WO2001024988A1 - Herstellung von oberflächenstrukturierten formteilen - Google Patents

Herstellung von oberflächenstrukturierten formteilen Download PDF

Info

Publication number
WO2001024988A1
WO2001024988A1 PCT/EP2000/009563 EP0009563W WO0124988A1 WO 2001024988 A1 WO2001024988 A1 WO 2001024988A1 EP 0009563 W EP0009563 W EP 0009563W WO 0124988 A1 WO0124988 A1 WO 0124988A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
mold
infrared radiation
radiation source
negative
Prior art date
Application number
PCT/EP2000/009563
Other languages
English (en)
French (fr)
Inventor
Kai K. O. BÄR
Rainer Gaus
Original Assignee
Advanced Photonics Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Photonics Technologies Ag filed Critical Advanced Photonics Technologies Ag
Priority to AU79104/00A priority Critical patent/AU7910400A/en
Publication of WO2001024988A1 publication Critical patent/WO2001024988A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0053Moulding articles characterised by the shape of the surface, e.g. ribs, high polish
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/08Coating a former, core or other substrate by spraying or fluidisation, e.g. spraying powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C2033/0005Moulds or cores; Details thereof or accessories therefor with transparent parts, e.g. permitting visual inspection of the interior of the cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/46Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles using fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/006Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor using an electrostatic field for applying the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3005Body finishings
    • B29L2031/3008Instrument panels

Definitions

  • the invention relates to a method and a device for producing molded parts with a surface structure, in particular fitting cladding for motor vehicles, a raw material being introduced into a mold, a surface of the ( shape having a negative structure of the surface structure to be produced and the raw material is heated so that it forms the surface structure in contact with the negative structure
  • the invention further relates to the use of an agent for heating the raw material.
  • molded parts which have a structured, in particular grained, surface.
  • the individual elements of the surface structure are, for example, line-like or flat depressions.
  • the mold For the production of the molded parts, it is known to heat the mold to about 300 ° C., to sprinkle the raw material, in particular a synthetic resin powder, into the heated mold and to shake the mold so that the raw material lies over the negatively structured surface of the mold and possibly distributed over unstructured areas of the mold surface. When the raw material hits the mold surface, it melts and combines to form the molded part. It adapts to the negative structure of the mold surface, so that the positively structured surface of the molded part is created.
  • the raw material is heated by heat conduction from the mold into the raw material. Since the driving force for heat conduction is the temperature difference between the mold and the raw material, the temperature of the mold must be increased if the raw material is to be heated more quickly. Depending on the material, on the other hand, there is a more or less high maximum temperature beyond which the raw material or the material which has already been partially melted together is not heated.
  • the thickness of the molded parts produced by the known method is generally not more than 0.3 mm.
  • the mold is cooled in order to be able to detach and remove the molded part produced.
  • the heat stored in the mold is lost.
  • the object of the present invention is to provide a method and a device of the type mentioned at the outset, which permit the rapid and raw material-saving series production of the molded parts.
  • Another task of the inventors fertilization consists in specifying a suitable means for heating the raw material.
  • a key concept of the present invention is to at least partially heat the raw material by infrared radiation.
  • the raw material is heated at least partially by absorption of the infrared radiation.
  • a radiation source for generating infrared radiation which is arranged such that the infrared radiation can be irradiated into the raw material to be heated.
  • the invention has the advantage that the raw material is at least partially warmed without the slow process of hot conduction. Furthermore, the raw material can first be introduced into the mold or arranged in the region of the negatively structured surface of the mold and only then can the heating of the raw material be started. Thus, the raw material can be distributed in the desired manner without the risk of premature melting. Therefore, only as much raw material is required as is necessary to form the desired molded part.
  • the invention is not restricted to starting the heating of the raw material only after it has been applied to the surface of the mold. Rather, infrared radiation of the raw material can be started before the entire raw material required is arranged on the surface of the mold. In particular, the layered application and heating of the raw material is also in possible in several steps.
  • the layered application and fusing of the raw material is advantageous, since the heating effect of the infrared radiation decreases with increasing depth of penetration.
  • the infrared radiation is radiated through the material of the mold as raw material.
  • a spatial separation of the irradiation device and the device for applying the raw material can thus be achieved. On the one hand, this simplifies the design of the device for producing the molded parts and, on the other hand, reduces the risk of raw material coming into contact with parts of the device for irradiating the raw material.
  • the invention is not restricted to irradiating the raw material only from one side. Rather, the raw material can be irradiated from several directions.
  • a plurality of infrared radiation sources and / or a device for deflecting the infrared radiation can be used. The irradiation of the raw material from several directions has the advantage that even raw material with larger layer thicknesses can be quickly warmed through, for. B. layer thicknesses of more than 1 mm.
  • the expression “arranging the raw material on a surface of the mold” is understood to mean that there is a relative movement of the raw material and the mold, the raw material and / or the mold being able to be moved.
  • the raw material is brought to the negative structure in the system by means of electrical field forces.
  • a powder and / or granules as raw material, it can be used known methods for applying raw material to a surface can be applied.
  • the desired distribution of the raw material can be achieved quickly and equilibrium.
  • the molded part produced from the raw material is preferably detached from the negative structure in that a fluid, in particular a gas, is passed through openings in the mold against the surface structure. This procedure is particularly gentle on the molded part and simplifies the detachment of the molded part from the mold. If heat transfer from the mold to the raw material to be heated is also to be used and the mold should therefore have a certain temperature, it is also advantageous that the mold does not have to be cooled in order to detach the molded part.
  • the raw material for the next molded part to be produced can therefore be arranged earlier on the surface of the mold, and prior heating of the mold is not or is only required to a minor extent.
  • At least essential radiation components of the infrared radiation which bring about the heating of the raw material are preferably in the wavelength range of the near infrared.
  • Near infrared is understood to mean the wavelength range that lies between the visible wavelength range and 1.2 ⁇ m wavelength.
  • the infrared radiation is emitted by a temperature radiation source which has an emission temperature of 2500 K or higher, in particular of 2900 K or higher.
  • Radiation sources of this type can be controlled particularly well and emit electromagnetic radiation of high radiation flux density. Therefore, it is quick and precisely controllable heating of the raw material possible.
  • certain areas, such as areas with a higher layer density of the raw material with a higher or lower radiation flux density can be irradiated. Above all, however, molded parts with almost any layer thickness can be produced within a few seconds.
  • Radiation components that have not been absorbed by the raw material to be heated are preferably reflected back in the direction of the raw material.
  • the shape itself can contribute to the reflection, for example edges or other parts of the shape not covered by raw material, and additional, separate reflectors can be used.
  • the material of the form is preferably selected or prepared in such a way that its degree of absorption in the near infrared has values of less than 0.4, in particular less than 0.2. If the infrared radiation is radiated through the material of the mold into the raw material, there is only a slight weakening of the infrared radiation. On the other hand, depending on the duration and power of the irradiation, the shape assumes a certain temperature, which is advantageous for the series production of the molded parts. At the beginning of the heating of the raw material, the form transfers heat to the raw material by heat conduction. Depending on the height of the mold temperature and the height of the temperature of the raw material required for the production of the mold, as the raw material heats up, there is either further heat transfer from the mold to the raw material, or at least less heat is lost to the mold than when cold.
  • the device has a device for generating electrical field forces in order to arrange the raw material on the surface of the mold.
  • the shape on the surface is electrically conductive.
  • Quartz glass is proposed as a suitable material for the mold in order to radiate the infrared radiation through the mold into the raw material.
  • the mold has openings in order to guide a fluid, in particular a gas, to the surface with the negative structure and to detach an adjacent molded part.
  • the openings are valve-shaped in order to block a fluid flow in the opposite direction and / or to at least approximately completely close the surface of the mold.
  • an infrared radiation source for heating a raw material is proposed in order to form a surface-structured molded part from the raw material lying against a negative mold, at least part of the energy required for heating the raw material being generated by electromagnetic radiation from the infrared radiation source into the raw material is transmitted.
  • At least part of the infrared radiation is preferably radiated into the raw material through the material of the negative mold.
  • the infrared radiation source preferably has a temperature radiator which can be operated at emission temperatures of 2500 K or higher, in particular 2900 K or higher.
  • the infrared radiation source is preferably a halogen lamp.
  • the infrared radiation source has a tube radiator with a filament extending in a radiation-permeable tube, in particular in a quartz glass tube.
  • the infrared radiation source can be combined with a reflector for reflecting emitted radiation in the direction of the raw material to be heated.
  • FIG. 1 shows a device for producing molded parts with a surface structure in a schematic sectional view
  • Fig. 2 is a view of the surface structure of a molded part produced in the device according to Fig. 1 and
  • Fig. 3 shows a cross section through an infrared radiation source for irradiating raw material.
  • the device shown in FIG. 1 has a shape 2 with a structural surface 4 for producing molded parts 1 with the surface structure shown in FIG. 2.
  • the structured surface 4 is a negative of the structured surface 11 of the molded part 1 shown in FIG. 2.
  • the structured surface 11 has line-like depressions 12 which partially intersect and form a so-called grained surface. Accordingly, the structural surface 4 of the shape 2 has line-like elevations, not shown in FIG. 1.
  • a powder device 6 with powder supply 7 contains a supply of synthetic resin powder 3.
  • the synthetic resin powder 3 is applied to the structural surface 4 in the desired thickness and distribution by means of the powder device 6.
  • this layer in FIG. 1 is given the reference symbol 1 and also with the reference number 3.
  • the device shown in FIG. 1 also has a device for generating electrical field forces in order to deposit the synthetic resin powder 3 from the powder device 6 on the structure surface 4.
  • the device for generating electrical field forces has a high voltage source 8.
  • the positive pole of the high voltage source 8 is connected to the powder device 6 via an electrical line.
  • the other pole of the high-voltage source 8 is connected to earth 9 and to the form 2 via an electrically fresh line 10.
  • the polarity of the high voltage source can also be reversed.
  • an infrared radiation source 5 is provided on the opposite side of the mold 2.
  • the synthetic resin powder 3 is first arranged on the structure surface 4 by the powder device 6 on account of the electrical field forces of the high-voltage field.
  • the synthetic resin powder 3 m of the desired distribution is arranged on the structural surface 4.
  • the synthetic resin powder 3 is irradiated with infrared radiation from the infrared radiation source 5 already during the opening of the synthetic resin powder 3 or thereafter. Infrared radiation enters through the material of the form 2 through the synthetic resin powder 3 and is absorbed there.
  • Infrared radiation passing through the synthetic resin powder 3 can be reflected back in the direction of the synthetic resin powder 3 by means of reflectors (not shown in FIG. 1). Due to the radiation, the synthetic resin powder 3 heats up, melts and forms a composite material, so that the molded part 1 is formed. Depending on the type of synthetic resin, the synthetic resin material may be networked. During the thermoplastic deformation described, the synthetic resin adapts to the negative structure of the structural surface 4, so that the structured surface 11 is formed.
  • the molded part 1 After the thermoplastic deformation of the synthetic resin to form the molded part 1, the molded part 1 is detached from the structural surface 4.
  • compressed air is supplied through lines, not shown. These lines end on the underside of the mold 2 at the valve-like openings 15 starting there.
  • the compressed air hits the structured surface 11 of the molded part 1 through the openings 15 and lifts the latter from the structural surface 4.
  • the number and the diameter of the valve-like openings 15 depend on the stability of the molded parts 1, which are produced by means of the mold 2.
  • the design of the individual valve-like openings is known per se and is not described in more detail here. It is preferred to use such valve-like openings, the valve of which together with the
  • Structural surface 4 of the form 2 form an almost uninterrupted, continuous surface. This avoids reworking of the molded part 1, for example the removal of projections on the structured surface 11, which could be formed by penetrating the synthetic resin into the valve-like openings 15.
  • FIG. 3 A special exemplary embodiment of the infrared radiation source 5 is shown in FIG. 3. It has two tube beams 20, each of which has a tungsten thread 22.
  • the tungsten filaments 22 are filaments that extend approximately in the center line of an elongated quartz glass tube 21 (n FIG. 3 perpendicular to the image plane).
  • the tube radiators 20 are arranged in recesses in a reflector body 23, the recesses likewise being elongated, corresponding to the tube radiators 20, and each having a parabolic cross-sectional profile.
  • other cross-sectional profiles can also be used, for example trapezoidal and / or other cross-sectional profiles, in particular for setting a defined radiation distribution in the synthetic resin.
  • the surfaces of the recesses shown in FIG. 3 and the surface areas on the underside of the reflector body 23 which extend in the horizontal direction are designed as reflector surfaces 24 for reflecting the infrared radiation.
  • the underside of the reflector body 23 would be on top.
  • the reflector body 23 In order to avoid heating the reflector body 23, it can preferably be actively cooled, ie. n. liquid-cooled, for example.
  • the reflector surface 24 thus heats up at most slightly and does not make any notable contribution to a dead time in the regulation of the radiation flux density. In this way, the infrared radiation radiated onto the synthetic resin material can be reproduced exactly as a function of time in the production of each individual molded part 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Die Erfindung betrifft die Herstellung von Formteilen (1) mit einer Oberflächenstruktur, insbesondere von Armaturenverkleidungen für Kraftfahrzeuge, wobei ein Rohmaterial (3) an einer Oberfläche (4) einer Form (2) angeordnet wird, wobei die Oberfläche (4) der Form (2) eine Negativstruktur der zu erzeugenden Oberflächenstruktur aufweist, wobei das Rohmaterial (3) erwärmt wird, so daß es in Anlage an der Negativstruktur die Oberflächenstruktur bildet, und wobei die Erwärmung des Oberflächenmaterials (3) zumindest teilweise durch Absorption von Infrarotstrahlung aus einer Strahlungsquelle (5) bewirkt wird.

Description

Herstellung von oberflachenstrukturierten Formteilen
Beschreibung
Die Erfindung betrifft e n Verfahren und eine Vorrichtung zum Herstellen von Formteilen mit einer Oberflachenstruktur, insbesondere von Armaturenverkleidungen für Kraftfahrzeuge, wo- bei ein Rohmaterial in eine Form eingebracht wird, wobei eine Oberflache der(Form eine Negativstruktur der zu erzeugenden Oberflachenstruktur aufweist und wobei das Rohmaterial erwärmt wird, so daß es in Anlage an der Negativstruktur die Oberflachenstruktur bildet. Die Erfindung betrifft weiterhin die Verwendung eines Mittels zur Erwärmung des Rohmaterials.
Insbesondere bei Armaturenverkleidungen im Cockpit von Kraftfahrzeugen werden Formteile verwendet, die eine strukturierte, insbesondere genarbte, Oberflache haben. Die einzelnen Elemente der Oberflachenstruktur sind beispielsweise linienartige oder flachige Vertiefungen.
Zur Herstellung der Formteile ist es bekannt, die Form auf etwa 300° C aufzuheizen, das Rohmaterial, insbesondere ein Kunstharzpulver, in die aufgeheizte Form einzustreuen und die Form zu rütteln, so daß sich das Rohmaterial über die negativ strukturierte Oberflache der Form und ggf. über nicht strukturierte Bereiche der Formoberflache verteilt. Beim Auftreffen des Rohmaterials auf die Formoberflache schmilzt es und verbindet sich zu dem Formteil. Dabei paßt es sich an die Negativstruktur der Formoberflache an, so daß die positiv strukturierte Oberfläche des Formteils entsteht. Bei dem bekannten Verfahren wird das Rohmaterial durch Warme- leitung von der Form in das Rohmaterial hinein erwärmt . Da die treibende Kraft für die Warmeleitung der Temperaturunterschied zwischen der Form und dem Rohmaterial ist, muß die Temperatur der Form erhöht werden, wenn das Rohmaterial schneller erwärmt werden soll. Je nach Material gibt es andererseits eine mehr oder weniger hohe Höchsttemperatur, über die hinaus das Rohmaterial oder das bereits teilweise miteinander verschmolzene Material nicht erwärmt werden αarf.
Da das Rohmaterial sehr teuer ist, betragt die Dicke der nach dem bekannten Verfahren hergestellten Formteile in αer Regel nicht mehr als 0,3 mm.
Andererseits muß bei dem bekannten Verfahren eine ausreichende Menge Rohmaterial auf die Oberflache der Form aufgebracht werden, damit sich das Rohmaterial so gleichmaßig verteilen kann, daß das fertiggestellte Formteil berall eine ausreichende Dicke hat. Dabei bleibt überschüssiges, nicht vollständig verschmolzenes Rohmaterial übrig, das wieder entfernt werden muß. Typischerweise muß etwa 2/3 des aufgebrachten Rohmaterials wieder entfernt werden. Dieses Rohmaterial ist nur eingeschränkt wiederverwendbar, da zumindest teilweise bereits eine Erwärmung und Verformung stattgefunden hat .
Schließlich wird bei dem bekannten Verfahren die Form abgekühlt, um das hergestellte Formteil ablosen und entnehmen zu können. Die in der Form gespeicherte Warme geht dabei verlo- ren.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung der eingangs genannten Art anzugeben, die eine möglichst schnelle und Rohmaterial sparende Serienferti- gung der Formteile erlauben. Eine weitere Aufgabe der Erfm- düng besteht darin, ein geeignetes Mittel zur Erwärmung des Rohmaterials anzugeben.
Die Aufgaben werden durch ein Verfahren mit den Merkmalen des Anspruchs 1, durch eine Vorrichtung mit den Merkmalen des Anspruchs 9 und durch eine Verwendung mit den Merkmalen des Anspruchs 16 gelost. Weiterbildungen sind Gegenstand der jeweils abhangigen Ansprüche.
Ein Kerngedanke der vorliegenden Erfindung besteht darin, das Rohmaterial zumindest teilweise durch Infrarotstrahlung zu erwarmen. Die Erwärmung des Rohmaterials wird zumindest teilweise durch Absorption der Infrarotstrahlung bewirkt. Für die Vorrichtung zum Herstellen der Formteile wird vorgeschlagen, eine Strahlungsquelle zur Erzeugung von Infrarotstrahlung vorzusehen, die derart angeordnet ist, daß die Infrarotstrahlung in das zu erwärmende Rohmaterial einstrahlbar ist.
Die Erfindung hat den Vorteil, daß eine Durchwarmung des Roh- ateπals zumindest teilweise ohne den langsamen Prozeß der Warmeleitung stattfindet. Weiterhin kann das Rohmaterial zuerst in die Form eingebracht werden bzw. im Bereich der negativ strukturierten Oberflache der Form angeordnet werden und erst danach mit der Erwärmung des Rohmaterials begonnen wer- den. Somit kann ohne die Gefahr einer zu früh beginnenden Verschmelzung des Rohmaterials dieses in der gewünschten Weise verteilt werden. Es wird daher nur so viel Rohmaterial benotigt, wie zur Bildung des gewünschten Formteils erforderlich ist. Jedoch ist die Erfindung nicht darauf be- schrankt, mit der Erwärmung des Rohmaterials erst nach dem Aufbringen auf die Oberflache der Form zu beginnen. Vielmehr kann mit einer Infrarotbestrahlung des Rohmaterials schon begonnen werden, bevor das gesamte benotigte Rohmaterial an der Oberflache der Form angeordnet ist. Insbesondere ist auch das schichtweise Aufbringen und Erwarmen des Rohmaterials in mehreren Schritten möglich. Vor allem, wenn die Bestrahlung des Rohmaterials von derselben Seite der Form her wie das Aufbringen des Rohmaterials vorgenommen wird, ist das schichtenweise Aufbringen und Verschmelzen des Rohmaterials von Vorteil, da die Erwarmungswirkung der Infrarotstrahlung mit zunehmender Eindringtiefe abnimmt.
Bei einer bevorzugten Ausgestaltung der Erfindung wird die Infrarotstrahlung durch das Material der Form hindurch m aas Rohmaterial eingestrahlt. Damit kann eine räumliche Trennung der Bestrahlungseinrichtung und der Einrichtung zum Aufbringen des Rohmaterials erreicht werden. Dies erleichtert einerseits die Konstruktion der Vorrichtung zum Herstellen der Formteile und verringert andererseits die Gefahr, daß Rohma- terial mit Teilen der Einrichtung zum Bestrahlen des Rohmaterials in Kontakt tritt. Jedoch ist die Erfindung nicht darauf beschrankt, das Rohmaterial nur von einer Seite her zu bestrahlen. Vielmehr kann das Rohmaterial aus mehreren Richtungen bestrahlt werden. Dabei kann insbesondere eine Mehrzahl von Infrarot-Strahlungsquellen und/oder eine Einrichtung zum Umlenken der Infrarotstrahlung eingesetzt werden. Die Bestrahlung des Rohmaterials aus mehreren Richtungen hat den Vorteil, daß auch Rohmaterial mit größeren Schichtdicken schnell durchwärmt werden kann, z. B. Schichtdicken von mehr als 1 mm.
Unter dem Ausdruck „anordnen des Rohmaterials an einer Oberflache der Form" wird verstanden, daß eine Relativbewegung des Rohmaterials und der Form stattfindet, wobei das Rohmate- rial und/oder die Form bewegt werden kann.
Bei einer Weiterbildung des Verfahrens wird das Rohmaterial mittels elektrischer Feldkrafte m Anlage an die Negativstruktur gebracht. Insbesondere bei Verwendung eines Pulvers und/oder Granulates als Rohmaterial können somit an sich bekannte Verfahren zum Auftragen von Rohmaterial an einer Oberflache angewendet werden. Dabei kann auf schnelle und gleicnmaßige Weise exakt die gewünschte Verteilung des Rohmaterials erreicht werden. Ein Vorteil dieser Weiter- bildung besteht darin, daß auch dann überschüssiges Rohmaterial vermieden wird, wenn die Erwärmung des Rohmaterials schon vor dem Aufbringen des vollständigen Rohmaterials begonnen wird.
Vorzugsweise wird das aus dem Rohmaterial hergestellte Formteil von der Negativstruktur abgelost, indem ein Fluid, insbesondere ein Gas, durch Offnungen in der Form hindurch gegen die Oberflachenstruktur geleitet wird. Diese Vorgehensweise ist besonders schonend für das hergestellte Formteil und sie vereinfacht das Ablosen des Formteils von der Form. Sofern auch ein Warmeubertrag von der Form auf das zu erwärmende Rohmaterial ausgenutzt werden soll und die Form daher eine bestimmte Temperatur haben soll, ist weiterhin von Vorteil, daß die Form nicht abgekühlt werden muß, um das Formteil abzulösen. Das Rohmaterial für das nächste herzustellende Formteil kann daher früher an der Oberflache der Form angeordnet werden und eine vorherige Erwärmung der Form ist nicht oder nur geringfügig erforderlich.
Vorzugsweise liegen zumindest wesentliche, die Erwärmung des Rohmaterials bewirkende, Strahlungsanteile der Infrarotstrahlung im Wellenlangenbereich des nahen Infrarot. Unter nahem Infrarot wird der Wellenlangenbereich verstanden, der zwischen dem sichtbaren Wellenlangenbereich und 1,2 μm Wellen- lange liegt. Insbesondere wird die Infrarotstrahlung von einer Temperatur-Strahlungsquelle emittiert, die eine Emissionstemperatur von 2500 K oder hoher hat, insbesondere von 2900 K oder hoher. Strahlungsquellen dieser Art sind besonders gut steuerbar und emittieren elektromagnetische Strahlung hoher Strahlungsflußdichte. Daher ist eine schnelle und zeitlich exakt steuerbare Erwärmung des Rohmaterials möglich. Weiterhin können bestimmte Bereiche, etwa Bereiche mit größerer Schichtdichte des Rohmaterials mit höherer oder niedrigerer Strahlungsflußdichte bestrahlt werden. Vor allem aber lassen sich innerhalb weniger Sekunden Formteile mit fast beliebigen Schichtdicken herstellen.
Strahlungsanteile, die von dem zu erwärmenden Rohmaterial nicht absorbiert wurden, werden vorzugsweise in Richtung des Rohmaterials zurück reflektiert. Zur Reflexion kann die Form selbst beitragen, etwa Rander oder andere, nicht durch Rohmaterial abgedeckte, Teile der Form und es können zusätzliche, separate Reflektoren verwendet werden.
Vorzugsweise wird das Material der Form derart ausgewählt oder vorbereitet, daß sein Absorptionsgrad im nahen Infrarot Werte kleiner als 0,4, insbesondere kleiner als 0,2 hat. Wenn die Infrarotstrahlung durch das Material der Form hindurch in das Rohmaterial eingestrahlt wird, findet nur eine geringe Schwächung der Infrarotstrahlung statt. Andererseits nimmt die Form abhangig von der Dauer und Leistung der Bestrahlung eine bestimmte Temperatur an, die vorteilhaft für die Serienfertigung der Formteile ist. Zu Beginn der Erwärmung des Rohmaterials übertragt die Form Warme auf das Rohmaterial durch Warmeleitung. Je nach Hohe der Formtemperatur und je nach Hohe der für die Herstellung der Form erforderliche Temperatur des Rohmaterials, findet mit fortschreitender Erwärmung des Rohmaterials entweder ein weiterer Warmeuber- trag von der Form auf das Rohmaterial statt, oder verliert das Rohmaterial zumindest weniger Warme an die Form als bei kalter Form.
Bei einer Weiterbildung der Vorrichtung weist diese eine Einrichtung zur Erzeugung elektrischer Feldkräfte auf, um das Rohmaterial an der Formoberflache anzuordnen. Insbesondere ist die Form an der Oberflache elektrisch leitfahig. Als geeignetes Material für die Form, um die Infrarotstrahlung durch die Form hindurch in das Rohmaterial einzustrahlen, wird Quarzglas vorgeschlagen.
Bei einer Weiterbildung weist die Form Offnungen auf, um ein Fluid, insbesondere ein Gas, an die Oberflache mit der Negativstruktur zu leiten und ein anliegendes Formteil abzulösen. Insbesondere sind die Offnungen ventilartig ausgebildet, um einen Fluidstrom m umgekehrte Richtung zu blockieren und/oder um die Oberflache der Form zumindest annähernd voll- standig zu schließen.
Weiterhin wird die Verwendung einer Infrarot-Strahlungsquelle zur Strahlungserwarmung eines Rohmaterials vorgeschlagen, um aus dem an einer Negativform anliegenden Rohmaterial ein oberflachenstrukturiertes Formteil zu bilden, wobei zumindest ein Teil der zum Erwarmen des Rohmaterials erforderlichen Energie durch elektromagnetische Strahlung von der Infrarot- Strahlungsquelle in das Rohmaterial übertragen wird.
Vorzugsweise wird zumindest ein Teil der Infrarotstrahlung durch das Material der Negativform hindurch in das Rohmate- rial eingestrahlt.
Bevorzugtermaßen weist die Infrarot-Strahlungsquelle einen Temperaturstrahler auf, der bei Emissionstemperaturen von 2500 K oder hoher, insbesondere von 2900 K oder hoher, be- treibbar ist.
Vorzugsweise ist die Infrarot-Strahlungsquelle eine Halogenlampe . In weiterer Ausgestaltung weist die Infrarot-Strahlungsquelle einen Rohrenstrahler mit einem sich m einer strahlungsdurch- lassigen Rohre, insbesondere in einer Quarzglasrohre, erstreckenden Glühfaden auf.
Die Infrarot-Strahlungsquelle kann mit einem Reflektor zur Reflexion von emittierter Strahlung in Richtung des zu erwärmenden Rohmaterials kombiniert sein.
Ausfuhrungsbeispiele der vorliegenden Erfindung werden nun anhand der Zeichnung naher erläutert. Die Erfindung ist jedoch nicht auf diese Ausfuhrungsbeispiele beschrankt. Die einzelnen Figuren der Zeichnung zeigen:
Fig. 1 Eine Vorrichtung zum Herstellen von Formteilen mit einer Oberflachenstruktur m schematischer Schnittdarstellung,
Fig. 2 eine Ansicht der Oberflachenstruktur eines in der Vorrichtung nach Fig. 1 hergestellen Formteils und
Fig. 3 einen Querschnitt durch eine Infrarot-Strahlungsquelle zur Bestrahlung von Rohmaterial.
Die in Fig. 1 dargestellte Vorrichtung weist eine Form 2 mit einer Strukturoberflache 4 auf zur Herstellung von Formteilen 1 mit der in Fig. 2 dargestellten Oberflachenstruktur. Die Strukturoberflache 4 ist dabei ein Negativ der n Fig. 2 gezeigten strukturierten Oberflache 11 des Formteils 1. Die strukturierte Oberflache 11 weist linienartige Vertiefungen 12 auf, die sich teilweise kreuzen und eine sogenannte genarbte Oberflache bilden. Dementsprechend weist die Strukturoberflache 4 der Form 2 in Fig. 1 nicht dargestellte linienartige Erhebungen auf. Eine Pulvereinrichtung 6 mit Pulvervorrat 7 enthalt einen Vorrat von Kunstharzpulver 3. Um ein Formteil 1 herzustellen, wird mittels der Pulvereinrichtung 6 das Kunstharzpulver 3 in der gewünschten Dicke und Verteilung auf die Strukturober- flache 4 aufgebracht. Um darzustellen, daß es sich bei der auf der Strukturoberflache 4 der Form 2 angeordneten Schicht sowohl um Kunstharzpulver 3 als auch um ein bereits fertiggestelltes Formteil 1, oder um beliebige Zwischenstufen handeln kann, ist diese Schicht in Fig. 1 sowohl mit dem Bezugszei- chen 1 als auch mit dem Bezugszeichen 3 bezeichnet.
Die in Fig. 1 dargestellte Vorrichtung weist weiterhin eine Einrichtung zum Erzeugen elektrischer Feldkrafte auf, um das Kunstharzpulver 3 von der Pulvereinrichtung 6 auf der Struk- turoberflache 4 zu deponieren. Die Einrichtung zum Erzeugen von elektrischen Feldkraften weist eine Hochspannungsquelle 8 auf. Der positive Pol der Hochspannungsquelle 8 ist über eine elektrische Leitung mit der Pulvereinrichtung 6 verbunden. Der andere Pol der Hochspannungsquelle 8 ist über eine elek- frische Leitung 10 mit Erde 9 und mit der Form 2 verbunden. Die Polung der Hochspannungsquelle kann auch umgekehrt sein.
Weiterhin ist unterhalb, d. h. auf der gegenüberliegenden Seite der Form 2, eine Infrarot-Strahlungsquelle 5 vorge- sehen.
Zur Herstellung eines Formteils 1 wird zunächst das Kunstharzpulver 3 aufgrund der elektrischen Feldkrafte des Hochspannungsfeldes von der Pulvereinrichtung 6 auf der Struk- turoberflache 4 angeordnet. Insbesondere mit Ausstoßen einer vorgegebenen Menge des Kunstharzpulvers 3 oder durch Steuerung der Ausstoßmenge abhangig von einem Meßwert der auf die Strukturoberflache 4 aufgebrachten Pulverdicke oder -menge wird das Kunstharzpulver 3 m der gewünschten Verteilung an der Strukturoberflache 4 angeordnet. Bereits wahrend des Aufbπngens des Kunstharzpulvers 3 oder danach wird das Kunstharzpulver 3 mit Infrarotstrahlung aus der Infrarot-Strahlungsquelle 5 bestrahlt. Dabei tritt Infra- rotstrahlung durch das Material der Form 2 hindurcr m das Kunstharzpulver 3 ein und wird dort absorbiert. Durch das Kunstharzpulver 3 hindurch tretende Infrarotstrahlung kann mittels in Fig. 1 nicht dargestellter Reflektoren m Richtung des Kunstharzpulvers 3 zurück reflektiert werden. Aufgrund der Bestrahlung erwärmt sich das Kunstharzpulver 3, schmilzt und bildet einen Materialverbund, so daß das Formteil 1 entsteht. Abhangig von der Art des Kunstharzes findet unter Umstanden eine Vernetzung des Kunstharzmateπals statt. Wahrend der beschriebenen thermoplastischen Verformung paßt sich das Kunstharz der Negativstruktur der Strukturoberflache 4 an, so daß die strukturierte Oberflache 11 gebildet wird.
Anstelle der m Fig. 1 dargestellten Einrichtung zur Erzeugung des elektrischer Hochspannungsfeldes können auch andere an sich bekannte, gleich wirkende Einrichtungen eingesetzt werden. Beispielsweise kann das sogenannte „Tribo" -Verfahren angewendet werden, wobei die Pulverteilchen ausschließlich durch reibungselektrische Vorgange beim turbulenten Durchströmen eines Kunststoffkanals m einem Spruhorgan der Pul- veremrichtung 6 aufgeladen werden.
Nach der thermoplastischen Verformung des Kunstharzes zu dem Formteil 1 wird das Formteil 1 von der Strukturoberflache 4 abgelost. Hierzu wird durch nicht dargestellte Leitungen Druckluft zugeführt. Diese Leitungen enden an der Unterseite der Form 2 an den dort beginnenden ventilartigen Offnungen 15. Durch die Offnungen 15 hindurch trifft die Druckluft auf die strukturierte Oberflache 11 des Formteils 1 und hebt dieses von der Strukturoberflache 4 ab. Die Anzahl und der Durchmesser der ventilartigen Offnungen 15 ist abhangig von der Stabilität der Formteile 1, die mittels der Form 2 hergestellt werden. Die Ausgestaltung der einzelnen ventilartigen Offnungen ist an sich bekannt und wird hier nicht naher beschrieben. Bevorzugt wird die Verwendung solcher ventilartigen Offnungen, deren Ventil zusammen mit der
Strukturoberflache 4 der Form 2 eine nahezu ununterbrochene durchgehende Oberflache bilden. Dadurch wird eine Nachbearbeitung des Formteils 1 vermieden, beispielsweise das Entfernen von Vorsprungen der strukturierten Oberflache 11, die sich durch Eindringen des Kunstharzes in die ventilartigen Offnungen 15 bilden konnten.
Ein spezielles Ausfuhrungsbeispiel der Infrarot-Strahlungsquelle 5 ist in Fig. 3 dargestellt. Sie weist zwei Rohren- strahier 20 auf, die jeweils einen Wolfram-Faden 22 aufweisen. Die Wolfram-Faden 22 sind Glühfaden, die sich etwa in der Zentrumslinie einer langgestreckten Quarzglasrohre 21 erstrecken ( n Fig. 3 senkrecht zur Bildebene) . Die Rohrenstrahler 20 sind in Ausnehmungen eines Reflektorkorpers 23 angeordnet, wobei die Ausnehmungen ebenfalls, entsprechend den Rohrenstrahlern 20, langgestreckt sind und jeweils ein parabolisches Querschnittsprof l aufweisen. Anstelle eines parabolischen Querschnittsproflls können auch andere Querschnittsprofile verwendet werden, beispielsweise trapez- formige und/oder andere Querschnittsprofile, insbesondere zur Einstellung einer definierten Strahlungsverteilung m dem Kunstharz .
Die Oberflachen der m Fig. 3 gezeigten Ausnehmungen und die sich m horizontaler Richtung erstreckenden Oberflachen-be- reiche an der Unterseite des Reflektorkorpers 23 sind als Reflektorflachen 24 zur Reflexion der Infrarotstrahlung ausgebildet. In der Anordnung von Fig. 1 läge die Unterseite des Reflektorkorpers 23 oben. Durch Variation des elektrischen Stromes, der durch die Wolfram-Faden 22 fließt, wird die Temperatur der Wolfram-Faden 22 und damit die spektrale Lage des Strahlungsfluß-dich- te-Maximums und die Gesamt-Strahlungsleistung der emittierten Stranlung eingestellt. Die Wolfram-Faden 22 weisen eine geringe thermische Trägheit auf, da ihre Masse und damit auch ihre Wärmekapazität gering ist. Innerhalb von Sekundenbruchteilen kann die volle Strahlungsleistung durch Einschalten des elektrischen Stromes erreicht werden und kann umgekehrt durch Abschalten des elektrischen Stromes die Emission von Strahlung gestoppt werden. Durch geeignete, an sich bekannte elektronische Steuerungseinrichtungen wird beim Einschalten des Stromes schnell ein zeitlich konstanter Temperaturwert der Wolfram-Faden 22 erreicht.
Um eine Erwärmung des Reflektorkorpers 23 zu vermeiden, ist dieser vorzugsweise aktiv kuhlbar, d. n. beispielsweise flus- sigkeitsgekuhlt . Somit erwärmt sich die Reflektor-oberflache 24 höchstens geringfügig und tragt nicht nennenswert zu einer Totzeit der Regelung der Strahlungsflußdichte bei. Auf diese Weise kann die auf das Kunstnarzmaterial eingestrahlte Infrarotstrahlung als Funktion der Zeit bei der Herstellung jedes einzelnen Formteils 1 exakt reproduziert werden.
Bezugszeichenliste
1 Formteil
2 Form 3 Kunstharzpulver
4 Strukturoberflache
5 Infrarot-Strahlungsquelle
6 Pulvereinrichtung
7 Pulvervorrat 8 Hochspannungsquelle Erde elektrische Leitung strukturierte Oberflache linienartige Vertiefungen ventilartige Öffnung Rohrenstrahler Quarzglasrohre Wolfram-Faden Reflektorkorper Reflektoroberflache

Claims

Patentansprüche
1. Verfahren zum Herstellen von Formteilen (1) mit einer Oberflachenstruktur (12), insbesondere von Armaturenverkleidungen für Kraftfahrzeuge, wobei ein
Rohmaterial (3) an einer Oberflache (4) einer Form (2) angeordnet wird, wobei die Oberflache (4) der Form (2) eine Negativstruktur der zu erzeugenden Oberflachenstruktur (12) aufweist, wobei das Rohmaterial (3) erwärmt wird, so daß es in Anlage an der Negativstruktur die Oberflächenstruktur (12) bildet, und wobei die Erwärmung des Rohmaterials (3) zumindest teilweise durch Absorption von Infrarotstrahlung bewirkt wird.
2. Verfahren nach Anspruch 1, wobei zumindest ein Teil der Infrarotstrahlung durch das Material der Form (2) hindurch in das Rohmaterial (3) eingestrahlt wird.
3. Verfahren nach Anspruch 1 oder 2, wobei das Rohmaterial (3) mittels elektrischer Feldkrafte in Anlage an die Negativstruktur gebracht wird .
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Rohmaterial (3) ein Pulver oder Granulat aus thermoplastisch verformbarem Material aufweist.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das aus dem Rohmaterial (3) hergestellte Formteil (1) von der Negativstruktur abgelost wird, indem ein Fluid, insbesondere ein Gas, durch Offnungen (15) in der Form (2) hindurch gegen die Oberflachenstruktur (12) geleitet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei zumindest wesentliche, die Erwärmung des Rohmaterials (3) bewirkende, Strahlungsanteile der Infrarotstranlung im Wellenlangenbereich des nahen Infrarot liegen.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei d e Infrarotstrahlung von einer Temperatur- Strahlungsquelle (5) emittiert wird, die eine Emissionstemperatur von 2.500 K oder hoher hat, insbesondere von 2.900 K oder hoher.
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei das Material der Form (2) derart ausgewählt oder vorbereitet wird, daß sein Absorptionsgrad im nahen
Infrarot Werte kleiner als 0,4, insbesondere kleiner als 0,2 hat.
9. Vorrichtung zum Herstellen von Formteilen (1) mit einer Oberflachenstruktur (12), insbesondere von Armaturen- verkleidungen für Kraftfahrzeuge, mit einer Form (2), wobei eine Oberflache (4) der Form eine Negativstruktur der zu erzeugenden
Oberflachenstruktur (12) aufweist und mit einer Strahlungsquelle (5) zur Erzeugung von
Infrarotstrahlung, wobei die Strahlungsquelle (5) derart angeordnet ist, daß die Infrarotstrahlung in zu erwärmendes, an der
Negativstruktur anordenbares Rohmaterial (3) einstrahlbar ist.
10. Vorrichtung nach Anspruch 9, wobei die Form (2) für Infrarotstrahlung durchlassig ist und wobei die Strahlungsquelle (5) derart angeordnet ist, daß die Infrarotstrahlung von einer der Negativstruktur gegenüberliegenden Seite der Form (2) durch die Form (2) hindurch in das zu erwärmende Rohmaterial (3) emstranlbar ist.
11. Vorrichtung nach Anspruch 9 oder 10, mit einer Einrichtung (8, 9, 10) zur Erzeugung elektrischer Feldkrafte zum Anordnen des Rohmaterials (3) an der Oberflache (4) der Form (2).
12. Vorrichtung nach Anspruch 11, wobei die Form (2) an der Oberflache (4) mit der Negativstruktur elektrisch leitfahig ist.
13. Vorrichtung nach einem der Ansprüche 9 bis 12, wobei die Form (2) zumindest teilweise aus Quarzglas besteht .
14. Vorrichtung nach einem der Ansprüche 9 bis 13, wobei die Form (2) Offnungen (15) aufweist, um ein Fluid, insbesondere ein Gas, an die Oberflache mit der Negativstruktur zu leiten und um ein anliegendes Formteil (1) abzulösen.
15. Vorrichtung nach Anspruch 14, wobei die Offnungen (15) ventilartig ausgebildet sind.
16. Verwendung einer Infrarot-Strahlungsquelle (5) zur Strahlungserwarmung eines Ronmaterials (3), um aus dem an einer Negativform (2, 4) anliegenden Rohmaterial (3) ein oberflachenstrukturiertes Formteil (1) zu bilden, wobei zumindest ein Teil der zum Erwarmen des Rohmaterials (3) erforderlichen Energie durch elektromagnetische Strahlung von der Infrarot- Strahlungsquelle (5) in das Rohmaterial (3) übertragen wird.
17. Verwendung nach Anspruch 16, wobei zumindest ein Teil der Infrarotstrahlung durch das Material der Negativform (2, 4) m das Rohmaterial (2) eingestrahlt wird.
18. Verwendung nach Anspruch 16 oder 17, wobei die Infrarot-Strahlungsquelle (5) einen Temperaturstrahler (22) aufweist, der bei Emissionstempera- turen von 2.500 K oder hoher, insbesondere von 2.900 K oder hoher betreibbar ist.
19. Verwendung nach einem der Ansprüche 16 bis 19, wobei die Infrarot-Strahlungsquelle (5) eine Halogenlampe ist.
20. Verwendung nach einem der Ansprüche 16 bis 19, wobei die Infrarot-Strahlungsquelle (5) einen Rohrenstrahler (20) mit einem sich in einer strahlungsdurchlassigen Rohre (21) , insbesondere in einer Quarzglasrohre, erstreckenden Glühfaden (22) auf eist .
21. Verwendung nach einem der Ansprüche 16 bis 20, wobei die Infrarot-Strahlungsquelle (5) mit einem Reflektor (22, 24) zur Reflexion von emittierter Strahlung m Richtung des zu erwärmenden Rohmaterials (3) kombiniert ist.
PCT/EP2000/009563 1999-10-01 2000-09-29 Herstellung von oberflächenstrukturierten formteilen WO2001024988A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU79104/00A AU7910400A (en) 1999-10-01 2000-09-29 Method of producing surface-structured molded articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19947350.1 1999-10-01
DE1999147350 DE19947350C1 (de) 1999-10-01 1999-10-01 Herstellung von oberflächenstrukturierten Formteilen

Publications (1)

Publication Number Publication Date
WO2001024988A1 true WO2001024988A1 (de) 2001-04-12

Family

ID=7924178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/009563 WO2001024988A1 (de) 1999-10-01 2000-09-29 Herstellung von oberflächenstrukturierten formteilen

Country Status (3)

Country Link
AU (1) AU7910400A (de)
DE (1) DE19947350C1 (de)
WO (1) WO2001024988A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754320B2 (en) 2004-01-12 2010-07-13 James Hardie Technology Limited Composite fiber cement article with radiation curable component
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element
US20210197466A1 (en) * 2017-04-13 2021-07-01 Hewlett-Packard Development Company, L.P. Reflective barriers
US11148365B2 (en) * 2017-01-15 2021-10-19 Hewlett-Packard Development Company, L.P. Reflector assembly with partial elliptical cavities

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014216108A1 (de) 2014-08-13 2016-02-18 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Innenausstattungselementes sowie ein Werkzeug zur Durchführung des Verfahrens

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1246355A (fr) * 1958-10-24 1960-11-18 Patrician Plastic Corp Procédé et appareil pour la fabrication de matière plastique nacrée en feuille et produits ainsi obtenus
DE1479115B1 (de) * 1963-07-01 1971-07-08 Spraymould Bahamas Ltd Verfahren und vorrichtung zur herstellung von kunststoff-formkoerper
GB1383602A (en) * 1972-10-12 1974-02-12 Ici Ltd Moulded articles
US3823324A (en) * 1972-04-01 1974-07-09 Teijin Ltd Apparatus for forming relief printing plate from liquid photo-sensitive resin
US5002476A (en) * 1989-11-24 1991-03-26 Lockheed Corporation Tooling for composite parts
WO1999047276A1 (de) * 1998-03-16 1999-09-23 Advanced Photonics Technologies Ag Verfahren zur pulverlackierung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1246355A (fr) * 1958-10-24 1960-11-18 Patrician Plastic Corp Procédé et appareil pour la fabrication de matière plastique nacrée en feuille et produits ainsi obtenus
DE1479115B1 (de) * 1963-07-01 1971-07-08 Spraymould Bahamas Ltd Verfahren und vorrichtung zur herstellung von kunststoff-formkoerper
US3823324A (en) * 1972-04-01 1974-07-09 Teijin Ltd Apparatus for forming relief printing plate from liquid photo-sensitive resin
GB1383602A (en) * 1972-10-12 1974-02-12 Ici Ltd Moulded articles
US5002476A (en) * 1989-11-24 1991-03-26 Lockheed Corporation Tooling for composite parts
WO1999047276A1 (de) * 1998-03-16 1999-09-23 Advanced Photonics Technologies Ag Verfahren zur pulverlackierung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754320B2 (en) 2004-01-12 2010-07-13 James Hardie Technology Limited Composite fiber cement article with radiation curable component
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element
US11148365B2 (en) * 2017-01-15 2021-10-19 Hewlett-Packard Development Company, L.P. Reflector assembly with partial elliptical cavities
US20210197466A1 (en) * 2017-04-13 2021-07-01 Hewlett-Packard Development Company, L.P. Reflective barriers

Also Published As

Publication number Publication date
AU7910400A (en) 2001-05-10
DE19947350C1 (de) 2001-01-25

Similar Documents

Publication Publication Date Title
EP3377321B1 (de) Verfahren für 3d-druck mit engem wellenlängenspektrum
EP3221124B1 (de) Vorrichtung zum erzeugen einer verstärkungsstruktur auf einer formkörperoberfläche
EP2200797B1 (de) Verfahren zum herstellen eines faserverbundbauteils
EP3045285B1 (de) Vorrichtung zum aufheizen eines verbundwerkstoffs mit temperaturabhängigen verarbeitungseigenschaften und damit zusammenhängende verfahren
EP3153292A1 (de) Binderaktivierung mittels leuchtdioden bei der herstellung von faserverstärktem kunststofflaminat
EP3519126A1 (de) Herstellen dreidimensionaler werkstücke mittels einer mehrzahl von bestrahlungseinheiten
DE102016200522A1 (de) Verfahren zur Herstellung dreidimensionaler Objekte und Vorrichtung zur Durchführung des besagten Verfahrens
WO2001024988A1 (de) Herstellung von oberflächenstrukturierten formteilen
EP3221123B1 (de) Vorrichtung und verfahren zum erzeugen einer verstärkungsstruktur auf einer formkörperoberfläche
DE1796038A1 (de) Verfahren zum Verschweissen von Werkstoffen mit Glas oder aehnlichen Stoffen
EP1868797A1 (de) Verfahren zur herstellung einer folie
EP3221122B1 (de) Vorrichtung und verfahren zum erzeugen einer verstärkungsstruktur auf einer formkörperoberfläche
WO2000026011A1 (de) Laminierung
WO2019110329A1 (de) Verfahren zur herstellung eines bauteils sowie anlage dafür
DE102013214592B4 (de) Verfahren und Vorrichtung zum Thermoformen von Kunststoffprodukten
EP1655121B1 (de) Verfahren und Vorrichtung zur Herstellung von Kunststoff-Formfolien
DE102015216583A1 (de) Verfahren zur Herstellung einer dreidimensionalen Struktur und Vorrichtung hierzu
EP1638771A1 (de) Verfahren und vorrichtung zum herstellen von faserverstärkten verbundwerkstoff-bauteilen
DE10235831B4 (de) Verfahren zur Kaschierung eines dreidimensional vorgeformten Trägers mit einer Textillage sowie Bestrahlungsvorrichtung zur Durchführung des Verfahrens
DE2329030A1 (de) Elektrisch beheiztes fenster
EP0640455A1 (de) Heizung für Vakuumformmaschinen
WO2021069002A1 (de) Strahlungsheizung für den innenraum eines fahrzeugs
DE4223883B4 (de) Verfahren und Vorrichtung zum Tiefziehen von Kunststoffteilen
DE102022106134A1 (de) Schmelzheizer und verfahren zur herstellung eines formteils
DE102013220097B4 (de) Umformwerkzeug und Umformverfahren hierzu

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP