WO2001028422A1 - Mundstück für atemmessgerät - Google Patents

Mundstück für atemmessgerät Download PDF

Info

Publication number
WO2001028422A1
WO2001028422A1 PCT/EP2000/010311 EP0010311W WO0128422A1 WO 2001028422 A1 WO2001028422 A1 WO 2001028422A1 EP 0010311 W EP0010311 W EP 0010311W WO 0128422 A1 WO0128422 A1 WO 0128422A1
Authority
WO
WIPO (PCT)
Prior art keywords
mouthpiece
temperature
heat
breath
breathing
Prior art date
Application number
PCT/EP2000/010311
Other languages
English (en)
French (fr)
Inventor
Edgar Eickeler
Original Assignee
Envitec-Wismar Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Envitec-Wismar Gmbh filed Critical Envitec-Wismar Gmbh
Priority to AU79208/00A priority Critical patent/AU7920800A/en
Publication of WO2001028422A1 publication Critical patent/WO2001028422A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices

Definitions

  • the present invention relates to a mouthpiece for a breath measuring device, in particular a breath alcohol measuring device with integrated breath temperature measurement.
  • breath alcohol measuring devices in use are known, the functional scope of which does not include a breath temperature measurement (cf. for example DE 44 45 447 A1, DE 43 27 312 A1, EP 0 153 883 A1 and DE 29 06 908 A1).
  • the temperature of the exhaled current is not constant in humans, it depends e.g. on the ambient temperature of the air or physical condition (fever).
  • the breathing temperature can vary between 30 ° and 40 ° C.
  • the exhaled air is saturated with water vapor.
  • condensation of water vapor can therefore occur on the mouthpiece walls of a breath alcohol measuring device, as a result of which the gas temperature is influenced. Fluctuations in the breathing temperature lead to measurement errors when determining the alcohol concentration in the breathing gas.
  • Breath alcohol measuring devices have therefore been proposed which have a temperature sensor installed in the respiratory gas flow, the measured value of which is used for targeted compensation of the error with which the measured value of the breath alcohol concentration is affected in the event of fluctuations in the breathing temperature (G. Schoknecht, loc. Cit., DIN / VDE 0405).
  • Such temperature compensation of the breath alcohol measurement signal is directly related to the accuracy of the temperature measurement of the test person's breathed air.
  • breath alcohol measuring devices have an interchangeable mouthpiece into which the subject bites.
  • Interchangeable mouthpieces for breath alcohol measuring devices are described, for example, in WO 98/08436 and DE 32 33 462 A1. It is proposed to make the mouthpieces from polypropylene.
  • a plastic device for generating a pressure drop for a pneumotachograph is disclosed in GB 1 202 911. Condensation of water vapor is to be prevented by the thermal insulation of the plastic body.
  • the temperature sensor is placed directly behind the mouthpiece in an adapter in order to detect the temperature of the breathing gas as early as possible after exhaling. This makes it possible to at least partially compensate for the temperature-related measurement error in breath alcohol measurement.
  • a device should be provided with which the measurement error in breath analysis can be minimized.
  • the present invention thus relates to a mouthpiece for a breath measuring device, which is characterized in that the inner wall of the mouthpiece with which the respiratory gas flow comes into contact consists at least in part of one or more heat-insulating materials such that the respiratory gas flow passes through it the mouthpiece does not experience any significant temperature change.
  • the temperature exchange process between the mouthpiece and the breathing gas is reduced to such an extent by the mouthpiece according to the invention that the accuracy of the subsequent temperature measurement is increased in a manner that is significant for the measurement value error compensation.
  • no significant change in temperature is preferably understood to mean no or such a change in temperature which is so small that it has no or only a minor influence on the measurement value correction, for example in breath alcohol measurement.
  • the temperature change of the exhaled air caused by the interchangeable mouthpiece is preferably not greater than ⁇ 0.2 ° C., particularly preferably not greater than ⁇ 0.1 °, especially at a flow rate of 0.2 l / s and when measuring the temperature after a passage time of 6 seconds C and especially about 0 ° C.
  • the inner wall of the mouthpiece with which the respiratory gas flow comes into contact consists at least partially of a heat-insulating material.
  • the proportion of the inner wall of the mouthpiece, which consists of the heat-insulating material, should be chosen so that the breath flow does not experience any significant temperature change on its way through the mouthpiece.
  • the inner wall of the mouthpiece particularly preferably consists predominantly, advantageously even exclusively, of a heat-insulating material.
  • the inner wall of the mouthpiece can be completely or partially covered or coated with the heat-insulating material, for example.
  • One or more heat insulating materials can be used in a mouthpiece.
  • the entire walls of the mouthpiece according to the invention advantageously consist of one or more heat-insulating materials.
  • thermal conductivity also called thermal conductivity coefficient or coefficient of thermal conductivity
  • the thermal conductivity of a material is defined in accordance with DIN 1341.
  • heat insulating materials having a thermal conductivity of ⁇ 0.1 W / mK are, for example cork, wood and foam, for example of polyurethane, polystyrene or polyvinylchloride, in particular polystyrene ®. Particularly preferably Styropor ® is used as tageisoiierendes material according to the invention.
  • the heat-insulating material used according to the invention must of course have sufficient strength and, in particular if the entire mouthpiece wall consists of the material, also prevent the breathing air from penetrating to the outside.
  • the necessary strength of the material depends on whether only the inner wall of the mouthpiece is lined with the material or whether the entire wall consists of the material. If the entire wall consists of it, the material must be so strong that it ensures safe handling of the mouthpiece.
  • the heat-insulating material is preferably air-impermeable in order to improve its insulation properties.
  • this breathing barrier if present, is designed in such a way that the respiratory gas flow does not experience any significant temperature change when it comes into contact with the breathing barrier. This can be achieved, for example, by the fact that the respiratory lock largely consists of a heat-insulating material.
  • the breathing barrier comprises a thin membrane which is arranged in the mouthpiece in such a way that when the air is blown into the mouthpiece it allows the breathing air to flow past and closes the mouthpiece when air is sucked in.
  • the construction of such breathing locks is known to the person skilled in the art (cf. for example DE 32 33 462 A1)
  • the breathing barrier preferably consists of a membrane that is as thin as possible and has a thermal conductivity that is as small as possible, such as a thin polyethylene or polypropylene film.
  • a thin polyethylene or polypropylene film For example, polyethylene has a thermal conductivity of 0.3 W / mK. Because the membrane is made as thin as possible and from one material exists, which has the lowest possible thermal conductivity, the heat exchange between the membrane and the breathing gas flow and thus the temperature change of the breathing gas when flowing through the mouthpiece is minimized
  • the membrane also particularly advantageously consists of a heat-insulating material with a thermal conductivity of ⁇ 0.1 W / mK.
  • a heat-insulating material with a thermal conductivity of ⁇ 0.1 W / mK.
  • the mouthpiece according to the invention also includes a saliva trap which is arranged in the airway in such a way that droplets of saliva do not get into the measuring device behind them when breathing air is blown through the mouthpiece.
  • a saliva trap which is arranged in the airway in such a way that droplets of saliva do not get into the measuring device behind them when breathing air is blown through the mouthpiece.
  • the constructive design of such saliva traps is known to the person skilled in the art (cf. for example DE 32 33 462 A1).
  • the mouthpiece according to the invention apart from the membrane of the breathing barrier, consists exclusively of a warm insulating material with a thermal conductivity of ⁇ 0.1 W / mK, in particular Styropor ®
  • the present invention also relates to the use of a warm-insulating material with a thermal conductivity ⁇ 0.1 W / mK for the production of a mouthpiece for a breath meter and the use of a mouthpiece according to the invention for a Breath alcohol measuring device, in particular with integrated breath temperature measurement.
  • the use of the mouthpiece according to the invention is not limited to breath alcohol measuring devices, but it can be used advantageously for any breathing measuring device, in particular with breath temperature measurement.
  • Figure 1 shows the perspective view of a particularly preferred embodiment of a mouthpiece according to the invention.
  • FIG. 2 shows a section through a mouthpiece according to the invention along the angle B-B in FIG. 3.
  • FIG. 3 shows a section through an inventive mouthpiece along the line A-A in FIG. 2.
  • FIG. 4 shows the temperature of a test gas after passing through an inventive mouthpiece as a function of time.
  • FIG. 5 shows the temperature of a test gas after passing through a conventional mouthpiece as a function of time.
  • the mouthpiece shown in Figures 1-3 consists of an inlet part 1 which is connected to a base body 3.
  • the mouthpiece has a membrane 2 as a respiratory lock.
  • Inlet part 1 and base body 3 consist entirely of a heat-insulating material such as Styropor ® .
  • the membrane 2 consists of a plastic film, such as a polyethylene film.
  • the mouthpiece has a central bore along its longitudinal axis as a breathing air passage opening, which is interrupted by the membrane 2.
  • a breathing air passage opening which is interrupted by the membrane 2.
  • the base body 3 has cavities 7 which are arranged radially around the air passage opening and which serve as a saliva trap. This saliva trap prevents droplets of saliva from getting through the mouthpiece into the breathing apparatus located behind when blowing breathing air.
  • the temperature change of a test gas when passing through a styrofoam mouthpiece according to the invention and the temperature change of the test gas when passing through a conventional polypropylene mouthpiece (available from Siemens) were measured. There was an adapter with a temperature sensor behind each mouthpiece.
  • test gas was introduced into the mouthpieces at a constant temperature of 32.5 ° C and a flow rate of 0.2 l / s.
  • the temperature at the temperature sensor was measured as a function of time. After 6 seconds the actual temperature of the gas should be reached at the set flow of 0.2 l / s.
  • FIGS. 4 and 5 show the results of the measurements.
  • FIG. 4 showing the measurement result with the mouthpiece according to the invention
  • FIG. 5 the measurement result with the conventional mouthpiece.
  • the diagram also shows the 6-second time interval from the start of the injection to the point in time at which the actual temperature is to be reached.
  • the temperature of the gas emerging from the mouthpiece rises steeply and reaches the actual temperature after about 6 seconds Temperature of the inflowing gas.
  • the measurement curve obtained with the conventional mouthpiece rises flatter and the outflowing gas only reaches approx. 31.5 ° C. after 6 seconds. The experiment was stopped after about 10 seconds without the escaping gas reaching its initial temperature.
  • the configuration of the mouthpiece according to the invention means that the deviation of the temperature of the test gas measured behind the outlet opening compared to the actual temperature at the outlet opening after 6 sea. was only ⁇ 0.1 ° C. This value is well below the temperature difference measured at around 1 ° C in conventional polypropylene mouthpieces.
  • the inventive design of the mouthpiece for a breath measuring device largely prevents temperature exchange between the breathing air and the mouthpiece.
  • the heat-insulating wall of the mouthpiece also largely prevents condensation of water vapor in the mouthpiece.
  • an influence on the temperature of the subject's exhaled air through the mouthpiece is limited to a minimum, so that the following temperature measurement in the respiratory measuring device is highly accurate and can be used, for example, for targeted compensation of the error with which the measured value, for example, in the event of fluctuations in the breathing temperature the breath alcohol concentration is affected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Die Erfindung betrifft ein Mundstück für ein Atemmessgerät, dessen Innenwandung ein wärmeisolierendes Material derart umfasst, dass der Atemgasstrom auf seinem Weg durch das Mundstück keine wesentliche Temperaturänderung erfährt.

Description

Mundstück für Atemmeßgerät
Die vorliegende Erfindung betrifft ein Mundstück für ein Atemmeßgerät, insbesondere ein Atemalkoholmeßgerät mit integrierter Atemtemperaturmessung.
Bekannt sind die im Einsatz befindlichen Atemalkoholmeßgeräte, in deren Funktionsumfang eine Atemtemperaturmessung nicht integriert ist (vgl. beispielsweise DE 44 45 447 A1 , DE 43 27 312 A1 , EP 0 153 883 A1 und DE 29 06 908 A1).
Die Temperatur des Ausatemstroms ist beim Menschen jedoch nicht konstant, sie hängt z.B. von der Umgebungstemperatur der Luft oder vom körperlichen Zustand (Fieber) ab. Die Atemtemperatur kann zwischen 30° und 40°C schwanken. Darüber hinaus ist die Ausatemluft mit Wasserdampf gesättigt. Beim Ausatmen kann es daher an den Mundstückwandungen eines Atemalkoholmeßgeräts zur Kondensation von Wasserdampf kommen, wodurch die Gastemperatur beeinflußt wird. Durch Schwankungen der Atemtemperatur kommt es zu Meßfehlern bei der Bestimmung der Alkoholkonzentration in dem Atemgas.
Bei einer Temperaturänderung von 1°C bei 34°C kommt es bereits zu einem Fehler von 6,5% (G. Schoknecht, Z. Med. Phys. 6 (1996), 7-13).
Es wurden daher Atemalkoholmeßgeräte vorgeschlagen, die über einen im Atemgasstrom angebrachten Temperatursensor verfügen, dessen Meßwert für eine zielgerichtete Kompensation des Fehlers benutzt wird, mit dem bei Schwankungen der Atemtemperatur der Meßwert der Atemalkoholkonzentration behaftet ist (G. Schoknecht, a.a.O.; DIN/VDE 0405). Eine solche Temperaturkompensation des Atemalkoholmeßsignals steht in direktem Zusammenhang mit der Genauigkeit der Temperaturmessung der in das Gerät geleiteten Atemluft des Probanden. Atemalkoholmeßgeräte weisen aus hygienischen Gründen ein auswechselbares Mundstück auf, in welches der Proband hineinbiäst.
Auswechselbare Mundstücke für Atemalkoholmeßgeräte werden beispielsweise in der WO 98/08436 und der DE 32 33 462 A1 beschrieben. Es wird vorgeschlagen, die Mundstücke aus Polypropylen zu fertigen.
Eine Vorrichtung aus Plastik zur Erzeugung eines Druckabfalls für einen Pneumotachographen wird in der GB 1 202 911 offenbart. Durch die Wärmeisolation des Plastikkörpers soll eine Kondensation von Wasserdampf verhindert werden.
Bei Atemalkoholmeßgeräten mit integrierter Atemtemperaturmessung ist der Temperatur- Sensor direkt hinter dem Mundstück in einem Adapter plaziert, um die Temperatur des Atemgases möglichst frühzeitig nach dem Ausatmen zu erfassen. Hierdurch wird es ermöglicht, den temperaturbedingten Meßfehler bei der Atemalkoholmessung zumindest teilweise zu kompensieren.
Eine Aufgabe der vorliegenden Erfindung besteht somit darin, die insbesondere bei der Atemalkoholmessung auftretenden Probleme zu lösen und dadurch insbesondere die Zuverlässigkeit und Reproduzierbarkeit der Alkoholbestimmung in der Atemluft zu verbessern. Es sollte eine Vorrichtung zur Verfügung gestellt werden, mit der der Meßfehler bei der Atemanalyse minimiert werden kann.
Es wurde nun gefunden, daß trotz der frühzeitigen Erfassung der Atemgastemperatur nach dem Ausatmen eine für die Temperaturkompensation relevante Verfälschung des Meßwerts durch das aus hygienischen Gründen vorgeschriebene, auswechselbare Mundstück erfolgen kann, da es trotz der Kürze des Mundstücks zu einem Temperaturaustauschprozeß zwischen dem Wandungsmaterial des Mundstücks und dem hindurchströmenden Atemgas kommt, der zur Verfälschung der wirklichen Atemgastemperatur führt. Außerdem kann es zu Kondensation von Wasserdampf an der Mundstückwandung kommen, wodurch die Gastemperatur ebenfalls beeinflußt wird. Außerdem wurde gefunden, daß es durch eine geeignete konstruktive Ausgestaltung des Mundstücks überraschenderweise möglich ist, den Meßfehler bei Alkoholmessungen zu verringern und die Reproduzierbarkeit der Messungen zu vergrößern.
Die vorliegende Erfindung betrifft somit ein Mundstück für ein Atemmeßgerät, das dadurch gekennzeichnet ist, daß die Innenwandung des Mundstücks, mit der der Atemgasstrom in Kontakt kommt, zumindest zu einem solchen Teil aus einem oder mehreren wärmeisolierenden Materialien besteht, daß der Atemgasstrom auf seinem Weg durch das Mundstück keine wesentliche Temperaturänderung erfährt.
Durch das erfindungsgemäße Mundstück wird der Temperaturaustauschprozeß zwischen dem Mundstück und dem Atemgas so weit vermindert, daß die Genauigkeit der anschließenden Temperaturmessung in für die Meßwertfehlerkompensation signifikanter Weise erhöht wird.
Unter "keine wesentliche Temperaturänderung" wird vorliegend bevorzugt keine oder eine solche Temperaturänderung verstanden, die so gering ist, daß sie keinen oder nur einen untergeordneten Einfluß auf die Meßwertkorrektur beispielsweise bei der Atemalkoholmessung hat. Bevorzugt ist die durch das auswechselbare Mundstück verursachte Temperaturänderung der Ausatemluft insbesondere bei einem Durchfluß von 0,2 l/s und bei einer Temperaturmessung nach 6 Sekunden Durchtrittszeit nicht größer als ±0,2°C, besonders bevorzugt nicht größer als ±0,1 °C und insbesondere etwa 0°C.
Das vorstehend genannte Kriterium wird erfindungsgemäß dadurch erfüllt, daß die Innenwandung des Mundstücks, mit dem der Atemgasstrom in Kontakt kommt, zumindest teilweise aus einem wärmeisolierenden Material besteht. Der Anteil der Innenwandung des Mundstücks, der aus dem wärmeisolierenden Material besteht, sollte so gewählt sein, daß der Atemstrom auf seinem Weg durch das Mundstück keine wesentliche Temperaturänderung erfährt. Besonders bevorzugt besteht die Innenwandung des Mundstücks überwiegend, vorteilhaft sogar ausschließlich, aus einem wärmeisolierenden Material. Die Inneπwandung des Mundstücks kann mit dem wärmeisoliereπden Material beispielsweise ganz oder teilweise belegt oder beschichtet sein. Es können ein oder mehrere wärmeisolierende Materialien in einem Mundstück eingesetzt werden. Zur einfacheren Herstellung bestehen die gesamten Wandungen des erfindungsgemäßen Mundstücks vorteilhaft aus einem oder mehreren wärmeisolierenden Materialien.
Als wärmeisolierende Materialien eignen sich vorliegend insbesondere solche Materialien, die einen Wärmeleitwert (auch Wärmeleitkoeffizient oder Wärmeleitzahl genannt) von < 0,1 W/mK aufweisen. Die Wärmeleitfähigkeit eines Materials ist nach DIN 1341 definiert.
Als wärmeisolierende Materialien mit einem Wärmeleitwert von < 0,1 W/mK eignen sich beispielsweise Kork, Holz und Schaumstoffe, beispielsweise aus Polyurethan, Polystyrol oder Polyvinylchlorid, wie insbesondere Styropor®. Besonders bevorzugt wird erfindungsgemäß Styropor® als wärmeisoiierendes Material eingesetzt.
Das erfindungsgemäß eingesetzte wärmeisolierende Material muß selbstverständlich eine ausreichende Festigkeit aufweisen und, insbesondere wenn die gesamte Mundstückwandung aus dem Material besteht, auch einen Durchtritt der Atemluft nach außen verhindern. Die notwendige Festigkeit des Materials hängt davon ab, ob nur die Innenwaπdung des Mundstücks mit dem Material ausgekleidet ist, oder ob die gesamte Wandung aus dem Material besteht. Wenn die gesamte Wandung daraus besteht, muß das Material so fest sein, daß es eine sichere Handhabung des Mundstücks gewährleistet. Bevorzugt ist das wärmeisolierende Material luftundurchlässig, um seine Isolationseigenschaften zu verbessern.
Aus hygienischen Gründen ist in Mundstücken für Atemalkoholmeßgeräte eine Atemsperre vorgeschrieben, die ein Zurücksaugen von Luft verhindert. Hierdurch wird vermieden, daß der Proband Bakterien von seinem Vorgänger aus dem Atemalkoholmeßgerät in den Mund einatmet. Erfindungsgemäß ist diese Atemsperre, wenn vorhanden, so ausgestaltet, daß der Atemgasstrom durch die Berührung mit der Atemsperre keine wesentliche Temperaturänderung erfährt. Dies kann beispielsweise dadurch erreicht werden, daß die Atemsperre zu einem möglichst großen Teil aus einem wärmeisolierenden Material besteht. In einer bevorzugten Ausfuhrungsform umfaßt die Atemsperre eine dünne Membran die so in dem Mundstuck angeordnet ist, daß sie beim Hineinblasen in das Mundstuck die Atemluft vorbeistromen laßt und beim Zurucksaugen von Luft das Mundstuck verschließt Die konstruktive Ausgestaltung solcher Atemsperren ist dem Fachmann bekannt (vgl beispielsweise DE 32 33 462 A1)
Erfindungsgemaß besteht die Atemsperre bevorzugt aus einer möglichst dünnen Membran mit einem möglichst kleinen Warmeleitwert, wie beispielsweise eine dünne Polyethylen- oder Polypropylenfohe Polyethylen weist bespielsweise einen Warmeleitwert von 0,3 W/mK auf Dadurch, daß die Membran möglichst dünn ausgestaltet ist und aus einem Material besteht, das einen möglichst geringen Warmeleitwert aufweist, wird der Wärmeaustausch zwischen der Membran und dem Atemgasstrom und damit die Temperaturanderung des Atemgases beim Durchströmen des Mundstucks minimiert
Besonders vorteilhaft besteht die Membran auch aus einem warmeisoherenden Matenal mit einem Warmeleitwert < 0,1 W/mK Hierdurch kann es jedoch zu konstruktiven Problemen kommen, da sich solche Materialien im allgemeinen schlecht zur Herstellung von Membranen eignen
Vorteilhaft umfaßt das erfmdungsgemaße Mundstuck auch eine Speichelfalle, die so im Atemweg angeordnet ist, daß Speicheltropfchen beim Blasen von Atemluft durch das Mundstuck nicht in das dahinter egende Meßgerat gelangen Die konstruktive Ausgestaltung solcher Speichelfallen ist dem Fachmann bekannt (vgl beispielsweise DE 32 33 462 A1)
In einer besonders bevorzugten Ausfuhrungsform besteht das erfmdungsgemaße Mundstuck bis auf die Membran der Atemsperre ausschließlich aus einem warmeisoherenden Material mit einem Warmeleitwert von < 0,1 W/mK, insbesondere Styropor®
Die vorliegende Erfindung betrifft außerdem die Verwendung eines warmeisoherenden Materials mit einem Warmeleitwert < 0,1 W/mK zur Herstellung eines Mundstucks für ein Atemmeßgerat sowie die Verwendung eines erfindungsgemaßen Mundstucks für ein Atemalkoholmeßgerät, insbesondere mit integrierter Atemtemperaturmessung. Die Verwendung des erfindungsgemäßen Mundstücks ist jedoch nicht auf Atemalkoholmeßgeräte beschränkt, sondern es kann für jedes Atemmeßgerät, insbesondere mit Atemtemperaturmessung vorteilhaft eingesetzt werden.
Das erfindungsgemäße Mundstück wird beispielhaft anhand der beiliegenden Figuren näher erläutert.
Figur 1 zeigt die perspektivische Darstellung einer besonders bevorzugten Ausführungsform eines erfindungsgemäßen Mundstücks.
Figur 2 zeigt einen Schnitt durch ein erfindungsgemäßes Mundstück entlang des Winkels B-B in Figur 3.
Figur 3 zeigt einen Schnitt durch ein erfindungsgemäßes Mundstück entlang der Linie A-A in Figur 2.
Figur 4 zeigt die Temperatur eines Prüfgases nach Durchtritt durch ein erfindungsgemäßes Mundstück in Abhängigkeit von der Zeit.
Figur 5 zeigt die Temperatur eines Prüfgases nach Durchtritt durch ein herkömmliches Mundstück in Abhängigkeit von der Zeit.
Das in den Figuren 1-3 dargestellte Mundstück besteht aus einem Einlaßteil 1 , das mit einem Grundkörper 3 verbunden ist. Als Atemsperre weist das Mundstück eine Membran 2 auf. Einlaßteil 1 und Grundkörper 3 bestehen vollständig aus einem wärmeisolierenden Material, wie Styropor®. Die Membran 2 besteht aus einer Kunststoff-Folie, wie eine Polyethylen-Folie. Bei der Montage des Mundstücks wird die Membran in den Grundkörper 3 gelegt und das Einlaßteil 1 wird anschließend in den Grundkörper 3 eingesteckt und mit diesem beispielsweise verklebt.
Entlang seiner Längsachse weist das Mundstück eine zentrale Bohrung als Atemluftdurchtrittsöffnung auf, die von der Membran 2 unterbrochen wird. Beim Hineinblasen von Atemluft in das Einlaßteil 1 des Mundstücks wird die Membran 2 aus der in Figur 2 dargestellten Position nach rechts gedrückt, bis sie auf den Auflagen 4 zu ruhen kommt. In dieser Position kann die Atemluft außen an der Membran vorbeiströmen und durch die in Figur 3 erkennbaren Aussparungen 5 des Grundkörpers 3 zur Luftaustrittsöffnung 6 gelangen. Beim Zurücksaugen von Luft wird die Membran 2 in die in Figur 2 gezeigte Stellung gesaugt, wodurch sie einen Luftdurchtritt durch den Einlaßteil 1 verhindert.
Zusätzlich weist der Grundkörper 3 Hohlräume 7 auf, die um die Luftdurchtrittsöffnung radial angeordnet sind und die als Speichelfalle dienen. Diese Speichelfalle verhindert, daß Speicheltröpfchen beim Blasen von Atemluft durch das Mundstück in das dahinterliegende Atemmeßgerät gelangen.
Beispiel
Die Temperaturänderung eines Prüfgases beim Durchtritt durch ein erfindungsgemäßes Mundstück aus Styropor und die Temperaturänderung des Prüfgases beim Durchtritt durch ein herkömmliches Mundstück aus Polypropylen (erhältlich von der Firma Siemens) wurden gemessen. Hinter dem Mundstück befand sich jeweils ein Adapter mit Temperatursensor.
Das Prüfgas wurde jeweils mit einer konstanten Temperatur von 32,5°C und einem Durchfluß von 0,2 l/s in die Mundstücke eingeleitet. Die Temperatur am Temperatur-Sensor wurde in Abhängigkeit von der Zeit gemessen. Nach 6 Sekunden sollte bei dem eingestellten Durchfluß von 0,2 l/s die tatsächliche Temperatur des Gases erreicht sein.
Die Ergebnisse der Messungen sind in den Figuren 4 und 5 dargestellt, wobei Figur 4 das Meßergebnis mit dem erfindungsgemäßen Mundstück und Figur 5 das Meßergebnis mit dem herkömmlichen Mundstück zeigt. Der 6-Sekunden-Zeitintervall vom Beginn des Einblasens bis zu dem Zeitpunkt, an dem die tatsächliche Temperatur erreicht sein soll, ist in den Diagrammen ebenfalls dargestellt.
Wie in Figur 4 zu erkennen ist, steigt die Temperatur des aus dem Mundstück austretenden Gases steil an und erreicht nach ca. 6 Sekunden bereits die tatsächliche Temperatur des einströmenden Gases. Demgegenüber steigt die mit dem herkömmlichen Mundstück erhaltene Meßkurve (Figur 5) flacher an und das ausströmende Gas erreicht nach 6 Sekunden nur ca. 31 ,5°C. Nach ca. 10 Sekunden wurde der Versuch abgebrochen, ohne daß das ausströmende Gas seine Anfangstemperatur erreicht hätte.
Es zeigt sich somit, daß durch die erfindungsgemäße Ausgestaltung des Mundstücks die Abweichung der hinter der Austrittsöffnung gemessenen Temperatur des Prüfgases im Vergleich zur tatsächlichen Temperatur an der Entrittsöffnung nach 6 See. nur ±0,1 °C betrug. Dieser Wert liegt deutlich unter der Temperaturdifferenz, die bei herkömmlichen Mundstücken aus Polypropylen mit ca. 1 °C gemessen wird.
Durch die erfindungsgemäße Ausgestaltung des Mundstücks für ein Atemmeßgerät wird ein Temperaturaustausch zwischen der Atemluft und dem Mundstück weitestgehend verhindert. Außerdem wird durch die wärmeisolierende Wandung des Mundstücks eine Kondensation von Wasserdampf in dem Mundstück ebenfalls weitestgehend verhindert. Hierdurch wird eine Beeinflussung der Temperatur der Ausatemluft des Probanden durch das Mundstück auf ein Minimum beschränkt, so daß die folgende Temperaturmessung in dem Atemmeßgerät eine hohe Genauigkeit aufweist und beispielsweise zur zielgerichteten Kompensation des Fehlers genutzt werden kann, mit dem bei Schwankungen der Atemtemperatur der Meßwert beispielsweise der Atemalkoholkonzentration behaftet ist.

Claims

Patentansprüche
1. Mundstück für Atemmeßgerät, dadurch gekennzeichnet, daß die Innenwandung des Mundstücks, mit der der Atemgasstrom in Kontakt kommt, zumindest zu einem solchen Teil aus einem oder mehreren wärmeisolierenden Materialien besteht, daß der Atemgasstrom auf seinem Weg durch das Mundstück keine wesentliche Temperaturänderung erfährt.
2. Mundstück nach Anspruch 1 , dadurch gekennzeichnet, daß das wärmeisolierende Material einen Wärmeleitwert von < 0,1 W/mK aufweist.
3. Mundstück nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Wandungen des Mundstücks aus einem oder mehreren wärmeisolierenden Materialien bestehen.
4. Mundstück nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Mundstück eine Atemsperre aufweist, die das Zurücksaugen von Luft verhindert und die so ausgestaltet ist, daß der Atemgasstrom durch die Berührung mit der Atemsperre keine wesentliche Temperaturänderung erfährt.
5. Mundstück nach Anspruch 4, dadurch gekennzeichnet, daß die Atemsperre eine Membran umfaßt.
6. Mundstück nach Anspruch 5, dadurch gekennzeichnet, daß das Mundstück bis auf die Membran der Atemsperre ausschließlich aus einem wärmeisoiierenden Material mit einem Wärmeleitwert von < 0,1 W/mK besteht.
7. Mundstück nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das wärmeisolierende Material ausgewählt ist aus der Gruppe bestehend aus Schaumstoff, Kork und Holz.
8. Verwendung eines wärmeisolierenden Materials mit einem Wärmeleitwert von < 0,1 W/mK zur Herstellung eines Mundstücks für ein Atemmeßgerät.
9. Verwendung eines Mundstücks nach einem der Ansprüche 1-7 für ein Atemalkoholmeßgerät.
10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, daß das Atemalkoholmeßgerät eine integrierte Atemtemperaturmessung aufweist.
PCT/EP2000/010311 1999-10-21 2000-10-19 Mundstück für atemmessgerät WO2001028422A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU79208/00A AU7920800A (en) 1999-10-21 2000-10-19 Spirometer mouthpiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999150825 DE19950825C2 (de) 1999-10-21 1999-10-21 Mundstück für Atemmeßgerät
DE19950825.9 1999-10-21

Publications (1)

Publication Number Publication Date
WO2001028422A1 true WO2001028422A1 (de) 2001-04-26

Family

ID=7926473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/010311 WO2001028422A1 (de) 1999-10-21 2000-10-19 Mundstück für atemmessgerät

Country Status (3)

Country Link
AU (1) AU7920800A (de)
DE (1) DE19950825C2 (de)
WO (1) WO2001028422A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008073018A1 (en) * 2006-12-11 2008-06-19 Nanopuls Ab Device for eliminating liquid condensation in a mouthpiece.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9299267B2 (en) 2013-10-08 2016-03-29 Hector Antonio Perez Resonance and articulation trainer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1202911A (en) 1966-12-02 1970-08-19 Mercury Electronics Scotland L Improvements in and relating to pneumotachographic apparatus
FR2422380A1 (fr) * 1978-04-15 1979-11-09 Draegerwerk Ag Procede et dispositif pour identifier et separer la fraction d'air alveolaire contenue dans l'air respiratoire
DE2906908A1 (de) 1979-02-22 1980-09-04 Draegerwerk Ag Verfahren und anordnung zur probennahme bei der bestimmung des atemalkoholgehaltes
GB2062470A (en) * 1979-10-27 1981-05-28 Garbe D R Spirometers
DE3233462A1 (de) 1982-09-09 1984-04-12 Drägerwerk AG, 2400 Lübeck Mundstueck fuer ein atemalkohol-messgeraet
EP0153883A2 (de) 1984-03-02 1985-09-04 Lion Laboratories Limited Vorrichtung zur Gasanalyse
DE4327312A1 (de) 1992-08-17 1994-02-24 Intoximeters Inc Verfahren und Vorrichtung zum Testen von Gasen, insbesondere von Atemalkohol
US5360009A (en) * 1992-08-14 1994-11-01 Qosina Corp. Spirometer mouthpiece
DE4445447A1 (de) 1994-02-25 1995-08-31 Intoximeters Inc Verfahren und Vorrichtung zum Testen von Atemalkohol
WO1998008436A1 (fr) 1996-08-30 1998-03-05 Plasto S.A. Embout buccal hygienique amovible
US5746699A (en) * 1991-12-17 1998-05-05 Hood Laboratories Acoustic imaging

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906790C3 (de) * 1979-02-22 1981-12-24 Drägerwerk AG, 2400 Lübeck Verfahren und Anordnung zur Bestimmung der Alkoholkonzentration des Blutes durch Messung der Alkoholkonzentration und der Feuchtigkeit in der Atemluft
GB2064324B (en) * 1979-12-11 1983-12-14 Garbe B R Spirometers
US4671298A (en) * 1984-11-26 1987-06-09 Meridian Medical Corporation Isothermal rebreathing apparatus and method
US5749368A (en) * 1994-07-21 1998-05-12 Kase; John C. Breath air flow gauge
DE19811177C2 (de) * 1998-03-14 2000-08-03 Draeger Sicherheitstech Gmbh Verfahren zur Erfassung der Temperatur des Mundstückes bei Atemalkoholmessungen

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1202911A (en) 1966-12-02 1970-08-19 Mercury Electronics Scotland L Improvements in and relating to pneumotachographic apparatus
FR2422380A1 (fr) * 1978-04-15 1979-11-09 Draegerwerk Ag Procede et dispositif pour identifier et separer la fraction d'air alveolaire contenue dans l'air respiratoire
DE2906908A1 (de) 1979-02-22 1980-09-04 Draegerwerk Ag Verfahren und anordnung zur probennahme bei der bestimmung des atemalkoholgehaltes
GB2062470A (en) * 1979-10-27 1981-05-28 Garbe D R Spirometers
DE3233462A1 (de) 1982-09-09 1984-04-12 Drägerwerk AG, 2400 Lübeck Mundstueck fuer ein atemalkohol-messgeraet
US4564021A (en) * 1982-09-09 1986-01-14 Dragerwerk Ag Mouthpiece for a breath-alcohol measuring device
EP0153883A2 (de) 1984-03-02 1985-09-04 Lion Laboratories Limited Vorrichtung zur Gasanalyse
US5746699A (en) * 1991-12-17 1998-05-05 Hood Laboratories Acoustic imaging
US5360009A (en) * 1992-08-14 1994-11-01 Qosina Corp. Spirometer mouthpiece
DE4327312A1 (de) 1992-08-17 1994-02-24 Intoximeters Inc Verfahren und Vorrichtung zum Testen von Gasen, insbesondere von Atemalkohol
DE4445447A1 (de) 1994-02-25 1995-08-31 Intoximeters Inc Verfahren und Vorrichtung zum Testen von Atemalkohol
WO1998008436A1 (fr) 1996-08-30 1998-03-05 Plasto S.A. Embout buccal hygienique amovible

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008073018A1 (en) * 2006-12-11 2008-06-19 Nanopuls Ab Device for eliminating liquid condensation in a mouthpiece.

Also Published As

Publication number Publication date
AU7920800A (en) 2001-04-30
DE19950825A1 (de) 2001-05-23
DE19950825C2 (de) 2001-10-18

Similar Documents

Publication Publication Date Title
DE2816499C2 (de) Verfahren und Anordnung zur Erkennung und Abtrennung des Alveolarluftanteiles aus der Atemluft
EP2134256B1 (de) Transportabler pneumotachograph zur messung von bestandteilen des exspirationsvolumens sowie ein verfahren hierzu
EP0891199B1 (de) Vorrichtung und verfahren zur überwachung von atemkennwerten eines beatmungssystems
DE69824263T2 (de) Meßwertumformer für den Langzeitgebrauch zur Messung eines Gasdurchflusses
DE69713581T3 (de) Verfahren und vorrichtung zur messung von bestandteilen in von menschen ausgeatmeter luft
DE102008022761B4 (de) Vorrichtung zur Gewinnung und Untersuchung von Atemgasproben
DE69828033T2 (de) Beatmungsgerät mit einem System für Undichtheits- und Okklusionsdetektion
DE3844455C2 (de) Mit einem Intubationsrohr verbindbares Spirometer mit einem Probenverbindungsstück für einen Gasanalysator
DE10035054C1 (de) Atemstromsensor
WO2009146693A2 (de) Transportabler pneumotachograph zur messung von bestandteilen des exspirationsvolumens
EP2927679B1 (de) Gerät für die Messung und Analyse des Multiple-Breath-Stickstoff-Auswaschverfahrens
DE102006052999B4 (de) Messgasküvette für die Konzentrationsmessung von Gasbestandteilen und Verfahren zur Herstellung einer Messgasküvette
DE1948043A1 (de) Vorrichtung zum Analysieren der Atemluft
DE2906832C2 (de) Verfahren und Anordnung zur Bestimmung der Alkoholkonzentration des Blutes durch Messung der Alkoholkonzentration der Atemluft
DE2906908C2 (de) Verfahren und Anordnung zur Probennahme bei der Bestimmung des Atemalkoholgehaltes
DE102010047159B4 (de) Vorrichtung und Verfahren zur Messung der Konzentration von Kohlendioxid in einer Gasprobe
DE112019000883T5 (de) Ermittlungsvorrichtung
EP3639023A1 (de) Atemalkoholmessung mit berührungsloser probenabgabe
DE19950825C2 (de) Mundstück für Atemmeßgerät
DE102006024363A1 (de) Vorrichtung zur Volumen- oder Fließgeschwindigkeitsmessung von Fluiden
DE2746078A1 (de) Anordnung zur bestimmung der konzentration reduzierender mundgase
DE19618520C1 (de) Atemstrommesser
DE3712388C2 (de)
DE3706559C3 (de) Verfahren und Vorrichtung zur Messung und Überwachung der bei der Narkose einzuhaltenden Parameter
EP1139099A2 (de) Alkoholsensor und Betriebsverfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase