WO2001018401A1 - Pompe a entrainement magnetique - Google Patents

Pompe a entrainement magnetique

Info

Publication number
WO2001018401A1
WO2001018401A1 PCT/FR2000/002446 FR0002446W WO0118401A1 WO 2001018401 A1 WO2001018401 A1 WO 2001018401A1 FR 0002446 W FR0002446 W FR 0002446W WO 0118401 A1 WO0118401 A1 WO 0118401A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition
magnets
pump
pump according
series
Prior art date
Application number
PCT/FR2000/002446
Other languages
English (en)
Inventor
Claude Terracol
Guy Jean Villette
Original Assignee
Societe Siebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Siebec filed Critical Societe Siebec
Priority to US10/069,358 priority Critical patent/US6672818B1/en
Priority to JP2001521905A priority patent/JP2003508689A/ja
Priority to DE60006689T priority patent/DE60006689T2/de
Priority to AT00960799T priority patent/ATE254723T1/de
Priority to EP00960799A priority patent/EP1210520B1/fr
Publication of WO2001018401A1 publication Critical patent/WO2001018401A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/025Details of the can separating the pump and drive area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/043Shafts

Definitions

  • the invention relates to a magnetic drive pump comprising:
  • a pump element provided with a first impeller driven in the form of a wheel rotatably mounted in a body associated with suction and discharge pipes,
  • a drive motor provided with a transmission shaft on which is mounted a second drive rotor carrying a second series of magnets, the two series of magnets being arranged concentrically to achieve a magnetic coupling in rotation
  • the sealing wall is particularly important when the pumped liquid has a corrosive character, which is frequently the case in chemistry or electroplating.
  • the pumps currently used can be classified into two main categories:
  • the motor 1 is connected to the centrifugal impeller 2 by an axis 3 and a rigid coupling device 4.
  • the impeller 2 rotates in the pump body 5 which communicates with the suction 6 and discharge pipes 7.
  • the leaktightness of the pump body when passing the axis 3 is ensured by the friction seal 8.
  • a second potential defect concerns the seal itself which cannot be guaranteed in a perfect manner, due to the small surface defects that can be meet on the bearing surfaces in friction, and the inevitable creation of a liquid film between these surfaces.
  • the driven rotor 22 secured to the wheel 12 is equipped with a series of magnets 23.
  • the magnets 21, 23 are organized so that a north pole on the drive side is opposite a south pole on the driven side, and vice versa. A magnetic coupling is thus obtained without mechanical contact, coupling which must therefore be sufficient to withstand without lifting the maximum torque absorbed by the wheel.
  • the device for positioning and guiding in rotation of the wheel 12 according to FIG. 2 consists of:
  • FIG. 2 clearly shows the drawbacks inherent in the mounting of the axis 24 with regard to the precision, therefore the control of the games. Its positioning relative to the axis of the motor (with which it must theoretically be aligned), in fact passes through two parts whose precision and rigidity can pose a problem: the spacer 19 and especially the partition 18. We have seen in effect that the latter must be thin to pass in the air gap and not to produce too much eddy currents.
  • the document FR-A-231 1201 describes a magnetic drive pump, in which the turbine is equipped with a magnetic core and is driven by the magnetic crown through a watertight partition.
  • the rotary turbine is supported by a fixed shaft, which is guided by a pair of bearings on the magnetic ring in connection with the motor shaft.
  • the presence of the bearings in addition to the output bearing from the motor shaft gives the assembly a significant overhang, and additional embedding.
  • the axial size of the pump is important, and the positioning of the turbine shaft does not allow perfect alignment.
  • the object of this patent is to propose a solution which makes it possible to remedy the above drawbacks, that is to say on the one hand to ensure perfect centering of the axis of rotation of the pump impeller, while unloading the bulkhead of this function, and on the other hand by seeking an efficient evacuation of calories to a cooling element.
  • a female cylindrical bearing serves as a concentric housing for the tip to obtain a mechanical support and precise centering of the partition and the first driven rotor.
  • the axis of the motor is advantageously extended by a length sufficient to allow it to enter the heart of the driven rotor.
  • the axis of the motor includes the axis of the wheel which, when fixed, becomes rotating. It is obviously not this rotation which is sought, but the fact of having for the first driven rotor, a rigid support and perfectly aligned with the motor axis.
  • the first driven rotor comprises a second ring which journals on a first ring secured to the fixed partition.
  • the bearing integrated into the partition comprises at least one self-lubricating ring constituting a thermal bridge for the evacuation of the calories generated by the journaling of the first driven rotor towards the radiator formed by the motor shaft.
  • the sealing partition should not be interrupted, it is therefore necessary to complicate its shape a little to make it bypass the extended nozzle, which belongs to the area external to the pumping circuit, while the axis 24 according to FIG. 2 of the prior art belonged to the internal area.
  • the partition In addition to the cylindrical part present in the air gap, the partition must therefore have a second cylindrical part which engages on the end of the motor axis, with the interposition of a friction sleeve, made for example of self-lubricating material. .
  • This axis now ensuring the positioning of the driven rotor with the desired precision and rigidity, this function no longer has to be provided by the sealing partition, which can therefore be significantly reduced.
  • this partition can be made in one piece, in a material chemically compatible with the pumped liquid.
  • the part must remain capable of withstanding the pressure of the liquid present around the driven rotor, a non-negligible pressure since it may be close to the discharge pressure of the pump. In cases where this pressure is high, and where there is no chemically compatible material having sufficient mechanical strength, it can be reduced to a mixed partition solution comprising a mechanically resistant outer shell, and a chemically compatible inner shell.
  • the external envelope can therefore be much thinner, which makes it possible to envisage making it:
  • the configuration described above has an obvious advantage, insofar as it reveals a thermal bridge of large cross section and thin between the bearing of the driven rotor and the shaft of the engine.
  • this advantage is mitigated by the fact that it is necessary to evacuate in addition the calories produced by the rotation of the additional end piece of the motor shaft in its own bearing, but we are there out reaching the pumped liquid, which makes it possible to use conventional mechanical components, the performance of which is excellent.
  • the sealing partition is shaped for chemical compatibility, while the precision and mechanical strength are ensured by an additional part partially matching the shape of the partition, and made of a material having a good mechanical strength.
  • the additional part can be made of a metal alloy, in particular stainless steel, and includes a ferrule fitting into the air gap formed between the two series of magnets. The thickness of the ferrule is less than that of the enclosure of the partition.
  • FIG 1 shows a schematic elevational view of a conventional motor pump assembly with friction seal.
  • FIG. 2 represents a schematic elevation view of a conventional motor-driven pump unit with magnetic drive.
  • FIG. 3 represents a view in elevation and in section of a magnetic drive according to the invention.
  • FIG. 3 This embodiment is illustrated by FIG. 3 in which we find:
  • the wheel of the first driven rotor 32 equipped with the first series of magnets 33 and a steel tube 37
  • the second drive rotor 30 equipped with the second series of magnets 31 and a steel tube 38
  • the tubes 37 and 38 having the function of ensuring the looping of the magnetic flux of the permanent magnets 31, 33.
  • the tubes 37, 38 and the magnets 31, 33 are fixed respectively to the second rotor 30 and to the wheel 32 by any suitable means, in particular by overmolding, the fixed ring 35 and the rotating ring 36 constituting the rotation bearing of the wheel,
  • a nozzle 42 extends the motor shaft 41, of which it can be an integral part, or on which it can be assembled with rigidity and precision.
  • the nozzle 42 is arranged to receive the attachment of the second drive rotor 30, this attachment being provided by any suitable mechanical means.
  • the sealing partition consists of a casing 48 made of material chemically compatible with the pumped liquid, and of a cylindrical shell 52 made of mechanically resistant material, in particular stainless steel. This ferrule makes it possible to provide resistance to internal pressure, insofar as the material constituting the envelope 48 may be insufficiently resistant.
  • the envelope 48 is extended inwards by a part forming a sheath, into which the end piece 42 is introduced axially.
  • the casing 48 carries: externally, the fixed ring 35, on which the wheel 32 is journalled, by means of its integral ring 36. internally, a steel sheath 53, in which will be fitted the self-lubricating rings 54, 54 'which engage themselves on the end piece 42.
  • the ring 35 and the sheath 53 can advantageously be molded into the envelope of the partition 48 during the molding of the latter.
  • the centering of the ring 35, and of the rotor wheel 32, is now ensured with precision by the end piece 42. This results in good concentricity of the parts 35, 53, 54, 54 ', and the play between the end piece 42 and the sockets 54, 54 'is very small.
  • the sealing partition is therefore completely relieved of the centering function, and therefore no longer has to be very rigid. On the contrary, it is desirable for it to have a minimum of flexibility, so as not to interfere with the centering imposed by the end piece 42.
  • the device of FIG. 3 allows good evacuation towards the outside of the calories generated by the rotation of the rotor wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • External Artificial Organs (AREA)
  • Sealing Devices (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

Une pompe à entraînement magnétique comporte une cloison (48) d'étanchéité dont la partie centrale constitue l'axe de tourillonnement de la partie tournante de la pompe, cette partie centrale étant elle-même soutenue et centrée par un embout (42) rotatif lié ou faisant partie de l'arbre (41) de transmission du moteur (29).

Description

POMPE A ENTRAINEMENT MAGNETIQUE
Domaine technique de l'invention
L'invention est relative à une pompe à entraînement magnétique comprenant :
-un élément de pompe pourvu d'un premier rotor entraîné en forme de roue montée à rotation dans un corps associé à des tuyauteries d'aspiration et de refoulement,
-une première série d'aimants solidaires du premier rotor,
-un moteur d'entraînement doté d'un arbre de transmission sur lequel est monté un deuxième rotor d'entraînement portant une deuxième série d'aimants, les deux séries d'aimants étant disposées concentriquement pour réaliser un couplage magnétique en rotation,
-et un dispositif d'étanchéité ayant une cloison fixe s'étendant dans l'entrefer entre les deux séries d'aimants en assurant une séparation étanche entre l'élément de pompe et le moteur.
La paroi d'étanchéité est particulièrement importante quand le liquide pompé présente un caractère corrosif, ce qui est fréquemment le cas dans la chimie ou la galvanoplastie.
Pour ces applications, qui supportent mal les arrêts, ii est par ailleurs important que les interventions de maintenance soient aussi réduites que possible, voire supprimées. Etat de la technique
On peut classer les pompes utilisées actuellement en deux grandes catégories :
-les pompes à garniture d'étanchéité ( figure 1), comportant des pièces en frottement montées en partie fixe d'une part, et en partie tournante d'autre part, la nature des matériaux en présence et la qualité de leur état de surface permettant d'obtenir une étanchéité satisfaisante ;
- les pompes à entraînement magnétique (figure 2), qui ont été conçues pour remédier aux inconvénients précités, assurant l'étanchéité, non plus par des pièces en frottement, mais par une cloison continue. De part et d'autre de cette cloison, se trouvent un rotor d'entraînement lié au moteur, et un rotor entraîné lié à la roue de la pompe. Les deux rotors portent des aimants disposés de telle sorte qu'ils assurent un couplage magnétique entre les deux rotors.
Sur la figure 1 , le moteur 1 est relié à la roue centrifuge 2 par un axe 3 et un dispositif d'accouplement rigide 4. La roue 2 tourne dans le corps de pompe 5 qui communique avec les tuyauteries d'aspiration 6 et de refoulement 7. L'étanchéité du corps de pompe au passage de l'axe 3 est assurée par le joint à frottement 8.
Le premier défaut qu'on peut reprocher à ce type de pompe est que les pièces en frottement constituant ce joint sont sujettes à usure, et qu'il faut donc les remplacer périodiquement, ce qui donne lieu à des arrêts pour maintenance. Cette opération de remplacement est d'autant plus délicate que le joint 8 est localisé dans une zone peu accessible.
Un second défaut potentiel concerne l'étanchéité elle-même qui ne peut être garantie de façon parfaite, en raison des petits défauts de surface qu'on peut rencontrer sur les faces d'appui en frottement, et de la création inévitable d'un film liquide entre ces surfaces.
Sur .la figure 2, on retrouve le moteur 11 , la roue 12, le corps de pompe 15, les tuyauteries d'aspiration 16 et de refoulement 17. L'étanchéité est ici assurée par la cloison continue 18 assemblée rigidement et hermétiquement entre le corps de pompe 15 et l'entretoise 19 assurant la liaison avec la bride du moteur 11. Sur l'axe du moteur 11 est monté rigidement le rotor d'entraînement 20 dans lequel est insérée, par exemple par surmoulage, une série d'aimants 21.
Le rotor entraîné 22 solidaire de la roue 12 est équipé par une série d'aimants 23. Les aimants 21 , 23 sont organisés pour qu'un pôle nord côté entraînement soit en face d'un pôle sud côté entraîné, et inversement. On obtient ainsi un couplage magnétique sans contact mécanique, couplage qui doit donc être suffisant pour supporter sans décrochage le couple maximum absorbé par la roue.
Une bonne efficacité du couplage exige que l'entrefer entre les deux familles d'aimants soit aussi réduit que possible. Cet entrefer étant constitué par l'épaisseur de la cloison 18 et par les jeux présents de part et d'autre de celle-ci, on voit qu'il faut chercher :
- à minimiser l'épaisseur de la cloison, ce qui suppose qu'on ne la sollicite pas trop sur le plan mécanique, et/ou qu'on la réalise dans un matériau présentant une bonne rigidité ;
- à réduire les jeux, ce qui suppose une bonne maîtrise dimensionnelle des pièces concernées, ainsi que de leur positionnement.
Sur le premier point, il peut y avoir contradiction entre la tenue mécanique de la cloison et sa compatibilité chimique avec le liquide pompé, avec lequel elle est en contact par sa face interne. Une solution couramment utilisée consiste à réaliser cette cloison par juxtaposition de deux matériaux :
-extérieurement, une partie métallique amagnétique fournissant précision et rigidité, -intérieurement, une partie en matériau synthétique chimiquement compatible.
Cette disposition résout assez bien le problème, mais elle présente deux inconvénients non négligeables :
-augmentation de l'épaisseur, et donc de l'entrefer. -présence de courants de Foucault dans la paroi métallique, ces courants étant induits par la rotation du flux des aimants. Ces courants de Foucault constituent une source d'échauffement qui peut devenir prohibitive, notamment pour de grosses unités.
Pour aborder le second point, à savoir les jeux, le dispositif de positionnement et de guidage en rotation de la roue 12 selon la figure 2, est constitué :
-d'un axe fixe 24, monté avec rigidité et précision sur la cloison 18, -d'une bague fixe 25 solidaire de l'axe 24, -et d'une bague tournante 26 solidaire de la roue 12.
La qualité et la disposition des bagues 24, 25 sont évidemment essentielles pour la tenue de la pompe, avec notamment :
-un dimensionnement aussi large que possible des surfaces en contact, -un choix judicieux des matériaux (céramique, carbure de silicium, graphite....) et de leur état de surface.
-une utilisation judicieuse du liquide pompé pour assurer la lubrification -une évacuation aussi bonne que possible des calories générées par le frottement. L'examen de la figure 2 montre clairement les inconvénients inhérents au montage de l'axe 24 en ce qui concerne la précision, donc la maîtrise des jeux. Son positionnement par rapport à l'axe du moteur (avec lequel il doit théoriquement être aligné), passe en effet par deux pièces dont la précision et la rigidité peuvent poser problème : l'entretoise 19 et surtout la cloison 18. On a vu en effet que cette dernière doit être mince pour passer dans l'entrefer et ne pas produire trop de courants de Foucault.
Il sera donc très difficile d'obtenir un bon encastrement de l'axe 24. Il a été proposé d'améliorer la tenue mécanique en installant un palier additionnel à l'autre extrémité de la roue, mais cette solution augmente notablement la complexité sans résoudre parfaitement le problème.
Enfin, concernant l'évacuation des calories absorbées par l'axe 24, il faut noter qu'elle doit se faire à travers la cloison 18 qui s'y prête assez mal, toujours du fait de sa minceur.
Le document FR-A-231 1201 décrit une pompe à entraînement magnétique, dans laquelle la turbine est équipée d'un noyau magnétique et est entraînée par la couronne magnétique à travers une cloison étanche. La turbine rotative est supportée par un arbre fixe, lequel est guidé par une paire de roulements sur la couronne magnétique en liaison avec l'arbre moteur. La présence des roulements en plus du roulement de sortie de l'arbre moteur confère à l'ensemble un porte à faux important, et un encastrement supplémentaire. L'encombrement axial de la pompe est important, et le positionnement de l'arbre de la turbine ne permet pas d'obtenir un alignement parfait.
Objet de l'invention
L'objet du présent brevet est de proposer une solution permettant de remédier aux inconvénients ci-dessus, c'est-à-dire d'assurer d'une part un centrage parfait de l'axe de rotation de la roue de la pompe, tout en déchargeant la cloison d'étanchéité de cette fonction, et d'autre part en recherchant une évacuation efficace des calories vers un élément de refroidissement.
La pompe selon l'invention est caractérisée en ce que :
• le premier rotor entraîné tourillonne sur une portée cylindrique dont le positionnement et le soutien sont assurés par un embout axial s'étendant dans le prolongement de l'arbre du moteur, un palier cylindrique femelle sert de logement concentrique à l'embout pour obtenir un soutien mécanique et un centrage précis de la cloison et du premier rotor entraîné.
L'axe du moteur est prolongé avantageusement d'une longueur suffisante pour lui permettre de s'introduire au cœur du rotor entraîné. Il en résulte que l'axe du moteur englobe l'axe de la roue qui, de fixe, devient tournant. Ce n'est évidemment pas cette rotation qui est recherchée, mais le fait de disposer pour le premier rotor entraîné, d'un support rigide et parfaitement aligné avec l'axe moteur.
Selon un mode de réalisation préférentiel,, le premier rotor entraîné comporte une deuxième bague qui tourillonne sur une première bague solidaire de la cloison fixe.
Le palier intégré à la cloison comprend au moins une bague autoiubrifiante constituant un pont thermique pour l'évacuation des calories générées par le tourillonnement du premier rotor entraîné vers le radiateur formé par l'arbre moteur.
La cloison d'étanchéité ne devant pas être interrompue, il faut donc compliquer un peu sa forme pour lui faire contourner l'embout prolongé, qui appartient à la zone externe au circuit de pompage, alors que l'axe 24 selon la figure 2 de l'art antérieur appartenait à la zone interne.
En plus de la partie cylindrique présente dans l'entrefer, la cloison devra donc présenter une seconde partie cylindrique venant s'engager sur l'extrémité de l'axe moteur, avec interposition d'une douille de frottement, réalisée par exemple en matériau autolubrifiant. Cet axe assurant maintenant le positionnement du rotor entraîné avec la précision et la rigidité voulues, cette fonction n'a plus à être assurée par la cloison d'étanchéité, qui peut donc être sensiblement allégée. Dans le mode de réalisation le plus simple, cette cloison peut être réalisée en une seule pièce, dans un matériau chimiquement compatible avec le liquide pompé.
Il faut toutefois noter que la pièce doit rester capable de supporter la pression du liquide présent autour du rotor entraîné, pression non négligeable puisqu'elle peut être voisine de la pression de refoulement de la pompe. Dans les cas où cette pression est élevée, et où il n'existe pas de matériau chimiquement compatible présentant la tenue mécanique suffisante, on peut être ramené à une solution de cloison mixte comportant une enveloppe externe mécaniquement résistante, et une enveloppe interne chimiquement compatible.
On n'est pas pour autant ramené aux mêmes contraintes qu'avec les pompes classiques correspondant à la figure 2. En effet, la tenue à la pression interne est bien plus facile à assurer que la rigidité et la précision.
L'enveloppe externe pourra donc être beaucoup plus mince, ce qui permet d'envisager de la réaliser :
-soit en métal amagnétique, comme dans la solution classique, mais en adoptant une épaisseur très faible, ce qui ramène les pertes par courants de Foucault à une valeur admissible ;
-soit en matériau synthétique (polyamide ou polycarbonate chargés par exemple), ce qui impose une augmentation modérée de l'entrefer, mais supprime totalement les courants de Foucault.
Concernant l'évacuation des calories générées par la rotation, la configuration décrite ci-dessus présente un avantage évident, dans la mesure où elle fait apparaître un pont thermique de forte section et de faible épaisseur entre le palier du rotor entraîné et l'arbre du moteur. Bien entendu, cet avantage est atténué par le fait qu'il faut évacuer en plus les calories produites par la rotation de l'embout additionnel de l'arbre du moteur dans son propre palier, mais on se trouve là hors d'atteinte du liquide pompé, ce qui permet de faire appel à des composants mécaniques classiques, dont le rendement est excellent.
Selon une autre caractéristique de l'invention, la cloison d'étanchéité est conformée pour la compatibilité chimique, tandis que la précision et la tenue mécanique sont assurées par une pièce additionnelle épousant partiellement la forme de la cloison, et réalisée dans un matériau ayant une bonne tenue mécanique. La pièce additionnelle peut être réalisée en alliage métallique, notamment en acier inoxydable, et comprend une virole s'insérant dans l'entrefer ménagé entre les deux séries d'aimants. L'épaisseur de la virole est inférieure à celle de l'enveloppe de la cloison.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre à travers les dessins annexés, donnés à titre d'exemples non limitatifs, et dans lesquels :
-la figure 1 représente une vue en élévation schématique d'un ensemble motopompe classique avec garniture d'étanchéité à frottement.
-la figure 2 représente une vue en élévation schématique d'un ensemble motopompe classique à entraînement magnétique.
-la figure 3 représente une vue en élévation et en coupe d'un entraînement magnétique selon l'invention.
Description d'un mode de réalisation préférentiel
Ce mode de réalisation est illustré par la figure 3 dans laquelle on retrouve :
-le moteur d'entraînement 29,
-la roue du premier rotor entraîné 32, équipée de la première série d'aimants 33 et d'un tube en acier 37, -le deuxième rotor d'entraînement 30, équipé de la deuxième série d'aimants 31 et d'un tube en acier 38, les tubes 37 et 38 ayant pour fonction d'assurer le bouclage du flux magnétique des aimants permanents 31 , 33. Les tubes 37, 38 et les aimants 31 , 33 sont fixés respectivement sur le deuxième rotor 30 et sur la roue 32 par tout moyen approprié, notamment par surmoulage, -la bague fixe 35 et la bague tournante 36 constituant le palier de rotation de la roue,
-le corps de pompe 45, -et l'entretoise 49 assurant la liaison entre le moteur 29 et le corps de pompe 45.
Un embout 42 prolonge l'arbre moteur 41 , dont il peut faire partie intégrante, ou sur lequel il peut être assemblé avec rigidité et précision. En plus de sa fonction première, qui est de supporter et de centrer la roue de la pompe, l'embout 42 est agencé pour recevoir la fixation du deuxième rotor d'entraînement 30, cette fixation étant assurée par tout moyen mécanique approprié.
La cloison d'étanchéité se compose d'une enveloppe 48 réalisée en matériau chimiquement compatible avec le liquide pompé, et d'une virole cylindrique 52 réalisée en matériau mécaniquement résistant, notamment en acier inoxydable. Cette virole permet d'apporter la tenue à la pression interne, dans la mesure où le matériau constitutif de l'enveloppe 48 peut être insuffisamment résistant.
L'enveloppe 48 se prolonge vers l'intérieur par une partie formant fourreau, dans laquelle s'introduit axialement l'embout 42.
Dans cette zone centrale, l'enveloppe 48 porte : extérieurement, la bague fixe 35, sur laquelle vient tourillonner la roue 32, par l'intermédiaire de sa bague solidaire 36. intérieurement, un fourreau en acier 53, dans lequel viendront s'emmancher les bagues autolubrifiantes 54, 54' qui s'engagent elles-mêmes sur l'embout 42.
La bague 35 et le fourreau 53 peuvent être avantageusement surmoulés dans l'enveloppe de la cloison 48 lors du moulage de celle-ci. Le centrage de la bague 35, et de la roue du rotor 32, est maintenant assuré avec précision par l'embout 42. Il en résulte une bonne concentricité des pièces 35, 53, 54, 54', et le jeu entre l'embout 42 et les douilles 54, 54' est très réduit.
La cloison d'étanchéité est donc totalement déchargée de la fonction de centrage, et n'a donc plus à être très rigide. Il est au contraire souhaitable qu'elle présente un minimum de souplesse, afin de ne pas contrarier le centrage imposé par l'embout 42.
En plus de la fonction de centrage, le dispositif de la figure 3 permet une bonne évacuation vers l'extérieur des calories générées par la rotation de la roue du rotor
32, l'arbre moteur 41 jouant le rôle de radiateur par l'intermédiaire de I' embout 42.
Les calories traversent successivement les pièces 35, 48, 53, 54 et 54' mais tous ces transferts mettent en jeu des épaisseurs faibles et des sections importantes, ce qui conduit à un pont thermique suffisamment efficace.
En variante, on peut envisager de remplacer les douilles 54, 54' par des roulements à aiguilles. Cette solution sera particulièrement intéressante si une grande résistance et une grande longévité sont recherchées. Par contre, elle sera moins efficace sous l'aspect pont thermique. Des solutions mixtes combinant douilles à frottement et roulements à aiguilles sont également envisageables.

Claims

REVENDICATIONS
1. Pompe à entraînement magnétique comprenant :
-un élément de pompe pourvu d'un premier rotor entraîné (32) en forme de roue montée à rotation dans un corps (45) associé à des tuyauteries d'aspiration et de refoulement,
-une première série d'aimants (33) solidaires du premier rotor (32),
-un moteur d'entraînement (29) doté d'un arbre (41) de transmission sur lequel est monté un deuxième rotor d'entraînement (30) portant une deuxième série d'aimants (31 ), les deux séries d'aimants (33, 31) étant disposées concentriquement pour réaliser un couplage magnétique en rotation,
-et un dispositif d'étanchéité ayant une cloison (48) fixe s'étendant dans l'entrefer entre les deux séries d'aimants (33, 31 ) en assurant une séparation étanche entre l'élément de pompe et le moteur (29),
caractérisée en ce que :
le premier rotor entraîné (32) tourillonne sur une portée cylindrique dont le positionnement et le soutien sont assurés par un embout (42) axial s'étendant dans le prolongement de l'arbre (41) du moteur (29),
• un palier cylindrique femelle sert de logement concentrique à l'embout (42) pour obtenir un soutien mécanique et un centrage précis de la cloison (48) et du premier rotor entraîné (32).
2. Pompe selon la revendication 1 , caractérisée en ce que le premier rotor entraîné (32) comporte une deuxième bague (36) qui tourillonne sur une première bague (35) solidaire de la cloison fixe (48).
3. Pompe selon la revendication 1 ou 2, caractérisée en ce que le palier intégré à la cloison (48) comprend au moins une bague autolubrifiante (54, 54') constituant un pont thermique pour l'évacuation des calories générées par le tourillonnement du premier rotor entraîné (32) vers le radiateur formé par l'arbre moteur (41).
4. Pompe selon la revendication 1 ou 2, caractérisée en ce le palier comporte des roulements à aiguilles prenant appui sur l'embout (42).
5. Pompe selon la revendication 1 , caractérisée en ce que la cloison (48) est une pièce monobloc réalisée dans un matériau à la fois chimiquement compatible avec le liquide pompé, et possédant une tenue mécanique suffisante pour supporter notamment la pression du liquide pompé.
6. Pompe selon la revendication 1 , caractérisée en ce que la cloison (48) est conformée pour la compatibilité chimique, tandis que la précision et la tenue mécanique sont assurées par une pièce additionnelle épousant partiellement la forme de la cloison (48) et réalisée dans un matériau ayant une bonne tenue mécanique.
7. Pompe selon la revendication 6, caractérisée en ce que la pièce additionnelle est réalisée en alliage métallique, notamment en acier inoxydable, et comprend une virole (52) s'insérant dans l'entrefer ménagé entre les deux séries d'aimants (31 , 33).
8. Pompe selon la revendication 7, caractérisée en ce que l'épaisseur de la virole (52) est inférieure à celle de l'enveloppe de la cloison (48).
PCT/FR2000/002446 1999-09-06 2000-09-06 Pompe a entrainement magnetique WO2001018401A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/069,358 US6672818B1 (en) 1999-09-06 2000-09-06 Magnetically driven pump
JP2001521905A JP2003508689A (ja) 1999-09-06 2000-09-06 磁気的に駆動されるポンプ
DE60006689T DE60006689T2 (de) 1999-09-06 2000-09-06 Kreiselpumpe mit magnetischem antrieb
AT00960799T ATE254723T1 (de) 1999-09-06 2000-09-06 Kreiselpumpe mit magnetischem antrieb
EP00960799A EP1210520B1 (fr) 1999-09-06 2000-09-06 Pompe a entrainement magnetique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/11242 1999-09-06
FR9911242A FR2798169B1 (fr) 1999-09-06 1999-09-06 Pompe a entrainement magnetique

Publications (1)

Publication Number Publication Date
WO2001018401A1 true WO2001018401A1 (fr) 2001-03-15

Family

ID=9549645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002446 WO2001018401A1 (fr) 1999-09-06 2000-09-06 Pompe a entrainement magnetique

Country Status (8)

Country Link
US (1) US6672818B1 (fr)
EP (1) EP1210520B1 (fr)
JP (1) JP2003508689A (fr)
AT (1) ATE254723T1 (fr)
DE (1) DE60006689T2 (fr)
ES (1) ES2211599T3 (fr)
FR (1) FR2798169B1 (fr)
WO (1) WO2001018401A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262532B2 (en) 2004-03-16 2007-08-28 Ebm-Papst St. Georgen Gmbh & Co. Kg Arrangement with an electronically commutated external rotor motor

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087630B2 (en) * 2002-06-27 2006-08-08 Nitromed, Inc. Cyclooxygenase 2 selective inhibitors, compositions and methods of use
US7131825B2 (en) * 2004-01-30 2006-11-07 Isothermal Systems Research, Inc. Spindle-motor driven pump system
GB2418074A (en) * 2004-09-14 2006-03-15 Dana Automotive Ltd A method of making a permanent magnet electric motor rotor
JP4297859B2 (ja) * 2004-09-28 2009-07-15 三洋電機株式会社 電動車輪用ハブユニット及び該ハブユニットを具えた乗物
EP1797330B1 (fr) * 2004-10-06 2009-01-07 ebm-papst St. Georgen GmbH & Co. KG Dispositif de transport de fluides
CN1828027B (zh) * 2005-02-28 2011-10-19 台达电子工业股份有限公司 液冷式散热模块
CN1983778B (zh) * 2005-12-08 2011-01-26 刘素荣 液态金属磁力驱动无叶轮离心泵
ITBS20060079A1 (it) * 2006-03-30 2007-09-30 Metelli S P A Pompa a trascinamento magnetico perfezionata
US8575802B2 (en) * 2010-02-03 2013-11-05 Src Electrical Llc Locomotive starter motor
DE102012024130B4 (de) * 2012-12-11 2014-09-11 Klaus Union Gmbh & Co. Kg Spalttopf für magnetgekuppelte Pumpen sowie Herstellungsverfahren
FR3011895B1 (fr) * 2013-10-14 2016-03-04 Pompes Salmson Sa Ensemble coussinet, support de coussinet pour une pompe de circulation
EP2899855B1 (fr) * 2014-01-23 2022-08-24 Pierburg Pump Technology GmbH Pompe de liquide de refroidissement électrique pour véhicule automobile
US9771938B2 (en) 2014-03-11 2017-09-26 Peopleflo Manufacturing, Inc. Rotary device having a radial magnetic coupling
US9920764B2 (en) 2015-09-30 2018-03-20 Peopleflo Manufacturing, Inc. Pump devices
US11193493B2 (en) 2016-07-04 2021-12-07 Amotech Co., Ltd. Water pump
WO2018008896A1 (fr) * 2016-07-04 2018-01-11 주식회사 아모텍 Pompe à eau
KR101968162B1 (ko) * 2016-07-04 2019-04-11 주식회사 아모텍 워터 펌프
FR3074622B1 (fr) * 2017-12-04 2021-07-30 Ifp Energies Now Dispositif de compression d'un fluide entraine par une machine electrique avec un arbre de rotor ayant une frette amagnetique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2311201A1 (fr) * 1975-05-12 1976-12-10 Siebec Filtres Perfectionnement apporte aux pompes a entrainement magnetique
US4207485A (en) * 1978-04-24 1980-06-10 The Garrett Corporation Magnetic coupling
US4645432A (en) * 1986-02-14 1987-02-24 General Motors Corporation Magnetic drive vehicle coolant pump
DE3927391A1 (de) * 1989-08-19 1991-02-21 Bosch Gmbh Robert Vorrichtung zum beheizen des fahrgastraumes eines kraftfahrzeuges
WO1999010655A1 (fr) * 1997-08-23 1999-03-04 Concentric Pumps Limited Ameliorations apportees aux pompes rotatives

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172364A (en) * 1962-10-01 1965-03-09 P G Products Mfg Co Inc Pump
JPH01125591A (ja) * 1987-11-06 1989-05-18 Sanyo Electric Co Ltd マグネットポンプ
JPH0276191U (fr) * 1988-11-30 1990-06-11
JPH05252800A (ja) * 1992-02-28 1993-09-28 Fuji Oozx Kk 渦電流継手を用いた動力伝達装置の制御方法及び装置
FR2715442B1 (fr) * 1994-01-26 1996-03-01 Lorraine Carbone Pompe centrifuge à entraînement magnétique.
US5833437A (en) * 1996-07-02 1998-11-10 Shurflo Pump Manufacturing Co. Bilge pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2311201A1 (fr) * 1975-05-12 1976-12-10 Siebec Filtres Perfectionnement apporte aux pompes a entrainement magnetique
US4207485A (en) * 1978-04-24 1980-06-10 The Garrett Corporation Magnetic coupling
US4645432A (en) * 1986-02-14 1987-02-24 General Motors Corporation Magnetic drive vehicle coolant pump
DE3927391A1 (de) * 1989-08-19 1991-02-21 Bosch Gmbh Robert Vorrichtung zum beheizen des fahrgastraumes eines kraftfahrzeuges
WO1999010655A1 (fr) * 1997-08-23 1999-03-04 Concentric Pumps Limited Ameliorations apportees aux pompes rotatives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262532B2 (en) 2004-03-16 2007-08-28 Ebm-Papst St. Georgen Gmbh & Co. Kg Arrangement with an electronically commutated external rotor motor

Also Published As

Publication number Publication date
US6672818B1 (en) 2004-01-06
FR2798169A1 (fr) 2001-03-09
ES2211599T3 (es) 2004-07-16
EP1210520B1 (fr) 2003-11-19
EP1210520A1 (fr) 2002-06-05
FR2798169B1 (fr) 2001-11-16
DE60006689D1 (de) 2003-12-24
DE60006689T2 (de) 2004-10-07
ATE254723T1 (de) 2003-12-15
JP2003508689A (ja) 2003-03-04

Similar Documents

Publication Publication Date Title
EP1210520B1 (fr) Pompe a entrainement magnetique
EP1838965B1 (fr) Pompe à vide à cycle de translation circulaire à plusieurs arbres
EP3277932A1 (fr) Ensemble rotor et turbomachine à paliers à gaz comportant un tel ensemble rotor
EP0882892B1 (fr) Machine du type scroll
EP0665378A1 (fr) Pompe centrifuge à entraînement magnétique
FR2588323A1 (fr) Pompe centrifuge a entrainement magnetique
FR2499647A1 (fr) Perfectionnements aux accouplements magnetiques hermetiques
FR3063776A1 (fr) Agencement de palier pour un arbre d'entrainement d'une turbomachine, et une turbomachine comportant un tel agencement de palier
FR2608228A1 (fr) Pompe a liquide, notamment pompe a eau, en particulier pour vehicules automobiles
EP1155491A1 (fr) Ralentisseur a courants de foucault
EP0697524A1 (fr) Pompe à vide turbomoléculaire
EP0882893B1 (fr) Machine a déplacement de fluide du type scroll
FR3134435A1 (fr) Pompe à vide
EP3811506B1 (fr) Machine tournante supraconductrice
FR2881587A1 (fr) Dispositif permettant le refroidissement d'une machine electrique tournante par circulation d'un fluide de refroidissement
FR2517880A1 (fr) Tube a rayons x a anode rotative
FR2578117A1 (fr) Rotor pour machine electrique rotative supraconductrice
FR2864157A1 (fr) Rotor de turbine monobloc et engrenage a pignons et technique de fabrication de ces derniers
FR2497019A1 (fr) Machine electrique tournant a grande vitesse, refroidie par un liquide et avec vide partiel dans l'entrefer
EP3921922B1 (fr) Dispositif de compression d'un fluide entraine par une machine electrique avec arbre de compression traversant le rotor
EP0789442A1 (fr) Transmission de véhicule équipée d'un ralentisseur électrique
WO2023099853A1 (fr) Bras de servitude pour un carter d'échappement d'une turbomachine
FR3065496A1 (fr) Motopompe a rotor noye
WO2022258735A1 (fr) Carter machine électrique tournante et machine électrique tournante
FR2545663A1 (fr) Carter de moteur de demarreur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000960799

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10069358

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 521905

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000960799

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000960799

Country of ref document: EP