e. to be deposited at deliberately generated defects, such as implanted foreign atoms or ions, from these complexes formed among themselves and / or with the atoms of the host lattice, crystal dislocations or other crystal defects or the like far from the component region.
Aus der U. S . -A-5 , 223 , 734 ist ein Getter-Prozeß bekannt, bei welchem nach der Bauelementherstellung auf einer Vorderseite eines Halbleiterwafers eine Schutzschicht aus BPSG oder PSG aufzubringen und die Rückseite des Wafers unter Verwendung einer chemisch-mechanischen Planarisierung aufzurauhen und eine Getter-Substanz, wie Phosphor, darauf aufzutragen und in die Rückseite des Wafers einzubringen. Anschließend wird der Wafer einer Temperaturbehandlung ausgesetzt, um die Getter- Substanz tiefer in den Wafer einzutreiben und eine Anlagerung mobiler Verunreinigungen, wie Platin, an den Phosphor-Getter- Zentren zu veranlassen. Da bei diesem Verfahren zweierlei Getter-Zentren, nämlich zum einen die durch das chemischmechanische Planarisieren erzeugten Versetzungen und zum an- deren die durch die Diffusion eingebrachten Phosphor-Störstellen erzeugt werden können unerwünschte Substanzen effizient gegettert werden.From the U.S. -A-5, 223, 734 a getter process is known in which, after the component production, a protective layer made of BPSG or PSG is applied to a front side of a semiconductor wafer and the back side of the wafer is roughened using a chemical mechanical planarization and a getter substance , such as phosphorus, to be applied thereon and introduced into the back of the wafer. The wafer is then subjected to a temperature treatment in order to drive the getter substance deeper into the wafer and to cause mobile contaminants, such as platinum, to accumulate at the phosphorus getter centers. Since two types of getter centers are created with this method, namely, on the one hand, the dislocations generated by the chemical-mechanical planarization and, on the other hand, the phosphorus impurities introduced by the diffusion, undesirable substances can be saved efficiently.
Ferner ist aus der U. S . -A-5, 840, 590 eine Getter-Technik be- kannt , bei der in einen Silizium-Wafer Helium-Ionen implantiert werden, die die Eigenschaft haben, sich im Kristall zu größeren Komplexen zusammenzulagern. Ein nachfolgender Tempe- raturbehandlungsschritt bewirkt das Ausgasen der Helium- Einschlüsse aus dem Kristall, so daß relativ große Leerstellen oder Einschlüsse in dem Kristall zurückbleiben, an deren inneren Oberflächen freie Silizium-Bindungen ("dangling bonds") verbleiben, die als effiziente Getter-Zentren wirken.Furthermore, from the U.S. -A-5, 840, 590 discloses a getter technique in which helium ions are implanted in a silicon wafer, which have the property of aggregating to form larger complexes in the crystal. A subsequent temp The temperature treatment step causes the helium inclusions to be outgassed from the crystal, so that relatively large vacancies or inclusions remain in the crystal, on the inner surfaces of which free silicon bonds ("dangling bonds") remain, which act as efficient getter centers.
Beide genannten Verfahren haben die Eigenschaft, daß bei ihrer Anwendung in Bauelement-Herstellungsprozessen eine Region der Halbleiterscheibe, in der Regel deren Rückseite, gezielt geopfert wird, um darin unerwünschte Fremdsubstanzen einzulagern, während in einer davon abgewandten Region funktionsfähige Bauelemente hergestellt werden. Es kann jedoch aus verschiedenen Gründen erstrebenswert sein, die unerwünschten Substanzen zur Gänze aus dem Halbleiterkristall zu entfernen. Zum einen können die durch Getter-Technik eingefangenenBoth of these methods have the property that when they are used in component manufacturing processes, a region of the semiconductor wafer, as a rule the rear side thereof, is deliberately sacrificed in order to store undesired foreign substances therein, while functional components are produced in a region facing away from it. However, it can be desirable for various reasons to remove the undesirable substances entirely from the semiconductor crystal. On the one hand, those captured by getter technology can
Fremdatome unter bestimmten äußeren Einwirkungen, wie Druck oder Temperatur, wieder aus den Getter-Zentren herausgelöst werden und in die Bauelementregion diffundieren, so daß sie die Funktionsfähigkeit der Bauelemente nachträglich beein- trächtigen können. Zum anderen erhält man damit die Möglichkeit, sämtliche Regionen des Wafers und somit auch die WaferRückseite für die Herstellung von Bauelementen nutzbar zu machen.Foreign atoms under certain external influences, such as pressure or temperature, are released from the getter centers and diffuse into the component region, so that they can subsequently impair the functionality of the components. On the other hand, this gives you the opportunity to make all regions of the wafer and thus the back of the wafer usable for the production of components.
Es ist demgemäß Aufgabe der vorliegenden Erfindung, ein Verfahren zur Reinigung einer monokristallinen Silizium-Halbleiterscheibe von Metall- und/oder Seltenerdmetall-Substanzen anzugeben, bei welchem die unerwünschten Substanzen gänzlich aus dem Halbleiterkristall entfernt werden.It is therefore an object of the present invention to provide a method for cleaning a monocrystalline silicon semiconductor wafer from metal and / or rare earth metal substances, in which the undesired substances are completely removed from the semiconductor crystal.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.This object is achieved by the characterizing features of patent claim 1.
Dementsprechend zeichnet sich ein derartiges Reinigungsver- fahren dadurch aus, daß - eine oberflächennahe Getter-Schicht dadurch erzeugt wird, daß Ionen mindestens eines bestimmten Elements durch mindestens eine Hauptoberfläche der Halbleiterscheibe in eine oberflächennahe Zone eingebracht werden,Accordingly, such a cleaning process is characterized in that a getter layer near the surface is produced by introducing ions of at least one specific element through at least one main surface of the semiconductor wafer into a zone near the surface,
- die Metall- und/oder Seltenerdmetall-Substanzen und die eingebrachten Ionen in einem Temperaturbehandlungsschritt an Kristallversetzungen unter Bildung von Komplexen gegettert werden,the metal and / or rare earth metal substances and the introduced ions are gettered in a temperature treatment step at crystal dislocations to form complexes,
- in einem naßchemischen Ätzschritt die Getter-Schicht von der mindestens einen Hauptoberfläche entfernt wird.- The getter layer is removed from the at least one main surface in a wet chemical etching step.
Dieses Verfahren ist besonders effizient im Falle von Platin als Verunreinigung und Phosphor und/oder Bor als das Element der eingebrachten Ionen. Dem liegt die Erkenntnis zugrunde, daß das Einbringen von P+- oder B+- Ionen in den Silizium-Kristall Versetzungen erzeugt und die eingebrachten P+- Ionen oder die B+- Ionen mit den Platin-Atomen vorzugsweise an den Versetzungen Komplexe bilden, die in dem nachfolgenden Ätz- schritt, beispielsweise unter Verwendung einer HF/HN03- Mischung und gegebenenfalls einer Nachbehandlung mit HN03 von der Hauptoberfläche der Halbleiterscheibe entfernt werden können .This method is particularly efficient in the case of platinum as an impurity and phosphorus and / or boron as the element of the ions introduced. This is based on the knowledge that the introduction of P + or B + ions into the silicon crystal creates dislocations and that the introduced P + ions or the B + ions form complexes with the platinum atoms preferably at the dislocations, which can be removed from the main surface of the semiconductor wafer in the subsequent etching step, for example using an HF / HN0 3 mixture and optionally aftertreatment with HN0 3 .
Das Einbringen der Ionen kann durch Plasmadotierung (Plasmadoping) oder durch Ionenimplantation erfolgen. Durch Plasmadoping kann man im allgemeinen eine höhere Öberflächenkon- zentration erzielen. Eine Ionen- Implantation wird beispiels- weise mit einer Dosis von 1018-1020 Atome/cm2 durchgeführt.The ions can be introduced by plasma doping (plasma doping) or by ion implantation. Plasma doping can generally achieve a higher surface concentration. An ion implantation is carried out, for example, with a dose of 10 18 -10 20 atoms / cm 2 .
Nach dem Einbringen der Ionen erfolgt ein Temperaturbehandlungsschritt, bei welchem die im Halbleiterkristall vorhandenen Platin-Atome verstärkt diffundieren und sich mit den ein- gebrachten Ionen an den Versetzungen zu mehr oder weniger größeren Komplexen zusammenlagern. Das erfindungsgemäße Verfahren kann zum einen als isoliertes Reinigungsverfahren an einer Halbleiterscheibe angewandt werden. Es kann jedoch ebenso in ein Prozessierungsverfahren eines Halbleiterbauelements integriert werden, wobei auf einer Hauptoberfläche einer Silizium-Halbleiterscheibe ein Halbleiterbauelement prozessiert wird und im Verlaufe der Prozessierung an der anderen Hauptoberfläche ein erfindungsgemäßes Reinigungsverfahren durchgeführt wird. Vorteilhafterweise kann dabei der Temperaturbehandlungsschritt zu einem geeigne- ten Zeitpunkt ausgeführt werden, so daß er gleichzeitig das Gettern der Fremdsubstanzen bewirkt und eine in der Prozessierung des Halbleiterbauelements vorgesehene Funktion erfüllt.After the ions have been introduced, there is a temperature treatment step in which the platinum atoms present in the semiconductor crystal diffuse to a greater extent and combine with the ions introduced at the dislocations to form more or less large complexes. The method according to the invention can be used on the one hand as an isolated cleaning method on a semiconductor wafer. However, it can also be integrated into a processing method of a semiconductor component, a semiconductor component being processed on a main surface of a silicon semiconductor wafer and a cleaning method according to the invention being carried out on the other main surface in the course of processing. The temperature treatment step can advantageously be carried out at a suitable point in time, so that it simultaneously causes gettering of the foreign substances and fulfills a function provided in the processing of the semiconductor component.
Die Erfindung wird nachfolgend anhand eines Ausführungsbei- spiels der Prozessierung einer DRAM-Speicherzelle erläutert. In der einzigen Figur ist in schematischer Weise die Schichtfolge einer in einer Si-Halbleiterscheibe ausgebildeten DRAM- Speicherzelle mit Schalttransistor und Hoch-Epsilon- oder ferroelektrischem Stack-Kondensator dargestellt.The invention is explained below on the basis of an exemplary embodiment of the processing of a DRAM memory cell. In the single figure, the layer sequence of a DRAM memory cell formed in an Si semiconductor wafer with a switching transistor and high-epsilon or ferroelectric stack capacitor is shown in a schematic manner.
Auf einem p-dotierten Si-Halbleitersubstrat 1 ist mittels üblicher planartechnischer Verfahren (Schichtabscheidung, Schichtstrukturierung unter Verwendung von Lithographie- und Ätztechniken, Schichtdotierung) ein N-Kanal-MOS-Transistor aufgebaut .An N-channel MOS transistor is built on a p-doped Si semiconductor substrate 1 by means of conventional planar-technical methods (layer deposition, layer structuring using lithography and etching techniques, layer doping).
Ein n+-dotierter Drain-Bereich 2 ist von einem n+-dotierten Source-Bereich 3 über einen zwischenliegenden Kanal 4 aus Substratmaterial getrennt. Oberhalb des Kanals 4 liegt eine dünne Gateoxidschicht 5. Auf der Gateoxidschicht 5 ist eine Polysilizium-Gateelektrode 6 angebracht.An n + -doped drain region 2 is separated from an n + -doped source region 3 via an intermediate channel 4 made of substrate material. A thin gate oxide layer 5 lies above the channel 4. A polysilicon gate electrode 6 is attached to the gate oxide layer 5.
Oberhalb des beschriebenen MOS-Transistors 2, 3, 4, 5, 6 ist eine Deckoxidschicht 7 abgelagert, welche ein Kontaktloch 8 umfaßt. Das Kontaktloch 8 ist mit einer elektrischen An- Schlußstruktur 9 (sog. "plug") bestehend aus Polysilizium gefüllt.Above the described MOS transistor 2, 3, 4, 5, 6, a cover oxide layer 7 is deposited, which comprises a contact hole 8. The contact hole 8 is connected to an electrical Closing structure 9 (so-called "plug") consisting of polysilicon filled.
Aufbau und Herstellungsweise der gezeigten Struktur sind be- kannt. Statt des hier dargestellten MOS-Transistors 2, 3, 4, 5, 6 kann auch ein Bipolar-Transistor oder ein sonstiges monolithisches Halbleiter-Funktionselement vorgesehen sein.The structure and method of manufacture of the structure shown are known. Instead of the MOS transistor 2, 3, 4, 5, 6 shown here, a bipolar transistor or another monolithic semiconductor functional element can also be provided.
Oberhalb der Deckoxidschicht 7 ist ein Kondensator 10 reali- siert .A capacitor 10 is implemented above the cover oxide layer 7.
Der Kondensator 10 weist eine untere Elektrode 11 (sog. "Bottom-Elektrode"), eine obere Elektrode 12 und zwischenliegend ein Hoch-Epsilon-Dielektrikum/Ferroelektrikum 13 auf.The capacitor 10 has a lower electrode 11 (so-called “bottom electrode”), an upper electrode 12 and, in between, a high-epsilon dielectric / ferroelectric 13.
Das Hoch-Epsilon-Dielektrikum/Ferroelektrikum 13, beispielsweise PZT, SBT, ST oder BST, wird durch einen MOD- (Metal Or- ganic Deposition) , einen MOCVD- (Metal Organic Chemical Vapor Deposition) Prozeß oder einen Sputterprozeß abgeschieden.The high-epsilon dielectric / ferroelectric 13, for example PZT, SBT, ST or BST, is deposited by a MOD (Metal Organic Deposition), a MOCVD (Metal Organic Chemical Vapor Deposition) process or a sputtering process.
Nach dem Abscheiden des Hoch-Epsilon-Dielektrikums/Ferro- elektrikums 13 muß dieses in einer Sauerstoff -haltigen Atmosphäre bei Temperaturen von etwa 550 - 800°C gegebenenfalls mehrfach getempert ( "konditioniert " ) werden. Zur Vermeidung einer unerwünschten chemischen Reaktion des Hoch-Epsilon-After the high-epsilon dielectric / ferroelectric 13 has been deposited, it may have to be annealed several times (“conditioned”) in an oxygen-containing atmosphere at temperatures of about 550-800 ° C. To avoid an undesired chemical reaction of the high epsilon
Dielektrikums/Ferroelektrikums 13 mit den Elektroden 11, 12 werden diese aus Pt (oder einem anderen ausreichend temperaturstabilen und inerten Material) gefertigt.Dielectric / ferroelectric 13 with electrodes 11, 12 are made of Pt (or another sufficiently temperature-stable and inert material).
Zur Herstellung der Elektroden 11, 12 sind weitere Abscheideprozesse vor und nach dem Abscheiden des Hoch-Epsilon-Dielek- trikums/Ferroelektrikums 13 erforderlich.To produce the electrodes 11, 12, further deposition processes are required before and after the deposition of the high-epsilon dielectric / ferroelectric 13.
Bei dem erwähnten Temperschritt kann z.B. Bi, Ba, Sr aus dem Hoch-Epsilon-Dielektrikum/Ferroelektrikum 13 durch die untere Pt-Elektrode 11 hindurchdiffundieren. Ferner weist Pt bei Temperaturen oberhalb etwa 550 °C eine hohe Diffusionsfähig- keit in Si auf. Zum Schutz der Anschlußstruktur 9 ist daher unterhalb der unteren Pt -Elektrode 11 eine durchgängige und hochleitfähige Barriereschicht 14 aus TiN, TaN, Ir, Ir02, Mo- Si2 oder einem anderen geeigneten Material vorgesehen. Auch die Barriereschicht 14 wird durch einen Abscheideprozeß (und gegebenenfalls einem nachfolgenden Temperschritt) erzeugt, welcher gemäß der dargestellten Schichtfolge vor dem Abscheiden der Pt-Elektroden 11, 12 und des Hoch-Epsilon-Dielektri- kums/Ferroelektrikums 13 ausgeführt wird.In the aforementioned tempering step, Bi, Ba, Sr, for example, can diffuse out of the high-epsilon dielectric / ferroelectric material 13 through the lower Pt electrode 11. Pt also has a high diffusibility at temperatures above about 550 ° C. in Si. To protect the connection structure 9, a continuous and highly conductive barrier layer 14 made of TiN, TaN, Ir, Ir0 2 , Mo-Si 2 or another suitable material is therefore provided below the lower Pt electrode 11. The barrier layer 14 is also produced by a deposition process (and possibly a subsequent tempering step), which is carried out according to the layer sequence shown before the deposition of the Pt electrodes 11, 12 and the high-epsilon dielectric / ferroelectric 13.
Sämtliche der für den Kondensator- und Barriereschichtaufbau benötigten "neuartigen" Substanzen (Metalle und Seltenerdmetalle) könnten bei den erwähnten Abscheideprozessen direkt mit der - üblicherweise freiliegenden - Rückseite der Si- Halbleiterscheibe in Kontakt gekommen sein und in das Halbleitersubstrat eingedrungen sein. Um zu verhindern, daß diese Substanzen in einem nachfolgenden Temperaturbehandlungs- schritt in Richtung der Bauelementregionen diffundieren und diese somit beeinträchtigen, wird vor einem derartigen Tempe- raturbehandlungsschritt auf der Rückseite der Si-Halbleiterscheibe eine Getter-Schicht 15 erzeugt. Diese Getter-Schicht 15 wird beispielsweise dadurch hergestellt, daß Phosphoroder Bor- Ionen bis in eine oberflächennahe Tiefe der Rückseite der Halbleiterscheibe implantiert werden. Typische Implan- tationsdosen liegen im Bereich 1018-1020 Atome/cm2, wobei die Oberflächenkonzentration eine Größenordnung höher liegen sollte. Anstelle einer Implantation kann auch eine Plasmadotierung (Plasmadoping) durchgeführt werden.All of the "novel" substances (metals and rare earth metals) required for the capacitor and barrier layer structure could have come into direct contact with the above-mentioned deposition processes with the - usually exposed - back of the Si semiconductor wafer and have penetrated into the semiconductor substrate. In order to prevent these substances from diffusing in the direction of the component regions in a subsequent temperature treatment step and thus impairing them, a getter layer 15 is produced on the rear side of the Si semiconductor wafer before such a temperature treatment step. This getter layer 15 is produced, for example, by implanting phosphorus or boron ions to a depth close to the surface of the back of the semiconductor wafer. Typical implantation doses are in the range 10 18 -10 20 atoms / cm 2 , whereby the surface concentration should be an order of magnitude higher. Instead of an implantation, plasma doping (plasma doping) can also be carried out.
Durch die Implantation von Phosphor und Bor wird im Silizium- Kristall interner Streß induziert, durch den Versetzungen erzeugt werden. Diese Versetzungen sind die Keimzellen für Pt- P- oder die Pt-B-Komplexe . Diese Komplexe können relativ leicht in naßchemischen Lösungen entfernt werden, ohne daß sich Platin auf Silizium erneut anlagert. Bei diesem naßchemischen Ätzschritt kann beispielsweise eine HF/HN03-Mischung verwendet werden. Es sind jedoch auch andere Säuremischungen, wie beispielsweise Königswasser, denkbar. Unter Umständen ist noch eine Nachbehandlung mit HN03 wünschenswert oder erforderlich.The implantation of phosphorus and boron induces internal stress in the silicon crystal, which causes dislocations. These dislocations are the nucleus for Pt-P or Pt-B complexes. These complexes can be removed relatively easily in wet chemical solutions without platinum re-attaching to silicon. In this wet chemical etching step, for example, an HF / HN0 3 mixture can be used. However, there are other acid mixtures, such as aqua regia. Aftertreatment with HN0 3 may be desirable or necessary.
Wie bereits oben dargelegt, muß das Hoch-Epsilon-Dielektri- kum/Ferroelektrikum 13 in einer Sauerstoff-haltigen Atmosphäre bei Temperaturen von etwa 550-800°C mehrfach getempert werden. Diese Temperaturbehandlungsschritte können derart eingesetzt werden, daß sie gleichzeitig dazu dienen, daß in dem erfindungsgemäßen Reinigungsverfahren die Fremdsubstanzen zu den Getter-Zentren diffundieren. Es kann somit vor jeder für die Bauelementherstellung vorgesehenen Temperaturbehandlung eine Ionen- Implantation an der Wafer-Rückseite zur Erzeugung einer Getter-Schicht 15 durchgeführt werden und nach dem Temperaturbehandlungsschritt die Getter-Schicht 15, bzw. hauptsächlich die Pt-P-Komplexe in der Getter-Schicht 15 durch einen naßchemischen Ätzschritt entfernt werden. Dadurch können die ohnehin bei der Prozessierung des Halbleiterbauelements benötigten Temperaturbehandlungsschritte zusätzlich bei dem Getter-Prozeß eingesetzt werden. Darüber hinaus können natürlich, falls gewünscht und erforderlich, weitere erfindungsgemäße Reinigungsschritte vorgenommen werden. Die Getter-Schicht 15 kann demgemäß vor, während oder nach der Herstellung des MOS-Transistors 2, 3, 4, 5, 6 durch Ionen- Implantation erzeugt und durch einen naßchemischen Ätzschritt entfernt werden, wobei stets ein Temperaturbehandlungsschritt dazwischengeschaltet ist. As already explained above, the high-epsilon dielectric / ferroelectric 13 has to be annealed several times in an oxygen-containing atmosphere at temperatures of about 550-800 ° C. These temperature treatment steps can be used in such a way that they simultaneously serve to ensure that the foreign substances diffuse to the getter centers in the cleaning process according to the invention. It is thus possible to carry out an ion implantation on the back of the wafer to produce a getter layer 15 before each temperature treatment provided for the component production and after the temperature treatment step the getter layer 15, or mainly the Pt-P complexes in the getter Layer 15 can be removed by a wet chemical etching step. As a result, the temperature treatment steps required anyway when processing the semiconductor component can additionally be used in the getter process. In addition, of course, if desired and necessary, further cleaning steps according to the invention can be carried out. The getter layer 15 can accordingly be generated before, during or after the manufacture of the MOS transistor 2, 3, 4, 5, 6 by ion implantation and removed by a wet chemical etching step, a temperature treatment step being always interposed.

Claims

Patentansprüche claims
1. Verfahren zur Reinigung einer monokristallinen Silizium- Halbleiterscheibe (1) von Metall- und/oder Seltenerdmetall - Substanzen, d a d u r c h g e k e n n z e i c h n e t, daß1. A method for cleaning a monocrystalline silicon semiconductor wafer (1) from metal and / or rare earth metal substances, d a d u r c h g e k e n n e e c h e n t that
- eine oberflächennahe Getter-Schicht (15) dadurch erzeugt wird, daß Ionen mindestens eines bestimmten Elements durch mindestens eine Hauptoberfläche der Halbleiterscheibe (1) in eine oberflächennahe Zone eingebracht werden,a near-surface getter layer (15) is produced by introducing ions of at least one specific element through at least one main surface of the semiconductor wafer (1) into a near-surface zone,
- die Metall- und/oder Seltenerdmetall -Substanzen und die eingebrachten Ionen in einem Temperaturbehandlungsschritt an Kristallversetzungen innerhalb der Getter-Schicht (15) unter Bildung von Komplexen gegettert werden, - in einem naßchemischen Ätzschritt die Getter-Schicht (15) von der mindestens einen Hauptoberfläche entfernt wird.- The metal and / or rare earth metal substances and the ions introduced in a temperature treatment step at crystal dislocations within the getter layer (15) are gettered to form complexes, - In a wet chemical etching step, the getter layer (15) of the at least one Main surface is removed.
2. Verfahren nach Anspruch 1 , d a d u r c h g e k e n n z e i c h n e t, daß - die zu entfernende Substanz Platin ist und das Element der implantierten Ionen Phosphor und/oder Bor ist.2. The method of claim 1, d a d u r c h g e k e n n z e i c h n e t that - the substance to be removed is platinum and the element of the implanted ions is phosphorus and / or boron.
3. Verfahren nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t, daß - die Ionen durch eine Implantation eingebracht werden.3. The method of claim 1 or 2, d a d u r c h g e k e n n z e i c h n e t that - the ions are introduced by an implantation.
4. Verfahren nach Anspruch 3 , d a d u r c h g e k e n n z e i c h n e t, daß4. The method of claim 3, d a d u r c h g e k e n n z e i c h n e t that
- die Dosis der Implantation 1018-1020 Atome/cm2 beträgt.- The dose of the implantation is 10 18 -10 20 atoms / cm 2 .
5. Verfahren nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t, daß5. The method according to claim 1 or 2, d a d u r c h g e k e n n z e i c h n e t that
- die Ionen durch eine Plasmadotierung eingebracht werden.- The ions are introduced by plasma doping.
6. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß - bei dem naßchemischen Ätzschritt eine HF/HN03-Mischung verwendet wird und gegebenenfalls eine Nachbehandlung mit HN03 durchgeführt wird .6. The method according to any one of the preceding claims, characterized in that - An HF / HN0 3 mixture is used in the wet chemical etching step and an aftertreatment with HN0 3 is optionally carried out.
7. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß7. The method according to any one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that
- die Verfahrensschritte mehrmals hintereinander durchgeführt werden.- The process steps are carried out several times in succession.
8. Verfahren zur Prozessierung eines Halbleiterbauelements auf einer Hauptoberfläche einer Silizium-Halbleiterscheibe8. Method for processing a semiconductor component on a main surface of a silicon semiconductor wafer
(1), d a d u r c h g e k e n n z e i c h n e t, daß(1 ) , characterized in that
- im Verlaufe der Prozessierung ein Verfahren nach einem der Ansprüche 1 bis 7 an der anderen Hauptoberfläche der Halbleiterscheibe (1) ein- oder mehrmals durchgeführt wird.- In the course of processing, a method according to one of claims 1 to 7 is carried out one or more times on the other main surface of the semiconductor wafer (1).
9. Verfahren nach Anspruch 8 , d a d u r c h g e k e n n z e i c h n e t, daß - mindestens einer der Temperaturbehandlungsschritte gleichzeitig eine Funktion bei der Prozessierung des Halbleiterbauelements erfüllt.9. The method of claim 8, d a d u r c h g e k e n n z e i c h n e t that - at least one of the temperature treatment steps simultaneously fulfills a function in the processing of the semiconductor device.
10. Verfahren nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß10. The method according to claim 9, d a d u r c h g e k e n n z e i c h n e t that
- das Halbleiterbauelement ein Speicherbauelement mit ferro- elektrischem Dielektrikum ist und der mindestens eine Temperaturbehandlungsschritt gleichzeitig der Konditionierung des ferroelektrischen Dielektrikum dient. - The semiconductor component is a memory component with a ferroelectric dielectric and the at least one temperature treatment step serves at the same time to condition the ferroelectric dielectric.
PCT/DE2000/003498 1999-10-20 2000-10-04 Method for the cleaning of a monocrystalline silicon semi-conductor disk WO2001029888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19950563.2 1999-10-20
DE19950563A DE19950563A1 (en) 1999-10-20 1999-10-20 Process for cleaning a monocrystalline silicon semiconductor wafer

Publications (1)

Publication Number Publication Date
WO2001029888A1 true WO2001029888A1 (en) 2001-04-26

Family

ID=7926302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003498 WO2001029888A1 (en) 1999-10-20 2000-10-04 Method for the cleaning of a monocrystalline silicon semi-conductor disk

Country Status (3)

Country Link
DE (1) DE19950563A1 (en)
TW (1) TW517303B (en)
WO (1) WO2001029888A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943636B2 (en) 2004-03-25 2012-05-30 エルピーダメモリ株式会社 Semiconductor device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147126A (en) * 1982-02-26 1983-09-01 Toshiba Corp Formation of thermal oxide film
EP0466014A2 (en) * 1990-07-05 1992-01-15 Kabushiki Kaisha Toshiba External gettering during manufacture of semiconductor devices
US5254504A (en) * 1989-04-13 1993-10-19 Trustees Of The University Of Pennsylvania Method of manufacturing ferroelectric MOSFET sensors
JPH07201872A (en) * 1993-12-28 1995-08-04 Kawasaki Steel Corp Gettering method for semiconductor wafer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137632A (en) * 1990-09-28 1992-05-12 Fujitsu Ltd Manufacture of semiconductor device
TW447144B (en) * 1995-03-27 2001-07-21 Semiconductor Energy Lab Semiconductor device and a method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147126A (en) * 1982-02-26 1983-09-01 Toshiba Corp Formation of thermal oxide film
US5254504A (en) * 1989-04-13 1993-10-19 Trustees Of The University Of Pennsylvania Method of manufacturing ferroelectric MOSFET sensors
EP0466014A2 (en) * 1990-07-05 1992-01-15 Kabushiki Kaisha Toshiba External gettering during manufacture of semiconductor devices
JPH07201872A (en) * 1993-12-28 1995-08-04 Kawasaki Steel Corp Gettering method for semiconductor wafer

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CORREIA A ET AL: "PLATINUM GETTERING IN SILICON BY SILICON PHOSPHIDE PRECIPITATES", JOURNAL OF APPLIED PHYSICS,US,AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 79, no. 4, 15 February 1996 (1996-02-15), pages 2145 - 2147, XP000554561, ISSN: 0021-8979 *
GARBARINO P L ET AL: "GETTERING AND REACTIVE ION ETCHING TO IMPROVE DEVICE LEAKAGES AND YIELDS", IBM TECHNICAL DISCLOSURE BULLETIN,US,IBM CORP. NEW YORK, vol. 20, no. 4, 1 September 1977 (1977-09-01), pages 1389 - 1390, XP002037065, ISSN: 0018-8689 *
HÖNLEIN, W.: "Neue Dielektrika für Gbit Speicherchips", PHYSIKALISCHE BLÄTTER, vol. 55, February 1999 (1999-02-01), pages 51 - 53, XP000981598 *
PATENT ABSTRACTS OF JAPAN vol. 007, no. 264 (E - 212) 24 November 1983 (1983-11-24) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 11 26 December 1995 (1995-12-26) *

Also Published As

Publication number Publication date
TW517303B (en) 2003-01-11
DE19950563A1 (en) 2001-05-03

Similar Documents

Publication Publication Date Title
DE102017117796B4 (en) METHOD FOR FORMING CONTACT CONNECTORS WITH REDUCED CORROSION
DE10000005C1 (en) Method for producing a ferroelectric semiconductor memory
DE69929500T2 (en) Ferroelectric nonvolatile transistor and its manufacturing method
DE69628704T2 (en) Process for producing an oxide film on the surface of a semiconductor substrate
DE112011101181B4 (en) Control of ferroelectricity in dielectric thin films by process-induced monoaxial voltages
EP1128428B1 (en) Method of manufacturing a semiconductor device
DE3334333A1 (en) METHOD FOR PRODUCING A MOS DEVICE WITH SELF-ADJUSTED CONTACTS
DE102004013928A1 (en) Trench isolation with doped oxide trench filling
DE102021110533A1 (en) Oxide semiconductor transistor structure in 3D device and method for its formation
DE19947053C1 (en) Trench capacitor used in the production of integrated circuits or chips comprises a trench formed in a substrate, an insulating collar, a trenched sink, a dielectric layer and a conducting trench filling
DE102009015749B3 (en) Increasing the adhesion of inter-layer dielectric materials of semiconductor devices by suppressing silicide formation at the substrate edge
WO2014048502A1 (en) Method for coating and bonding substrates
EP1504471A1 (en) Layer arrangement and memory arrangement
DE102006025342B4 (en) An insulated gate semiconductor device and manufacturing method therefor
CN1199287C (en) Reduced diffusion of mobile specie from metal oxide ceramic
DE19963500C2 (en) Method for producing a structured layer containing metal oxide, in particular a ferroelectric or paraelectric layer
DE102020119950A1 (en) RESISTIVE STORAGE CELL WITH A CIRCUIT LAYER WITH ONE OR MORE DOTANDES
DE102016121680A1 (en) Semiconductor wafers and semiconductor devices with a barrier layer and method of manufacture
DE10214065B4 (en) A method of making an improved metal silicide region in a silicon-containing conductive region in an integrated circuit
EP1166339A1 (en) Method of processing a monocrystalline semiconductor disk and partially processed semiconductor disk
DE10053171C2 (en) Method for producing a ferroelectric or paraelectric metal oxide-containing layer and a memory component therefrom
DE102019129936A1 (en) RRAM COMPONENT WITH IMPROVED PERFORMANCE
DE10125370C1 (en) Integrated semiconductor circuit manufacturing method has dielectric or ferroelectric layer for integrated capacitors separately heated before reducing into small particles applied semiconductor circuit substrate
WO2001029888A1 (en) Method for the cleaning of a monocrystalline silicon semi-conductor disk
DE3540452A1 (en) METHOD FOR PRODUCING A THIN-LAYER TRANSISTOR

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP