WO2001020265A1 - Optoelektronischer drehwinkelsensor - Google Patents

Optoelektronischer drehwinkelsensor Download PDF

Info

Publication number
WO2001020265A1
WO2001020265A1 PCT/EP2000/008931 EP0008931W WO0120265A1 WO 2001020265 A1 WO2001020265 A1 WO 2001020265A1 EP 0008931 W EP0008931 W EP 0008931W WO 0120265 A1 WO0120265 A1 WO 0120265A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
tracks
coding
rotation
code
Prior art date
Application number
PCT/EP2000/008931
Other languages
English (en)
French (fr)
Inventor
Frank BLÄSING
Original Assignee
Leopold Kostal Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leopold Kostal Gmbh & Co. Kg filed Critical Leopold Kostal Gmbh & Co. Kg
Priority to JP2001523604A priority Critical patent/JP2003509674A/ja
Priority to EP00960657A priority patent/EP1212586A1/de
Priority to AU72871/00A priority patent/AU7287100A/en
Publication of WO2001020265A1 publication Critical patent/WO2001020265A1/de
Priority to US10/097,793 priority patent/US6501069B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34776Absolute encoders with analogue or digital scales
    • G01D5/34792Absolute encoders with analogue or digital scales with only digital scales or both digital and incremental scales
    • G01D5/34794Optical encoders using the Vernier principle, i.e. incorporating two or more tracks having a (n, n+1, ...) relationship

Definitions

  • the invention relates to a rotation angle sensor, such as a steering angle sensor.
  • a rotation angle sensor such as a steering angle sensor.
  • the invention relates to an optoelectronic angle of rotation sensor comprising an illuminated code disk carrying a multitrack digital coding, coupled to the rotary movement of a rotor, and a sensor array consisting of a plurality of individual transducer elements and arranged with respect to its longitudinal extent transverse to the direction of movement of the code disk for scanning the coding of the code disk ,
  • Rotation angle sensors are widely used for automatic positioning and measurement in machine tools and coordinate measuring machines.
  • angle of rotation sensors in the motor vehicle sector serve to determine the absolute angular position of the steering wheel and are therefore also referred to as steering angle sensors.
  • the steering angle is required in motor vehicles in order to be able to apply this value to a vehicle dynamics control system, for example.
  • a driving dynamics control system receives further measurement data, such as the wheel speed or the rotation of the motor vehicle about its vertical axis.
  • the absolute steering angle and the steering speed are required so that these values can be evaluated together with the other data recorded by the driving dynamics control system and implemented to control actuators, for example the brakes and / or the engine management.
  • An optoelectronic steering angle sensor is known for example from DE 40 22 837 A1.
  • the steering angle sensor described in this document consists of two elements arranged in parallel and at a distance from each other - a light source and a line sensor - as well as a code disc which is arranged between the light source and the line sensor and which is non-rotatably connected to the steering spindle.
  • a CCD sensor line serves as the line sensor.
  • the coding is with this code disc an Archimedean spiral designed as a slit of light extending over 360 ° is provided.
  • the Archimedean spiral used as coding is continuous, so that it can be addressed as analog coding.
  • a fraction of the transducer elements combined in the sensor line are involved in the subject of this angle of rotation sensor, namely only those that are exposed through the light slot.
  • the remaining transducer elements of the sensor array are only indirectly involved in the evaluation of the angle information, since the non-exposed transducer elements at most allow the statement that the angular position of the steering wheel is not in these angular ranges represented by the non-exposed transducer elements.
  • the problem with such a coding is that if the coding designed as a light slot is contaminated, for example by a hair, a steering angle detection is not possible in this code area.
  • the coding is shadowed in areas due to the contamination.
  • the transducer elements to be exposed for the detection of this angular position remain unexposed; this angular position is therefore not defined.
  • a corresponding problem relates to angle of rotation sensors which, instead of the analog coding described, have digital coding in the form of a plurality of tracks arranged next to one another. If one or more of these tracks is contaminated in an angular position of the rotor relative to the stator, then this angular position can no longer be detected with the desired resolution.
  • the invention is therefore based on the object of developing a generic optoelectronic angle of rotation sensor mentioned at the outset in such a way that reliable angle detection is also possible with partially contaminated coding.
  • This object is achieved in that at least individual tracks of the coding located on the code disk several times and are spaced apart.
  • the rotation angle sensor according to the invention which is also particularly suitable as a steering angle sensor for determining the absolute angular position of the steering wheel of a motor vehicle
  • at least individual tracks expediently those which have a particularly high significance with regard to an angle-related information
  • multiple times in the Coding of the code disc are included.
  • the tracks contained multiple times in the coding are arranged at a distance from one another.
  • Other tracks with less significance with regard to the angle information contained therein are expediently arranged between these tracks.
  • code tracks from the prior art have track widths which generally expose six or more transducer elements of the sensor array. This is regarded as meaningful in the prior art, since it is assumed that light passage blocking due to contamination does not occur, or at least not completely, due to the relatively large width of the tracks.
  • the probability that a trace of the coding - at least one highly significant one - will not be shown on the sensor array at all in an angular position due to contamination, on the other hand, it will be considerably reduced due to the distance between the two separate, identical traces.
  • it can also be provided to arrange all tracks several times, for example twice in the coding.
  • it can be provided, on account of the spacing requirement which the multiple-arranged tracks should have to one another, that all the multiple-arranged tracks have the same distance from one another. This corresponds to a parallel arrangement of the multi-lane coding. It can also be provided that those tracks with the same angle information with higher rer significance have a greater distance from each other than those tracks with a lower significance with respect to an angle related information contained in this track.
  • the code disc of the steering angle sensor according to the invention need not be made larger than in the case of previously known systems.
  • a sensor array such as a line sensor, which is usually used with regard to its dimensions, can also be used for the rotation angle sensor according to the invention.
  • Fig. 2 a second code disc for an optoelectronic angle of rotation sensor
  • a code disk 1 of an optoelectronic angle of rotation sensor is designed as a rectangular disk and is geared, for example via a screw drive, to the rotary movement of the rotor. coupled.
  • a rotational movement of the rotor, for example the steering spindle thus results in a translatory movement of the code disk via the gear coupling, as is indicated by the double arrow in FIG. 1.
  • the code disc 1 is illuminated from one side by a lighting device, not shown.
  • a line sensor 2 is arranged opposite the lighting device, the optoelectronic transducer elements of which are arranged facing the code disk 1.
  • the code disk 1 is designed as a light slot disk, the light slots introduced into the code disk 1 representing a multi-track digital angle coding.
  • six tracks S-- - S ⁇ are provided.
  • the code disk 1 represents a coding section from a longer code disk. This coding section forms the entire coding several times in a row.
  • the tracks S * - - S 6 which can be distinguished from one another by the indices, are numerically ordered with regard to their significance, track Si having the greatest significance in relation to an angle information contained in this track and track S ⁇ having the least significance.
  • the track Si or Si ' is made opaque. Traces Si-S 6 of the coding form a trace group Gi.
  • All tracks Si - S ⁇ of the track group G * ⁇ are contained a second time in the coding of the code disc 1, namely in the form of the track group G 2 .
  • the individual tracks of the track group G 2 are identified by the reference symbols Si 'to S 6 ', the same indices identifying the same tracks of the track groups Gi and G 2 .
  • the tracks Si-S ⁇ or ST-S ⁇ ' it is provided that those tracks with a higher significance are at a greater distance from one another than those tracks which have only a lower significance. Consequently, the tracks S- ⁇ , ST are the farthest from each other and the tracks S ⁇ and S ⁇ 'with the smallest distance from each other.
  • FIG. 2 shows, in a further embodiment, a code disk 3, the coding of which is basically constructed in accordance with the coding of the code disk 1.
  • the individual tracks of this code disk are identified with corresponding reference symbols as well as the track groups Gi, G 2 .
  • the track group Gi with the tracks S- ⁇ - S ⁇ corresponds to that of the code disk 1 in FIG. 1.
  • the tracks Si - S 6 'of the track group G 2 are also corresponding to those of the code disk 1 constructed, but in contrast to the arrangement in the code disc 1 offset by half a bit length to the tracks Si - S 6 of the track group Gi. This measure increases the resolving power of the angle of rotation sensor by this half the bit length.
  • FIG. 3 Another code disk 4 is shown in FIG. 3.
  • the tracks Si-S 6 of the track group Gi correspond to those shown in FIGS. 1 and 2.
  • the tracks Si '- S 6 ' of the track group G 2 are all arranged at the same distance from one another with respect to the tracks of the track group G-- and, as in the exemplary embodiment in FIG. 2, are also offset by half a bit length.
  • the tracks Si and Si ' represent reference tracks in order to be able to take movement tolerances between the code disk and the line sensor into account in the evaluation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Optical Transform (AREA)
  • Steering Controls (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Ein optoelektronischer Drehwinkelsensor umfassend eine eine mehrspurige digitale Codierung tragende, an die Drehbewegung eines Rotors gekoppelte beleuchtete Codescheibe (1) und ein aus einer Vielzahl einzelner Wandlerelemente bestehendes, bezüglich seiner Längserstreckung quer zur Bewegungsrichtung der Codescheibe (1) angeordnetes Sensorarray (2) zum Abtasten der Codierung der Codescheibe (1) ist dadurch bestimmt, dass zumindest einzelne Spuren S1-S6 der auf der Codescheibe (1) befindlichen Codierung mehrfach und mit Abstand zueinander angeordnet sind.

Description

Optoelektronischer Drehwinkelsensor
Beschreibung
Die Erfindung betrifft einen Drehwinkelsensor, etwa einen Lenkwinkelsen- sor. Insbesondere betrifft die Erfindung einen optoelektronischen Dreh- winkelsensor umfassend eine eine mehrspurige digitale Codierung tragende, an die Drehbewegung eines Rotors gekoppelte beleuchtete Codescheibe und ein aus einer Vielzahl einzelner Wandlerelemente bestehendes, bezüglich seiner Längserstreckung quer zur Bewegungsrichtung der Codescheibe angeordnetes Sensorarray zum Abtasten der Codierung der Codescheibe.
Drehwinkelsensoren werden vielfach zur automatischen Positionierung und Messung in Werkzeugmaschinen und Koordinatenmeßgeräten eingesetzt. Darüber hinaus dienen Drehwinkelsensoren im Kraftfahrzeugbereich zum Bestimmen der absoluten Winkelstellung des Lenkrades und werden daher auch als Lenkwinkelsensoren bezeichnet. Der Lenkwinkel wird bei Kraftfahrzeugen benötigt, um mit diesem Wert etwa ein Fahrdynamikre- gelsystem beaufschlagen zu können. Ein solches Fahrdynamikregelsy- stem erhält neben dem genannten Lenkwinkelwerten weitere Meßdaten, etwa die Raddrehzahl oder die Drehung des Kraftfahrzeuges um seine Hochachse. Benötigt werden zum einen der absolute Lenkwinkeleinschlag und zum anderen die Lenkgeschwindigkeit, damit diese Werte zusammen mit den anderen erfaßten Daten durch das Fahrdynamikregelsystem ausgewertet und zum Steuern von Aktoren, beispielsweise der Bremsen und/oder des Motormanagements umgesetzt werden können.
Ein optoelektronischer Lenkwinkelsensor ist beispielsweise aus der DE 40 22 837 A1 bekannt. Der in diesem Dokument beschriebene Lenkwinkelsensor besteht aus zwei parallel und mit Abstand zueinander angeordne- ten Elementen - einer Lichtquelle und einem Zeilensensor - sowie einer zwischen der Lichtquelle und dem Zeilensensor angeordneten Codescheibe, die drehfest mit der Lenkspindel verbunden ist. Als Zeilensensor dient eine CCD-Sensorzeile. Als Codierung ist bei dieser Codescheibe eine sich über 360° erstreckende, als Lichtschlitz ausgebildete archimedische Spirale vorgesehen. Über die Belichtung entsprechender Wandlerelemente des Zeilensensors bei einem bestimmten Lenkeinschlag kann Aufschluß über die tatsächliche Lenkwinkelstellung gewonnen werden.
Die als Codierung eingesetzte archimedische Spirale ist kontinuierlich verlaufend ausgebildet, so daß diese als analoge Codierung angesprochen werden kann. An einer Erfassung einer Winkelstellung des Lenkrades sind beim Gegenstand dieses Drehwinkelsensors nur ein Bruchteil der in der Sensorzeile zusammengefaßten Wandlerelemente beteiligt, nämlich nur diejenigen, die durch den Lichtschlitz belichtet sind. Die übrigen Wandlerelemente des Sensorarrays sind an der Auswertung der Winkelinformation nur indirekt beteiligt, da die nicht belichteten Wandlerelemente allenfalls die Aussage zulassen, daß sich die Winkelstellung des Lenkrades in diesen, durch die nicht belichteten Wandlerelemente repräsentierten Winkelbereichen nicht befindet. Problematisch ist bei einer solchen Codierung, daß bei einer Verunreinigung der als Lichtschlitz ausgebildeten Codierung, beispielsweise durch ein Haar, in diesem Codebereich eine Lenkwinkeldetektion nicht möglich ist. Durch die Verunreinigung ist die Codierung bereichsweise abgeschattet. Die zur Detektion dieser Winkelstellung zu belichtenden Wandlerelemente bleiben unbelichtet; diese Winkelstellung ist somit nicht definiert.
Eine entsprechende Problematik betrifft Drehwinkelsensoren, die anstelle der beschriebenen analogen Codierung eine digitale Codierung in Form mehrerer, nebeneinander angeordneter Spuren aufweisen. Ist eine oder auch mehrere dieser Spuren in einer Winkelstellung des Rotors zum Stator verunreinigt, dann kann diese Winkelstellung nicht mehr mit der gewünschten Auflösung detektiert werden.
Ausgehend von diesem diskutierten Stand der Technik liegt der Erfindung daher die Aufgabe zugrunde, einen eingangs genannten gattungsgemäßen optoelektronischen Drehwinkelsensor dergestalt weiterzubilden, daß eine sichere Winkelerfassung auch mit einer zum Teil verunreinigten Co- dierung möglich ist.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß zumindest einzelne Spuren der auf der Codescheibe befindlichen Codierung mehrfach und mit Abstand zueinander angeordnet sind.
Bei dem erfindungsgemäßen Drehwinkelsensor, der insbesondere auch als Lenkwinkelsensor zum Bestimmen der absoluten Winkelstellung des Lenkrades eines Kraftfahrzeuges geeignet ist, ist vorgesehen, daß zumindest einzelne Spuren, zweckmäßigerweise diejenigen, die im Hinblick auf eine Winkel bezogene Information eine besonders hohe Signifikanz aufweisen, mehrfach in der Codierung der Codescheibe enthalten sind. Zur Verringerung der statistischen Wahrscheinlichkeit, daß die mehrfach in der Codierung enthaltenen Spuren gleichzeitig durch Verunreinigungen in derselben Position in ihrer Funktion beeinträchtigt sind, sind die mehrfach in der Codierung enthaltenen Spuren mit Abstand zueinander angeordnet. Zweckmäßigerweise sind zwischen diesen Spuren andere Spuren mit einer geringeren Signifikanz im Hinblick auf die darin enthaltene Winkelin- formation angeordnet. Ist bei einem optoelektronischen Drehwinkelsensor eine nur geringe Breite der Codescheibe vorgesehen, kann vorgesehen sein, daß die einzelnen Spuren nur eine minimale Breite aufweisen, beispielsweise jeweils nur drei Wandlerelemente belichten. Codespuren aus dem vorbekannten Stand der Technik weisen demgegenüber Spuren- breiten auf, die in der Regel sechs oder mehr Wandlerelemente des Sen- sorarrays belichten. Dies wird beim Stand der Technik als sinnvoll angesehen, da angenommen wird, daß eine Lichtdurchtrittssperrung durch eine Verunreinigung aufgrund der relativ großen Breite der Spuren nicht oder zumindest nicht vollständig eintritt. Beim Gegenstand des erfindungsge- mäßen Drehwinkelsensors ist die Wahrscheinlichkeit, daß eine Spur der Codierung - zumindest eine hochsignifikante - in einer Winkelstellung wegen einer Verunreinigung überhaupt nicht auf dem Sensorarray abgebildet wird, dagegen aufgrund des Abstandes zwischen den beiden getrennten gleichartigen Spuren ganz erheblich reduziert. Anstelle einer Mehr- fachanordnung von nur einzelnen Spuren in der Codierung der Codescheibe kann ebenfalls vorgesehen sein, sämtliche Spuren mehrfach, beispielsweise zweifach in der Codierung anzuordnen. Bei einer mehrfachen Anordnung sämtlicher Spuren kann aufgrund des Abstandserfordernisses, den die mehrfach angeordneten Spuren zueinander aufweisen sollen, vorgesehen sein, daß alle mehrfach angeordneten Spuren den gleichen Abstand jeweils zueinander aufweisen. Dies entspricht einer parallelen Anordnung der jeweils mehrspurigen Codierung. Ebenfalls kann vorgesehen sein, daß diejenigen Spuren mit gleicher Winkelinformation mit höhe- rer Signifikanz einen größeren Abstand zueinander aufweisen als diejenigen Spuren mit einer geringeren Signifikanz im Hinblick auf eine in dieser Spur enthaltenen Winkel bezogenen Information aufweisen.
Durch die erfindungsgemäße mögliche Reduzierung der Spurenbreite einer einzelnen Spur braucht die Codescheibe des erfindungsgemäßen Lenkwinkelsensors nicht größer ausgebildet zu sein als bei vorbekannten Systemen. Entsprechend kann auch für den erfindungsgemäßen Drehwinkelsensor ein bezüglich seiner Dimensionierung üblicherweise eingesetz- tes Sensorarray, etwa ein Zeilensenosr verwendet werden.
Durch die mehrfache Anordnung zumindest einzelner Spuren besteht ferner die Möglichkeit, die mehrfache Anordnung der einzelnen Spuren beispielsweise um eine halbe Bitbreite gemessen an der Breite des geringst- signifikanten Bits versetzt zueinander anzuordnen. Auf diese Weise kann das Auflösungsvermögen des Drehwinkelsensors erhöht werden; entsprechend kann vorgesehen sein, daß dieser Versatz eine Codespur ersetzen kann, so daß die benötigte Breite der Codescheibe entsprechend reduziert ist.
Weitere Vorteile der Erfindung ergeben sich aus weiteren Unteransprüchen sowie aus der nachfolgenden Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die beigefügten Figuren. Es zeigen:
Fig. 1 : In einer schematischen Darstellung eine erste Codescheibe eines optoelektronischen Drehwinkelsensors,
Fig. 2: eine zweite Codescheibe für einen optoelektronischen Drehwinkelsensor und
Fig. 3: eine dritte Codescheibe für einen optoelektronischen Drehwinkelsensor.
Eine Codescheibe 1 eines nicht näher dargestellten optoelektronischen Drehwinkelsensors, beispielsweise eines Lenkwinkelsensors eines Kraftfahrzeuges zum Bestimmen der absoluten Winkelstellung des Lenkrades ist als rechteckige Scheibe ausgebildet und getrieblich, beispielsweise über einen Gewindetrieb an die rotatorische Bewegung des Rotors ge- koppelt. Eine rotatorische Bewegung des Rotors, beispielsweise der Lenkspindel resultiert über die getriebliche Kopplung somit in einer translatorischen Bewegung der Codescheibe, wie dies durch den Doppelpfeil in Figur 1 angedeutet ist. Die Codescheibe 1 ist von ihrer einen Seite durch eine nicht näher dargestellte Beleuchtungseinrichtung beleuchtet. Der Beleuchtungseinrichtung gegenüberliegend ist ein Zeilensensor 2 angeordnet, dessen optoelektronischen Wandlerelemente zur Codescheibe 1 weisend angeordnet sind. Die Codescheibe 1 ist als Lichtschlitzscheibe ausgebildet, wobei die in die Codescheibe 1 eingebrachten Lichtschlitze eine mehrspurige digitale Winkelcodierung darstellen. Bei dem dargestellten Ausführungsbeispiel sind sechs Spuren S-- - Sβ vorgesehen. Bei diesem Ausführungsbeispiel stellt die Codescheibe 1 einen Codierungsausschnitt aus einer längeren Codescheibe dar. Dieser Codierungsausschnitt bildet mehrfach aneinandergereiht die gesamte Codierung aus. Die durch die Indizes voneinander unterscheidbaren Spuren S*- - S6 sind bezüglich ihrer Signifikanz numerisch geordnet, wobei der Spur S-i die größte Signifikanz bezogen auf eine in dieser Spur enthaltene Winkelinformation und die Spur Sβ die geringste Signifikanz aufweist. In einem angrenzenden Codesegment ist die Spur Si bzw. S-i' lichtundruchlässig ausgebildet. Die Spuren Si - S6 der Codierung bilden eine Spurengruppe Gi aus. Sämtliche Spuren Si - Sβ der Spurengruppe G*ι sind ein zweites Mal in der Codierung der Codescheibe 1 und zwar in Form der Spurengruppe G2 enthalten. Die einzelnen Spuren der Spurengruppe G2 sind mit dem Bezugszeichen Si' bis S6' gekennzeichnet, wobei gleiche Indizes gleichen Spuren der Spurengruppen Gi und G2 kennzeichnen. Bei der Anordnung der Spuren Si - Sβ bzw. S-T - Sβ' ist vorgesehen, daß diejenigen Spuren mit einer höheren Signifikanz einen größeren Abstand zueinander aufweisen als solche Spuren, denen nur eine geringere Signifikanz zukommt. Folglich sind die Spuren S-ι, S-T am weitesten voneinander und die Spuren Sβ und Sβ' mit dem geringsten Abstand zueinander angeordnet.
Figur 2 zeigt in einer weiteren Ausgestaltung eine Codescheibe 3, deren Codierung prinzipiell entsprechend der Codierung der Codescheibe 1 aufgebaut ist. Daher sind die einzelnen Spuren dieser Codescheibe mit ent- sprechenden Bezugszeichen ebenso wie die Spurengruppen G-i, G2 gekennzeichnet. Die Spurengruppe Gi mit den Spuren S-ι - Sβ entspricht derjenigen der Codescheibe 1 der Figur 1. Die Spuren Si - S6' der Spurengruppe G2 sind ebenfalls entsprechend derjenigen, der Codescheibe 1 aufgebaut, jedoch im Gegensatz zur Anordnung in der Codescheibe 1 um eine halbe Bitlänge versetzt zu den Spuren Si - S6 der Spurengruppe Gi angeordnet. Durch diese Maßnahme ist das Auflösungsvermögen des Drehwinkelsensors um diese halbe Bitlänge erhöht.
Eine weitere Codescheibe 4 ist in Figur 3 dargestellt. Die Spuren Si - S6 der Spurengruppe Gi entsprechen derjenigen der in den Figuren 1 und 2 gezeigten. Die Spuren Si' - S6' der Spurengruppe G2 sind bezüglich der Spuren der Spurengruppe G-- sämtlich mit gleichem Abstand zueinander angeordnet und wie auch bei dem Ausführungsbeispiel der Figur 2 um eine halbe Bitlänge versetzt angeordnet. Bei dieser Codescheibe stellen die Spuren Si und Si' Referenzspuren dar, um Bewegungstoleranzen zwischen der Codescheibe und dem Zeilensensor bei der Auswertung berücksichtigen zu können.
Auch wenn in den Figuren als Codescheibe ein rechteckiger Streifen beschrieben ist, kann diese auch als kreisrunde Scheibe ausgebildet sein. Die in den Figuren dargestellte Form stellt dann eine Abwicklung einer solchen kreisrunden Scheibe dar. In einem solchen Fall ist die Scheibe unmittelbar an die Drehbewegung des Rotors, beispielsweise der Lenkspindel gekoppelt. Die Längserstreckung des Zeilensensors verläuft dann radial zur Drehachse einer solchen Codescheibe.
Zusammenstellung der Bezugszeichen
1 Codescheibe
2 Zeilensensor
3 Codescheibe
4 Codescheibe
Si - Sβ Spuren S-T - S6' Spuren Gι, G2 Spurengruppe

Claims

Patentansprüche
1. Optoelektronischer Drehwinkelsensor umfassend eine eine mehrspurige digitale Codierung tragende, an die Drehbewegung eines Rotors gekoppelte beleuchtete Codescheibe (1 , 2, 4) und ein aus einer Vielzahl einzelner Wandlerelemente bestehendes, bezüglich seiner Längserstreckung quer zur Bewegungsrichtung der Codescheibe (1 , 2, 4) angeordnetes Sensorarray (2) zum Abtasten der Codierung der Codescheibe (1 , 2, 4), dadurch gekennzeichnet, daß zumindest einzelne Spuren (S-t - S6) der auf der Codescheibe
(1 , 2, 4) befindlichen Codierung mehrfach und mit Abstand zueinander angeordnet sind.
2. Drehwinkelsensor nach Anspruch 1 , dadurch gekennzeichnet, daß diejenigen Spuren mit der meisten Signifikanz im Hinblick auf eine Winkel bezogenen Information mehrfach in der Codierung enthalten sind.
3. Drehwinkelsensor nach Anspruch 1 oder 2, dadurch gekenn- zeichnet, daß die Codierung aus einer mehrfachen Anordnung von allen einzelnen Spuren (S-ι - S6; S-T - Sβ ) aufgebaut ist.
4. Drehwinkelsensor nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die mehrfach in der Codierung enthaltenen Spuren gleicher Wertigkeit mit einem größtmöglichen Abstand zueinander angeordnet sind.
5. Drehwinkelsensor nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Spuren in Abhängigkeit von ihrer jeweiligen Si- gnifikanz im Hinblick auf eine in dieser Spur enthaltene Winkel bezogene Information mit größtmöglichen Abstand zueinander angeordnet sind, wobei diejenigen Spuren mit der größten Signifikanz einen größeren Abstand voneinander aufweisen als Spuren, deren winkelbezogene Information nur einen geringeren Signifikanzgrad aufweisen.
6. Drehwinkelsensor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß jede Spur (S-ι- Sβ) in der Codierung zweifach vorgesehen ist.
7. Drehwinkelsensor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die mehrfach in der Codierung enthaltenen Spuren um eine halbe Bitbreite gemessen an der Breite des geringst signifikanten Bits versetzt zueinander angeordnet sind.
8. Drehwinkelsensor nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Drehwinkelsensor als Lenkwinkelsensor zum Bestimmen der absoluten Winkelstellung des Lenkrades eines
Kraftfahrzeuges vorgesehen ist.
PCT/EP2000/008931 1999-09-14 2000-09-13 Optoelektronischer drehwinkelsensor WO2001020265A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001523604A JP2003509674A (ja) 1999-09-14 2000-09-13 光電式回転角度センサ
EP00960657A EP1212586A1 (de) 1999-09-14 2000-09-13 Optoelektronischer drehwinkelsensor
AU72871/00A AU7287100A (en) 1999-09-14 2000-09-13 Optoelectronic angle of rotation sensor
US10/097,793 US6501069B2 (en) 1999-09-14 2002-03-14 Optoelectronic angle of rotation sensor having a code disk with redundant digital coding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19944005.0 1999-09-14
DE19944005A DE19944005A1 (de) 1999-09-14 1999-09-14 Optoelektronischer Drehwinkelsensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/097,793 Continuation US6501069B2 (en) 1999-09-14 2002-03-14 Optoelectronic angle of rotation sensor having a code disk with redundant digital coding

Publications (1)

Publication Number Publication Date
WO2001020265A1 true WO2001020265A1 (de) 2001-03-22

Family

ID=7921979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/008931 WO2001020265A1 (de) 1999-09-14 2000-09-13 Optoelektronischer drehwinkelsensor

Country Status (6)

Country Link
US (1) US6501069B2 (de)
EP (1) EP1212586A1 (de)
JP (1) JP2003509674A (de)
AU (1) AU7287100A (de)
DE (1) DE19944005A1 (de)
WO (1) WO2001020265A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040016733A1 (en) * 2002-07-25 2004-01-29 Kr Precision Public Company Limited Laser adjustment of head suspension or head gimbal assembly static attitude
US20040061044A1 (en) * 2002-09-26 2004-04-01 Soar Steven E. Techniques for reducing encoder sensitivity to optical defects
DE10256333A1 (de) * 2002-12-03 2004-06-17 Leopold Kostal Gmbh & Co Kg Optoelektronische Messeinrichtung zum Erfassen einer Relativbewegung zwischen einem Geber und einer Sensorzeile sowie optoelektronische Sensorzeile
DE10341297B3 (de) * 2003-09-04 2005-07-07 Dorma Gmbh + Co. Kg Codierte Absolutpositions-Messung für in Schienen geführte Elemente
DE102004001996A1 (de) * 2004-01-14 2005-08-11 Trw Automotive Electronics & Components Gmbh & Co. Kg Drehwinkelgeber
EP1557646B1 (de) 2004-01-14 2012-02-08 TRW Automotive Electronics & Components GmbH Drehwinkelgeber sowie Verfahren zum Abtasten der Codescheibe eines Drehwinkelgebers
US6927704B1 (en) 2004-03-05 2005-08-09 Delphi Technologies, Inc. Fault tolerant optoelectronic position sensor
US20100176283A1 (en) * 2009-01-15 2010-07-15 Vladimir Karasik Sensor and method for determining an angular position of a rotor using an elongated member
CN102243082B (zh) * 2010-05-10 2015-05-20 上海宏曲电子科技有限公司 光敏角位传感器
DE102011120708B4 (de) 2011-12-12 2018-10-04 Novoferm Tormatic Gmbh Verfahren zum Betrieb einer Antriebseinheit eines automatisierten Tores oder dergleichen
DE102011120707B4 (de) 2011-12-12 2018-10-04 Novoferm-Tormatic Gmbh Verfahren zum Betrieb einer Antriebseinheit eines ortveränderlichen Elements, sowie eine Antriebseinheit, die mit einem derartigen Verfahren betrieben wird
JP6032936B2 (ja) * 2012-05-07 2016-11-30 キヤノン株式会社 バーニア方式位置検出エンコーダ用スケール、バーニア方式位置検出エンコーダおよびこれを備えた装置
RU2517055C1 (ru) * 2012-12-28 2014-05-27 Открытое акционерное общество "Центральный научно-исследовательский институт автоматики и гидравлики" (ОАО "ЦНИИАГ") Цифровой преобразователь угла
RU2515965C1 (ru) * 2012-12-28 2014-05-20 Открытое акционерное общество "Центральный научно-исследовательский институт автоматики и гидравлики" (ОАО "ЦНИИАГ") Цифровой датчик угла со знаковым разрядом
CN103471529B (zh) * 2013-09-26 2015-12-02 中国科学院长春光学精密机械与物理研究所 基于图像处理的高精度小型光电角度传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4022837A1 (de) * 1990-07-18 1992-01-23 Morche Dirk W Dipl Ing Vorrichtung zur erzeugung eines elektrischen signales
EP0654652A1 (de) * 1993-11-02 1995-05-24 LEINE & LINDE AB Kodierungsvorrichtung
WO1996029573A1 (en) * 1993-05-27 1996-09-26 Lusby Brett L Encoder for determining absolute linear and rotational positions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9007575U1 (de) * 1990-02-01 1992-10-22 W. Gessmann Gmbh, 7105 Leingarten, De
DE19727352A1 (de) * 1996-07-10 1998-01-15 Heidenhain Gmbh Dr Johannes Verfahren zur Positionsbestimmung und hierzu geeignetes Meßsystem
US5936236A (en) * 1997-11-26 1999-08-10 Renco Encoders, Inc. Method for generating a synthetic reference signal for comparison with scanning signals of a position measuring device
DE19838731C2 (de) * 1998-08-26 2000-07-13 Kostal Leopold Gmbh & Co Kg Lenkwinkelsensor
US6175109B1 (en) * 1998-12-16 2001-01-16 Renco Encoders, Inc. Encoder for providing incremental and absolute position data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4022837A1 (de) * 1990-07-18 1992-01-23 Morche Dirk W Dipl Ing Vorrichtung zur erzeugung eines elektrischen signales
WO1996029573A1 (en) * 1993-05-27 1996-09-26 Lusby Brett L Encoder for determining absolute linear and rotational positions
EP0654652A1 (de) * 1993-11-02 1995-05-24 LEINE & LINDE AB Kodierungsvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1212586A1 *

Also Published As

Publication number Publication date
US6501069B2 (en) 2002-12-31
JP2003509674A (ja) 2003-03-11
DE19944005A1 (de) 2001-03-15
EP1212586A1 (de) 2002-06-12
AU7287100A (en) 2001-04-17
US20020134926A1 (en) 2002-09-26

Similar Documents

Publication Publication Date Title
WO2001020265A1 (de) Optoelektronischer drehwinkelsensor
EP1706716B1 (de) Vorrichtung zum bestimmen eines lenkwinkels und eines an einer lenkwelle ausgeübten drehmoments
EP1255965A1 (de) Codescheibe für eine optoelektronische weg- oder winkelmesseinrichtung
EP0171612A1 (de) Lagemesseinrichtung
EP0970000A1 (de) Lenkwinkelsensorsystem mit erhöhter redundanz
DE10041507A1 (de) Lenkwinkelsensor für Kraftfahrzeuge
DE19855064B4 (de) Lenkwinkelsensor
EP0873258B1 (de) Lenkwinkelsensor mit auswertung der inkrementalspur zur absolutwertbestimmung
DE3007849C2 (de) Logikschaltung
DE3325318A1 (de) Inkrementaler winkelkodierer
EP1212587B1 (de) Optoelektronischer drehwinkelsensor
EP0943920A2 (de) Sensoreinrichtung und Verfahren zur Datenübertragung mit einer solchen Sensoreinrichtung
DE4115244A1 (de) Winkelsensor zur bestimmung der drehlage einer welle
EP1770375B1 (de) Positionsmesseinrichtung mit zwei Massverkörperungen deren Codespuren sich gegenseitig überlappen
DE3046720A1 (de) Positions-kodierer
DE102018102698A1 (de) Induktiver Positionssensor
DE19838731C2 (de) Lenkwinkelsensor
DE10048551C1 (de) Verfahren zum Bestimmen der absoluten Winkelstellung des Lenkrades eines Kraftfahrzeugs
DE19818654A1 (de) Sensoreinheit für Gebersysteme
EP1334331A1 (de) Verfahren zur signalauswertung einer optoelektronischen weg- oder winkelmesseinrichtung sowie verwendung eines solchen verfahrens
EP0714171A2 (de) Vorrichtung und Verfahren zur Bestimmung der Position eines Körpers
DE19607421A1 (de) Einrichtung zur Erfassung der aktuellen Stellung von linear oder durch Drehung zwischen zwei Endstellungen bewegbaren Stellelementen
DE10018496A1 (de) Optoelektronische Weg- oder Winkelmeßeinrichtung, Verwendung einer solchen Meßeinrichtung als Drehmomenterfassungseinrichtung sowie Lenkkraftunterstützungssystem für Kraftfahrzeuge mit einer solchen Drehmomenterfassungseinrichtung
DE19530670A1 (de) Codierer
DE102022110510A1 (de) Linearwegsensor, Hinterachslenkung und Verfahren zur absoluten Wegmessung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000960657

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10097793

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000960657

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642