EP1638771A1 - Verfahren und vorrichtung zum herstellen von faserverstärkten verbundwerkstoff-bauteilen - Google Patents

Verfahren und vorrichtung zum herstellen von faserverstärkten verbundwerkstoff-bauteilen

Info

Publication number
EP1638771A1
EP1638771A1 EP04735000A EP04735000A EP1638771A1 EP 1638771 A1 EP1638771 A1 EP 1638771A1 EP 04735000 A EP04735000 A EP 04735000A EP 04735000 A EP04735000 A EP 04735000A EP 1638771 A1 EP1638771 A1 EP 1638771A1
Authority
EP
European Patent Office
Prior art keywords
substrate
supports
microwave
heating
pads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04735000A
Other languages
English (en)
French (fr)
Inventor
Mathias Kaiser
Helfried Urban
Matthias Graf
Markus Schönwald
Rudolf Emmerich
Wenzel Krause
Patrick KÖLZER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1638771A1 publication Critical patent/EP1638771A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1425Microwave radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91216Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods enabling contactless temperature measurements, e.g. using a pyrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/543Fixing the position or configuration of fibrous reinforcements before or during moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0855Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • B29K2079/085Thermoplastic polyimides, e.g. polyesterimides, PEI, i.e. polyetherimides, or polyamideimides; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
    • B29K2081/04Polysulfides, e.g. PPS, i.e. polyphenylene sulfide or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/10Cords, strands or rovings, e.g. oriented cords, strands or rovings
    • B29K2105/101Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0862Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2398/00Unspecified macromolecular compounds
    • B32B2398/20Thermoplastics

Definitions

  • the invention relates to a method for producing composite material components from at least one substrate and a number of supports provided with a thermoplastic, in which the substrate and the supports are brought into contact at least in places, and then at least the thermoplastic is heated up to a welding temperature and then the substrate and the supports are welded together under pressure, and a device suitable for carrying out this method.
  • thermoplastic for example in the form of tapes
  • the tapes and the substrate are heated up when they are put down and then pressed against one another, so that welding takes place between the tape and the substrate.
  • This process is also known as thermoplastic tape laying.
  • Infrared sources, laser sources and hot air are used to heat tape and / or substrate.
  • substrate thus encompasses on the one hand the contour-giving molding tool for the component (application of the first layer of tapes to the molding tool) and on the other hand the semi-finished component with more than one tape layer.
  • the substrate can also be a plastic component that was produced in another art processing method, for example an extruded tube or a container from a blow molding or rotational molding method.
  • a molded body made of foamed material can also be used as the substrate, which remains in the finished component and fulfills certain functions, such as sound or thermal insulation.
  • such components are also used in the context of highly dynamic applications as well as for pipes and pressure vessels. Due to their X-ray transparency, such components are also used in medical technology. In general, the components mentioned are characterized by extreme rigidity and strength with minimal weight at the same time.
  • the above-mentioned common heat sources are arranged on so-called tape laying heads, which control the laying speed, the contact pressure and the laying position.
  • the tapes and the substrate are heated by radiation or by convection.
  • the thermal inertia when heating the substrate is to be regarded as disadvantageous: in order to achieve high installation speeds, the heating sources are worked with temperatures that are far above the processing temperature (melting temperature) of the thermoplastic. This means that the laying speed is limited because the material is thermally damaged if the temperature is too high. Since part of the heating power is also reflected by the material to be heated, temperature measurement with an infrared thermometer is not possible and, in particular, cannot be used to control the heating power. This applies above all to the infrared sources and hot air heaters mentioned. Laser sources, which allow the best power control according to the state of the art, are very expensive, especially when large heating powers are required, and, moreover, have only a low efficiency.
  • the object of the invention is to create a method and a device of the type mentioned in the introduction to avoid the disadvantages mentioned above, which are characterized by lower energy consumption and lower investment costs in the production of composite materials.
  • thermal damage to the material is to be avoided and a higher laying speed than with previously known methods or devices is to be achieved.
  • This object is achieved in a method of the type mentioned in the introduction in that the energy required for heating is supplied in the form of microwave energy. Accordingly, it is provided in a device of the type mentioned at the outset that it has a microwave radiator for heating the thermoplastic.
  • the microwave energy used for heating according to the invention is absorbed directly within the material, so that the excess temperature generated in conventional systems on the surface, in particular of the supports, is eliminated. Beyond that thermal damage to the material is also avoided due to the controllability of the microwave source and in this way achieves a higher laying speed than with previously known methods or devices.
  • the layers have fibers of essentially the same type. This results in a high degree of absorption due to the correspondingly reduced electrical conductivity of the layers or the fiber material perpendicular to the fiber direction.
  • a further development of the method according to the invention provides that the microwaves are radiated into the supports in such a way that an electric field is oriented essentially perpendicular to the fiber direction.
  • the microwave radiator for generating an electric field is designed essentially perpendicular to the preferred absorption direction of the pads.
  • the fibers preferably consist of carbon.
  • the method and the device according to the invention further provide that both the pads and the substrate are irradiated with microwave energy.
  • the supports and the substrate are irradiated by a common microwave radiator.
  • the device according to the invention preferably also has a temperature measuring device for measuring the temperature of supports and / or substrate, by means of which the temperatures of supports and possibly substrate are measured.
  • the device according to the invention preferably has a control device for controlling the heating of supports and / or substrate in accordance with the temperature measuring device.
  • the method according to the invention either provides that supports in the form of strips are used and processed continuously or that support pieces are processed discontinuously.
  • a device according to the invention is preferably characterized in that it has at least one robot unit for guiding supports and / or substrate during welding.
  • the microwave radiator is designed as a waveguide.
  • the waveguide also has an arrangement of slots for carrying out the supports in a direction transverse to the longitudinal axis of the waveguide.
  • the support can also extend over a length of the hollow ters extending slot are performed.
  • the microwave radiator can also be designed as an open coaxial conductor or as a horn radiator.
  • FIG. 1 is a schematic partial representation of a longitudinal section through a first embodiment of the device according to the invention
  • FIG. 2a is a schematic partial representation of a top view of a second embodiment of the device according to the invention.
  • FIG. 2b is a schematic partial representation of a perspective view of the configuration according to FIG. 2a;
  • FIG. 3 shows a schematic representation of a section through a third embodiment of the device according to the invention.
  • FIG. 5 shows a section through a further embodiment of the device according to the invention, in which the support and substrate are irradiated with separate microwave radiators.
  • FIG. 1 shows a first embodiment of a device according to the invention, initially for the sake of For clarity, only the part of the device is shown in which the heating of the pads (tapes) takes place.
  • the device 1 has a microwave radiator 2 with a microwave source 2a and a waveguide 2b with a longitudinal axis L.
  • the electrical field of the microwave radiation generated by the microwave source 2a within the waveguide 2b is designated E and in the embodiment according to FIG. 1 is oriented perpendicular to the plane of the drawing.
  • the waveguide 2b has in its side walls 3, 3 'an arrangement of slots 4, 4' which, in the exemplary embodiment shown, is likewise perpendicular to the longitudinal axis L of the waveguide 2b, i.e. extend in the direction of its height (perpendicular to the plane of the drawing; not shown).
  • a thermoplastic a so-called thermoplastic matrix, not shown
  • thermoplastic matrix a so-called thermoplastic matrix, not shown
  • a processing temperature can be up to 430 °.
  • the tape 5 has fibers 7, in particular carbon fibers, oriented in the direction R of its extension, so that the electric field E in the interior of the waveguide 2b is effective perpendicular to the direction of the fiber orientation and thus to Heating the tape 5 is optimally absorbed.
  • a temperature measuring device 8 for example in the form of an infrared thermometer, is arranged in the conveying direction F of the tape 5 behind the waveguide 2 and is used to regulate properties of the microwave radiation in the interior of the waveguide 2b by means of a fit certain parameters of the microwave radiation, such as intensity, wavelength, polarization, etc., acting control device 8a.
  • the temperature measurement can also be carried out by means of a measuring device arranged inside the hollow conductor 2b.
  • the shown special relative arrangement of the fibers 7 and of the electric field E in the interior of the waveguide 2b ensures an optimal microwave absorption in the material of the tape 5 without thermal damage to the material due to overtemperature. It will also be like this. the radiated amount of energy is optimally used for heating the tape 5. If necessary, parameters of the microwave radiation are adjusted via the control device in such a way that an optimal welding is achieved when the tape 5 is pressed onto a substrate (see also FIGS. 3-5).
  • the waveguide 2b has a slot 4a which extends along its width, a width B of the slot 4a at least corresponding to a corresponding dimension of the tape 5.
  • the waveguide 2b and the microwave source of the microwave radiator 2 are designed in such a way that an electric field E 'results in the interior of the waveguide 2b in the direction of the longitudinal axis L of the waveguide 2b, so that the electric field in turn is perpendicular to the direction of the fibers 7 of the tape 5 - is to achieve maximum absorption and heating.
  • the tape 5 is again guided by means of an arrangement of guide rollers corresponding to the rollers 6, 6 'of FIG. 1, which are not shown here for the sake of illustration. According to the representations of FIGS. 2a and 2b, however, the tape 5 is not passed through the waveguide 2b .-, --.-whi-, PCT / EP2004 / 005693 but led past this along its longitudinal axis L.
  • microwave source temperature measuring device
  • control device is not shown in FIG. 2b for reasons of clarity and corresponds to that of FIG. 2a.
  • FIG. 3 shows an alternative embodiment of the device 1 according to the invention, in which an open coaxial conductor 9 with inner conductor 9a and outer conductor 9b is used instead of the waveguide 2b according to FIGS. 1 and 2.
  • the coaxial conductor 9 can have a widening 11 of the outer conductor 9b in its end region 10 lying against the tape 5. Due to the physical properties of the coaxial conductor 9, the electrical field E ′′ in the object of FIG. 3 is directed radially from the inner conductor 9a to the outer conductor 9b, so that only a partial component of the electrical field E ′′ perpendicular to the fiber direction in the tape 5 (cf. Fig. 2) runs. In this respect, only part of the microwave energy can be used to heat the tape 5, but the embodiment of the invention shown in FIG. 3 is particularly simple and inexpensive to manufacture and can also be adapted to existing tape laying units of a conventional type.
  • FIG. 3 Also shown in FIG. 3 is a substrate 12 on which the tape 5 is deposited by means of a guide roller 6 and, after heating up to the welding temperature of the thermoplastic, is welded under pressure by means of a pressure roller 13.
  • the configuration of the microwave radiator 2 of FIG. 3 with microwave sources 2a and coaxial conductor 9 causes both the tape 5 and the substrate 12 to be affected by the electric field E ′′ of the microwave radiation be enforced and heated.
  • a common microwave source 2 is therefore used for tape supports and substrate.
  • FIG. 4 shows a further embodiment of the device according to the invention, which essentially corresponds to that in FIG. 3. 4, however, the microwave source 2a is connected to a horn 14.
  • FIG. 5 shows a further embodiment of the device 1 according to the invention, in which two microwave radiators 2, 2 'with two separate microwave sources 2a, 2a' are provided for heating the tape 5 or the substrate 12.
  • the device 1 preferably has two temperature measuring devices in connection with control devices for the corresponding microwave radiation (not shown).
  • the tape 5 is unwound from a support preparation unit in the form of a tape roll 15, then passed through a waveguide 2b of the form shown in FIG. 1 and heated there.
  • the substrate 12 is heated separately by the microwave source 2a ′, so that suitable temperatures of both the substrate 12 and the tape 5 are present at the location of the pressure roller 13, on which the tape 5 and the substrate 12 are welded under pressure.
  • an integral unit 16 (shown schematically in dashed lines in FIG. 5) can preferably be formed from the preparation unit 15, the microwave trough 2 and the pressure roller 13, which by a obotertician R 17 (in Fig. 5 dot-dash lines ge ⁇ records) controllable via the substrate 12 is moved.
  • a further robot unit 17 ′ it is also possible to move the substrate 12 relative to the unit 16 by means of a further robot unit 17 ′.
  • Device for producing composite material components 2 'microwave emittera, 2a' microwave sourceb waveguide, 3 'wall (from 2b), 4', 4a slit tape (support), 6 'guide roller fiber temperature measuring devicea control device coaxial conductora inner conductor outer conductor0 end area (from 9, 9b) 1 extension2 substrate3 pressure roller4 horn blaster5 tape roller6 integral unit7, 17 'robot unit B width (from 4a)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

Ein Verfahren und eine Vorrichtung zum Herstellen von Verbundwerkstoff-Bauteilen aus wenigstens einem Substrat (12) und einer Anzahl von mit einem Thermoplast versehenen Auflagen (5), bei dem das Substrat und die Auflagen zumindest stellenweise in Anlage gebracht, anschließend zumindest der Thermoplast bis zu einer Verschweißtemperatur aufgeheizt und dann Substrat und Auflagen unter Druck miteinander verschweißt werden, zeichnen sich dadurch aus, dass die zum Aufheizen erforderliche Energie in Form von Mikrowellenenergie (2, 2a) zugeführt wird.

Description

Verfahren und Vorrichtung zum Herstellen von faserverstärkten Verbundwerkstoff-Bauteilen
Die Erfindung betrifft ein Verfahren zum Herstellen- von Verbundwerkstoff-Bauteilen aus wenigstens einem Substrat und einer Anzahl von mit einem Thermoplast versehenen Auf- lagen, bei dem das Substrat und die Auflagen zumindest stellenweise in Anlage gebracht, anschließend zumindest der Thermoplast bis zu einer Verschweißtemperatur aufgeheizt und dann Substrat und Auflagen unter Druck miteinander verschweißt werden, sowie eine zur Durchführung dieses Verfah- rens geeignete Vorrichtung.
Um hoch belastbare Leichtbauteile im Flugzeugbau, Fahrzeugbau und Maschinenbau herzustellen, ist es bekannt, mit Thermoplast imprägnierte Auflagen, beispielsweise in Form von Bändern, sogenannten Tapes, nacheinander in mehreren Lagen auf einer Form, dem Substrat, abzulegen. Die Tapes und das Substrat werden beim Ablegen aufgeheizt und anschließend gegeneinander gepresst, so dass ein Verschweißen zwischen Auflage (Tape) und Substrat stattfindet. Dieser Vorgang wird auch als Thermoplast-Tapelegen bezeichnet. Dabei kommen beim Aufheizen von Tape und/oder Substrat Infrarotquellen, Laserquellen und Heißluft zum Einsatz. Im Sinne der Erfindung u fasst der Begriff "Substrat" somit zum einen das konturgebende Formwerkzeug für das Bauteil (Aufbringen der ersten Lage von Tapes auf das Formwerkzeug) als auch zum anderen das halbfertige Bauteil mit mehr als einer Tapelage. Das Substrat kann auch ein Kunststoffbau- teil sein, das in einem anderen Kunstverarbeitungsverfahren hergestellt wurde, z.B. ein extrudiertes Rohr oder ein Behälter aus einem Blas- oder Rotationsformverfahren. Als Substrat kann auch ein Formkörper aus geschäumten Werkstoff verwendet werden, welcher im fertigen Bauteil bleibt und bestimmte Funktionen, wie Schall- oder Wärmedämmung, erfüllt.
Neben den genannten Anwendungen finden derartige Bauteile auch im Rahmen hochdynamischer Einsätze sowie für Rohre und Druckbehälter Verwendung. Aufgrund ihrer Röntgentransparenz werden solche Bauteile auch in der Medizintechnik eingesetzt. Generell zeichnen sich die genannten Bauteile durch extreme Steifigkeit und Festigkeit bei gleichzeitig minima- lern Gewicht aus.
Bekannt sind zum Herstellen der genannten Art von Bauteilen automatisierte Wickel- und Legeverfahren, bei denen die Tapes nacheinander in mehreren Lagen auf einer Substrat-Form abgelegt werden. Die Erstlage der Tapes muss in der Regel manuell auf die Form aufgeklebt werden.
Die vorstehend genannten gebräuchlichen Heizquellen sind an sogenannten Tapelegeköpfen angeordnet, die die Ablege- geschwindigkeit, den Anpressdruck und die Ablegeposition steuern. Die Erwärmung der Tapeauflagen und des Substrats erfolgt durch Strahlung bzw. durch Konvektion. Dabei ist insbesondere die thermische Trägheit beim Aufheizen des Substrats als nachteilig anzusehen: Um hohe Verlege- geschwind!gkeiten zu erreichen, muss daher bei den Heiz- quellen mit Temperaturen gearbeitet werden, die weit oberhalb der Verarbeitungstemperatur (Schmelztemperatur) des Thermoplast-Kunststoffes liegen. Somit ist die Verlegegeschwindigkeit begrenzt, da es bei einer zu hohen Tempera- tur zu einer thermischen Schädigung des Materials kommt. Da zudem ein Teil der Heizleistung vom aufzuheizenden Material reflektiert wird, ist eine Temperaturmessung mit einem Infrarot-Thermometer nicht möglich und kann insbesondere nicht zur Regelung der Heizleistung eingesetzt werden. Dies betrifft vor allem die genannten Infrarotquellen und Heißluftheizungen. Laserquellen, die nach dem Stand der Technik die beste Leistungsregelung zulassen, sind insbesondere bei großen benötigten Heizleistungen sehr teuer und haben darüber hinaus nur einen niedrigen Wirkungsgrad.
Der Erfindung liegt die Aufgabe zugrunde, zur Vermeidung der vorstehend genannten Nachteile ein Verfahren und eine Vorrichtung der eingangs genannten Art zu schaffen, die sich beim Herstellen von Verbundwerksto f-Bauteilen durch einen geringeren Energieverbrauch sowie durch geringere Investitionskosten auszeichnen. Darüber hinaus soll eine thermische Schädigung des Materials vermieden und eine höhere Verlegegeschwindigkeit als bei vorbekannten Verfahren bzw. Vorrichtungen erreicht werden.
Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass die zum Aufheizen erforderliche Energie in Form von Mikrowellenenergie zugeführt wird. Entsprechend ist bei einer Vorrichtung der eingangs genann- ten Art vorgesehen, dass diese einen Mikrowellenstrahler zum Aufheizen des Thermoplasts aufweist. Die erfindungsgemäß zum Heizen eingesetzte Mikrowellenenergie wird direkt innerhalb des Materials absorbiert, so dass die bei herkömmlichen Systemen erzeugte Übertemperatur an der Oberflä- ehe insbesondere der Auflagen entfällt. Darüber hinaus wird auch durch die Regelbarkeit der Mikrowellenquelle eine thermische Schädigung des Materials vermieden und auf diese Weise eine höhere Verlegegeschwindigkeit erreicht als bei vorbekannten Verfahren bzw. Vorrichtungen.
Um eine quantitativ hohe Mikrowellenabsorption in den Auflagen zu erreichen, sieht eine Weiterbildung- des erfindungsgemäßen Verfahrens vor, dass die Auflagen im wesentlichen gleichartig ausgerichtete Fasern aufweisen. Dadurch ergibt sich ein hoher Absorptionsgrad aufgrund entsprechend verminderter elektrischer Leitfähigkeit der Auflagen bzw. des Fasermaterials senkrecht zur Faserrichtung. Um einen möglichst großen Teil der eingestrahlten Mikrowellenenergie im Material zu absorbieren, ist daher nach einer Weiterbil- düng des erfindungsgemäßen Verfahrens vorgesehen, dass die Mikrowellen derart in die Auflagen eingestrahlt werden, dass ein elektrisches Feld im wesentlichen senkrecht zur Faserrichtung orientiert ist. Entsprechend sieht eine bevorzugte Ausgestaltung der erfindungsgemäßen Vorrichtung vor, dass der Mikrowellenstrahler zum Erzeugen eines elektrischen Feldes im wesentlichen senkrecht zur Absorptionsvorzugsrichtung der Auflagen ausgebildet ist. Die Fasern bestehen nach einer Weiterentwicklung der Erfindung vorzugsweise aus Kohlenstoff.
Um eine hohe Qualität der Verschweißung zu gewährleisten, sehen das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung weiterhin vor, dass sowohl die Auflagen und das Substrat mit Mikrowellenenergie bestrahlt werden. Dazu ist im Rahmen einer besonderen Weiterentwicklung des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Vorrichtung vorgesehen, dass die Auflagen und das Substrat durch einen gemeinsamen Mikrowellenstrahler bestrahlt werden. Alternativ dazu ist es möglich, die Auflagen und das Substrat mit separaten Mikrowellenstrahler zu bestrahlen. Zur Erzielung einer optimalen Aufheizung bis zu einer Verschweißtemperatur unter Vermeidung von Übertemperaturen weist die erfindungsgemäße Vorrichtung vorzugsweise darüber hinaus eine Temperaturmesseinrichtung zum Messen der Temperatur von Auflagen und/oder Substrat auf, durch die Temperaturen von Auflagen und ggf. Substrat gemessen werden. Nach einer Weiterentwicklung des erfindungsgemäßen Verfahrens ist es somit möglich, dass Eigenschaften der Mikrowel- lenstrahlung zum Erreichen der Verschweißtemperatur nach Maßgabe der Temperaturmessung bzw. der Temperaturmesseinrichtung geregelt werden. Weiterhin weist die erfindungsge- _ mäße Vorrichtung vorzugsweise eine Steuereinrichtung zum Steuern der Aufheizung von Auflagen und/oder Substrat nach Maßgabe der Temperaturmesseinrichtung auf.
Je nach Art der zu fertigenden Bauteile sieht das erfindungsgemäße Verfahren entweder vor, dass Auflagen in Form von Bändern verwendet und kontinuierlich verarbeitet werden oder dass Auflagenstücke diskontinuierlich verarbeitet werden. Bei der letztgenannten Ausgestaltung des erfindungsgemäßen Verfahrens ist eine erfindungsgemäße Vorrichtung vorzugsweise dadurch gekennzeichnet, dass sie mindestens eine Robotereinheit zum Führen von Auflagen und/oder Substrat beim Verschweißen aufweist.
Um das erfindungsgemäß vorzugsweise vorgesehen elektrische Feld in der Richtung erhöhter Mikrowellen-Absorption des Auflagenmaterials zu orientieren, sieht eine Weiterbildung der erfindungsgemäßen Vorrichtung vor, dass der Mikrowellenstrahler als Hohlleiter ausgebildet ist. Vorzugsweise weist der Hohlleiter darüber hinaus zum Durchführen der Auflagen in einer Richtung quer zur Längsachse des Hohlleiters eine Anordnung von Schlitzen auf . Alternativ kann die Auflage auch über einen sich längs der Breite des Hohllei- ters erstreckenden Schlitz geführt werden. Nach einer alternativen Ausgestaltung der erfindungsgemäßen Vorrichtung kann der Mikrowellenstrahler auch als offener Koaxialleiter oder als Hornstrahler ausgebildet sein.
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus den beigefügten Patentansprüchen sowie der nachfolgenden Beschreibung bevorzugter Ausführungsformen anhand der Zeichnungen. Es zeigt:
Fig. 1 in schematischer Teildarstellung einen Längsschnitt durch eine erste Ausführungsform der erfindungsgemäßen Vorrichtung,-
Fig. 2a in schematischer Teildarstellung eine Draufsicht auf eine zweite Ausgestaltung der erfindungsgemäßen Vorrichtung;
Fig. 2b in schematischer Teildarstellung eine perspekti- vische Ansicht der Ausgestaltung gemäss Fig. 2a;
Fig. 3 in schematischer Darstellung einen Schnitt durch eine dritte Ausführungsform der erfindungsgemäßen Vorrichtung;
Fig. 4 einen Schnitt durch eine weitere Ausgestaltung der erfindungsgemäßen Vorrichtung; und
Fig. 5 einen Schnitt durch eine weitere Ausgestaltung der erfindungsgemäßen Vorrichtung, bei der Auflage und Substrat mit separaten Mikrowellenstrahlern bestrahlt werden.
Die Fig. 1 zeigt eine erste Ausführungsform einer erfin- dungsgemäßen Vorrichtung, wobei zunächst aus Gründen der Übersichtlichkeit nur der Teil der Vorrichtung gezeigt ist, in dem das Aufheizen der Auflagen (Tapes) erfolgt.
Die Vorrichtung 1 weist einen Mikrowellenstrahler 2 mit ei- ner Mikrowellenquelle 2a und einem Hohlleiter 2b mit Längsachse L auf . Das elektrische Feld der von der Mikrowellenquelle 2a erzeugten Mikrowellenstrahlung innerhalb des Hohlleiters 2b ist mit E bezeichnet und bei der Ausführungsform gemäß der Fig. 1 senkrecht zur Zeichenebene ori- entiert. Der Hohlleiter 2b weist in seinen Seitenwänden 3, 3' eine Anordnung von Schlitzen 4, 4' auf, die sich beim gezeigten Ausführungsbeispiel ebenfalls senkrecht zur Längsachse L des Hohlleiters 2b, d.h. in Richtung dessen Höhe (senkrecht zur Zeichenebene; nicht gezeigt) erstrek- ken. Durch die Schlitze 4, 4' des Hohlleiters 2b wird ein zu verarbeitendes, mit einem Thermoplast (einer sog. Thermoplast-Matrix, nicht gezeigt) versehenes, insbesondere imprägniertes oder beschichtetes, Tape 5 mittels einer Führungsanordnung aus zwei Führungsrollen 6, 6' geführt. Als Tape 5 kommen insbesondere Kohlenstofffaser-Tapes mit Matrixthermoplasten PEEK, PA, PPS oder PEI in Betracht, bei denen eine Verarbeitungstemperatur bis zu 430° betragen kann. Wie anhand der Darstellung der Fig. 2 ersichtlich, weist das Tape 5 in Richtung R seiner Erstreckung orien- tierte Fasern 7, insbesondere Kohlenstofffasern auf, so dass das elektrische Feld E im Inneren des Hohlleiters 2b senkrecht zur Richtung der Faserorientierung wirksam ist und somit zum Aufheizen des Tapes 5 optimal absorbiert wird.
In Förderrichtung F des Tapes 5 hinter dem Hohlleiter 2 ist eine Temperaturmesseinrichtung 8, beispielsweise in Form eines Infrarot-Thermometers, angeordnet und zum Regeln von Eigenschaften der Mikrowellenstrahlung im Innern des Hohl- leiters 2b mit einer auf die Mikrowellenquelle 2a zum An- passen bestimmter Parameter der Mikrowellenstrahlung, wie Intensität, Wellenlänge, Polarisation usw. , einwirkenden Steuereinrichtung 8a verbunden. Selbstverständlich kann die Temperaturmessung auch mittels einer innerhalb des Hohl1ei- ters 2b angeordneten Messeinrichtung erfolgen.
Durch die gezeigte spezielle relative Anordnung der Fasern 7 und des elektrischen Felds E im Inneren des Hohlleiters 2b ist eine optimale Mikrowellenabsorption im Material des Tapes 5 gewährleistet, ohne dass es zu einer thermischen Beschädigung des Materials aufgrund von Übertemperaturen kommt. Außerdem wird so. die eingestrahlte Energiemenge op- timal zum Aufheizen des Tapes 5 benutzt. Über die Steuereinrichtung werden ggf. Parameter der Mikrowellenstrahlung so angepasst, dass beim Verpressen des Tapes 5 mit einem Substrat (s.a. Fig. 3-5) eine optimale Verschweißung erzielt wird.
Die Fig. 2a und 2b zeigen eine alternative Ausgestaltung der Hohlleiter-Schlitz-Anordnung 2b, 4a. Beim Gegenstand der Fig. 2a und 2b weist der Hohlleiter 2b einen Schlitz 4a auf, der sich in längs seiner Breite erstreckt, wobei eine Breite B des Schlitzes 4a einer entsprechenden Abmessung des Tapes 5 zumindest entspricht. Dementsprechend sind Hohlleiter 2b und Mikrowellenquelle des Mikrowellenstrahlers 2 so ausgebildet, dass sich im Inneren des Hohlleiters 2b ein elektrisches Feld E' in Richtung der Längsachse L des Hohlleiters 2b ergibt, so dass wiederum das elektrische Feld senkrecht zur Richtung der Fasern 7 des Tapes 5 orien- tiert ist, um maximale Absorption und Aufheizung zu erzielen. Die Führung des Tapes 5 erfolgt wiederum mittels einer Anordnung von Führungsrollen entsprechend den Rollen 6, 6' der Fig. 1, die hier aus Gründen der Darstellung nicht gezeigt sind. Gemäß den Darstellungen der Fig. 2a und 2b wird das Tape 5 jedoch nicht durch den Hohlleiter 2b hindurch .-,--.-„--, PCT/EP2004/005693 sondern quer zu dessen Längsachse L an diesem vorbeigeführt .
Die Anordnung von Mikrowellenquelle, Temperaturmesseinrich- tung und Steuereinrichtung ist in Fig. 2b aus Gründen der Übersichtlichkeit nicht dargestellt und entspricht derjenigen der Fig. 2a.
Die Fig. 3 zeigt eine alternative Ausgestaltung der erfin- dungsgemäßen Vorrichtung 1, bei der als konkrete Ausgestaltung des Mikrowellenstrahlers 2 an Stelle des Hohlleiters 2b gemäß den Fig. 1 und 2 ein offener Koaxialleiter 9 mit _ Innenleiter 9a und Aussenleiter 9b zum Einsatz kommt. Der Koaxialleiter 9 kann in seinem am Tape 5 anliegenden Endbe- reich 10 eine Aufweitung 11 des Aussenleiters 9b aufweisen. Aufgrund der physikalischen Eigenschaften des Koaxialleiters 9 ist das elektrische Feld E' ' beim Gegenstand der Fig. 3 radial vom Innenleiter 9a zum Außenleiter 9b gerichtet, so dass nur eine Teilkomponente des elektrischen Fel- des E' ' senkrecht zur Faserrichtung im Tape 5 (vergleiche Fig. 2) verläuft. Zwar lässt sich insofern nur ein Teil der Mikrowellenenergie zur Erwärmung des Tapes 5 nutzen, allerdings ist die in Fig. 3 gezeigte Ausführungsform der Erfindung besonders einfach und kostengünstig herzustellen und kann darüber hinaus an bereits existierende Tape-Verlege- einheiten herkömmlicher Art adaptiert werden.
Weiterhin dargestellt ist in Fig. 3 ein Substrat 12, auf dem das Tape 5 mittels einer Führungsrolle 6 abgelegt und nach erfolgter Erwärmung bis zur Verschweißtemperatur des Thermoplasten mittels einer Anpressrolle 13 unter Druck verschweißt wird. Die Ausgestaltung des Mikrowellenstrahlers 2 der Fig. 3 mit Mikrowellenquellen 2a und Koaxialleiter 9 bewirkt, dass sowohl das Tape 5 als auch das Substrat 12 von dem elektrischen Feld E' ' der Mikrowellenstrahlung durchsetzt und aufgeheizt werden. Es kommt also eine gemeinsame Mikrowellenquelle 2 für Tape-Auflagen und Substrat zum Einsatz .
Die Fig. 4 zeigt eine weitere Ausgestaltung der erfindungsgemäßen Vorrichtung, die im wesentlichen derjenigen in Fig. 3 entspricht. Beim Gegenstand der Fig. 4 ist jedoch die Mikrowellenquelle 2a mit einem Hornstrahler 14 verbunden.
Die Fig. 5 zeigt eine weitere Ausgestaltung der erfindungsgemäßen Vorrichtung 1, bei der zwei Mikrowellenstrahler 2, 2' mit zwei separaten Mikrowellenquellen 2a, 2a' zum Aufheizen des Tapes 5 bzw. des Substrats 12 vorgesehen sind. Entsprechend weist die Vorrichtung 1 vorzugsweise zwei Tem- peraturmesseinrichtungen in Verbindung mit Steuerungseinrichtungen für die entsprechenden Mikrowellenstrahlungen auf (nicht gezeigt) . Das Tape 5 wird beim Ausführungsbei- spiel der Fig. 5 von einer Auflagen-Bereitstellungseinheit in Form einer Taperolle 15 abgespult, anschießend durch ei- nen Hohlleiter 2b der in Fig. 1 gezeigten Form geführt und dort aufgeheizt. Das Substrat 12 wird durch die Mikrowellenquelle 2a' separat aufgeheizt, so dass am Ort der Anpressrolle 13, an dem das Tape 5 und das Substrat 12 unter Druck verschweißt werden, geeignete Temperaturen sowohl des Substrats 12 als auch des Tapes 5 vorliegen.
Es ist im Rahmen der Erfindung nicht zwingend notwendig, wie in Fig. 1-5 gezeigt, Endlos-Tapebänder zu verarbeiten. So ist es erfindungsgemäß auch möglich, Auflagenstücke dis- kontinuierlich zu verarbeiten, insbesondere wenn die Auflagen und/oder das Substrat mittels mindestens einer Robotereinheit geführt werden. Vorzugsweise kann zu diesem Zweck eine integrale Einheit 16 (in Fig. 5 schematisch gestrichelt dargestellt) aus Bereitstellungseinheit 15, Mikrowel- lenstränier 2 und Anpressrolle 13 gebildet werden, die durch eine Robotereinheit 17 (in Fig. 5 strichpunktiert ge¬ zeichnet) steuerbar über das Substrat 12 bewegt wird. Es ist auch alternativ oder zusätzlich möglich, das Substrat 12 mittels einer weiteren Robotereinheit 17' relativ zu der Einheit 16 zu bewegen.
Bezugszeichenliste
Vorrichtung zum Herstellen von Verbundwerk Stoff-Bauteilen, 2' Mikrowellenstrahlera, 2a' Mikrowellenquelleb Hohlleiter, 3' Wand (von 2b), 4' , 4a Schlitz Tape (Auflage), 6' Führungsrolle Faser Temperaturmesseinrichtunga Steuereinrichtung Koaxialleitera Innenleiterb Außenleiter0 Endbereich (von 9, 9b)1 Erweiterung2 Substrat3 Anpressrolle4 Hornstrahler5 Taperolle6 integrale Einheit7, 17' Robotereinheit B Breite (von 4a)
E, E', E' ' Richtung des elektrischen Feldes
F Förderrichtung Längsachse (des Hohlleiters 2b)
R Erstreckungsrichtung (des Tapes 5)

Claims

Patentansprüche
1. Verfahren zum Herstellen von Verbundwerkstoff-Bauteilen aus wenigstens einem Substrat und einer Anzahl von mit einem Thermoplast versehenen Auflagen, bei dem das Sub- strat und die Auflagen zumindest stellenweise in Anlage gebracht, anschließend zumindest der Thermoplast bis zu einer Verschweißtemperatur aufgeheizt und dann Substrat und Auflagen unter Druck miteinander verschweißt werden, dadurch gekennzeichnet, dass die zum Aufheizen er- forderliche Energie in Form von Mikrowellenenergie zugeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Auflagen im wesentlichen gleichartig ausgerichtete Fasern aufweisen.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Mikrowellen derart in die Auflagen eingestrahlt werden, dass ein elektrisches Feld im wesentlichen senkrecht zur Faserrichtung orientiert ist.
4. Verfahren nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, dass die Auflagen und das Substrat mit Mikrowellen bestrahlt werden.
Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Auflagen und das Substrat mit einer gemeinsamen Mi- krowellenquelle bestrahlt werden.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Auflagen und das Substrat mit separaten Mikrowel- lenquellen bestrahlt werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Temperaturen der Auflagen und ggf. des Substrats gemessen werden.
Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass Eigenschaften der Mikrowellenstrahlung zum Erreichen der Verschweißtemperatur nach Maßgabe der Temperaturmessung geregelt werden.
Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Auflagen in Form von Bändern verwendet und kontinuierlich verarbeitet werden.
10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Auflagenstücke diskontinuierlich verarbeitet werden.
11. Vorrichtung zum Herstellen von Verbundwerkstoff- Bauteilen aus wenigstens einem Substrat und einer Anzahl von mit einem Thermoplast versehenen und zumindest stellenweise nach Aufheizung zumindest des Thermoplasts unter Druck mit dem Substrat zu verschweißenden Auflagen, gekennzeichnet durch einen Mikrowellenstrahler (2) zum Aufheizen des Thermoplasts.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Auflagen (5) eine Vorzugsrichtung der Mikrowellen-Absorption aufweisen.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Auflagen (5) zum Erzeugen einer Vorzugsrichtung der Mikrowellen-Absorption mit im wesentlichen gleichartig orientierten Fasern (7) versehen sind.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Fasern (7) aus Kohlenstoff bestehen.
15. Vorrichtung nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass der Mikrowellenstrahler (2) zum Erzeugen eines elektrischen Feldes (E, E', E' ') im wesentlichen senkrecht zur Absorptionsvorzugsrichtung der Auflagen (5) ausgebildet ist.
16. Vorrichtung nach einem der Ansprüche 11 bis 15, gekennzeichnet durch einen Mikrowellenstrahler (2') zum Aufheizen des Substrats (12) .
17. Vorrichtung nach einem der Ansprüche 11 bis 16, gekenn- zeichnet durch einen gemeinsamen Mikrowellenstrahler (2) zum Aufheizen von Auflagen (5) und Substrat (12) .
18. Vorrichtung nach einem der Ansprüche 11 bis 17, gekennzeichnet durch eine Temperaturmesseinrichtung (8) zum Messen der Temperatur von Auflagen (5) und/oder Substrat (12) .
19. Vorrichtung nach Anspruch 18, gekennzeichnet durch eine Steuereinrichtung (8a) zum Steuern der Aufheizung von Auflagen (5) und/oder Substrat (12) nach Maßgabe der Temperaturmesseinrichtung (8) .
20. Vorrichtung nach einem der Ansprüche 11 bis 19, dadurch gekennzeichnet, dass zumindest der Mikrowellenstrahler (2) zum Aufheizen der Auflagen (5) als Hohlleiter (2b) ausgebildet ist.
21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, dass der Hohlleiter (26) zum Führen und/oder Bestrahlen der Auflagen (5) eine Anordnung von Schlitzen (4, 4') aufweist.
22. Vorrichtung nach einem der Ansprüche 11 bis 19, dadurch gekennzeichnet, dass zumindest der Mikrowellenstrahler (2) zum Aufheizen der Auflagen (5) als offener Koaxialleiter (9) ausgebildet ist.
23. Vorrichtung nach einem der Ansprüche 11 bis 19, dadurch gekennzeichnet, dass zumindest der Mikrowellenstrahler (2) zum Aufheizen der Auflagen (5) als Hornstrahler (14) ausgebildet ist.
24. Vorrichtung nach einem der Ansprüche 11 bis 23, dadurch gekennzeichnet, dass mittels der Vorrichtung (1) band- förmige Auflagen (5) kontinuierlich verarbeitbar sind.
25. Vorrichtung nach einem der Ansprüche 11 bis 23, dadurch gekennzeichnet, dass mittels der Vorrichtung (1) Auflagenstücke (5) diskontinuierlich verarbeitbar sind.
26. Vorrichtung nach einem der Ansprüche 11 bis 25, gekennzeichnet durch mindestens eine Robotereinheit (17,17') zum Führen von Auflagen (5) und/oder Substrat (12) beim Verschweißen.
EP04735000A 2003-07-01 2004-05-27 Verfahren und vorrichtung zum herstellen von faserverstärkten verbundwerkstoff-bauteilen Withdrawn EP1638771A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003129431 DE10329431A1 (de) 2003-07-01 2003-07-01 Verfahren und Vorrichtung zum Herstellen von faserverstärkten Verbundwerkstoff-Bauteilen
PCT/EP2004/005693 WO2005002852A1 (de) 2003-07-01 2004-05-27 Verfahren und vorrichtung zum herstellen von faserverstärkten verbundwerkstoff-bauteilen

Publications (1)

Publication Number Publication Date
EP1638771A1 true EP1638771A1 (de) 2006-03-29

Family

ID=33559770

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04735000A Withdrawn EP1638771A1 (de) 2003-07-01 2004-05-27 Verfahren und vorrichtung zum herstellen von faserverstärkten verbundwerkstoff-bauteilen

Country Status (3)

Country Link
EP (1) EP1638771A1 (de)
DE (1) DE10329431A1 (de)
WO (1) WO2005002852A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005032700A1 (de) * 2005-07-13 2007-01-25 Basf Ag Extrusionsverfahren zur Herstellung eines Werkstücks
CN101489767B (zh) * 2006-05-22 2015-04-29 尤米柯结构材料(德比)有限公司 模塑材料
EP1914251A1 (de) 2006-10-17 2008-04-23 Solvay Solexis S.p.A. Verfahren zur Stabilisierung von Fluoropolymeren die Ionenaustauschergruppen enthalten
DE102009054894A1 (de) * 2009-12-17 2011-06-22 Sgl Carbon Se, 65203 Verfahren zur Herstellung von Faserverbundwerkstoffen mit Mikrowellenhärtung
DE102016207742A1 (de) * 2016-05-04 2017-11-09 Bayerische Motoren Werke Aktiengesellschaft Fahrzeugbauteil mit Schutzelement und Verfahren zur Herstellung eines Fahrzeugbauteils mit Schutzelement

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB984038A (en) * 1963-03-08 1965-02-24 Dennis Killen Improvements relating to the combining of continuous webs together
FR2473954A1 (fr) * 1980-01-22 1981-07-24 Placoplatre Sa Procede et dispositif pour l'acceleration de la prise de collage d'un materiau composite comportant au moins deux couches lamellaires encollees l'une a l'autre
DE3802881A1 (de) * 1987-11-16 1989-05-24 Utz Ag Georg Mikrowellenaktivierbarer schmelzklebstoff
NL9000213A (nl) * 1990-01-29 1991-08-16 Besouw Bv Van Werkwijze voor het vormen van een voorwerp uit versterkte kunststof en balk uit versterkte kunststof.
US5078821A (en) * 1990-08-13 1992-01-07 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for producing composites of materials exhibiting thermoplastic properties
US5798395A (en) * 1994-03-31 1998-08-25 Lambda Technologies Inc. Adhesive bonding using variable frequency microwave energy
DE4435887A1 (de) * 1994-10-07 1996-04-11 Fraunhofer Ges Forschung Verfahren zum Verbinden von Substraten aus thermoplastischen Polymeren
WO2001051736A1 (en) * 2000-01-13 2001-07-19 Dow Global Technologies Inc. Composites of reinforcing fibers and thermoplastic resins as external structural supports
DE10012378C2 (de) * 2000-03-09 2001-11-22 Inst Verbundwerkstoffe Gmbh Verfahren zur Anhaftung von faserverstärkten Thermoplastbändern auf einer Werkzeugplattform
KR100448328B1 (ko) * 2002-03-19 2004-09-10 이강 마이크로웨이브를 이용한 드라이필름 라미네이팅 장치 및방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005002852A1 *

Also Published As

Publication number Publication date
DE10329431A1 (de) 2005-02-03
WO2005002852A1 (de) 2005-01-13

Similar Documents

Publication Publication Date Title
EP3221124B1 (de) Vorrichtung zum erzeugen einer verstärkungsstruktur auf einer formkörperoberfläche
DE102013107103B4 (de) Faserhalbzeug-Ablegekopf und Faser-Legevorrichtung
DE102016100690A1 (de) Verfahren und Vorrichtung zur Herstellung eines Partikelschaumstoffteils
DE102014201818A1 (de) Verfahren und Vorrichtung zur verbesserten Steuerung des Energieeintrags in einem generativen Schichtbauverfahren
EP3153292A1 (de) Binderaktivierung mittels leuchtdioden bei der herstellung von faserverstärktem kunststofflaminat
EP2200797B1 (de) Verfahren zum herstellen eines faserverbundbauteils
EP2952316B1 (de) Faserauftragwerkzeug, faserverlegevorrichtung, faserverlegeverfahren und herstellverfahren
DE102014202352B4 (de) Verfahren und Vorrichtung zur Herstellung eines faserverstärkten duroplastischen Gegenstands
DE102013107102B4 (de) Faserhalbzeug-Temperiervorrichtung
EP3281775A1 (de) Fertigungsvorrichtung
WO2011073433A1 (de) Verfahren und vorrichtung zur herstellung von faserverbundwerkstoffen mit mikrowellenhärtung, und die dadurch erhaltene faserverbundstruktur
WO2003082573A1 (de) Vorrichtung und verfahren zur herstellung von verbundwerkstoffen
EP3221123B1 (de) Vorrichtung und verfahren zum erzeugen einer verstärkungsstruktur auf einer formkörperoberfläche
EP1638771A1 (de) Verfahren und vorrichtung zum herstellen von faserverstärkten verbundwerkstoff-bauteilen
EP3221122B1 (de) Vorrichtung und verfahren zum erzeugen einer verstärkungsstruktur auf einer formkörperoberfläche
EP1439942A2 (de) Verfahren und vorrichtung zum herstellen einer verstärkten muffe an einem extrudierten kunststoffrohr aus thermoplastischem kunststoff
WO2000026011A1 (de) Laminierung
DE10119809B4 (de) Verfahren und Vorrichtung zur Herstellung eines Profils
EP3238871B1 (de) Verfahren zur herstellung eines rohres aus metall durch laserschweissen
DE2353228C3 (de) Verfahren zur Wärmebehandlung von Bahnen aus noch restliches Treibmittel enthaltendem expandiertem Polystyrol und Vorrichtung zur Durchführung des Verfahrens
AT522497B1 (de) Verfahren zum Herstellen eines Rohres, sowie Vorrichtung zum Durchführen des Verfahrens
DE102021105971A1 (de) Ablagevorrichtung und Verfahren zur Herstellung eines Bauteils aus einem duroplastischen Towpreg-Halbzeug
DE102016117799A1 (de) System und verfahren zur herstellung eines faserverbundhalbzeugs sowie ein verfahren zur herstellung eines faserverbundbauteils
DE102020125375A1 (de) Verfahren zum Heizen von Objekten mit Mikrowellen
DE4230557A1 (de) Verfahren und vorrichtung zur herstellung von bauteilen aus verbundwerkstofflaminaten mit duromermatrix

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: URBAN, HELFRIED

Inventor name: KOELZER, PATRICK

Inventor name: EMMERICH, RUDOLF

Inventor name: GRAF, MATTHIAS

Inventor name: KRAUSE, WENZEL

Inventor name: KAISER, MATHIAS

Inventor name: SCHOENWALD, MARKUS

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20070112

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101201