WO2001014883A1 - Screening method - Google Patents

Screening method Download PDF

Info

Publication number
WO2001014883A1
WO2001014883A1 PCT/JP2000/005639 JP0005639W WO0114883A1 WO 2001014883 A1 WO2001014883 A1 WO 2001014883A1 JP 0005639 W JP0005639 W JP 0005639W WO 0114883 A1 WO0114883 A1 WO 0114883A1
Authority
WO
WIPO (PCT)
Prior art keywords
receptor protein
orphan receptor
cell
cells
test compound
Prior art date
Application number
PCT/JP2000/005639
Other languages
French (fr)
Japanese (ja)
Inventor
Shuji Hinuma
Masaki Hosoya
Original Assignee
Takeda Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries, Ltd. filed Critical Takeda Chemical Industries, Ltd.
Priority to AU67264/00A priority Critical patent/AU6726400A/en
Publication of WO2001014883A1 publication Critical patent/WO2001014883A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants

Definitions

  • the present invention screens a high-concentration test compound using the activation of orphan receptor protein-expressing cells as an index, and utilizes the common structure of the test compound having agonist activity to produce an orphan receptor protein.
  • the present invention relates to a method for efficiently screening a compound that promotes or inhibits the function of a protein, and a method for determining a (endogenous) ligand of an orphan receptor protein using the common structure.
  • physiologically active substances such as hormones and neurotransmitters exert their effects by binding to receptor molecules present on the cell surface, and regulate various life phenomena. Searching for a substance that supplements, enhances, or inhibits the action of these physiologically active substances is one of the main means for the research and development of new pharmaceuticals. It is extremely important to understand the properties of body molecules. Recent advances in molecular biological techniques have made it possible to analyze the receptors of many physiologically active substances at the molecular level. A group of such receptor molecules with a common structural feature that penetrates the cell membrane seven times is known and is called a seven-transmembrane receptor. They are also called G protein-coupled receptors because they are coupled to intracellular signaling systems via GTP-binding proteins (G proteins). Ligands of the seven-transmembrane receptor are diverse, including proteins, peptides, amines, amino acids, nucleotides, nucleosides, eicosanoids, phospholipids, odorants, and light.
  • orphanin FQ which has studied the known ligands or their analogs as candidate ligands, has actually identified the endogenous ligand. / noc i cept in (Meunier, J. -C. Nature 393: 211-212, 1998), but the structure of the ligand is estimated only from the structural similarity of the known ligand or its analog. There is a limit to In many cases, endogenous ligands are identified by purification using the activation of the signal transduction system of orphan receptor protein-expressing cells as an index (Sakurai, T. et al. Cell 92: 573- 585, 1998; Hinuma, S.
  • the signal transduction system via the seven-transmembrane receptor is not unique, and it is necessary to screen several Atsui systems in parallel to detect the activity derived from endogenous ligands.
  • ligands for the seven-transmembrane receptor are diversified, and it has been difficult to rationally select a sample as a ligand candidate to be used for the assay.
  • the present inventors have conducted intensive studies in order to solve the above problems,
  • test compound preferably at a high concentration
  • test compound preferably at a high concentration
  • test compound (a) was brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction, and the test compound (a) was brought into contact with a cell that does not express the orphan receptor protein or its cell membrane fraction.
  • Test compound is added to orphan receptor protein-expressing cells or its cell membrane fraction.
  • test compound (a) was brought into contact with (a) and when the test compound (a) was brought into contact with cells not expressing the orphan receptor protein or its cell membrane fraction, the respective cell stimulating activities were measured.
  • FIG. 1 shows a comparison diagram of the commonality of amino acid sequences in Example 1.
  • Phenylalanine (F) and tyrosine (Y) have very similar steric structures, so they are similarly boxed.
  • orphan receptor protein means a protein whose ligand is unknown, and includes unknown proteins in addition to known proteins.
  • orphan receptor proteins include, for example, the FM-3 receptor protein (Tan, C. P et al, Genomi cs 52, 223-229) or the mas receptor used in Example 1 described below. Protein (Young D. et al., Proc. Natl. Acad. Sci. USA, 85, 5339-5342, 1988), etc., as well as those listed in the orphan receptor database of Swiss- plot And so on.
  • the orphan receptor protein used in the present invention may form a salt.
  • the salt of the “orphan receptor protein” include physiologically acceptable bases (eg, alkali metals) and acids (organic compounds). Acid, inorganic acid) Physiologically acceptable acid addition salts are preferred.
  • Such salts include, for example, salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid) or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid) , Tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, and benzenesulfonic acid).
  • inorganic acids eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid
  • organic acids eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succin
  • the DNA encoding the orphan receptor protein used in the present invention may be any DNA containing the DNA encoding the orphan receptor protein.
  • genomic DNA genomic DNA libraries, human warm-blooded animals (eg, guinea pigs, rats, mice, chicks, egrets, bushes, sheep, swords, monkeys, etc.) (eg, retinal cells, hepatocytes, Spleen cells, neuronal cells, glial cells, kidney / 3 cells, bone marrow cells, mesangial cells, Langerens cells, epidermal cells, epithelial cells, endothelial cells, fibroblasts, fiber cells, muscle cells, adipocytes, Immune cells (eg, macrophage, T cells, B cells, natural killer cells, mast cells, neutrophils, basophils, eosinophils, monocytes), megakaryocytes, synovial cells, chondrocytes, bone cells Osteoblasts, osteoclasts, mamm
  • DNA encoding the orphan receptor protein used in the present invention can also be produced by the following genetic engineering techniques.
  • the DNA library was synthesized by a PCR method known per se using a synthetic DNA primer having a partial nucleotide sequence of orphan receptor protein. Amplification of the target DNA from the first place, or the DNA incorporated into an appropriate vector, for example, labeled using a DNA fragment or a synthetic DNA having a partial or entire region of the orphan receptor protein. Sorting can be performed by hybridization. The hybridization is performed according to, for example, the method described in Molecular Cloning (2nd ed .; J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989). When using a commercially available library, follow the method described in the attached instruction manual.
  • the DNA encoding the cloned orphan receptor protein can be used as it is, or as desired, after digestion with a restriction enzyme or addition of a linker.
  • the DNA may have ATG as a translation initiation codon at the 5 'end and TAA, TGA or TAG as a translation stop codon at the 3' end. These translation start codon and translation stop codon can be added using an appropriate synthetic DNA adapter.
  • the DNA encoding the orphan receptor protein (A) can be expressed by the following method.
  • the expression vector of the orphan receptor protein is, for example, It can be produced by cutting out a DNA fragment of interest from DNA encoding an an receptor protein, and ligating the DNA fragment downstream of a promoter in an appropriate expression vector.
  • Escherichia coli-derived plasmids eg, pBR322, pBR325, pUC12, pUC13
  • Bacillus subtilis-derived plasmids eg, pUB110, pTP5, pCl94
  • yeast-derived plasmids eg, pSHl 9 pSHl 5
  • bacteriophage such as ⁇ phage
  • animal viruses such as retrovirus, vaccinia virus, and baculovirus are used.
  • the promoter used may be any promoter suitable for the host used for gene expression.
  • promoters derived from SV40, a retrovirus promoter, a metamouth thionein promoter, a heat shock promoter, a cytomegalovirus promoter, an SRa promoter, etc. Available. If the host is Escherichia, Trp promoter, T7 promoter overnight, lac promoter, recA promoter, APL promoter, 1 pp promoter, etc.If the host is Bacillus, SPO When the host is an enzyme such as 1 promoter, SP ⁇ 2 promoter, pen P promoter, etc., preferred are PHO5 promoter, PGK promoter, GAP promoter, ADH1 promoter, GAL promoter and the like.
  • the host is an insect cell
  • a polyhedrin promoter, a P10 promoter and the like are preferable.
  • the host is preferably an animal cell or an insect cell in order to measure the cell stimulating activity via the orphan receptor protein.
  • the expression vector may further include an enhancer, a splicing signal, a polyA addition signal, a selection marker, an SV40 replication origin (hereinafter, sometimes abbreviated as SV40 ori), and the like, if desired. Can be used.
  • selectable markers include dihydrofolate reductase (hereinafter sometimes abbreviated as dh fr) gene [methotrexate (MTX) resistance] and ampicillin resistance gene (hereinafter sometimes abbreviated as Amp ⁇ ) And a neomycin-resistant gene (hereinafter sometimes abbreviated as Neo, G418-resistant).
  • dh fr dihydrofolate reductase
  • MTX metalhotrexate
  • Amp ⁇ ampicillin resistance gene
  • Neo neomycin-resistant gene
  • a signal sequence suitable for the host is added to the N-terminal side of the polypeptide or its partial peptide.
  • the host is a bacterium belonging to the genus Escherichia
  • the phoA-signal sequence and the O-immediate A / signal sequence are included.
  • insulin signal sequence, a-in yellow ferron Signal sequence, antibody molecule, signal sequence, etc. can be used respectively.
  • a transformant can be produced using the vector containing DNA encoding the orphan receptor protein thus constructed.
  • a bacterium belonging to the genus Escherichia for example, a bacterium belonging to the genus Escherichia, a bacterium belonging to the genus Bacillus, a yeast, an insect or an insect cell, an animal cell, or the like is used.
  • the insect cell or the animal cell is preferably used.
  • Escherichia examples include Escherichia coli (Escherichia col 0 K12 • DH1 [Prosessing's of the National Academy of Sciences] of the United States (Pro Natl. Acad. Sci. USA), 60, 160 (1968)], JM103 [Nucleic Acids Research, 9, 309 (1981)], JA221 [Journal-Robb 'Molecular' Noology 1] (Journal of Molecular Biology)], 120, 517 (1978)], HB101 [Journal of Molecular Biology, 41, 459 (1969)], C600 [Genetics, 39] , 440 (1954)].
  • Bacillus bacteria examples include, for example, Bacillus subtilis M1114 [Gene, 24, 255 (1983)], 207-21 [Journal of Biochemistry, 95 , 87 (198 4)].
  • yeast examples include Saccharomyces cerevisiae) AH22, AH22R—, NA87-11A, DKD—5D, 20B-12 and the like are used.
  • insects for example, silkworm larvae are used [Maeda et al., Neycha (
  • insect cells for example, when the virus is Ac NPV, a cell line derived from a larva of night rob moth (Spodopter.a frugiperda cell; S f cell), and the midgut of Trichoplusia ni
  • MG1 cells derived therefrom High Five cells derived from Trichoplusia ni eggs, cells derived from Mamestra brasskae or cells derived from Estigmena acrea are used.
  • viruses When the virus is BmNPV, a cell line derived from silkworm (Bombyxmori N; BmN cell) is used.
  • Sf cells include, for example, Sf9 cells (ATCC CRL1711), Sf21 cells [Vaughn, J. L et al., In Vitro, Vol.
  • animal cells examples include monkey COS-7 cells, Vero cells, Chinese nose, muster cells CH ⁇ , DHFR gene deficient Chinese hamster cells CHO (dh fr-CH ⁇ cells), mouse L cells, mouse 3T3 cells, mouse Myeloma cells, human HEK293 cells, human FL cells, C127 cells, BALB 3T3 cells
  • Transformation of animal cells is performed, for example, according to the method described in Virology, 52, 456 (1973).
  • Methods for introducing orphan receptor protein expression vectors into cells include, for example, the lipofection method (Felgner, PL et al. Processing's 'the' National Academy of Sciences, Obs. U.S.A. (Proceedings of The National Academy of Sciences of The United States of America), 84, 7413 (1987)), calcium phosphate method [Graham, FL and van der Eb, AJ Virology, 52, 456- 46 p. 7 (1973)], electroporation [Nuemann, E. et al., Empo J. (EMBO J.), 1, 841-845 (1982)], and the like.
  • a method for stably expressing an orphan receptor protein using animal cells there is a method of selecting, by clonal selection, cells in which the expression vector introduced into the animal cell is integrated into the chromosome. . Specifically, a transformant is selected using the above selection abilities as an index. Furthermore, by repeatedly performing clonal selection on the animal cells obtained using the selectable marker in this manner, a stable animal cell line having high expression ability of orphan receptor protein can be obtained. You. When the dh fr gene or the dh fr gene is used as a selection marker, the MTX concentration is gradually increased, and the cells are cultured. By selecting resistant strains, the DNA encoding the orphan receptor protein together with the dh fr gene can be transferred to the cells. It can also be amplified in situ to obtain higher expressing animal cell lines.
  • a liquid medium is suitable as the medium used for the culturing, and a carbon source necessary for the growth of the transformant is contained therein.
  • Nitrogen sources, inorganic substances and others. As a carbon source
  • Nitrogen sources such as glucose, dextrin, soluble starch, sucrose, etc.
  • Inorganic or organic substances such as ammonium salts, nitrates, corn chip liqueur, peptone, casein, meat extract, soybean meal, potato extract, etc.
  • Inorganic substances such as calcium chloride, sodium dihydrogen phosphate, and magnesium chloride And the like.
  • yeast extract, vitamins, growth promoting factors and the like may be added.
  • the pH of the medium is preferably about 5-8.
  • Examples of a medium for culturing Escherichia sp. include, for example, M9 medium containing glucose and casamino acid (Miller, Journal of Experiments in Molecular Genetics, Journal of Experiments in Molecular Genetics, 431). -433, Cold Spring Harbor Laboratory, New York 1972]. If necessary, an agent such as 3) 3-indolylacrylic acid can be added in order to make the promoter work efficiently.
  • cultivation is usually performed at about 15 to 43 ° C for about 3 to 24 hours, and if necessary, aeration and stirring can be applied.
  • culturing is usually performed at about 30 to 40 "C for about 6 to 24 hours, and if necessary, aeration and stirring may be added.
  • the medium used is Grace's Insect.
  • a solution to which an additive such as 0% serum is appropriately added is used.
  • the pH of the medium is preferably adjusted to about 6.2 to 6.4.
  • Culture is usually performed at about 27 ° C for about 3-5 days.
  • the pH is preferably about 6-8. Culture is usually performed at about 30 to 40 for about 15 to 60 hours, and aeration and agitation are added as necessary.
  • DMEM medium containing dialysed fetal serum containing almost no thymidine.
  • the cell membrane fraction refers to a fraction abundant in cell membrane obtained by disrupting cells and then obtained by a method known per se.
  • Methods for crushing cells include crushing cells with a Potter-Elvehjem homogenizer, crushing with a Pelling Blender and Polytron (Kinematica), crushing with ultrasonic waves, and narrowing the cells while pressing with a French press. Crushing by ejecting from For cell membrane fractionation, centrifugal fractionation methods such as differential centrifugation and density gradient centrifugation are mainly used.
  • the cell lysate is centrifuged at a low speed (500 rpm to 3000 rpm) for a short time (typically about 1 to 10 minutes), and the supernatant is further centrifuged at a higher speed (15000 rpm to 30000 rpm) for 30 min. Centrifuge for 1 minute to 2 hours, and use the resulting precipitate as the membrane fraction.
  • the membrane fraction is rich in the expressed orphan receptor protein and membrane components such as cell-derived phospholipids and membrane proteins.
  • the amount of the orphan receptor protein in the cell or membrane fraction containing the orphan receptor protein is preferably 10 to 10 molecules per cell, and more preferably 10 to 10 molecules per cell.
  • the cells that do not express the orphan receptor protein or the cell membrane fraction thereof are the cells listed as the above host cells, and do not express the orphan receptor protein.
  • Means As the cell membrane fraction those similar to the above can be used.
  • test compound or “test compound (a)” refers to, for example, natural / non-natural peptide, natural / non-natural protein, natural / non-natural non-peptide compound, synthetic Compounds, natural and non-natural fermented products.
  • test compound or the peptide, protein, compound or fermentation product used in the test compound (a) may form a salt, and these salts include a physiologically acceptable base (eg, an alkali metal). And the like, and salts with acids (organic acids and inorganic acids), and especially preferred are physiologically acceptable acid addition salts.
  • a physiologically acceptable base eg, an alkali metal
  • acids organic acids and inorganic acids
  • Such salts include, for example, salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid) or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid) , Tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid) and the like.
  • inorganic acids eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid
  • organic acids eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid
  • Tartaric acid citric acid, malic acid, oxalic acid
  • benzoic acid methanesulfonic acid, benzenesulfonic acid
  • test compound (a) When a test compound (specifically, test compound (a)) is brought into contact with an orphan receptor protein-expressing cell or its cell membrane fraction, the test compound is added to a cell that does not express an orphan receptor protein or its cell membrane fraction.
  • the respective cell stimulating activities include, for example, (a) fluctuation of extracellular pH, (b) release of arachidonic acid, (c) release of acetylcholine, ( d) intracellular Ca release, (e) intracellular cAMP fluctuation, (f) intracellular cGMP fluctuation, (g) inositol phosphate production, (h) cell membrane potential fluctuation, (i) cell phosphorylation of the inner proteins (] ') Gee 1: 0 5 activation,
  • (k) GTPTS binding, (1) reporter gene expression, and the like as indices it can be measured according to a known method or using a commercially available measurement kit.
  • a measurement method using the change in extracellular pH as an index is preferably used.
  • first, orphan receptor protein-expressing cells or their cell membrane fractions, and cells that do not express orphan receptor proteins or their cell membrane fractions The cultures are separately cultured in a multiwell plate or the like. Before measuring cell stimulating activity, replace the cells with fresh medium or an appropriate buffer that is not toxic to cells, and add the test compound (specifically, test compound (a)) to each cell. After incubation for a certain period of time, the cells or their cell membrane fractions are extracted or the supernatant is collected, and the resulting products are quantified according to the respective methods.
  • an inhibitor for the degrading enzyme may be added to perform the assay.
  • activities such as inhibition of cAMP production can be detected as an effect of inhibiting production of cells whose basal production has been increased by forskolin or the like or a cell membrane fraction thereof.
  • the transformant orphan receptor protein-expressing cell may be a stable expression cell or a transient expression cell.
  • the cell stimulating activity should be measured at the highest concentration as far as the specific reaction of the cell can be identified so that the weak agonist activity can be detected. Is preferred.
  • the high concentration of this case usually 1 0 one 8 M ⁇ 1M, preferably refers to 10- 6 M ⁇ 10- 2 M.
  • Examples of the test compound include those similar to those described in the above (C).
  • test compound specifically indicates “test compound (a)”.
  • the extracellular pH at which orphan receptor protein-expressing cells or their cell membrane fractions change in response to a test compound having agonist activity is measured using a cytosensor (Cy to sensor) device (Molecular Devices, etc.) To do Therefore, the cell stimulating activity can be measured.
  • cytosensor Cy to sensor
  • Molecular Devices, etc. Molecular Devices, etc.
  • the culture medium Stabilize pH.
  • an RPMI 1640 medium manufactured by Molecular Devices
  • serum albumin 0.1 serum albumin
  • test compound is brought into contact with the orphan receptor protein expressed in orphan receptor protein-expressing cells or its cell membrane fraction.
  • a method of perfusing a medium containing a test compound into orphan receptor protein-expressing cells or a cell membrane fraction thereof is generally used.
  • the stimulating activity of the test compound on orphan receptor protein-expressing cells and cells that do not express orphan receptor protein can be measured and compared.
  • This method expresses the orphan receptor protein and the orphan receptor protein.
  • This assay uses cell membrane fractions containing no cells, but measures cell stimulating activity.In this assay, it shows GT PrS binding promoting activity to orphan receptor protein membrane fraction, Substances that do not show GTP r S binding promoting activity to the membrane fraction that does not express protein receptor protein are candidate ligand substances.
  • the cell membrane fraction containing the orphan receptor protein is transferred to a membrane dilution buffer (for example,
  • the dilution ratio depends on the expression level of the receptor protein.
  • wash buffer for example, ice-cold 50 mM Tris, 5 mM MgCl 2 , 150 mM NaCl, 0.
  • wash buffer for example, ice-cold 50 mM Tris, 5 mM MgCl 2 , 150 mM NaCl, 0.
  • BSA 0.053 ⁇ 4 CHAPS pH 7.4 1.5 ml
  • filter eg, using glass fiber filter paper GF / F.
  • Cell stimulating activity measuring system characterized by measuring the fluctuation of intracellular cAMP.
  • the intracellular cAMP level fluctuates by agonist stimulation of a test compound having agonist activity.
  • the cell stimulating activity of the test compound on orphan receptor protein-expressing cells can be measured.
  • - Ofan amount of cAMP produced various animal cells receptor evening to express protein in mice, rats, Usagi, catcher formic, ⁇ and anti-cAMP antibody obtained by immunizing such '25 1-labeled cAMP ( Both can be measured by using TRIAS or other EIA system combining anti-cAMP antibody and labeled cAMP.
  • anti-cAMP antibody Is a quantitative possible by SPA method using a beads and iota 25 iota labeled cAMP containing scintillant was solid boss using such antibodies to such animal IgG used in A or anti-CAMP antibody production (e.g., Amashamufu Use Almatia Biotech kits
  • the activity of promoting cAMP production can be measured.
  • the intracellular cAMP level is increased by a substance that increases the intracellular cAMP level, such as forskolin, and the change in the intracellular cAMP level is observed by adding a test compound.
  • AMP production inhibitory activity can be measured.
  • the animal cells expressing the orphan receptor protein are buffered (eg, a Hanks buffer (PH7.4) containing 0.2 mM 3-isobutyl-methylxanthine, 0.05% BSA and 20 mM HEPES).
  • a Hanks buffer PH7.4 containing 0.2 mM 3-isobutyl-methylxanthine, 0.05% BSA and 20 mM HEPES.
  • a reaction buffer eg, a Hanks buffer (PH7.4) containing 0.2 mM 3-isobutyl-methylxanthine, 0.05% BSA and 20 mM HEPES.
  • the amount of cAMP in the extract can be determined using the cAMP EIA kit
  • CRE—DNA that contains a cell stimulating activity measurement system CRE (cAMP response element) characterized by introducing a reporter gene can be used to prepare a Pitka Gene Basic Vector or a Pitka Gene Enhancer Vector (Toyo Ink Manufacturing) And insert it into the multiple cloning site upstream of the luciferase gene, and use this as the CRE-reporter gene vector.
  • CRE cell stimulating activity measurement system
  • Cell stimulating activity can be measured using cells in which the CRE-reporter gene vector has been transfected into orphan receptor protein-expressing cells.
  • reaction buffer add an appropriate amount (eg, 0.25 ml) of the reaction buffer to the cells, and add an appropriate amount (eg, 1 nM) of the test compound and an appropriate amount (eg, 0.25 ml) of the reaction buffer (preferably containing forskolin when measuring cAMP production inhibitory activity) to the cells, and at about 37 ° C for about 24 hours.
  • an appropriate amount eg, 0.25 ml
  • an appropriate amount eg, 1 nM
  • an appropriate amount eg, 0.25 ml of the reaction buffer (preferably containing forskolin when measuring cAMP production inhibitory activity)
  • Luminescence from luciferase is measured with a luminometer, liquid scintillation counter or top counter.
  • repo overnight gene other than luciferase, for example, alkaline phosphatase, chloramphenicol acetyltransferase or 0-galactosidase can also be used.
  • alkaline phosphatase for example, chloramphenicol acetyltransferase or 0-galactosidase
  • the enzymatic activity of these repo overnight gene products can be easily measured using a commercially available assay kit as follows.
  • alkaline phosphatase activity can be measured, for example, by Lumi-Phos 530 manufactured by Wako Pure Chemical
  • chloramphenicol acetyltransferase activity can be measured, for example, by FAST CAT chrola manufactured by Wako Pure Chemical immediately henicol Acetyltransferase Assay KiT
  • 3-galactosidase activity can be measured, for example, by Aurora Gat XE (manufactured by Hako Pure Chemical Industries, Ltd.).
  • Cell stimulating activity measuring system characterized by measuring arachidonic acid release Orphan receptor protein-expressing cells release arachidonic acid metabolites extracellularly as a result of stimulation by agonist. By introducing arachidonic acid having radioactivity into cells in advance, the cell stimulating activity can be measured by measuring the radioactivity released outside the cells. At this time, the cell stimulating activity can be measured by adding the test compound and examining the arachidonic acid metabolite releasing activity of the test compound.
  • Inoculate orphan receptor protein-expressing cells for example, orphan receptor protein-expressing CH0 cells
  • an appropriate concentration for example, 5 ⁇ 10 4 cells / well
  • reaction buffer a buffer containing 20 mM HEPES (p ⁇ 7.4) and add a buffer (eg, Hanks buffer (PH7.4) containing 0.05% BSA and 20 mM HEPES: PH 7.4). Add the test compound dissolved in Hanks buffer (PH7.4) containing BSA and 20D1M HEPES (referred to as reaction buffer).
  • a buffer eg, Hanks buffer (PH7.4) containing 0.05% BSA and 20 mM HEPES: PH 7.4
  • reaction buffer eg, 400 l
  • the orphan receptor protein-expressing cells were seeded on a sterile microscope cover glass. After about 2 days, the culture solution was suspended in an appropriate amount (for example, 4 mM) of Fura-2 AM (Dojindo Laboratories). Replace with HBSS and leave at room temperature for about 2 hours and 30 minutes.
  • an appropriate amount for example, 4 mM
  • Fura-2 AM Diojindo Laboratories
  • FLIPR Fluo-3 AM (manufactured by Dojindo Laboratories) to the cell suspension, allow the cells to take up, wash the supernatant several times by centrifugation, and seed the cells on a 96-well plate. .
  • the orphan receptor protein-expressing cells are co-expressed with a gene for a protein such as aequor in, which emits light due to an increase in intracellular Ca ions, and aequor in is converted to Ca-binding by increasing intracellular Ca ion concentration.
  • aequor in which emits light due to an increase in intracellular Ca ions
  • aequor in is converted to Ca-binding by increasing intracellular Ca ion concentration.
  • a modified G protein such as a chimeric G protein
  • the chimeric G protein is a functional domain of a G protein that uses Ca 2+ as a signal transduction system, such as G 4 , a G protein that does not use Ca 2+ as a signal transduction system, such as Gi, Go, and Gs. Refers to the G protein replaced by.
  • the signaling system of any G protein can be monitored by changes in Ca 2+ .
  • Cell stimulating activity measuring system characterized by measuring inositol phosphate production When a test compound having agonist activity is added to a cell expressing a receptor receptor protein, the intracellular inositol triphosphate concentration increases. By observing this response in orphan receptor protein expressing cells produced by the test compound, the cell stimulating activity can be measured.
  • the “(test) compound having agonist activity” refers to the above ( Test compounds described in C) (eg, natural 'non-natural peptides, natural' non-natural proteins, natural and non-natural non-peptidic compounds, synthetic compounds, natural and non-natural fermentation products, etc.) or test Among the compounds (a), any one of the cell stimulating activity measuring systems described in the above (D) (preferably, a cell stimulating activity measuring system characterized by measuring fluctuation of extracellular pH (acidification rate), etc.) ), Cell stimulating activity was observed when using orphan receptor protein-expressing cells or their cell membrane fractions, and cells that did not express orphan receptor protein or cell membrane fractions when using orphan receptor proteins were used. Test compounds with no stimulatory activity (eg, natural and non-natural peptides, natural and non-natural proteins, natural and non-natural non-peptidic compounds, synthetic compounds, natural and non-natural sources) It refers to such products).
  • Test compounds with no stimulatory activity eg, natural and non-natural peptides, natural and non
  • a compound having an agonist activity when the orphan receptor protein is FM-3 is a C-terminal In the structure of R—X—NH 2 (X is Gly, Ala, Va1, Leu, Ile, Ser, Thr, Cys, Met ;, Glu, Asp, Lys, Ar g, His, Phe, Tyr, Trp, Pro, Asn, Gin, etc.), and more specifically, a peptide having SEQ ID NOs: 2, 6, and A peptide containing the amino acid sequence represented by 20; Peptides, proteins, compounds or fermentation products which are (test) compounds having these agonist activities may also form salts, and these salts may include physiologically acceptable bases (eg, alkali metals).
  • physiologically acceptable bases eg, alkali metals
  • salts with an acid include, for example, salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid) or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid) , Tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid).
  • inorganic acids eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid
  • organic acids eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid
  • Tartaric acid citric acid, malic acid, oxalic acid
  • benzoic acid methanesulfonic acid, benzenesulfonic acid
  • test compound (or test compound (a)) is a (test) compound having agonist activity
  • criteria for determining whether a test compound (or test compound (a)) is a (test) compound having agonist activity are shown below.
  • the following criteria are merely examples, and whether the test compound (or test compound (a)) has agonist activity is determined by the following criteria. It is not to be construed as limiting.
  • test compound When a cell stimulating activity measurement system characterized by measuring the fluctuation of extracellular pH (acidifi cat ion rate) described in (D) — (1) above is used, the test compound is If the extracellular pH at the peak of the reaction when the test compound is brought into contact with the cells exceeds 105%, assuming that the extracellular pH before contacting with the cells is 100%, the orphan receptor protein A test compound that does not show cell stimulating activity when cells that do not express it or its cell membrane fraction is used is selected as a (test) compound having agonist activity.
  • test compounds that do not have any agonist activity are selected as (test) compounds.
  • the amount of cAMP when the test compound is not added is 100%, and the amount of cAMP produced by the addition of the test compound is 105% or more.
  • a test compound that does not show cell stimulating activity when using cells that do not express a somatic protein or cell membrane fraction thereof is selected as a (test) compound having agonist activity.
  • test compound having agonist activity when used as an index, the amount of luminescence generated by forskolin stimulation is 100%, and the luminescence generated by the addition of the test compound is 95% or less.
  • a test compound that does not show cell stimulating activity when cells that do not appear or its cell membrane fraction is used is selected as a (test) compound having agonist activity.
  • the amount of luminescence without the addition of the test compound is 100%, and the amount of luminescence produced by the addition of the test compound is 105% or more.
  • a test compound that does not show cell stimulating activity when using cells that do not express the monofan receptor protein or a cell membrane fraction thereof is selected as a (test) compound having agonist activity.
  • test compound When a cell stimulating activity measuring system characterized by measuring intracellular Ca 2+ release described in (D) to (6) above is used, the fluorescence observed when no test compound is added is observed.
  • the fluorescence intensity when the test compound is added is 105% or more with the intensity set to 100%, and no cell stimulating activity is observed when cells that do not express the orphan receptor protein or their cell membrane fractions are used.
  • the test compound is selected as a (test) compound having agonist activity.
  • test compounds having agonist activity according to the above (E)
  • Test comparing the structures of (test) compounds having each agonist activity
  • Test Estimate (or determine) the common structure of a compound having a common activity, and prepare or obtain a ligand candidate substance having the common structure.
  • the ligand candidate substance has a structure common to the (test) compound having the agonist activity. Compared with each test compound (specifically, test compound (a)), Substances with strong cell stimulating activity (eg, natural peptides, natural proteins, natural non-peptide compounds, etc.).
  • test is a natural or non-natural peptide, natural-non-natural protein, etc.
  • amino acid sequences encoding those peptides or proteins are compared, and their partial sequences with high homology are compared. Or, a portion having a similar three-dimensional structure can be said to be a common structure.
  • the common structure includes SEQ ID NO: 2, 6, and By comparing the amino acid sequences represented by 20, a common structure can be derived that has an R—X —NH 2 structure (X represents an arbitrary amino acid residue) at the C-terminus.
  • the ligand candidate substance having the common structure, and further, the (endogenous) ligand of FM-3 is the C-terminal thereof. It is considered that the peptide has an R—X_NH 2 structure.
  • Peptides having an R—X—NH 2 structure at the C-terminus include A-18-F-NH, and F-8-F-NH 2 in mammals (Perry, SJ et al. FEBS Lett. 409: 426-430). , 1997) and prolactin-releasing peptide (Hinuma, S. et al. Nature 393: 272-276, 1998). In lower animals, it is ubiquitous as a family of RF amide peptide families. Furthermore, it is thought that unknown R—X—NH 2 ⁇ peptides are present in mammals as diverse as lower animals, and a new R _X—NH 2 peptide in mammals contains FM-3 (endogenous) ligand. Is considered to exist.
  • the (test) compound having agonist activity is a natural or non-natural non-peptidic compound or a synthetic compound
  • chemical structures of those compounds are compared, and a common basic skeleton (for example, specific Ring structures, eg, cyclo as “cycloaliphatic hydrocarbon” Saturated or unsaturated alicyclic hydrocarbons such as alkyl, cycloalkenyl, and cycloalkenyl, aromatic heterocycles as "heterocycles", saturated or unsaturated non-aromatic heterocycles (aliphatic heterocycles) Etc.)
  • a common basic skeleton for example, specific Ring structures, eg, cyclo as “cycloaliphatic hydrocarbon” Saturated or unsaturated alicyclic hydrocarbons such as alkyl, cycloalkenyl, and cycloalkenyl, aromatic heterocycles as "heterocycles", saturated or unsaturated non-aromatic heterocycles (aliphatic heterocycles) Etc.
  • the ligand determination method of the present invention determines ligands using the above-mentioned common structure as an index, so that obtaining a subtype of a ligand having a high structural similarity to the ligand can also be compared with the conventional method. It becomes much easier and more reliable.
  • test compound (a) Based on the common structure of the test compound described in (F) above (specifically, test compound (a)), search for natural peptides, natural proteins, and natural non-peptidic compounds having a common structure. Can be used to estimate the ligand or its subtype.
  • the cell stimulating activity of the putative ligand is measured using the cell stimulating activity measuring system described in (D) above, and is compared with the cell stimulating activity with the ligand candidate substance. Can be determined.
  • the (test) compound having agonist activity is a peptide, protein, or a salt thereof
  • a primer or probe containing a base sequence encoding a common structure is prepared. And encodes the ligand or its subtype c
  • the common structure of the (test) compound having the agonist activity described in (F) above that is, the base sequence encoding the highly homologous sequence portion between the amino acid sequences encoding the (test) compound having the 7 gonist activity, Create primers or probes to contain.
  • PCR is carried out in a manner known per se, and all tissues (eg, humans, warm-blooded animals (eg, guinea pigs, rats, mice, pigs, sheep, wedges, monkeys, etc.) and fish) are obtained.
  • tissues eg, humans, warm-blooded animals (eg, guinea pigs, rats, mice, pigs, sheep, wedges, monkeys, etc.) and fish
  • tissues eg, humans, warm-blooded animals (eg, guinea pigs, rats, mice, pigs, sheep, wedges, monkeys, etc.) and fish
  • tissues eg, humans, warm-blooded animals (eg, guinea pigs, rats, mice, pigs, sheep, wedges, monkeys, etc.) and fish) are obtained.
  • warm-blooded animals eg, guinea pigs, rats, mice, pigs, sheep, wedges, monkeys, etc.
  • fish
  • the cDNA containing the nucleotide sequence encoding the cloned ligand candidate substance can be used as it is depending on the purpose, or digested with a restriction enzyme or added with a linker if desired.
  • the DNA may have ATG as a translation initiation codon at the 5 'end and may have TAA, TGA or TAG as a translation stop codon at the 3' end. These translation initiation codon and translation termination codon can also be added using a suitable synthetic DNA adapter.
  • a transformant containing DNA encoding a ligand candidate substance is cultured according to the method for producing cells expressing an orphan receptor protein described in (A) and (B) above, and the culture is performed.
  • the candidate ligand substance can be separated and purified from the product by, for example, the following method.
  • the buffer may contain a protein denaturing agent such as urea or guanidine hydrochloride, or a surfactant such as Triton X-100 (registered trademark, sometimes abbreviated as TM hereinafter).
  • Ligand candidates contained in the culture supernatant or extract obtained in this way The substance can be purified by appropriately combining known separation and purification methods.
  • These known separation and purification methods mainly include methods using solubility such as salting out and solvent precipitation, dialysis, ultrafiltration, gel filtration, and SDS-polyacrylamide gel electrophoresis.
  • Method using difference in molecular weight Method using difference in charge such as ion exchange chromatography, Method using specific affinity such as affinity mouth chromatography, Hydrophobicity such as reverse phase high performance liquid chromatography
  • a method using the difference between isoelectric points, such as isoelectric focusing and chromatofocusing, is used.
  • the thus obtained ligand candidate substance When the thus obtained ligand candidate substance is obtained in a free form, it can be converted to a salt by a method known per se or a method analogous thereto, and conversely, when it is obtained as a salt, a method known per se or The compound can be converted into a free form or another salt by an analogous method.
  • the target ligand candidate substance can be produced by condensing a partial peptide or amino acid that can constitute the ligand candidate substance with the remaining part, and if the product has a protective group, removing the protective group.
  • Known condensation methods and elimination of protecting groups include, for example, the methods described in the following 1 to 5.
  • the candidate ligand can be purified and isolated by a combination of laffy, liquid chromatography, and recrystallization.
  • the ligand candidate substance obtained by the above method is a free form, it can be converted to an appropriate salt by a known method. Conversely, when it is obtained as a salt, it is converted to a free form by a known method. be able to.
  • a candidate ligand substance can be obtained by culturing a transformant containing DNA encoding the candidate ligand substance according to the method for producing an orphan receptor protein described in (A) above.
  • test compound having agonist activity is a peptide, protein or a salt thereof
  • a peptide or protein having a common structure is sequenced to form a ligand by searching the database. How to search for candidate substances.
  • the compound having the agonist activity described in (F) above (test) should have a common structure, that is, a base sequence encoding a sequence with high homology between the amino acid sequences encoding the compounds having agonist activity (test). Peptides or proteins can be searched in sequence databases to determine candidate ligands.
  • sequence database examples include GenBank (registered trademark) file (National Institute of Health), VTS (Virtual Transcribed Sequence) and the like.
  • the candidate ligand substance can be obtained according to the method described in (G) ⁇ 2 above.
  • an antibody against the peptide is prepared according to the following method.
  • the antibody may be any of a polyclonal antibody and a monoclonal antibody as long as the antibody can recognize the peptide.
  • An antibody against the peptide can be produced by using the peptide as an antigen according to a method for producing an antibody or antiserum known per se.
  • the peptide is administered to a warm-blooded animal at a site where the antibody can be produced by administration, itself or together with a carrier or diluent.
  • Complete Freund's adjuvant or incomplete Freund's adjuvant may be administered in order to enhance the antibody-producing ability upon administration. Administration is usually performed once every 2 to 6 weeks, for a total of about 2 to 10 times.
  • the warm-blooded animals used include, for example, monkeys, egrets, dogs, guinea pigs, mice, rats, sheep, goats, and chickens.
  • a warm-blooded animal immunized with an antigen for example, a mouse with an antibody titer is selected from a mouse, and the spleen or lymph node is collected 2 to 5 days after the final immunization.
  • Monoclonal antibody-producing hybridomas can be prepared by fusing the antibody producing cells contained with myeloma cells of the same or different species.
  • the antibody titer in the antiserum can be measured, for example, by reacting the labeled peptide described below with the antiserum, and then measuring the activity of the labeling agent bound to the antibody.
  • the fusion procedure should be performed according to known methods, for example, the method of Köhler and Milstein [Nature, 256, 495 (1975)].
  • fusion promoter examples include polyethylene glycol (PEG) and Sendai virus, but PEG is preferably used.
  • myeloma cells examples include myeloma cells of warm-blooded animals such as NS-1, P3U1, SP2 / 0, and AP-1, but P3U1 is preferably used.
  • the preferred ratio between the number of antibody-producing cells (spleen cells) used and the number of myeloma cells used is about 1: 1 to 20: 1, and PEG (preferably PEG1000 to PEG6000) is used at a concentration of about 10 to 80%.
  • Cell fusion can be carried out efficiently by adding and incubating at 20 to 40, preferably at 30 to 37 ° C for 1 to 10 minutes.
  • Various methods can be used to screen monoclonal antibody-producing hybridomas.
  • a hybridoma culture supernatant is added to a solid phase (eg, microplate) on which a peptide antigen is adsorbed directly or together with a carrier.
  • An anti-immunoglobulin antibody (anti-mouse immunoglobulin antibody is used if the cell used for cell fusion is mouse) or protein A is added to the monoclonal antibody bound to the solid phase.
  • Detection method Add the hybridoma culture supernatant to the solid phase to which anti-immunoglobulin antibody or protein A is adsorbed, add peptides labeled with radioactive substances, enzymes, etc., and detect the monoclonal antibody bound to the solid phase And the like.
  • Monoclonal antibodies can be selected according to a method known per se or a method analogous thereto. Usually, it can be performed in a medium for animal cells supplemented with HAT (hypoxanthine, aminopterin, thymidine).
  • HAT hyperxanthine, aminopterin, thymidine
  • any medium can be used as long as the hybridoma can grow.
  • RPMI 1640 medium containing 1 to 20%, preferably 10 to 20% fetal bovine serum, GIT medium containing 1 to 10% fetal bovine serum (Wako Pure Chemical Industries, Ltd.) or A serum-free medium for hybridoma culture (SFM-101, Nissui Pharmaceutical Co., Ltd.) or the like can be used.
  • the culture temperature is usually 20 to 40 ° C, preferably about 37 ° C.
  • the culture time is generally 5 days to 3 weeks, preferably 1 week to 2 weeks.
  • the culture can be usually performed under 5% carbon dioxide gas.
  • the antibody titer of the hybridoma culture supernatant can be measured in the same manner as the measurement of the antibody titer in the antiserum described above.
  • Monoclonal antibodies can be separated and purified by methods known per se, for example, immunoglobulin separation and purification methods (eg, salting out method, alcohol precipitation method, isoelectric point precipitation method, electrophoresis method, ion exchanger (eg, DEAE) Absorption and desorption method, ultracentrifugation method, gel filtration method, antigen binding Solid phase or specific purification method of collecting antibody only with an active adsorbent such as protein A or protein G and dissociating the bond to obtain the antibody) Can do it.
  • immunoglobulin separation and purification methods eg, salting out method, alcohol precipitation method, isoelectric point precipitation method, electrophoresis method, ion exchanger (eg, DEAE) Absorption and desorption method, ultracentrifugation method, gel filtration method, antigen binding Solid phase or specific purification method of collecting antibody only with an active adsorbent such as protein A or protein G and dissociating the bond to obtain the antibody) Can do it.
  • the above-mentioned peptide antibody can be produced according to a method known per se or a method analogous thereto.
  • a immunizing antigen (peptide antigen) itself or a complex thereof with a carrier peptide is formed, and a warm-blooded animal is immunized in the same manner as in the above-described monoclonal antibody production method. It can be produced by collecting the substance and separating and purifying the antibody.
  • the type of carrier peptide and the mixing ratio of carrier and hapten depend on the efficiency of the antibody against hapten immunized by cross-linking with the carrier. It is possible to crosslink any material at any ratio, if possible.
  • serum serum albumin, thyroglobulin, hemocyanin, etc. are used in a weight ratio of about 0.1 to 2 with respect to 1 hapten.
  • a method of pulling force at a rate of 0, preferably about 1 to 5 is used.
  • various condensing agents can be used for force coupling between the hapten and the carrier.
  • an active ester reagent containing a daltaraldehyde, a carbodiimide, a maleimide active ester, a thiol group or a dithioviridyl group is used.
  • the condensation product is administered to a warm-blooded animal itself or together with a carrier or diluent at a site where antibody production is possible.
  • Complete Freund's adjuvant / incomplete Freund's adjuvant may be administered in order to enhance the antibody-producing ability upon administration. The dose is usually given once every 2 to 6 weeks, for a total of about 3 to 10 times.
  • the polyclonal antibody can be collected from the blood, ascites, etc., preferably from the blood of a warm-blooded animal immunized by the above method.
  • the measurement of the polyclonal antibody titer in the antiserum can be performed in the same manner as the measurement of the antibody titer in the antiserum described above. Separation and purification of polyclonal antibody Immunoglobulin separation and purification methods similar to those for antibody isolation and purification.
  • a candidate ligand is detected, and various immunoassays are used as indicators to combine various extraction methods and chromatography. By doing so, candidate ligand substances can be obtained.
  • a compound that promotes the function of an orphan receptor protein is referred to as a “highly active agonist”. “Highly active” refers to a “(test) compound having an agonist activity” described in the above (E). This means that the cell stimulating activity (specifically, the cell stimulating activity described in the above (D), etc.) is stronger than that of.
  • the above-mentioned (G) is obtained by using an orphan receptor protein or by constructing an expression system for a recombinant orphan receptor protein and using a receptor-binding atsey system using the expression system. Efficiently screens compounds that alter the binding between the selected ligand candidate and the orphan receptor protein (eg, peptides, proteins, non-peptide compounds, synthetic compounds, fermentation products, etc.) or salts thereof be able to.
  • the orphan receptor protein eg, peptides, proteins, non-peptide compounds, synthetic compounds, fermentation products, etc.
  • a ligand candidate substance is brought into contact with an orphan receptor protein-expressing cell or a cell membrane fraction thereof and a test compound ((i.e., the orphan receptor protein is added to the orphan receptor protein-expressing cell or its cell membrane fraction)
  • D (a) fluctuations in extracellular pH, (b) arachidonic acid release, (c) acetylcholine release,
  • test compound (b) i.e., the orphan receptor protein-expressing cell or a cell thereof
  • the test compound (b) is compared with the cell stimulating activity when the ligand candidate substance is brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction.
  • the test compound (b) (or the candidate substance) ) Is likely to be a compound that promotes the function of the orphan receptor protein (so-called agonist).
  • test compound (b) or candidate substance
  • agonist a compound that promotes the function of the orphan receptor protein (selectively, specifically) depends on whether the orphan receptor protein and the The amount of specific binding to test compound (b) (or candidate substance) may be measured.
  • a labeled test compound (b) (or a candidate substance) is brought into contact with an orphan receptor protein
  • a labeled test compound (b) (or candidate And the like for example, a method of measuring the binding amount of the substance) to the orphan receptor protein.
  • the test compound (b) (or the candidate) Substance) is recognized as a compound that promotes the function of the orphan receptor protein (so-called agonist).
  • the orphan receptor protein used in the measurement method may be any as long as it contains the above-mentioned orphan receptor protein.
  • an orphan receptor protein or the like which is expressed in a large amount using a recombinant is suitable.
  • the above-mentioned method is used for producing the orphan receptor protein, but it is preferably carried out by expressing DNA encoding the orphan receptor protein in the above-mentioned animal cells or insect cells. D that encodes the desired protein part 639
  • Complementary DNA is used for the NA fragment, but is not necessarily limited to this.
  • a gene fragment or a synthetic DNA may be used.
  • the DNA fragment In order to introduce a DNA fragment encoding an orphan receptor protein into a host animal cell and express them efficiently, the DNA fragment should be a baculovirus belonging to a baculovirus using an insect as a host. (Nuclear poly edrosis virus; NPV) In the evening, it is preferable to incorporate it downstream such as the SR promoter. Inspection of the quantity and quality of the receptor that has occurred can be carried out in a manner known per se. For example, the method is carried out according to the method described in the literature [Nambi, P. et al., The Journal of Biological Chemistry, 267, 19555-19559, 1992]. be able to.
  • the orphan receptor protein may be an orphan receptor protein purified according to a method known per se, or a cell containing orphan receptor protein.
  • a membrane fraction of cells containing an orphan receptor protein may be used.
  • the cell containing the orphan receptor protein refers to a host cell that has expressed the receptor protein, and the host cell is preferably an insect cell, an animal cell, or the like.
  • the cell membrane fraction refers to a fraction abundant in cell membrane obtained by disrupting cells and then obtained by a method known per se.
  • Cells can be crushed by crushing the cells with a Potter-Elvehjem homogenizer, crushing with a Pelling Blender ⁇ polytron (manufactured by Kinematica), crushing with ultrasonic waves, or narrowing the cells while pressing with a French press. Crushing by erupting from the ground.
  • centrifugal fractionation methods such as differential centrifugation and density gradient centrifugation are mainly used.
  • the cell lysate is centrifuged at a low speed (500 rpm to 3000 rpm) for a short time (typically about 1 to 10 minutes), and the supernatant is further centrifuged at a higher speed (15000 rpm to 30000 rpm) for 30 min. Centrifuge for 1 minute to 2 hours, and use the resulting precipitate as the membrane fraction.
  • the membrane fraction the expressed orphan receptor protein and It contains a lot of membrane components such as cell-derived phospholipids and membrane proteins.
  • the amount of the orphan receptor protein in the cell or membrane fraction containing the orphan receptor protein is preferably 10 to 10 molecules per cell,
  • it is 10 molecules.
  • labeled test compound (b) for example, [ 3 H], [ 125 ]
  • Test compounds (b) (or candidate substances) labeled with [I], [ 14 C], [ 35 S], etc. are used.
  • a receptor protein protein preparation is prepared by suspending a cell containing the o-phan receptor protein or a membrane fraction of the cell in a buffer suitable for screening.
  • the buffer may be any buffer as long as it does not inhibit the binding of the candidate substance such as a phosphate buffer having a pH of 4 to 10 (preferably pH 6 to 8) or Tris-HCl buffer to the receptor protein.
  • a surfactant such as CHAPS, Tween-80 TM (Kaoichi Atlas), digitonin, or dexcholate can be added to the buffer.
  • protease inhibitors such as PMSF, leptin, E-64 (manufactured by Peptide Research Laboratories), and peptidyltin can be added for the purpose of suppressing the degradation of receptors and ligands by proteases.
  • an aliquot 5000 cpm to 500,000 cpm
  • the reaction is carried out at about 0 ° C to 50 ° C, preferably about 4 ° C to 37 ° C, for about 20 minutes to 24 hours, preferably for about 30 minutes to 3 hours.
  • the reaction solution is filtered through a glass fiber filter, washed with an appropriate amount of the same buffer, and the radioactivity remaining on the glass fiber filter is measured using a liquid scintillation counter or a counter.
  • test compound (b) was added to the orphan receptor protein-expressing cell or its cell membrane fraction in comparison with the cell stimulating activity when the ligand candidate substance was brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction.
  • test compound (b) or Candidate substances are compounds that inhibit the function of the orphan receptor protein (so-called (Agonist).
  • test compound (b) (or the orphan receptor protein-expressing cell or the cell membrane fraction) was compared with the cell stimulating activity when the ligand candidate substance was brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction. If the cell membrane fraction is brought into contact with a candidate compound of a compound that promotes or inhibits the function of the orphan receptor protein) and a candidate ligand, if the cell stimulating activity is weak or not observed, the test is performed.
  • Compound (b) (or candidate substance) may be a compound (a so-called antagonist) that inhibits the function of the orphan receptor protein.
  • test compound or candidate substance
  • agonist a compound that inhibits the function of the orphan receptor protein (selectively to Specific) depends on whether the test compound (or the candidate substance) inhibits the function of the orphan receptor protein. What is necessary is just to measure the amount of specific binding.
  • a labeled test compound (b) (or a candidate substance) when a labeled test compound (b) (or a candidate substance) is brought into contact with an orphan receptor protein And the method of measuring the amount of binding to the orphan receptor protein.
  • the test compound (b) (or candidate) Substance) is recognized as a compound that inhibits the function of the orphan receptor protein (a so-called antagonist).
  • the same method as the above-mentioned method for screening a compound that promotes the function of the orphan receptor protein (a so-called highly active agonist) and the like are used.
  • a labeled ligand candidate when brought into contact with an orphan receptor protein, a labeled ligand candidate and a test compound (b) (ie, a candidate for a compound that inhibits the function of orphan receptor protein)
  • a test compound ie, a candidate for a compound that inhibits the function of orphan receptor protein
  • the amount of binding of the labeled ligand candidate substance to the orphan receptor protein is measured and compared to determine the compound that inhibits the function of the orphan receptor protein. It is also possible to screen.
  • the specific description of the screening method is as follows.
  • the orphan receptor protein used in the screening method of the present invention is Any one may be used as long as it contains the above-mentioned protein receptor protein.
  • an orphan receptor protein or the like which is expressed in large amounts using a recombinant is suitable.
  • the above-mentioned method is used to produce the orphan receptor protein, but it is preferably carried out by expressing DNA encoding the orphan receptor protein in the above-mentioned animal cells or insect cells.
  • the complementary DNA fragment is used for the DNA fragment encoding the protein portion of interest, but is not necessarily limited to this.
  • a gene fragment or a synthetic DNA may be used.
  • the DNA fragment In order to introduce a DNA fragment encoding an orphan receptor protein into a host animal cell and to express them efficiently, the DNA fragment must be converted to a nucleopolyhedron belonging to a baculovirus using an insect as a host.
  • Polyhedrin promoter of the disease virus (nul ear polyhedros is virus; NPV), promoter derived from SV40, retrovirus promoter, metamouth thionine promoter, human heat shock promoter, cytomegalovirus promoter
  • NPV neurotrophic virus
  • promoter derived from SV40 promoter derived from SV40
  • retrovirus promoter metamouth thionine promoter
  • human heat shock promoter cytomegalovirus promoter
  • cytomegalovirus promoter Preferably, it is incorporated downstream such as the SRa promoter. Inspection of the quantity and quality of the receptor that has occurred can be carried out in a manner known per se. For example, a method described in the literature [Nambi, P. et al., The 'Journal of Biological' Chemistry (J. Biol. Cem.), 267, 19555-19559, 1992] It can be done according to.
  • the orphan receptor protein may be an orphan receptor protein purified according to a method known per se, or a cell containing the orphan receptor protein may be used. Alternatively, a membrane fraction of cells containing orphan receptor protein may be used.
  • the cell containing the orphan receptor protein refers to a host cell that expresses the receptor protein or the like, and the host cell is preferably an insect cell, an animal cell, or the like.
  • the cell membrane fraction refers to a fraction abundant in cell membrane obtained by disrupting cells and then obtained by a method known per se.
  • Cell disruption methods include Potter— The method of crushing cells with an Elvehjem type homogenizer, crushing with a one-ring blender Polytron (manufactured by Kinematica), crushing by ultrasonic waves, crushing by ejecting cells from a thin nozzle while applying pressure with a French press, etc. can give.
  • centrifugal fractionation methods such as differential centrifugation and density gradient centrifugation are mainly used.
  • the cell lysate is centrifuged at a low speed (500 rpm to 3000 rpm) for a short time (typically about 1 minute to 10 minutes), and the supernatant is further centrifuged at a higher speed (15000 rpm to 30000 rpm) for 30 minutes. Centrifuge for 1 minute to 2 hours, and use the resulting precipitate as the membrane fraction.
  • the membrane fraction is rich in the expressed orphan receptor protein and membrane components such as cell-derived phospholipids and membrane proteins.
  • the amount of the orphan receptor protein in the cell or membrane fraction containing the orphan receptor protein is preferably 10 to 10 molecules per cell, and more preferably 10 to 10 molecules per cell.
  • an appropriate orphan receptor protein fraction and a labeled ligand or a subtype thereof are used.
  • an appropriate orphan receptor protein fraction and a labeled ligand or a subtype thereof are used.
  • the labeled ligand candidate substance for example, a ligand candidate substance labeled with [ 3 H], [ 125 I], [ 14 C], [ 35 S] or the like is used.
  • the membrane fraction of cells or cells containing orphan receptor protein is first suspended in a buffer suitable for screening.
  • a buffer suitable for screening may be any buffer that does not inhibit the binding of the ligand to the receptor protein, such as a phosphate buffer having a pH of 4 to 10 (preferably pH 6 to 8) or a buffer of tris-hydrochloride.
  • Surfactants such as CHAPS, Tween-80 TM (Kao-Atras), digitonin, and dexcholate can also be added to the buffer to reduce non-specific binding.
  • a protease inhibitor such as a protein may also be added.
  • M ( b) ie, a candidate compound that inhibits the function of orphan receptor protein.
  • the reaction is carried out at about 0 ° C to 50T, preferably at about 4 to 3, for about 20 minutes to 24 hours, preferably for about 30 minutes to 3 hours.
  • the solution is filtered through a glass fiber filter paper and the like, washed with an appropriate amount of the same buffer, and the radioactivity remaining on the glass fiber filter paper is measured with a liquid scintillation counter or a glass counter.
  • the specific binding amount (B-NSB) is, for example, and 50% or less of the test compound (b) (ie, a candidate compound that inhibits the function of the orphan receptor protein) is selected as the compound that inhibits the function of the orphan receptor protein (so-called angiogonist). can do.
  • test compound (b) described in ( ⁇ ) above that is, a candidate compound for promoting or inhibiting the function of orphan receptor protein
  • compound that promotes or inhibits the function of orphan receptor protein
  • test compound (b) ie, a candidate compound that promotes or inhibits the function of an orphan receptor protein
  • the test compound (b) includes a natural 'non-natural peptide, a natural and non-natural protein, a natural and non-natural Non-peptidic compounds, synthetic compounds, natural and non-natural fermentation products, etc.
  • the compound that promotes or inhibits the function of the orphan receptor protein includes the compound that promotes the function of the orphan receptor protein or the compound that inhibits the function of the orphan receptor protein in the screening method described in (H) above.
  • the salt of the compound include salts with a physiologically acceptable base (eg, an alkali metal or the like) and an acid (organic acid, inorganic acid), and particularly preferred are physiologically acceptable acid addition salts.
  • Such salts include, for example, inorganic acids (eg, hydrochloric acid T / JP00 / 05639
  • Phosphoric acid hydrobromic acid, sulfuric acid
  • organic acids eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid
  • Methanesulfonic acid, benzenesulfonic acid Methanesulfonic acid, benzenesulfonic acid
  • compounds that promote (highly active agonist) or inhibit (antagonist) the function of orphan receptor protein obtainable by the above method (H) include the following (endogenous) ligands or biological activities possessed by the subtypes thereof. Since it has the same action as that described above, it is useful as a safe and low-toxic drug according to the ligand activity.
  • Antagonists against orphan receptor proteins can suppress the physiological activity of ligands or subtypes of orphan receptor proteins, and thus are useful as safe and low-toxic drugs that suppress the ligand activities. is there.
  • the highly active agonist against the orphan receptor protein is useful as a safe and low-toxic drug for enhancing the physiological activity of the ligand for the orphan receptor protein.
  • an agonist and a highly active agonist that can be obtained by the method of the present invention are used as a pharmaceutical composition, they can be administered in a conventional manner.
  • a pharmaceutical composition for example, tablets, capsules, elixirs, microcapsules, sterile solutions, suspensions and the like can be used.
  • the preparations obtained in this way are safe and low toxic, so they can be used, for example, in humans and mammals (for example, rats, mice, egrets, sheep, pigs, pigs, cats, dogs, dogs, etc.). Can be administered.
  • the dosage of the ligand or its subgroup, antagonist, and agonist varies depending on the administration subject, target organ, symptom, administration method, and the like.
  • oral administration for example, about 0. It is 1 to 100 mg, preferably about 1.0 to 50 mg, more preferably about 1.0 to 2 mg.
  • parenteral administration the single dose varies depending on the administration subject, target organ, symptoms, administration method, etc.For example, in the case of an injection, it is usually, for example, about 0.0 per day. About 1 to 30 mg, preferably about 0.1 to 2 Omg, more preferably about 0.1 to 10 mg It is convenient to administer the degree by intravenous injection. In the case of other animals, the dose can be administered in terms of 60 kg.
  • the present invention not only provides a method for screening a compound that promotes or inhibits the function of the orphan receptor protein described in the above (H), but also uses, as an index, the common structure of (test) compounds having agonist activity. Methods for more efficiently and reliably determining ligands for orphan receptor proteins or subtypes thereof are also provided.
  • test compound bringing a test compound into contact with orphan receptor protein-expressing cells or a cell membrane fraction thereof, measuring the cell stimulating activity mediated by the orphan receptor protein, and (ii) comparing the cell stimulating activities of each test compound
  • the common structure of the test compound having agonist activity is determined
  • test compound (i) Contacting test compound (a) with orphan receptor protein-expressing cells or its cell membrane fraction, and contacting test compound (a) with cells not expressing orphan receptor protein or its cell membrane fraction In this case, each cell stimulating activity was measured,
  • test compound (a) an orphan receptor protein-expressing cell or a cell membrane thereof
  • test compound (a) is brought into contact with the fraction, and the cell stimulating activity mediated by the orphan receptor protein is measured.
  • test compound (a) By comparing the cell stimulating activity of each test compound (specifically, test compound (a)), a (test) compound having agonist activity was obtained, and the common structure of the compound having agonist activity was estimated.
  • test compound (a) By comparing the cell stimulating activity of each test compound (specifically, test compound (a)), a (test) compound having agonist activity was obtained, and the common structure of the compound having agonist activity was estimated.
  • the same method as described above is used.
  • Whether or not the ligand candidate substance is a specific ligand of orphan receptor protein can be determined by measuring the amount of specific binding of the candidate ligand to the orphan receptor protein. it can.
  • the candidate substance is identified as ( Endogenous) is recognized as a ligand.
  • the ligand candidate substance has a cell-stimulating activity but has a low specific binding ability to the orphan receptor protein, ie, a nonspecific agonist. Is likely to be a similar substance. A specific description of the determination method will be given below.
  • the orphan receptor protein used in the determination method may be any as long as it contains the above-described orphan receptor protein.
  • an orphan receptor protein or the like which is expressed in large amounts using a recombinant is suitable.
  • the above-mentioned method is used to produce the orphan receptor protein, but it is preferably carried out by expressing the DNA encoding the orphan receptor protein in the above-mentioned animal cells or insect cells. D that encodes the desired protein part 639
  • the complementary DNA is used for the NA fragment, but is not necessarily limited to this.
  • a gene fragment or a synthetic DNA may be used.
  • the DNA fragment In order to introduce a DNA fragment encoding an orphan receptor protein into a host animal cell and express them efficiently, the DNA fragment must be transferred to a nucleophilic polyhedrosis virus belonging to a baculovirus using an insect as a host.
  • nucl ear polyhedros is virus (NPV) polyhedrin promoter — Yuichi, SV40-derived promoter, retroviral promoter, metamouth thionine promoter, human heat shock promoter, cytomegalovirus promoter, SR ⁇
  • it is incorporated downstream, such as a promoter.
  • Inspection of the quantity and quality of the receptor that has occurred can be carried out in a manner known per se. For example, according to the method described in the literature [Najiibi, P. et al., The Journal of Biological Chemistry, 267, 19555-19559, 1992]. Can do it.
  • the substance containing the orphan receptor protein may be an orphan receptor protein purified according to a method known per se, or a cell containing the orphan receptor protein may be used. Alternatively, a membrane fraction of a cell containing an orphan receptor protein may be used.
  • the cell containing the orphan receptor protein refers to a host cell that has expressed the receptor protein, and the host cell is preferably an insect cell, an animal cell, or the like.
  • the cell membrane fraction refers to a fraction abundant in cell membrane obtained by disrupting cells and then obtained by a method known per se.
  • Cells can be crushed by crushing the cells with a Potter-Elvehj em-type homogenizer, crushing with a Perling Blender ⁇ Polytron (Kinematica), crushing with ultrasonic waves, or applying pressure with a French press, etc. And crushing by ejecting the gas from a thin nozzle.
  • centrifugal fractionation methods such as differential centrifugation and density gradient centrifugation are mainly used.
  • the cell lysate is centrifuged at a low speed (500 rpm to 300 rpm) for a short time (usually about 1 to 10 minutes), and the supernatant is further centrifuged at a high speed (1500 to 300 rpm). The mixture is centrifuged at 0,000 rpm for 30 minutes to 2 hours, and the resulting precipitate is used as the membrane fraction.
  • the membrane fraction the expressed orphan receptor protein and It contains a lot of membrane components such as cell-derived phospholipids and membrane proteins.
  • the amount of the orphan receptor protein in the cell or membrane fraction containing the orphan receptor protein is preferably 10 to 10 molecules per cell,
  • it is 10 molecules.
  • labeled ligand candidate substances include [ 3 H], C 125 I], [ 14 C],
  • a ligand candidate substance labeled with [ 35 s] or the like is used.
  • a cell containing the orphan receptor protein or a membrane fraction of the cell is suspended in a buffer suitable for screening to prepare a receptor protein sample.
  • a buffer suitable for screening to prepare a receptor protein sample.
  • Any buffer may be used as long as it does not inhibit the binding of the candidate protein to the receptor protein, such as a phosphate buffer having a pH of 4 to 10 (preferably pH 6 to 8) or a tris-HCl buffer.
  • surfactants such as CHAPS, Tween-80 TM (Kao-Atlas), digitonin, and dexcholate can be added to the buffer for the purpose of reducing non-specific binding.
  • protease inhibitors such as PMSF, leptin, E-64 (manufactured by Peptide Research Laboratories), and peptide suptin can be added for the purpose of suppressing receptor degradation and ligand degradation by proteases.
  • a fixed amount 5000 cpn! To 500,000 cm
  • the reaction is carried out at about 0 ° C. to 50 °, preferably about 4 ° to 37 ° C., for about 20 minutes to 24 hours, preferably for about 30 minutes to 3 hours.
  • the solution is filtered through a glass fiber filter or the like, washed with an appropriate amount of the same buffer, and the radioactivity remaining on the glass fiber filter is measured by a liquid scintillation counter or a ⁇ -counter.
  • DNA Deoxyribonucleic acid
  • cDNA Complementary deoxyribonucleic acid A adenine
  • RNA Messenger ribonucleic acid dATP Deoxyadenosine triphosphate dTTP Deoxythymidine triphosphate dGTP Deoxyguanosine triphosphate d CTP Deoxycytidine triphosphate.
  • ATP Adenosine triphosphate
  • Example 7 shows the base sequence of FM 3 R2 used in Reference Example 1 described later.
  • the human type FM-3 was obtained as follows. The following two types of synthetic DNAs were synthesized based on the arrangement U of human FM-3 reported in Genomics 52, 223-229 (1998).
  • F 3F2 5'-GTCGACCATGGCTTGCAATGGCAGTGCGGCCAGG-3 '(SEQ ID NO: 22)
  • FM3R2 5'-GCTAGCTCAGGATGGATCGGTCTCTTGCTG-3 '(SEQ ID NO: 23)
  • human fetal brain cDNA was obtained by PCR.
  • the PCR reaction solution was rat hypothalamus cDNA solution 1 ⁇ ⁇ (from 0.2 ng poly (A) + RNA), 1 ⁇ 2 (10 MM), 11 FM3R2 (10 M), 51 1x attached reaction solution, 51 dNTP (10 mM), 11 Ex Taq (evening color) and 36 1 distilled water were added to make a total of 501.
  • the reaction solution was subjected to a PCR reaction using a ThermalCycler 9600.
  • the PCR conditions were: denaturation at 95 ° C for 2 minutes, and a cycle of 98-10 seconds, 65 at 10 seconds, and 90 seconds was repeated 28 times.
  • the PCR product was subcloned into E. coli using a TA cloning kit (Invitrogen). Plasmids were extracted from the E. coli obtained by subcloning using a plasmid extractor (Kurapo Co., Ltd.), the base sequence of the inserted fragment was determined, and the sequence was the same as that reported in the above-mentioned literature.
  • the transformant E. coli JM109 / pAKK ⁇ FM3 was cultured to prepare a large amount of plasmid pAK KOFM3 DNA.
  • the amount of (251) ribosome solution corresponding to 0.5 DNA was added dropwise and incubated for 16 hours to introduce the plasmid DNA. Furthermore, after replacing the medium with fresh medium and culturing for 1 day, the medium is replaced with the selection medium and culturing is continued for 3 days. Finally, the cells dispersed by trypsin digestion are dispersed at a low density in the selection medium ( 0/05639
  • Deoxyr ibonucleosides (a minimum essential medium, alpha medium containing 10% dialyzed serum) containing no D ⁇ ribonucleosides) were selected for transformants. Only the transformants can grow in the selection medium, and the selection is repeated by repeating the passage, and CH ⁇ -FM3 cells are established.
  • Example 1 Detection of stimulatory activity on FM-3 expressing CH0 cells by cytosensor-Attach using various peptide samples
  • the FM- 3 expressing CHO cells were seeded in 2.7xl0 5 cells / capsule density sites for sensor power capsule of, was charged wearing site sensors one workstation after overnight culture.
  • a cell culture medium (low buffered RPMI1640 medium containing 0.1% serum albumin) set in the flow path of the site sensor is supplied to the cells in a cycle of pump ON (80 seconds) and pump OFF (40 seconds). In each cycle, the rate of change in extracellular ⁇ from 8 seconds after the pump was stopped for 30 seconds was calculated as the acidification rate. The time course of the acidification rate was monitored, and when the value became stable, the cells were exposed to the peptides shown in the table for 7 minutes and 2 seconds by switching the flow path. The values of the AcHcCationRate for each well were normalized to the values of the three cycles immediately before exposure to the peptide as 100%, and the cell responses were compared. The concentration of the exposed samples was 1-10.
  • Table 1 shows the results of detection of the stimulating activity of peptide samples on FM-3 expressing CH0 cells by cytosensory assay.
  • FIG. 1 shows a comparison of the similarity of the amino acid sequences.
  • the method of the present invention comprises contacting a test compound with orphan receptor protein-expressing cells or a cell membrane fraction thereof or orphan receptor protein expressed in orphan receptor protein-expressing cells or cell membrane fraction thereof.
  • a test compound By measuring the cell stimulating activity via the receptor protein and comparing the cell stimulating activities of each test compound, an agonist is selected, and the structure of each agonist is compared to determine the orphan receptor protein. It is possible to obtain ligands or their subtypes, angiogonists and highly active agonists efficiently and reliably.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A ligand of an orphan receptor protein or its subtype, antagonist, highly active agonist, etc. can be efficiently and surely obtained by bringing test compounds into contact with cells showing the expression of the orphan receptor protein or a cell membrane fraction thereof, or an expression product of the orphan receptor protein expressed in cells showing the expression of the orphan receptor protein or a cell membrane fraction thereof; measuring the cell stimulating activity of each test compound mediated by the orphan receptor protein; comparing the cell stimulating activities of the test compounds with each other; thereby selecting agonists; and then comparing the structures of these agonists.

Description

明細書 スクリーニング方法 技術分野  Description Screening method Technical field
本発明は、 ォーファン受容体夕ンパク質発現細胞などの活性化を指標として高 濃度の試験化合物をスクリ一ニングし、 ァゴニス卜活性を有する試験化合物の共 通構造を利用して、 ォーファン受容体夕ンパク質の機能を促進または阻害する化 合物を効率よくスクリ一二ングする方法さらには該共通構造を利用して、 ォーフ アン受容体タンパク質の (内因性) リガンドを決定する方法などに関する。 背景技術  The present invention screens a high-concentration test compound using the activation of orphan receptor protein-expressing cells as an index, and utilizes the common structure of the test compound having agonist activity to produce an orphan receptor protein. The present invention relates to a method for efficiently screening a compound that promotes or inhibits the function of a protein, and a method for determining a (endogenous) ligand of an orphan receptor protein using the common structure. Background art
ホルモンや神経伝達物質など生理活性物質の多くは、 細胞表面に存在する受容 体分子に結合して作用を発揮し、 様々な生命現象の調節を行なっている。 これら 生理活性物質の作用を補填、 増強あるいは阻害する物質を探索することは新規な 医薬の研究'開発のための主要な手段の一つとなっているが、 その過程において 特に、 作用点となる受容体分子の性状を理解することが極めて重要である。 近年 の分子生物学的手法の発達によって多くの生理活性物質の受容体を分子レベルで 解析することが可能になった。 そのような受容体分子の中には細胞膜を 7回貫通 する共通の構造的特徴を有する一群のものが知られており、 7回膜貫通型受容体 と呼ばれている。 また、 細胞内情報伝達系と G T P結合蛋白質 (G蛋白質) を介 して共役していることから、 これらは G蛋白質共役型受容体とも呼ばれている。 7回膜貫通型受容体のリガンドは、 蛋白質、 ペプチド、 ァミン、 アミノ酸、 ヌク レオチド、 ヌクレオシド、 エイコサノイド、 リン脂質、 匂い物質、 光など多岐に わたっている。  Many physiologically active substances such as hormones and neurotransmitters exert their effects by binding to receptor molecules present on the cell surface, and regulate various life phenomena. Searching for a substance that supplements, enhances, or inhibits the action of these physiologically active substances is one of the main means for the research and development of new pharmaceuticals. It is extremely important to understand the properties of body molecules. Recent advances in molecular biological techniques have made it possible to analyze the receptors of many physiologically active substances at the molecular level. A group of such receptor molecules with a common structural feature that penetrates the cell membrane seven times is known and is called a seven-transmembrane receptor. They are also called G protein-coupled receptors because they are coupled to intracellular signaling systems via GTP-binding proteins (G proteins). Ligands of the seven-transmembrane receptor are diverse, including proteins, peptides, amines, amino acids, nucleotides, nucleosides, eicosanoids, phospholipids, odorants, and light.
最近のゲノムあるいは c D NA等の解析技術の進歩によって、 受容体をコード する多くの遺伝子が報告されるようになった。 これらのうちのあるものは、 配列 の特徴から 7回膜貫通型受容体のファミリーに属することが推定されるものの、 対応するリガンドが知られていないことからォーファン受容体と呼ばれている。 このようなォーファン受容体のリガンドを同定することができたならば、 その受 容体およびリガンドが調節している新たな生理機能あるいは病態が明らかになる ことが期待される。 そのため、 ォーファン受容体のリガンドの探索は新たな医薬 品開発の夕ーゲットを発掘する手段として注目されている。 これまでにリガンド 既知の受容体にある程度顕著な類似性を示すォーファン受容体については、 既知 のリガンドあるいはその類縁体をリガンドの候補として検討し、 実際に内因性の リガンドの同定に至った orphanin FQ/noc i cept in (Meunier, J. -C. Nature 393 : 211-212, 1998) のような例もあるが、 既知のリガンドあるいはその類縁体の構造 上の類似性のみからリガンドの構造を推定するには限界がある。 多くの場合はォ ーファン受容体夕ンパク質発現細胞のシグナル伝達系の活性化を指標とし、 精製 によって内因性リガンドの同定が行われている (Sakurai, T. et al. Cel l 92 : 573-585, 1998; Hinuma, S. et al. Nature 393 : 272-276, 1998 ; Tatemoto, K. et al. Bioc em. Bi op ys. Res. Co讓 un. 251 : 471-476, 1998) 。 しかし、 7回膜貫 通型受容体を介したシグナル伝達系は単一ではなく、 内因性のリガンドに由来す る活性を検出するためにはいくつものアツセィ系を並列してスクリーニングする 必要があった。 また、 7回膜貫通型受容体のリガンドは多岐にわたっており、 ァ ッセィに供するリガンド候補となるサンプルを合理的に選定することは困難であ つた。 Recent advances in genomic or cDNA analysis techniques have led to the reporting of many genes encoding receptors. Some of them are putatively belonging to a family of seven transmembrane receptors from sequence characteristics, but are called orphan receptors because their corresponding ligands are not known. If such ligands for orphan receptors could be identified, it would be expected to reveal new physiological functions or pathologies regulated by the receptors and ligands. For this reason, the search for orphan receptor ligands is attracting attention as a means to uncover new drug development targets. For orphan receptors that have shown some remarkable similarity to known ligands to date, orphanin FQ, which has studied the known ligands or their analogs as candidate ligands, has actually identified the endogenous ligand. / noc i cept in (Meunier, J. -C. Nature 393: 211-212, 1998), but the structure of the ligand is estimated only from the structural similarity of the known ligand or its analog. There is a limit to In many cases, endogenous ligands are identified by purification using the activation of the signal transduction system of orphan receptor protein-expressing cells as an index (Sakurai, T. et al. Cell 92: 573- 585, 1998; Hinuma, S. et al. Nature 393: 272-276, 1998; Tatemoto, K. et al. Biochem. Biopys. Res. Co., Ltd. 251: 471-476, 1998). However, the signal transduction system via the seven-transmembrane receptor is not unique, and it is necessary to screen several Atsui systems in parallel to detect the activity derived from endogenous ligands. Was. In addition, ligands for the seven-transmembrane receptor are diversified, and it has been difficult to rationally select a sample as a ligand candidate to be used for the assay.
効率的でかつ確実なォ一ファン受容体タンパク質の機能を促進または阻害する 化合物またはその塩のスクリ一二ング方法およびォ一ファン受容体夕ンパク質の (内因性) リガンドを決定する方法の確立が課題とされている。 発明の開示  Establishment of efficient and reliable screening method for compounds or salts thereof that promote or inhibit the function of ophan receptor protein and method for determining (endogenous) ligand of ophan receptor protein Is an issue. Disclosure of the invention
本発明者らは、 上記の課題を解決するために鋭意研究を重ねた結果、  The present inventors have conducted intensive studies in order to solve the above problems,
(i ) ォ一ファン受容体タンパク質発現細胞またはその細胞膜画分に(好ましく は高濃度の)試験化合物を接触させた場合と、 ォーファン受容体夕ンパク質を発 現しない細胞またはその細胞膜画分に試験化合物を接触させた場合において、 そ れぞれの細胞刺激活性を測定し、  (i) contacting a test compound (preferably at a high concentration) with an orphan receptor protein-expressing cell or a cell membrane fraction thereof, or a cell or a cell membrane fraction that does not express orphan receptor protein; When the test compound is brought into contact, the cell stimulating activity of each is measured, and
(i i) 各試験化合物の細胞刺激活性を比較することにより、 ァゴニスト活性を有 する試験化合物の共通構造を決定し、 (ii) By comparing the cell stimulating activity of each test compound, Determine the common structure of the test compound
( i i i) ①該ォ一ファン受容体タンパク質発現細胞またはその細胞膜画分に該共 通構造を有するリガンド候補物質を接触させた場合と該ォーファン受容体夕ンパ ク質発現細胞またはその細胞膜画分に該ォーファン受容体タンパク質の機能を促 進または阻害する化合物の候補物質を接触させた場合における細胞刺激活性を比 較し、 および②該ォーファン受容体タンパク質と該ォーファン受容体タンパク 質の機能を促進または阻害する化合物の候補物質との特異的結合量を測定するこ とによって、 ォ一ファン受容体タンパク質の機能を促進または阻害する化合物ま たはその塩を効率的にスクリーニングできることを見出し、 さらにこれらの知見 に基づいて、 検討を重ねた結果、 本発明を完成するに至った。  (iii) (1) When the ligand-containing substance having the common structure is brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction and the orphan receptor protein-expressing cell or its cell membrane fraction Compare the cell stimulating activity when contacting a candidate substance for a compound that promotes or inhibits the function of the orphan receptor protein, and ② promote or function the functions of the orphan receptor protein and the orphan receptor protein. By measuring the specific binding amount of a compound to be inhibited to a candidate substance, it was found that a compound or a salt thereof that promotes or inhibits the function of an orphan receptor protein can be efficiently screened. As a result of repeated studies based on the knowledge, the present invention has been completed.
すなわち、 本発明は、  That is, the present invention
( 1 )  (1)
( 1 ) ォーファン受容体タンパク質発現細胞またはその細胞膜画分に試験化合物 を接触させた場合と、 ォーファン受容体タンパク質を発現しない細胞またはその 細胞膜画分に試験化合物を接触させた場合において、 それぞれの細胞刺激活性を 測定し、  (1) When the test compound is brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction, and when the test compound is brought into contact with the cell that does not express the orphan receptor protein or its cell membrane fraction, Measure the stimulating activity,
(i i ) 各試験化合物の細胞刺激活性を比較することにより、 ァゴニスト活性を有 する試験化合物の共通構造を決定し、  (ii) determining the common structure of test compounds having agonist activity by comparing the cell stimulating activity of each test compound,
( i i i) ①該ォ一ファン受容体タンパク質発現細胞またはその細胞膜画分に該共 通構造を有するリガンド候補物質を接触させた場合と該ォーファン受容体夕ンパ ク質発現細胞またはその細胞膜画分に該ォーファン受容体タンパク質の機能を促 進または阻害する化合物の候補物質を接触させた場合における細胞刺激活性を比 較し、 および②該ォーファン受容体タンパク質と該ォ一ファン受容体タンパク 質の機能を促進または阻害する化合物の候補物質との特異的結合量を測定するこ とを特徴とする該ォーファン受容体タンパク質の機能を促進または阻害する化合 物またはその塩のスクリーニング方法、  (iii) (1) When the ligand-containing substance having the common structure is brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction and the orphan receptor protein-expressing cell or its cell membrane fraction The cell stimulating activity when contacting a candidate substance for a compound that promotes or inhibits the function of the orphan receptor protein is compared, and the function of the orphan receptor protein and the function of the orphan receptor protein are compared. A method for screening for a compound or a salt thereof which promotes or inhibits the function of the orphan receptor protein, which comprises measuring the amount of specific binding of a promoting or inhibiting compound to a candidate substance;
( 2 ) 上記 (1 ) 記載のスクリーニング方法によって得られうる化合物またはそ の塩、 および (i) ォーファン受容体夕ンパク質発現細胞またはその細胞膜画分に試験化合物 を接触させた場合と、 ォーファン受容体タンパク質を発現しない細胞またはその 細胞膜画分に試験化合物を接触させた場合において、 それぞれの細胞刺激活性を 測定し、 (2) a compound or a salt thereof obtainable by the screening method described in the above (1), and (i) When the test compound was brought into contact with the orphan receptor protein-expressing cells or its cell membrane fraction, and when the test compound was brought into contact with cells that do not express the orphan receptor protein or its cell membrane fraction, respectively. The cell stimulating activity of
(i i) 各試験化合物の細胞刺激活性を比較することにより、 ァゴニスト活性を有 する試験化合物の共通構造を決定し、  (ii) determining the common structure of test compounds having agonist activity by comparing the cell stimulating activities of each test compound,
(i i i) 該共通構造を有するリガンド候補物質の該ォーファン受容体夕ンパク質へ の特異的結合量を測定することにより、 該ォーファン受容体夕ンパク質のリガン ドまたはそのサブタイプを決定する方法などに関する。  (iii) a method of determining the ligand of the orphan receptor protein or a subtype thereof by measuring the specific binding amount of the ligand candidate substance having the common structure to the orphan receptor protein, etc. About.
より具体的には  More specifically
( 4 )  ( Four )
(0 ォーファン受容体夕ンパク質発現細胞またはその細胞膜画分に試験化合物 (a)を接触させた場合と、 ォーファン受容体タンパク質を発現しない細胞または その細胞膜画分に試験化合物(a)を接触させた場合において、 それぞれの細胞刺 激活性を測定し、  (0) The test compound (a) was brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction, and the test compound (a) was brought into contact with a cell that does not express the orphan receptor protein or its cell membrane fraction. The cell stimulating activity of each
(i i) 各試験化合物 (a)の細胞刺激活性を比較することにより、 ァゴニスト活性を 有する化合物を得、  (i i) By comparing the cell stimulating activity of each test compound (a), a compound having agonist activity is obtained,
(i i i) ① ァゴニスト活性を有する該化合物が有する共通構造から推定されたリ ガンド候補物質を該ォーファン受容体夕ンパク質発現細胞またはその細胞膜画分 に接触させた場合と試験化合物 (b)を該ォーファン受容体タンパク質発現細胞ま たはその細胞膜画分に接触させた場合における細胞刺激活性を比較し、 および ②該ォーファン受容体タンパク質と試験化合物 (b)との特異的結合量を測定する ことを特徴とする該ォ一ファン受容体タンパク質の機能を促進または阻害する化 合物またはその塩のスクリーニング方法、  (iii) (i) When the candidate ligand substance deduced from the common structure possessed by the compound having agonist activity is brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction, and when the test compound (b) is Comparing the cell stimulating activity when contacting the orphan receptor protein-expressing cell or its cell membrane fraction, and (2) measuring the specific binding amount between the orphan receptor protein and the test compound (b). A method for screening a compound or a salt thereof which promotes or inhibits the function of the orphan receptor protein,
( 5 ) 上記 (4 ) 記載のスクリーニング方法によって得られうる化合物またはそ の塩、  (5) a compound or a salt thereof obtainable by the screening method described in (4) above,
および and
( 6 )  (6)
(i ) ォーファン受容体夕ンパク質発現細胞またはその細胞膜画分に試験化合物 (a)を接触させた場合と、 ォーファン受容体タンパク質を発現しない細胞または その細胞膜画分に試験化合物 (a)を接触させた場合において、 それぞれの細胞刺 激活性を測定し、 (i) Test compound is added to orphan receptor protein-expressing cells or its cell membrane fraction. When the test compound (a) was brought into contact with (a) and when the test compound (a) was brought into contact with cells not expressing the orphan receptor protein or its cell membrane fraction, the respective cell stimulating activities were measured.
(i i) 各試験化合物(a)の細胞刺激活性を比較することにより、 ァゴニスト活性を 有する化合物を得、  (i i) By comparing the cell stimulating activity of each test compound (a), a compound having agonist activity is obtained,
(i i i) ァゴニス卜活性を有する該化合物が有する共通構造から推定されたリガン ド候補物質の該ォーファン受容体夕ンパク質への特異的結合量を測定することに より、 該ォーファン受容体夕ンパク質のリガンドまたはそのサブタイプを決定す る方法などに関する。 図面の簡単な説明  (iii) measuring the amount of specific binding of the candidate ligand substance to the orphan receptor protein deduced from the common structure of the compound having agonist activity, whereby the orphan receptor protein is determined. And a method for determining the ligand or its subtype. BRIEF DESCRIPTION OF THE FIGURES
図 1は実施例 1におけるアミノ酸配列の共通性の比較図を示す。 FIG. 1 shows a comparison diagram of the commonality of amino acid sequences in Example 1.
共通するアミノ酸残基を四角で囲って表示した。 フエ二ルァラニン (F ) お よびチロシン (Y) は立体構造的に極めて類似の構造を示すため、 同様に四角 で囲って表示レた。 発明を実施するための最良の形態  Common amino acid residues are boxed. Phenylalanine (F) and tyrosine (Y) have very similar steric structures, so they are similarly boxed. BEST MODE FOR CARRYING OUT THE INVENTION
(A) ォ一ファン受容体タンパク質について:  (A) About o-fan receptor protein:
本明細書において 「ォ一ファン受容体タンパク質」 とは、 そのリガンドが知ら れていないタンパク質のことを意味し、 公知のものに加えて未知のものも包含す る。  As used herein, the term “orphan receptor protein” means a protein whose ligand is unknown, and includes unknown proteins in addition to known proteins.
- ォーファン受容体タンパク質の具体例としては、 例えば、 後述の実施例 1で用 いられた F M— 3受容体タンパク質 (Tan, C. P et al, Genomi cs 52, 223-229 ) または mas受容体タンパク質(Young D. et al. , Proc. Nat l. Acad. Sci. USA, 85, 5339-5342, 1988)などの他、 Swi ss- pl otのォーファン受容体のデータベースに記 載されているものなどがあげられる。  -Specific examples of orphan receptor proteins include, for example, the FM-3 receptor protein (Tan, C. P et al, Genomi cs 52, 223-229) or the mas receptor used in Example 1 described below. Protein (Young D. et al., Proc. Natl. Acad. Sci. USA, 85, 5339-5342, 1988), etc., as well as those listed in the orphan receptor database of Swiss- plot And so on.
本発明で用いられるォーファン受容体夕ンパク質は塩を形成していてもよく、 「ォーファン受容体タンパク質」 の塩としては、 生理学的に許容される塩基 (例 えばアルカリ金属など) や酸 (有機酸、 無機酸) との塩が用いられるが、 とりわ け生理学的に許容される酸付加塩が好ましい。 このような塩としては例えば無機 酸 (例えば、 塩酸、 リン酸、 臭化水素酸、 硫酸) との塩、 あるいは有機酸 (例え ば、 酢酸、 ギ酸、 プロピオン酸、 フマル酸、 マレイン酸、 コハク酸、 酒石酸、 ク ェン酸、 リンゴ酸、 シユウ酸、 安息香酸、 メタンスルホン酸、 ベンゼンスルホン 酸) との塩などが用いられる。 The orphan receptor protein used in the present invention may form a salt. Examples of the salt of the “orphan receptor protein” include physiologically acceptable bases (eg, alkali metals) and acids (organic compounds). Acid, inorganic acid) Physiologically acceptable acid addition salts are preferred. Such salts include, for example, salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid) or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid) , Tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, and benzenesulfonic acid).
本発明で用いられるォーファン受容体タンパク質をコードする DN Aとしては 、 ォーファン受容体タンパク質をコードする DN Aを含有する DN Aであればい かなるものであってもよい。 また、 ゲノム DNA、 ゲノム DNAライブラリー、 ヒトゃ温血動物 (例えば、 モルモット、 ラット、 マウス、 ニヮトリ、 ゥサギ、 ブ 夕、 ヒッジ、 ゥシ、 サルなど) の細胞 (例えば、 網膜細胞、 肝細胞、 脾細胞、 神 経細胞、 グリア細胞、 鸱臓 /3細胞、 骨髄細胞、 メサンギゥム細胞、 ランゲル八ン ス細胞、 表皮細胞、 上皮細胞、 内皮細胞、 繊維芽細胞、 繊維細胞、 筋細胞、 脂肪 細胞、 免疫細胞 (例、 マクロファ一ジ、 T細胞、 B細胞、 ナチュラルキラー細胞 、 肥満細胞、 好中球、 好塩基球、 好酸球、 単球) 、 巨核球、 滑膜細胞、 軟骨細胞 、 骨細胞、 骨芽細胞、 破骨細胞、 乳腺細胞、 肝細胞もしくは間質細胞、 またはこ れら細胞の前駆細胞、 幹細胞もしくは癌細胞など) もしくはそれらの細胞が存在 するあらゆる組織、 例えば、 脳、 脳の各部位 (例、 網膜、 嗅球、 扁桃核、 大脳基 底球、 海馬、 視床、 視床下部、 大脳皮質、 延髄、 小脳) 、 脊髄、 下垂体、 胃、 陴 臓、 腎臓、 肝臓、 生殖腺、 甲状腺、 胆のう、 骨髄、 副腎、 皮膚、 筋肉、 肺、 消化 管 (例、 大腸、 小腸) 、 血管、 心臓、 胸腺、 脾臓、 顎下腺、 末梢血、 前立腺、 睾 丸、 卵巣、 胎盤、 子宮、 骨、 関節、 骨格筋など、 または血球系の細胞もしくはそ の培養細胞 (例えば、 MEL, Ml, CTLL- 2, HT— 2, WEH I— 3, HL— 60, J OSK- 1, K562, ML— 1, MOLT- 3, MOLT- 4 , MOLT - 10, CCRF-CEM, TALL - 1, J u r k a t , CCRT 一 HSB - 2, KE- 37, S KW_ 3, HUT - 78, HUT - 102, H9 , U937, THP - 1, HEL, JK一 1, CMK, KO— 812, MEG - 01など) に由来する cDNA、 該組織 ·細胞由来の c DNAライブラリー、 合 成 DN Aのいずれでもよい。 ライブラリーに使用するベクターはパクテリオファ —ジ、 プラスミド、 コスミド、 ファージミドなどいずれであってもよい。 また、 前記した組織 ·細胞より. RN A画分を調製したものを用いて直接 Reverse Transcriptase Polymerase Chain Reaction (以下、 R T-P C R法と略称する) によつて増幅することもできる。 The DNA encoding the orphan receptor protein used in the present invention may be any DNA containing the DNA encoding the orphan receptor protein. In addition, genomic DNA, genomic DNA libraries, human warm-blooded animals (eg, guinea pigs, rats, mice, chicks, egrets, bushes, sheep, swords, monkeys, etc.) (eg, retinal cells, hepatocytes, Spleen cells, neuronal cells, glial cells, kidney / 3 cells, bone marrow cells, mesangial cells, Langerens cells, epidermal cells, epithelial cells, endothelial cells, fibroblasts, fiber cells, muscle cells, adipocytes, Immune cells (eg, macrophage, T cells, B cells, natural killer cells, mast cells, neutrophils, basophils, eosinophils, monocytes), megakaryocytes, synovial cells, chondrocytes, bone cells Osteoblasts, osteoclasts, mammary cells, hepatocytes or stromal cells, or precursors of these cells, stem cells or cancer cells) or any of those cells Tissue, for example, brain, parts of the brain (eg, retina, olfactory bulb, amygdala, cerebral basal sphere, hippocampus, thalamus, hypothalamus, cerebral cortex, medulla, cerebellum), spinal cord, pituitary, stomach, stomach, Kidney, liver, gonad, thyroid, gall bladder, bone marrow, adrenal gland, skin, muscle, lung, gastrointestinal tract (eg, large intestine, small intestine), blood vessels, heart, thymus, spleen, submandibular gland, peripheral blood, prostate, testicle, Ovary, placenta, uterus, bone, joints, skeletal muscle, etc., or blood cells or their cultured cells (eg, MEL, Ml, CTLL-2, HT-2, WEH I-3, HL-60, J OSK) -1, K562, ML-1, MOLT-3, MOLT-4, MOLT-10, CCRF-CEM, TALL-1, Jurkat, CCRT HSB-2, KE-37, S KW_3, HUT-78, CDNA derived from HUT-102, H9, U937, THP-1, HEL, JK-1, CMK, KO-812, MEG-01, etc.), cDNA library derived from the tissue / cell, synthetic DNA Any The vector used for the library may be any of pacteriophage, plasmid, cosmid, phagemid and the like. Also, It can also be directly amplified by reverse transcriptase polymerase chain reaction (hereinafter abbreviated as RTPCR method) using an RNA fraction prepared from the above-mentioned tissues and cells.
本発明で用いられるォーファン受容体タンパク質をコードする DN Aは以下の 遺伝子工学的手法によっても製造することができる。  DNA encoding the orphan receptor protein used in the present invention can also be produced by the following genetic engineering techniques.
ォ一ファン受容体タンパク質を完全にコードする DN Aのクローニングの手段 としては、 ォーファン受容体夕ンパク質の部分塩基配列を有する合成 D N Aブラ イマ一を用いて自体公知の PC R法によって前記 DNAライブラリ一等から目的 とする DNAを増幅するか、 または適当なベクターに組み込んだ DNAを例えば ォ一ファン受容体タンパク質の一部あるいは全領域を有する DN A断片もしくは 合成 D N Aを用いて標識したものとのハイブリダイゼ一シヨンによつて選別する ことができる。 ハイブリダィゼーシヨンの方法は、 例えば Molecular Cloning ( 2nd ed. ; J. Sambrook et al. , Cold Spring Harbor Lab. Press, 1989).に記載 の方法などに従って行われる。 また、 市販のライブラリ一を使用する場合、 添付 の使用説明書に記載の方法に従って行う。  As a means for cloning DNA that completely encodes the orphan receptor protein, the DNA library was synthesized by a PCR method known per se using a synthetic DNA primer having a partial nucleotide sequence of orphan receptor protein. Amplification of the target DNA from the first place, or the DNA incorporated into an appropriate vector, for example, labeled using a DNA fragment or a synthetic DNA having a partial or entire region of the orphan receptor protein. Sorting can be performed by hybridization. The hybridization is performed according to, for example, the method described in Molecular Cloning (2nd ed .; J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989). When using a commercially available library, follow the method described in the attached instruction manual.
クローン化されたォ一ファン受容体タンパク質をコードする DN Aは目的によ りそのまま、 または所望により制限酵素で消化したり、 リンカ一を付加したりし て使用することができる。 該 DNAはその 5' 末端側に翻訳開始コドンとしての ATGを有し、 また 3' 末端側には翻訳終止コドンとしての TAA、 TGAまた は TAGを有していてもよい。 これらの翻訳開始コドンや翻訳終止コドンは、 適 当な合成 DN Aアダプターを用いて付加することもできる。  The DNA encoding the cloned orphan receptor protein can be used as it is, or as desired, after digestion with a restriction enzyme or addition of a linker. The DNA may have ATG as a translation initiation codon at the 5 'end and TAA, TGA or TAG as a translation stop codon at the 3' end. These translation start codon and translation stop codon can be added using an appropriate synthetic DNA adapter.
(B) ォーファン受容体夕ンパク質発現細胞もしくはその細胞膜画分またはォー ファン受容体タンパク質を発現しない細胞またはその細胞膜画分について: 本明細書において、 「ォーファン受容体タンパク質発現細胞」 とは上記 (A) のォ一ファン受容体夕ンパク質を発現した宿主細胞をいう。  (B) For orphan receptor protein-expressing cell or its cell membrane fraction or cell that does not express orphan receptor protein or its cell membrane fraction: In the present specification, the “orphan receptor protein-expressing cell” is as defined above. (A) A host cell that has expressed the protein receptor for ophan.
ォーファン受容体夕ンパク質を宿主細胞において発現させる方法としては、 例 えば、 上記 (A) のォーファン受容体タンパク質をコードする DN Aを用いて、 以下の方法により発現させることができる。  As a method for expressing the orphan receptor protein in host cells, for example, the DNA encoding the orphan receptor protein (A) can be expressed by the following method.
即ち、 ォ一ファン受容体タンパク貪の発現ベクターは、 例えば、 (ィ) ォーフ アン受容体タンパク質をコードする DN Aから目的とする DN A断片を切り出し 、 (口) 該 DNA断片を適当な発現べクタ一中のプロモーターの下流に連結する ことにより製造することができる。 That is, the expression vector of the orphan receptor protein is, for example, It can be produced by cutting out a DNA fragment of interest from DNA encoding an an receptor protein, and ligating the DNA fragment downstream of a promoter in an appropriate expression vector.
ベクタ一としては、 大腸菌由来のプラスミド (例、 pBR 322, pBR32 5, pUC 12, pUC 13) 、 枯草菌由来のプラスミド (例、 pUB 110, pTP5, pC l 94) 、 酵母由来プラスミド (例、 pSHl 9, pSHl 5) 、 λファージなどのバクテリオファージ、 レトロウイルス, ワクシニアウィルス , バキュロウィルスなどの動物ウィルスなどが用いられる。 用いられるプロモー ターとしては、 遺伝子の発現に用いる宿主に対応して適切なプロモーターであれ ばいかなるものでもよい。  Escherichia coli-derived plasmids (eg, pBR322, pBR325, pUC12, pUC13), Bacillus subtilis-derived plasmids (eg, pUB110, pTP5, pCl94), yeast-derived plasmids (eg, pSHl) 9, pSHl 5), bacteriophage such as λ phage, and animal viruses such as retrovirus, vaccinia virus, and baculovirus are used. The promoter used may be any promoter suitable for the host used for gene expression.
形質転換する際の宿主が動物細胞である場合には、 S V 40由来のプロモー夕 ―、 レトロウイルスのプロモータ一、 メタ口チォネインプロモーター、 ヒートシ ョックプロモーター、 サイトメガロウィルスプロモーター、 SRaプロモーター などが利用できる。 宿主がェシエリヒア属菌である場合は、 Tr pプロモーター、 T7プロモ一夕一、 l a cプロモーター、 r e cAプロモーター、 APLプロモ 一ター、 1 p pプロモータ一などが、 宿主がバチルス属菌である場合は、 SPO 1プロモーター、 SP〇2プロモーター、 p e n Pプロモーターなど、 宿主が酵 母である場合は、 PHO 5プロモーター、 PGKプロモーター、 GAPプロモ一 ター、 ADH1プロモータ一、 GALプロモーターなどが好ましい。 宿主が昆虫 細胞である場合は、 ポリヘドリンプロモーター、 P 10プロモーターなどが好ま しい。 なお、 本発明においては、 ォーファン受容体タンパク質を介する細胞刺激 活性を測定するため、 宿主は動物細胞もしくは昆虫細胞であること力 ^好ましい。 発現ベクターには、 以上の他に、 所望によりェンハンサー、 スプライシングシ ダナル、 ポリ A付加シグナル、 選択マーカー、 SV40複製オリジン (以下、 S V40 o r iと略称する場合がある) などを含有しているものを用いることがで きる。 選択マーカーとしては、 例えば、 ジヒドロ葉酸還元酵素 (以下、 dh f r と略称する場合がある) 遺伝子 〔メソトレキセ一ト (MTX) 耐性〕 、 アンピシ リン耐性遺伝子 (以下、 Amp ^と略称する場合がある) 、 ネオマイシン耐性遺 伝子 (以下、 Ne oと略称する場合がある、 G418耐性) 等が挙げられる。 特 に、 CH〇 (d h f r ~) 細胞を用いて DHFR遺伝子を選択マーカーとして使 用する場合、 チミジンを含まない培地によっても選択できる。 When the host used for the transformation is an animal cell, promoters derived from SV40, a retrovirus promoter, a metamouth thionein promoter, a heat shock promoter, a cytomegalovirus promoter, an SRa promoter, etc. Available. If the host is Escherichia, Trp promoter, T7 promoter overnight, lac promoter, recA promoter, APL promoter, 1 pp promoter, etc.If the host is Bacillus, SPO When the host is an enzyme such as 1 promoter, SP〇2 promoter, pen P promoter, etc., preferred are PHO5 promoter, PGK promoter, GAP promoter, ADH1 promoter, GAL promoter and the like. When the host is an insect cell, a polyhedrin promoter, a P10 promoter and the like are preferable. In the present invention, the host is preferably an animal cell or an insect cell in order to measure the cell stimulating activity via the orphan receptor protein. In addition to the above, the expression vector may further include an enhancer, a splicing signal, a polyA addition signal, a selection marker, an SV40 replication origin (hereinafter, sometimes abbreviated as SV40 ori), and the like, if desired. Can be used. Examples of selectable markers include dihydrofolate reductase (hereinafter sometimes abbreviated as dh fr) gene [methotrexate (MTX) resistance] and ampicillin resistance gene (hereinafter sometimes abbreviated as Amp ^) And a neomycin-resistant gene (hereinafter sometimes abbreviated as Neo, G418-resistant). Special In the case where the DHFR gene is used as a selection marker using CH〇 (dhfr ~) cells, selection can also be performed using a thymidine-free medium.
また、 必要に応じて、 宿主に合ったシグナル配列を、 ポリペプチドまたはその 部分ペプチドの N端末側に付加する。 宿主がェシエリヒア属菌である場合は、 phoA-シグナル配列、 O即 A ·シグナル配列などが、 宿主がバチルス属菌である 場合は、 ひ一アミラーゼ ·シグナル配列、 サブチリシン ·シグナル配列などが、 宿主が酵母である場合は、 メイティングファクター a(M Fa) ·シグナル配列、 インベルタ一ゼ,シグナル配列など、 宿主が動物細胞である場合には、 例えばィ ンシュリン ·シグナル配列、 a—イン夕一フエロン ·シグナル配列、 抗体分子 · シグナル配列などがそれぞれ利用できる。  If necessary, a signal sequence suitable for the host is added to the N-terminal side of the polypeptide or its partial peptide. If the host is a bacterium belonging to the genus Escherichia, the phoA-signal sequence and the O-immediate A / signal sequence are included. In the case of yeast, the mating factor a (M Fa) signal sequence, invertase, signal sequence, etc. When the host is an animal cell, for example, insulin signal sequence, a-in yellow ferron Signal sequence, antibody molecule, signal sequence, etc. can be used respectively.
このようにして構築されたォ一ファン受容体タンパク質をコードする DN Aを 含有するべク夕一を用いて、 形質転換体を製造することができる。  A transformant can be produced using the vector containing DNA encoding the orphan receptor protein thus constructed.
宿主としては、 たとえばェシエリヒア属菌、 バチルス属菌、 酵母、 昆虫または 昆虫細胞、 動物細胞などが用いられるが、 上述のとおり、 昆虫細胞または動物細 胞が好ましく用いられる。  As the host, for example, a bacterium belonging to the genus Escherichia, a bacterium belonging to the genus Bacillus, a yeast, an insect or an insect cell, an animal cell, or the like is used. As described above, the insect cell or the animal cell is preferably used.
ェシエリヒア属菌としては、 ェシエリヒア 'コリ (Escherichia col 0 K 12 • DH 1 〔プロシージングズ ·ォブ ·ザ ·ナショナル ·アカデミー ·ォブ ·サイ ェンシィズ 'ォブ ·ザ ·ユーエスエー (Pro Natl. Acad. Sci. USA) , 60 巻, 160 (1968)〕 , JM103 〔ヌクイレック ·ァシッズ ·リサーチ, ( Nucleic Acids Research) , 9巻, 309 (1981)〕 , JA221 〔ジャーナ ル-ォブ 'モレキュラー 'ノ ィォロジ一 (Journal of Molecular Biology) 〕 , 120巻, 517 (1978)〕 , HB 101 〔ジャーナル ·ォブ ·モレキュラー 'バイオロジー, 41巻, 459 (1969)〕 , C 600 〔ジェネティックス ( Genetics) , 39巻, 440 (1954)〕 などが用いられる。  Examples of the genus Escherichia include Escherichia coli (Escherichia col 0 K12 • DH1 [Prosessing's of the National Academy of Sciences] of the United States (Pro Natl. Acad. Sci. USA), 60, 160 (1968)], JM103 [Nucleic Acids Research, 9, 309 (1981)], JA221 [Journal-Robb 'Molecular' Noology 1] (Journal of Molecular Biology)], 120, 517 (1978)], HB101 [Journal of Molecular Biology, 41, 459 (1969)], C600 [Genetics, 39] , 440 (1954)].
バチルス属菌としては、 たとえばバチルス ·サチルス (Bacillus subtil is) M 1 114 〔ジーン, 24巻, 255 (1983)〕 , 207— 21 〔ジャーナル · ォブ.バイオケミストリ一 (Journal of Biochemistry) , 95巻, 87 (198 4)〕 などが用いられる。  Examples of Bacillus bacteria include, for example, Bacillus subtilis M1114 [Gene, 24, 255 (1983)], 207-21 [Journal of Biochemistry, 95 , 87 (198 4)].
酵母としては、 たとえばサッカロマイセス セレピシェ (Saccharomyces cerevisiae)AH22, AH22R— , NA87 - 1 1 A, DKD— 5D, 20 B - 12などが用いられる。 Examples of yeast include Saccharomyces cerevisiae) AH22, AH22R—, NA87-11A, DKD—5D, 20B-12 and the like are used.
昆虫としては、 例えばカイコの幼虫などが用いられる 〔前田ら、 ネイチヤー ( As insects, for example, silkworm larvae are used [Maeda et al., Neycha (
Nature) , 31 5巻, 592 (1 985)〕 。 Nature), 315, 592 (1 985)].
昆虫細胞としては、 例えば、 ウィルスが Ac NPVの場合は、 夜盗蛾の幼虫由 来株化細胞 (Spodopter.a frugiperda cell ; S f細胞) 、 Trichoplusia niの中腸  As insect cells, for example, when the virus is Ac NPV, a cell line derived from a larva of night rob moth (Spodopter.a frugiperda cell; S f cell), and the midgut of Trichoplusia ni
ΤΜ  ΤΜ
由来の MG 1細胞、 Trichoplusia niの卵由来の High Five 細胞、 Mamestra brasskae由来の細胞または Estigmena acrea由来の細胞などが用いられる。 ウイ ルスが BmNP Vの場合は、 蚕由来株化細胞 (Bombyxmori N; BmN細胞) など が用いられる。 該 S f細胞としては、 例えば、 S f 9細胞 (ATCC CRL1711) 、 S f 21細胞 〔以上、 Vaughn, J. L ら、 イン 'ヴィ ト口 (in Vi tro) , 13巻, 2For example, MG1 cells derived therefrom, High Five cells derived from Trichoplusia ni eggs, cells derived from Mamestra brasskae or cells derived from Estigmena acrea are used. When the virus is BmNPV, a cell line derived from silkworm (Bombyxmori N; BmN cell) is used. Examples of the Sf cells include, for example, Sf9 cells (ATCC CRL1711), Sf21 cells [Vaughn, J. L et al., In Vitro, Vol.
13— 217頁 (1977年) 〕 などが用いられる。 13-217 (1977)].
動物細胞としては、 たとえばサル COS— 7細胞, Vero細胞, チャイニーズノ、 ムスター細胞 CH〇, DHFR遺伝子欠損チャイニーズハムスター細胞 CHO ( dh f r—CH〇細胞) , マウス L細胞, マウス 3 T 3細胞、 マウスミエローマ細 胞, ヒト HEK293細胞、 ヒト FL細胞、 C 127細胞、 BALB 3T3細胞 Examples of animal cells include monkey COS-7 cells, Vero cells, Chinese nose, muster cells CH〇, DHFR gene deficient Chinese hamster cells CHO (dh fr-CH〇 cells), mouse L cells, mouse 3T3 cells, mouse Myeloma cells, human HEK293 cells, human FL cells, C127 cells, BALB 3T3 cells
、 S p— 2ノ〇細胞などが用いられる。 , Sp-2 cells and the like are used.
ェシェリヒア属菌を形質転換するには、 たとえばプロシージングズ ·ォブ ·ザ To transform Escherichia, for example,
•ナショナル ·アカデミー ·ォブ ·サイェンジィズ ·ォブ ·ザ ·ユーエスエー ( Proc. Natl. Acad. Sci. USA) , 69巻, 21 10 (1972)やジーン (Gene• National Academy of Sciences of the USA (Proc. Natl. Acad. Sci. USA), 69, 2110 (1972) and Gene (Gene
) , 1 7巻, 107 (1 982)などに記載の方法に従って行なわれる。 ), Vol. 17, 107 (1 982).
バチルス属菌を形質転換するには、 たとえばモレキュラー 'アンド 'ジエネラ ル ·ジエネティックス (Molecular & General Genetics) , 168巻, 1 1 1 ( For transformation of Bacillus sp., For example, Molecular & General Genetics, Vol. 168, 1 1 1 (
1 979)などに記載の方法に従って行われる。 1 979).
酵母を形質転換するには、 たとえばプロシージングズ ·ォブ ·ザ ·ナショナル To transform yeast, for example, Prossings of the National
•アカデミー'ォブ 'サイェンシィズ 'ォブ 'ザ 'ユーエスエー(Pro atl. Acad.• Academy 'ob' 'Sciences'' ob 'the' U.S.A. (Pro atl. Acad.
Sci. USA) , 75巻, 1929 (1978)に記載の方法に従って行なわれる。 昆虫細胞または昆虫を形質転換するには、 たとえばバイオ テクノロジー (Sci. USA), 75, 1929 (1978). To transform insect cells or insects, for example, biotechnology (
Bio/Technology) , 6巻, 47— 55頁(1 988年)などに記載の方法に従って 行なわれる。 Bio / Technology), 6, 47-55 (1988), etc. Done.
動物細胞を形質転換するには、 たとえばヴイロロジー (Virology) , 52巻, 456 (1973)に記載の方法に従って行なわれる。  Transformation of animal cells is performed, for example, according to the method described in Virology, 52, 456 (1973).
ォーファン受容体タンパク質発現ベクターの細胞への導入方法としては、 例え ば、 リポフエクシヨン法 〔Felgner, P. L. et al. プロシージングズ'ォブ'ザ' ナショナル ·アカデミー ·ォブ ·サイェンジィズ ·ォブ ·ザ ·ユーエスエー ( Proceedings of The National Academy of Sciences of The United States of America) , 84巻, 7413頁 (1987年) 〕 、 リン酸カルシウム法 〔Graham, F. L. and van der Eb, A. J.ヴイロロジー (Virology) , 52巻, 456— 46 7頁 (1 973年) 〕 、 電気穿孔法 〔Nuemann, E. et al. ェンポ ·ジャーナル ( EMBO J.) , 1巻, 841— 845頁 (1982年) 〕 等が挙げられる。  Methods for introducing orphan receptor protein expression vectors into cells include, for example, the lipofection method (Felgner, PL et al. Processing's 'the' National Academy of Sciences, Obs. U.S.A. (Proceedings of The National Academy of Sciences of The United States of America), 84, 7413 (1987)), calcium phosphate method [Graham, FL and van der Eb, AJ Virology, 52, 456- 46 p. 7 (1973)], electroporation [Nuemann, E. et al., Empo J. (EMBO J.), 1, 841-845 (1982)], and the like.
このようにして、 ォ一ファン受容体夕ンパク質発現細胞が得られる。  In this manner, cells expressing the protein receptor for orphan are obtained.
なお、 動物細胞を用いて、 ォ一ファン受容体タンパク質を安定に発現させる方 法としては、 上記の動物細胞に導入された発現ベクターが染色体に組み込まれた 細胞をクローン選択によって選択する方法がある。 具体的には、 上記の選択マ一 力一を指標にして形質転換体を選択する。 さらに、 このように選択マーカーを用 いて得られた動物細胞に対して、 繰り返しクローン選択を行なうことによりォー ファン受容体夕ンパク質の高発現能を有する安定な動物細胞株を得ることができ る。 また、 dh f r遺伝まを選択マーカ一として用いた場合、 MTX濃度を徐々 に上げて培養し、 耐性株を選択することにより、 dh f r遺伝子とともに、 ォー ファン受容体タンパク質をコードする DNAを細胞内で増幅させて、 さらに高発 現の動物細胞株を得ることもできる。  As a method for stably expressing an orphan receptor protein using animal cells, there is a method of selecting, by clonal selection, cells in which the expression vector introduced into the animal cell is integrated into the chromosome. . Specifically, a transformant is selected using the above selection abilities as an index. Furthermore, by repeatedly performing clonal selection on the animal cells obtained using the selectable marker in this manner, a stable animal cell line having high expression ability of orphan receptor protein can be obtained. You. When the dh fr gene or the dh fr gene is used as a selection marker, the MTX concentration is gradually increased, and the cells are cultured. By selecting resistant strains, the DNA encoding the orphan receptor protein together with the dh fr gene can be transferred to the cells. It can also be amplified in situ to obtain higher expressing animal cell lines.
宿主がェシエリヒア属菌、 バチルス属菌である形質転換体を培養する際、 培養 に使用される培地としては液体培地が適当であり、 その中には該形質転換体の生 育に必要な炭素源、 窒素源、 無機物その他が含有せしめられる。 炭素源としては When culturing a transformant whose host is a bacterium belonging to the genus Escherichia or Bacillus, a liquid medium is suitable as the medium used for the culturing, and a carbon source necessary for the growth of the transformant is contained therein. , Nitrogen sources, inorganic substances and others. As a carbon source
、 たとえばグルコース、 デキストリン、 可溶性澱粉、 ショ糖など、 窒素源として は、 たとえばアンモニゥム塩類、 硝酸塩類、 コーンスチープ · リカ一、 ペプトン 、 カゼイン、 肉エキス、 大豆粕、 バレイショ抽出液などの無機または有機物質、 無機物としてはたとえば塩化カルシウム、 リン酸二水素ナトリウム、 塩化マグネ シゥムなどが挙げられる。 また、 酵母エキス、 ビタミン類、 生長促進因子などを 添加してもよい。 培地の pHは約 5〜 8が望ましい。 Nitrogen sources such as glucose, dextrin, soluble starch, sucrose, etc.Inorganic or organic substances such as ammonium salts, nitrates, corn chip liqueur, peptone, casein, meat extract, soybean meal, potato extract, etc. Inorganic substances such as calcium chloride, sodium dihydrogen phosphate, and magnesium chloride And the like. In addition, yeast extract, vitamins, growth promoting factors and the like may be added. The pH of the medium is preferably about 5-8.
ェシエリヒア属菌を培養する際の培地としては、 例えばグルコース、 カザミノ 酸を含む M 9培地 〔ミラー (Miller) , ジャーナル'ォブ'ェクスペリメンッ ' イン ·モレキュラー ·ジエネティックス (Journal of Experiments in Molecular Genetics) , 431 -433, Cold Spring Harbor Laboratory, New York 19 72〕 が好ましい。 ここに必要によりプロモータ一を効率よく働かせるために、 たとえば 3 )3—インドリルアクリル酸のような薬剤を加えることができる。  Examples of a medium for culturing Escherichia sp. Include, for example, M9 medium containing glucose and casamino acid (Miller, Journal of Experiments in Molecular Genetics, Journal of Experiments in Molecular Genetics, 431). -433, Cold Spring Harbor Laboratory, New York 1972]. If necessary, an agent such as 3) 3-indolylacrylic acid can be added in order to make the promoter work efficiently.
宿主がェシエリヒア属菌の場合、 培養は通常約 15〜43°Cで約 3〜24時間 行い、 必要により、 通気や撹拌を加えることもできる。  When the host is a bacterium belonging to the genus Escherichia, cultivation is usually performed at about 15 to 43 ° C for about 3 to 24 hours, and if necessary, aeration and stirring can be applied.
宿主がバチルス属菌の場合、 培養は通常約 30〜 40 "Cで約 6〜 24時間行な レ 、 必要により通気や撹拌を加えることもできる。  When the host is a bacterium belonging to the genus Bacillus, culturing is usually performed at about 30 to 40 "C for about 6 to 24 hours, and if necessary, aeration and stirring may be added.
宿主が酵母である形質転換体を培養する際、 培地としては、 たとえばバークホ 一ルダー (Burkholder) 最小培地 〔Bostian, K. L. ら、 「プロシ一ジングズ 'ォ ブ ·ザ ·ナショナル ·アカデミー ·ォブ ·サイェンシィズ ·ォブ 'ザ ·ユーエス ェ一 (Proc. Natl. Acad. Sci. USA) , 77巻, 4505 (1980)〕 や 0. 5%カザミノ酸を含有する SD培地 〔Bitter, G. A. ら、 「プロシージングズ · ォブ.ザ.ナショナル'アカデミー ·ォブ 'サイェンシィズ'ォブ ·ザ'ユーェ スェ一 (Proc. Natl. Acad. Sci. USA) , 81巻, 5330 (1984) 〕 力 挙げられる。 培地の pHは約 5〜8に調整するのが好ましい。 培養は通常約 20 〜 35 で約 24〜72時間行い、 必要に応じて通気や撹拌を加える。  When culturing a transformant in which the host is yeast, for example, Burkholder's minimal medium [Bostian, KL et al., "Processing's the National Academy of Sciences" Natl. Acad. Sci. USA, 77, 4505 (1980)] and an SD medium containing 0.5% casamino acid [Bitter, GA et al., Proc. The National Academy's Academy of Sciences, Inc., Proc. Natl. Acad. Sci. USA, 81, 5330 (1984)]. The pH is preferably adjusted to about 5 to 8. Culture is usually performed at about 20 to 35 for about 24 to 72 hours, and aeration and stirring are added as necessary.
宿主が昆虫細胞である形質転換体を培養する際、培地としては、 Grace' s Insect When culturing a transformant whose host is an insect cell, the medium used is Grace's Insect.
Medium (Grace, T. C. ,ネイチヤー (Nature) , 195, 788 (1962)) に非動化した 1Medium (Grace, T.C., Immobilized on Nature, 195, 788 (1962)) 1
0 %ゥシ血清等の添加物を適宜加えたものなどが用いられる。 培地の pHは約 6 . 2〜6. 4に調整するのが好ましい。 培養は通常約 27°Cで約 3〜 5日間行いA solution to which an additive such as 0% serum is appropriately added is used. The pH of the medium is preferably adjusted to about 6.2 to 6.4. Culture is usually performed at about 27 ° C for about 3-5 days.
、 必要に応じて通気や撹拌を加える。 Add aeration and agitation as needed.
宿主が動物細胞である形質転換体を培養する際、 培地としては、 たとえば約 5 When culturing a transformant in which the host is an animal cell, for example, about 5
〜20%の胎児牛血清を含む MEM培地 〔サイエンス (Science), 122巻, 5MEM medium containing ~ 20% fetal bovine serum [Science, 122, 5
01 (1952)] , DMEM培地 〔ヴィロロジー (Virology) , 8巻, 396 ( 1959)] , RPM I 1640培地 〔ジャーナル ·ォブ ·ザ ·アメリカン ·メ ディカル ·ァソシエーション (The Journal of The American Medical Association ) 199巻, 519 (1967)〕 , 199培地 〔プロシージング ·ォブ ·ザ ·ソ サイエティ 'フォー'ザ 'バイオロジカル 'メディスン(Proceeding of The Society for The Biological Medicine) , 73巻, 1 ( 1950)〕 などが用いられる。 p Hは約 6〜 8であるのがf子ましい。 培養は通常約 30 〜 40 で約15〜60 時間行い、 必要に応じて通気や撹拌を加える。 01 (1952)], DMEM medium [Virology, 8, 396 ( 1959)], RPMI 1640 medium [The Journal of The American Medical Association, Vol. 199, 519 (1967)], 199 medium · The · Society 'For' the 'Biological' Medicine (Proceeding of The Society for The Biological Medicine), 73, 1 (1950)]. The pH is preferably about 6-8. Culture is usually performed at about 30 to 40 for about 15 to 60 hours, and aeration and agitation are added as necessary.
特に CHO (dhfr-) 細胞および dhfr遺伝子を選択マーカーとして用いる場合 には、 チミジンをほとんど含まない透析ゥシ胎児血清を含む D M E M培地を用レ るのが好ましい。 .  In particular, when CHO (dhfr-) cells and the dhfr gene are used as selection markers, it is preferable to use a DMEM medium containing dialysed fetal serum containing almost no thymidine. .
細胞膜画分としては、 細胞を破砕した後、 それ自体公知の方法で得られる細胞 膜が多く含まれる画分のことをいう。 細胞の破砕方法としては、 Potter— Elvehjem型ホモジナイザーで細胞を押し潰す方法、 ヮーリングブレンダーゃポリ トロン (Kinematica社製).による破砕、 超音波による破砕、 フレンチプレスなど で加圧しながら細胞を細いノズルから噴出させることによる破砕などが挙げられ る。 細胞膜の分画には、 分画遠心分離法や密度勾配遠心分離法などの遠心力によ る分画法が主として用いられる。 例えば、 細胞破砕液を低速 (500 r pm〜3 000 r pm) で短時間 (通常、 約 1分〜 10分) 遠心し、 上清をさらに高速 ( 15000 r pm〜30000 r pm) で通常 30分〜 2時間遠心し、 得られる 沈澱を膜画分とする。 該膜画分中には、 発現したォーファン受容体タンパク質と 細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。  The cell membrane fraction refers to a fraction abundant in cell membrane obtained by disrupting cells and then obtained by a method known per se. Methods for crushing cells include crushing cells with a Potter-Elvehjem homogenizer, crushing with a Pelling Blender and Polytron (Kinematica), crushing with ultrasonic waves, and narrowing the cells while pressing with a French press. Crushing by ejecting from For cell membrane fractionation, centrifugal fractionation methods such as differential centrifugation and density gradient centrifugation are mainly used. For example, the cell lysate is centrifuged at a low speed (500 rpm to 3000 rpm) for a short time (typically about 1 to 10 minutes), and the supernatant is further centrifuged at a higher speed (15000 rpm to 30000 rpm) for 30 min. Centrifuge for 1 minute to 2 hours, and use the resulting precipitate as the membrane fraction. The membrane fraction is rich in the expressed orphan receptor protein and membrane components such as cell-derived phospholipids and membrane proteins.
該ォーファン受容体夕ンパク質を含有する細胞や膜画分中のォーファン受容体 タンパク質の量は、 1細胞当たり 10 〜10 分子であるのが好ましく、 10 〜10 分子であるのが好適である。 なお、 発現量が多いほど膜画分当たりのァ ゴニスト (リガンド) 結合活性 (比活性) が高くなり、 高感度なスクリーニング 系の構築が可能になるばかりでなく、 同一ロッ卜で大量の試料を測定できるよう になる。  The amount of the orphan receptor protein in the cell or membrane fraction containing the orphan receptor protein is preferably 10 to 10 molecules per cell, and more preferably 10 to 10 molecules per cell. The higher the expression level, the higher the agonist (ligand) binding activity (specific activity) per membrane fraction, which makes it possible not only to construct a highly sensitive screening system, but also to use a large amount of sample in the same lot. Be able to measure.
ォーファン受容体タンパク質を発現しない細胞またはその細胞膜画分とは上記 の宿主細胞として列記した細胞で、 ォーファン受容体夕ンパク質を発現しないも ののことをいう。 またその細胞膜画分としては、 上記と同様のものなどが用いら れる。 The cells that do not express the orphan receptor protein or the cell membrane fraction thereof are the cells listed as the above host cells, and do not express the orphan receptor protein. Means As the cell membrane fraction, those similar to the above can be used.
( C ) 試験化合物または試験化合物 (a)について:  (C) Test compound or test compound (a):
本明細書において、 「試験化合物」 または 「試験化合物(a)」 とは、 例えば天然 ·非天然のぺプチド、 天然 ·非天然の夕ンパク質、 天然 ·非天然の非べプチド性 化合物、 合成化合物、 天然 ·非天然の発酵生産物などがあげられる。  In the present specification, “test compound” or “test compound (a)” refers to, for example, natural / non-natural peptide, natural / non-natural protein, natural / non-natural non-peptide compound, synthetic Compounds, natural and non-natural fermented products.
これら試験化合物または試験化合物 (a)に用いられるペプチド、タンパク質、化 合物または発酵生産物は塩を形成していてもよく、 これらの塩としては、 生理学 的に許容される塩基 (例えばアルカリ金属など) や酸 (有機酸、 無機酸) との塩 があげられるが、 とりわけ生理学的に許容される酸付加塩などが好ましい。 この ような塩としては例えば無機酸 (例えば、 塩酸、 リン酸、 臭化水素酸、 硫酸) と の塩、 あるいは有機酸 (例えば、 酢酸、 ギ酸、 プロピオン酸、 フマル酸、 マレイ ン酸、 コハク酸、 酒石酸、 クェン酸、 リンゴ酸、 シユウ酸、 安息香酸、 メタンス ルホン酸、 ベンゼンスルホン酸) との塩などがあげられる。  The test compound or the peptide, protein, compound or fermentation product used in the test compound (a) may form a salt, and these salts include a physiologically acceptable base (eg, an alkali metal). And the like, and salts with acids (organic acids and inorganic acids), and especially preferred are physiologically acceptable acid addition salts. Such salts include, for example, salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid) or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid) , Tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid) and the like.
(D ) 細胞刺激活性について:  (D) Cell stimulating activity:
ォーファン受容体タンパク質発現細胞またはその細胞膜画分に試験化合物 (具 体的には試験化合物 (a) )を接触させた場合と、ォーファン受容体タンパク質を発 現しない細胞またはその細胞膜画分に試験化合物(具体的には試験化合物 (a) )を 接触させた場合における、 それぞれの細胞刺激活性は、 例えば(a)細胞外 p Hの 変動、 (b)ァラキドン酸遊離、 (c)アセチルコリン遊離、 (d)細胞内 C a 遊離、 (e)細胞内 c AM Pの変動、 (f)細胞内 c GM Pの変動、 (g)イノシトールリン酸産 生、 (h)細胞膜電位変動、 (i )細胞内蛋白質のリン酸化、 (]' )じー 1: 0 5の活性化、When a test compound (specifically, test compound (a)) is brought into contact with an orphan receptor protein-expressing cell or its cell membrane fraction, the test compound is added to a cell that does not express an orphan receptor protein or its cell membrane fraction. (Specifically, when the test compound (a)) is brought into contact, the respective cell stimulating activities include, for example, (a) fluctuation of extracellular pH, (b) release of arachidonic acid, (c) release of acetylcholine, ( d) intracellular Ca release, (e) intracellular cAMP fluctuation, (f) intracellular cGMP fluctuation, (g) inositol phosphate production, (h) cell membrane potential fluctuation, (i) cell phosphorylation of the inner proteins (] ') Gee 1: 0 5 activation,
( k ) G T P T Sの結合、 ( 1 ) レポ一ター遺伝子の発現などを指標にして、 公 知の方法に準じてまたは市販の測定用キットを用いて測定することができる。 本発明のスクリーニング方法またはリガンド決定方法において行われる細胞刺 激活性の測定は、 上記のなかでも、 細胞外 p Hの変動を指標とする測定方法が好 ましく用いられる。 Using (k) GTPTS binding, (1) reporter gene expression, and the like as indices, it can be measured according to a known method or using a commercially available measurement kit. As the measurement of the cell stimulating activity performed in the screening method or the ligand determination method of the present invention, among the above, a measurement method using the change in extracellular pH as an index is preferably used.
具体的には、 まず、 ォーファン受容体タンパク質発現細胞もしくはその細胞膜 画分、 およびォーファン受容体タンパク質を発現しない細胞またはその細胞膜画 分を別々にマルチウエルプレート等に培養する。 細胞刺激活性を測定するにあた つては前もって新鮮な培地あるいは細胞に毒性を示さない適当なバッファーに交 換し、それぞれの細胞に試験化合物(具体的には試験化合物 (a)) を添加して一定 時間ィンキュベートした後、 細胞またはその細胞膜画分を抽出あるいは上清液を 回収して、 生成した産物をそれぞれの方法に従って定量する。 Specifically, first, orphan receptor protein-expressing cells or their cell membrane fractions, and cells that do not express orphan receptor proteins or their cell membrane fractions The cultures are separately cultured in a multiwell plate or the like. Before measuring cell stimulating activity, replace the cells with fresh medium or an appropriate buffer that is not toxic to cells, and add the test compound (specifically, test compound (a)) to each cell. After incubation for a certain period of time, the cells or their cell membrane fractions are extracted or the supernatant is collected, and the resulting products are quantified according to the respective methods.
細胞刺激活性の指標とする物質の生成が、 細胞が含有する分解酵素によって検 定困難な場合は、 該分解酵素に対する阻害剤を添加してアツセィを行なってもよ い。 また、 c AMP産生抑制などの活性については、 フオルスコリンなどで細胞 の基礎的産生量を増大させておいた細胞またはその細胞膜画分に対する産生抑制 作用として検出することができる。  If the production of a substance as an indicator of cell stimulating activity is difficult to be detected by a degrading enzyme contained in the cells, an inhibitor for the degrading enzyme may be added to perform the assay. In addition, activities such as inhibition of cAMP production can be detected as an effect of inhibiting production of cells whose basal production has been increased by forskolin or the like or a cell membrane fraction thereof.
細胞刺激活性を測定してスクリ一二ングを行なうには、 適当なォーファン受容 体タンパク質を発現した細胞またはその細胞膜画分およびォ一ファン受容体タン パク質を発現しない細胞またはその細胞膜画分が必要である。 形質転換体である ォーファン受容体夕ンパク質発現細胞は安定発現株でも一過性発現株でも構わな い。  To perform screening by measuring cell stimulating activity, cells expressing the appropriate orphan receptor protein or their cell membrane fractions and cells not expressing the orphan receptor protein or their cell membrane fractions are used. is necessary. The transformant orphan receptor protein-expressing cell may be a stable expression cell or a transient expression cell.
また、 細胞刺激活性を測定するためには、 微弱なァゴニスト活性も検出する ことができるように、 細胞の特異的な反応を識別できる範囲で可能な限り高濃 度で細胞刺激活性を測定することが好ましい。 この場合の高濃度とは、 通常 1 0一8 M〜1M、 好ましくは 10— 6M〜10— 2Mのことを言う。 試験化合物 (具体的 には試験化合物(a)) としては、 上記(C) に記載のものと同様のものなどがあげ られる。 In order to measure the cell stimulating activity, the cell stimulating activity should be measured at the highest concentration as far as the specific reaction of the cell can be identified so that the weak agonist activity can be detected. Is preferred. The high concentration of this case, usually 1 0 one 8 M~1M, preferably refers to 10- 6 M~10- 2 M. Examples of the test compound (specifically, test compound (a)) include those similar to those described in the above (C).
上記の細胞刺激活性測定系について、 以下にさらに具体的に記載する。  The above-mentioned cell stimulating activity measuring system will be described more specifically below.
なお、 以下 (1) 〜 (7) の説明中 「試験化合物」 は具体的には 「試験化合物 (a)」 を示す。  In the following description of (1) to (7), “test compound” specifically indicates “test compound (a)”.
(1) 細胞外 pH (acidification rate) の変動を測定することを特徴とする細 胞刺激活性測定系  (1) Cell stimulation activity measurement system characterized by measuring the fluctuation of extracellular pH (acidification rate)
ォーファン受容体タンパク質発現細胞またはその細胞膜画分がァゴニスト活性 を有する試験化合物に反応して変化する細胞外の pHをサイトセンサー (Cy to s en s o r) 装置 (モレキュラーデバイス社など) を使用して測定することに よって、 細胞刺激活性を測定することができる。 サイトセンサー装置を利用した 、 細胞外 p H変化の測定をすることによる試験化合物の細胞刺激活性を測定する 具体的な方法を以下に記す。 The extracellular pH at which orphan receptor protein-expressing cells or their cell membrane fractions change in response to a test compound having agonist activity is measured using a cytosensor (Cy to sensor) device (Molecular Devices, etc.) To do Therefore, the cell stimulating activity can be measured. A specific method for measuring the cell stimulating activity of a test compound by measuring the extracellular pH change using a site sensor device is described below.
① ォーファン受容体タンパク質発現細胞またはその細胞膜画分を約 2時間〜約 4 8時間、 好ましくは約 5時間〜約 2 4時間 (例えば、 サイトセンサー装置用の カプセル内などで) 培養した後、 培地の p Hを安定させる。  ① After culturing the orphan receptor protein-expressing cell or its cell membrane fraction for about 2 hours to about 48 hours, preferably for about 5 hours to about 24 hours (for example, in a capsule for a site sensor device), the culture medium Stabilize pH.
培地の p Hが安定するまでは、 例えば、 0. ゥシ血清アルブミンを含む RPMI 1640培地 (モレキュラーデバイス社製) などを灌流させるのが好ましい。 Until the pH of the medium is stabilized, it is preferable to perfuse, for example, an RPMI 1640 medium (manufactured by Molecular Devices) containing 0.1 serum albumin.
② 次に、 試験化合物をォーファン受容体タンパク質発現細胞またはその細胞膜 画分に発現したォーファン受容体夕ンパク質に試験化合物を接触させる。 (2) Next, the test compound is brought into contact with the orphan receptor protein expressed in orphan receptor protein-expressing cells or its cell membrane fraction.
接触させる方法としては、 試験化合物を含む培地をォーファン受容体夕ンパク 質発現細胞またはその細胞膜画分に灌流する方法が一般的である。  As a method of contacting, a method of perfusing a medium containing a test compound into orphan receptor protein-expressing cells or a cell membrane fraction thereof is generally used.
③ 次に、 試験化合物を含む培地をォ一ファン受容体タンパク質発現細胞または その細胞膜画分に発現したォ一ファン受容体タンパク質に接触させることによつ て生じる培地の PH変化を測定する。  (3) Next, measure the pH change of the medium caused by contacting the medium containing the test compound with the orphan receptor protein-expressing cells or the orphan receptor protein expressed in the cell membrane fraction thereof.
④ 上記①〜③の方法をォーファン受容体夕ンパク質を発現しない細胞またはそ の細胞膜画分を用いて実施する。  (4) Perform steps (1) to (3) above using cells that do not express orphan receptor protein or their cell membrane fractions.
( 2 ) GT Pァ Sの放射活性を測定することを特徴とする細胞刺激活性測定系 ォーファン受容体タンパク質発現細胞がァゴニスト活性を有する試験化合物に よって刺激されると細胞内の Gタンパクが活性化されて G T Pが結合する。 この 現象はォーファン受容体タンパク質発現細胞の膜画分においても観察される。 通 常、 G T Pは加水分解されて G D Pへと変化するが、 このとき反応液中に G T P ァ Sを添加しておくと G T P T Sは G T Pと同様に Gタンパクに結合するが、 カロ 水分解されずに Gタンパクを含む細胞膜に結合した状態が維持される。 標識した GT P r Sを用いると細胞膜に残存した放射活性を測定することによって試験化 合物の受容体発現細胞刺激活性を測定することができる。 この反応を利用して試 験化合物のォーファン受容体夕ンパク質発現細胞およびォーファン受容体夕ンパ ク質を発現しない細胞に対する刺激活性を測定'比較することができる。 この方 法は、 ォーファン受容体夕ンパク質およびォーファン受容体夕ンパク質を発現し ない細胞を含む膜画分を用いるアツセィ法であるが、 細胞刺激活性を測定するも のであり、 本測定法においてォーファン受容体夕ンパク質膜画分への GT P r S 結合促進活性を示し、 ォ一ファン受容体夕ンパク質を発現しない膜画分への G T P r S結合促進活性を示さない物質はリガンド候補物質である。 (2) Cell stimulating activity measurement system characterized by measuring the radioactivity of GT P aS Intracellular G protein is activated when orphan receptor protein-expressing cells are stimulated by a test compound having agonist activity GTP binds. This phenomenon is also observed in the membrane fraction of cells expressing orphan receptor protein. Normally, GTP is hydrolyzed and changes to GDP.At this time, if GTPaS is added to the reaction solution, GTPTS binds to G protein like GTP, but does not undergo carohydrolysis. The state of binding to the cell membrane containing the G protein is maintained. When labeled GT PrS is used, the activity of stimulating the receptor-expressing cells of the test compound can be measured by measuring the radioactivity remaining on the cell membrane. Using this reaction, the stimulating activity of the test compound on orphan receptor protein-expressing cells and cells that do not express orphan receptor protein can be measured and compared. This method expresses the orphan receptor protein and the orphan receptor protein. This assay uses cell membrane fractions containing no cells, but measures cell stimulating activity.In this assay, it shows GT PrS binding promoting activity to orphan receptor protein membrane fraction, Substances that do not show GTP r S binding promoting activity to the membrane fraction that does not express protein receptor protein are candidate ligand substances.
本方法により細胞刺激活性を測定する具体的な方法を以下に記す。  A specific method for measuring the cell stimulating activity according to this method is described below.
① ォーファン受容体タンパク質を含む細胞膜画分を、 膜希釈緩衝液 (例えば、 ① The cell membrane fraction containing the orphan receptor protein is transferred to a membrane dilution buffer (for example,
50 mM Tr i s, 5 mM MgCl 2, 150 mM NaCl, 1 GDP, 0. \% BSA pH 7. 4など) で希 釈する。 Dilute with 50 mM Tris, 5 mM MgCl 2 , 150 mM NaCl, 1 GDP, 0. \% BSA pH 7.4).
希釈率は、 受容体タンパク質の発現量により異なる。  The dilution ratio depends on the expression level of the receptor protein.
② 次に①で得られた液を適当な容器 (例えば、 Fal con2053など) に分注し、 試 験化合物を加え、 さらに終濃度が約 200 pMとなるように [35S] GTP T Sを加える。② Then a suitable container and the resulting liquid by ① (e.g., Fal etc. Con2053) dispensed into a test compound was added, the [35 S] GTP T S as further final concentration of approximately 200 pM Add.
③ 次に、②で得られた培地を約 25°Cで約 1時間保温した後、洗浄用緩衝液(例え ば、 氷冷した 50 mM Tr i s, 5 mM MgCl2, 150 mM NaCl, 0. 1% BSA , 0. 05¾ CHAPS pH 7. 4 1. 5mlなど) を加えて、 (例えば、 ガラス繊維ろ紙 GF/Fなどを用いて) ろ過 する。 ③ Next, after keeping the medium obtained in ① at about 25 ° C for about 1 hour, wash buffer (for example, ice-cold 50 mM Tris, 5 mM MgCl 2 , 150 mM NaCl, 0. Add 1% BSA, 0.05¾ CHAPS pH 7.4 1.5 ml) and filter (eg, using glass fiber filter paper GF / F).
④ ろ紙を保温 (例えば、 約 65°C、 約 30分) して乾燥後、 液体シンチレーシヨン カウンターでろ紙上に残った膜画分に結合した [35S] GTPァ Sの放射活性を測定す る。 ④ filter paper insulation (e.g., about 65 ° C, about 30 minutes) to measure to dried, the radioactivity of [35 S] GTP § S bound to the remaining membrane fraction on filter paper in the liquid scintillation counter You.
⑤ 上記①〜④の方法をォーファン受容体夕ンパク質を含まない細胞膜画分を用 いて実施する。  (4) The above methods (1) to (4) are carried out using a cell membrane fraction containing no orphan receptor protein.
( 3 ) 細胞内 c AM Pの変動を測定することを特徴とする細胞刺激活性測定系 ォーファン受容体タンパク質発現細胞はァゴニスト活性を有する試験化合物の ァゴニス卜刺激によって細胞内 cAMP量が変動する。 この反応を利用して試験化合 物のォーファン受容体夕ンパク質発現細胞に対する細胞刺激活性を測定すること ができる。 ― ォーファン受容体夕ンパク質を発現させた種々の動物細胞の cAMP産生量はマウ ス、ラット、ゥサギ、ャギ、ゥシなどを免疫して得られた抗 cAMP抗体と' 251標識 cAMP (ともに市販品) を使用することによつ TRIASるいは抗 cAMP抗体と標識 cAMPと を組み合わせた他の E I A系でも測定することができる。 また抗 cAMP抗体を p r o tei n Aあるいは抗 CAMP抗体産生に用いた動物の IgGなどに対する抗体などを使用して固 定したシンチラントを含むビーズと ι25Ι標識 cAMPとを使用する SPA法による定量も 可能である (例えば、 アマシャムフアルマシアバイオテク製のキットを使用する(3) Cell stimulating activity measuring system characterized by measuring the fluctuation of intracellular cAMP. In an orphan receptor protein-expressing cell, the intracellular cAMP level fluctuates by agonist stimulation of a test compound having agonist activity. Using this reaction, the cell stimulating activity of the test compound on orphan receptor protein-expressing cells can be measured. - Ofan amount of cAMP produced various animal cells receptor evening to express protein in mice, rats, Usagi, catcher formic, © and anti-cAMP antibody obtained by immunizing such '25 1-labeled cAMP ( Both can be measured by using TRIAS or other EIA system combining anti-cAMP antibody and labeled cAMP. In addition, anti-cAMP antibody Is a quantitative possible by SPA method using a beads and iota 25 iota labeled cAMP containing scintillant was solid boss using such antibodies to such animal IgG used in A or anti-CAMP antibody production (e.g., Amashamufu Use Almatia Biotech kits
) o ) o
本測定系において、 c AMP産生の促進活性を測定することができる。 あるいは、 フオルスコリンなど細胞内 cAMP量を増加させるような物質によって細胞内 cAMP量 を上昇させ、 試験化合物を添加することによって細胞内 cAMP量が変化することを 観察することにより、細胞刺激活性(c AMP産生抑制活性) を測定することができ る。  In this measurement system, the activity of promoting cAMP production can be measured. Alternatively, the intracellular cAMP level is increased by a substance that increases the intracellular cAMP level, such as forskolin, and the change in the intracellular cAMP level is observed by adding a test compound. AMP production inhibitory activity) can be measured.
本方法により細胞刺激活性を測定する具体的な方法を以下に記す。  A specific method for measuring the cell stimulating activity according to this method is described below.
① ォーファン受容体タンパク質を発現させた動物細胞(例えば CH0細胞など)を 24穴プレートに適当な濃度 (例えば 5 X〗04 cel l/we l l ) で播種し、 約 48時間培養 する。 ① Ofan receptor protein animal cells expressing the (e.g. CH0 cells) were plated at the appropriate concentration in 24-well plates (e.g., 5 X〗 0 4 cel l / we ll) , and cultured for about 48 hours.
② 次に、 ォ一ファン受容体タンパク質を発現させた動物細胞を緩衝液 (例えば , 0. 2mM 3—イソブチルーメチルキサンチンと 0. 05% BSAと 20mM HEPESを含むハ ンクスバッファー(PH7. 4) (以下、 0. 2mM 3—イソブチル—メチルキサンチンと 0. 05% BSAと 20mM HEPESを含むハンクスバッファー(pH7. 4)を、 反応用バッファ一 と呼ぶ) ) で洗浄する。  (2) Next, the animal cells expressing the orphan receptor protein are buffered (eg, a Hanks buffer (PH7.4) containing 0.2 mM 3-isobutyl-methylxanthine, 0.05% BSA and 20 mM HEPES). (Hereinafter, Hanks buffer (pH 7.4) containing 0.2 mM 3-isobutyl-methylxanthine, 0.05% BSA and 20 mM HEPES is called a reaction buffer).
③ その後適当量(例えば、 約 0. 5ml) の反応用バッファーを細胞に加えて、 約 3 0分間培養器で保温する。  (3) Then, add an appropriate amount (for example, about 0.5 ml) of the reaction buffer to the cells, and incubate in the incubator for about 30 minutes.
④ 次に、 反応用バッファーを除き、 新たに適当量 (例えば、 約 0. 25ml) の反応 用バッファ一を細胞に加えた後、 適当量 (例えば、 約 0. 25ml) の反応用バッファ 一(c AMP産生抑制活性を測定する場合には、 2 ^ Μフオルスコリンを含むものが好 ましい) に適当量 (例えば、 約 1 ηΜ) の試験化合物を添加したものを細胞に加え 、 約 3 7 °Cで約 2 4分間反応させる。  ④ Next, after removing the reaction buffer, add an appropriate amount (eg, about 0.25 ml) of the reaction buffer to the cells, and then add an appropriate amount (eg, about 0.25 ml) of the reaction buffer (eg, about 0.25 ml). c When the AMP production inhibitory activity is measured, a cell containing 2 ^ {forskolin is preferable) and an appropriate amount (for example, about 1ηΜ) of a test compound are added to the cells, and the mixture is added to the cells. Incubate at 24 ° C for approximately 24 minutes.
⑤ 次に、 適当量 (例えば、 約 I OO I) の 20%過塩素酸を加えて反応を停止させ、 次に氷上で約 1時間置くことにより細胞内 cAMPを抽出する。  ⑤ Next, add an appropriate amount (for example, about 100 I) of 20% perchloric acid to stop the reaction, and then place on ice for about 1 hour to extract intracellular cAMP.
⑥ 抽出液中の cAMP量は、 cAMP EIAキット (アマシ'  C The amount of cAMP in the extract can be determined using the cAMP EIA kit
) などを用いて測定する。 ⑦ 上記①〜⑥の方法をォーファン受容体タンパク質を発現しない細胞を用いて 実施する。 ). 。 Perform the above methods ① to ⑥ using cells that do not express the orphan receptor protein.
( 4 ) CRE—レポ一ター遺伝子を導入することを特徴とする細胞刺激活性測定系 CRE (cAMP response el ement) を含む D NAを、 ピツカジーン べィシックべク ターまたはピツカジーン ェンハンサ一ベクター (東洋インキ製造 (株) ) などの ルシフェラーゼ遺伝子上流のマルチクローニングサイトに挿入し、 これを CRE— レポーター遺伝子ベクターとする。  (4) CRE—DNA that contains a cell stimulating activity measurement system CRE (cAMP response element) characterized by introducing a reporter gene, can be used to prepare a Pitka Gene Basic Vector or a Pitka Gene Enhancer Vector (Toyo Ink Manufacturing) And insert it into the multiple cloning site upstream of the luciferase gene, and use this as the CRE-reporter gene vector.
CRE-レポ一夕一遺伝子べクタ一をトランスフエクションした細胞において、 cAMP上昇を伴う刺激は、 CREを介したルシフェラーゼ遺伝子発現とそれに引き続. くルシフェラーゼタンパク質の産生を誘導する。 つまり、 ルシフェラーゼ活性を 測定することにより、 CRE—レポ一夕一遺伝子べクタ一導入細胞内の c AMP量の変 動を検出することができる。  In cells transfected with the CRE-repo overnight gene, stimulation with elevated cAMP induces CRE-mediated luciferase gene expression and subsequent luciferase protein production. In other words, by measuring the luciferase activity, it is possible to detect a change in the amount of cAMP in the CRE-repo overnight-transfected cells.
CRE-レポ一ター遺伝子べクタ一をォーファン受容体夕ンパク質発現細胞にト ランスフエクションした細胞を利用して、 細胞刺激活性を測定することができる 。  Cell stimulating activity can be measured using cells in which the CRE-reporter gene vector has been transfected into orphan receptor protein-expressing cells.
本方法により細胞刺激活性を測定する具体的な方法を以下に記す。  A specific method for measuring the cell stimulating activity according to this method is described below.
① CRE—レポ一夕一遺伝子を導入したォ一ファン受容体タンパク質発現細胞を 24穴プレートに適当な濃度 (例えば、 5 X 103 cel l/wel l ) で播種し、 約 48時間 培養する。 (1) Inoculate the CRE-repo overnight gene-introduced orphan receptor protein-expressing cells into a 24-well plate at an appropriate concentration (for example, 5 × 10 3 cel l / wel l) and culture for about 48 hours.
② 細胞を適当量 (例えば、 0. 2mM) の緩衝液 (例えば、 3—イソプチルーメチル キサンチンと 0. 05% BSAと 20mM HEPESを含むハンクスバッファー(pH7. 4) 以下、 0. 2mM 3 ίソブチルーメチルキサンチンと 0. 05% BSAと 20mM HEPESを含むハン クスバッファー(PH7. 4)を、 反応用バッファーと呼ぶ) ) で洗浄する。 (2) Transfer cells to an appropriate volume (eg, 0.2 mM) in a buffer (eg, Hanks buffer (pH 7.4) containing 3-isobutyl-methylxanthine, 0.05% BSA, and 20 mM HEPES) at a concentration of 0.2 mM or less. Wash with Hanks' buffer (PH7.4) containing sobutyl-methylxanthine, 0.05% BSA and 20 mM HEPES).
③ その後、 適当量 (例えば、 0. 5ml ) の反応用バッファーを細胞に加えて約 3 0 分間培養器で保温する。  ③ Then, add an appropriate amount (for example, 0.5 ml) of the reaction buffer to the cells, and incubate in the incubator for about 30 minutes.
④ 次に、 反応用バッファ一を除き、 新たに適当量 (例えば、 0. 25ml) の反応用 バッファーを細胞に加えた後、 適当量 (例えば、 1 nM) の試験化合物と適当量 ( 例えば、 0. 25ml) の反応用バッファー (c AMP産生抑制活性を測定する場合には、 フオルスコリンを含むものが好ましい) を細胞に加え、 約 3 7 °Cで約 2 4時 間反応させる。 ④ Next, except for the reaction buffer, add an appropriate amount (eg, 0.25 ml) of the reaction buffer to the cells, and add an appropriate amount (eg, 1 nM) of the test compound and an appropriate amount (eg, 0.25 ml) of the reaction buffer (preferably containing forskolin when measuring cAMP production inhibitory activity) to the cells, and at about 37 ° C for about 24 hours. To react for a while.
⑤ 細胞をピツカジーン用細胞溶解剤 (東洋インキ製造 (株) ) などで溶かし、 溶解液に発光基質 (東洋インキ製造 (株) ) を添加する。  溶 Lyse the cells with a cell lysing agent for Pitka Gene (Toyo Ink Mfg. Co., Ltd.) and add the luminescent substrate (Toyo Ink Mfg. Co., Ltd.) to the lysate.
⑥ ルシフェラ一ゼによる発光は、 ルミノメーター、 液体シンチレーシヨンカウ ンターまたはトップカウンターなどにより測定する。  発 光 Luminescence from luciferase is measured with a luminometer, liquid scintillation counter or top counter.
⑦ 上記①〜⑥の方法をォーファン受容体夕ンパク質を発現しない細胞またはそ の細胞膜画分を用いて実施する。  (4) The above methods (1) to (4) are carried out using cells that do not express orphan receptor protein or cell membrane fractions thereof.
レポ一夕一遺伝子として、 ルシフェラーゼ以外に例えばアルカリフォスファタ ーゼ、 クロラムフエ二コール ァセチルトランスフェラーゼあるいは 0—ガラク トシダ一ゼを用いることもできる。 これらのレポ一夕一遺伝子の遺伝子産物の酵 素活性は以下のように市販の測定キットを用いて容易に測定することができる。 即ち、 アルカリフォスファタ一ゼ活性は、 例えば和光純薬製 Lumi- Phos 530によつ て、 クロラムフエ二コール ァセチルトランスフェラーゼ (chloramphenicol acetyltransferase) 活性は、 例えば和光純薬製 FAST CAT chrola即 henicol Acetyltransferase Assay KiTによって、 ;3—ガラクトシダーゼ活性は、 例えば禾ロ 光純薬製 Aurora Ga卜 XEによって測定することができる。  As the repo overnight gene, other than luciferase, for example, alkaline phosphatase, chloramphenicol acetyltransferase or 0-galactosidase can also be used. The enzymatic activity of these repo overnight gene products can be easily measured using a commercially available assay kit as follows. That is, alkaline phosphatase activity can be measured, for example, by Lumi-Phos 530 manufactured by Wako Pure Chemical, and chloramphenicol acetyltransferase activity can be measured, for example, by FAST CAT chrola manufactured by Wako Pure Chemical immediately henicol Acetyltransferase Assay KiT ; 3-galactosidase activity can be measured, for example, by Aurora Gat XE (manufactured by Hako Pure Chemical Industries, Ltd.).
(5) ァラキドン酸遊離を測定することを特徴とする細胞刺激活性測定系 ォーファン受容体夕ンパク質発現細胞はァゴニストによる刺激の結果ァラキド ン酸代謝物を細胞外に放出する。 あらかじめ、 放射活性を有するァラキドン酸を 細胞に取り込ませておくことによって、 この活性を細胞外に放出された放射活性 を測定することによって細胞刺激活性を測定することができる。 このとき、 試験 化合物を添加して、 試験化合物のァラキドン酸代謝物放出活性を調べることによ り、 細胞刺激活性を測定することができる。  (5) Cell stimulating activity measuring system characterized by measuring arachidonic acid release Orphan receptor protein-expressing cells release arachidonic acid metabolites extracellularly as a result of stimulation by agonist. By introducing arachidonic acid having radioactivity into cells in advance, the cell stimulating activity can be measured by measuring the radioactivity released outside the cells. At this time, the cell stimulating activity can be measured by adding the test compound and examining the arachidonic acid metabolite releasing activity of the test compound.
本方法により細胞刺激活性を測定する具体的な方法を以下に記す。  A specific method for measuring the cell stimulating activity according to this method is described below.
① ォ一ファン受容体タンパク質発現細胞 (例えば、 ォーファン受容体タンパク 質発現 CH0細胞など) を 24穴プレートに適当な濃度 (例えば、 5 X 104 cell/well ) で播種し、 24時間培養する。 (1) Inoculate orphan receptor protein-expressing cells (for example, orphan receptor protein-expressing CH0 cells) in a 24-well plate at an appropriate concentration (for example, 5 × 10 4 cells / well) and culture for 24 hours.
② 培養後、 [¾]ァラキドン酸を適当量 (例えば、 0.25 Ci/well) となるよう 添加する。 [¾]ァラキドン酸添加約 16時間後、 細胞を洗浄液 (例えば、 0.05 BSA T/JP00/05639 ② After culturing, add [¾] arachidonic acid to an appropriate amount (eg, 0.25 Ci / well). [¾] Approximately 16 hours after the addition of arachidonic acid, the cells are washed (eg, 0.05 BSA). T / JP00 / 05639
21 twenty one
と 20mM HEPESを含むハンクスバッファー(ρΗ7· 4) ) で洗浄し、 各 wel lに緩衝液 (例 えば、 0. 05% BSAと 20mM HEPESを含むハンクスバッファー(PH7. 4):以降、 0. 05¾ BSA と 20D1M HEPESを含むハンクスバッファー(PH7. 4)を反応用バッファーと呼ぶ。) に 溶解した試験化合物を添加する。 Wash with a Hanks buffer containing 20 mM HEPES (pΗ7.4)) and add a buffer (eg, Hanks buffer (PH7.4) containing 0.05% BSA and 20 mM HEPES: PH 7.4). Add the test compound dissolved in Hanks buffer (PH7.4) containing BSA and 20D1M HEPES (referred to as reaction buffer).
③ 約 37 で約 60分間インキュベートした後に、 反応用バッファーを適当量 (例 えば、 400 l) シンチレ一夕一に加え、 反応液中に遊離した [¾]ァラキドン酸代 謝物の量をシンチレ一シヨンカウン夕一により測定する。 (3) After incubating at about 37 for about 60 minutes, add an appropriate amount of reaction buffer (eg, 400 l) to Scintille overnight, and determine the amount of [¾] arachidonic acid metabolite released in the reaction mixture. It is measured by Yuichi Shiyonukaun.
④ 上記①〜③の方法をォ一ファン受容体夕ンパク質を発現しない細胞を用いて 実施する。  (4) Perform steps (1) to (3) above using cells that do not express the protein receptor receptor.
( 6 ) 細胞内 Ca2 +の遊離を測定することを特徴とする細胞刺激活性測定系 ォーファン受容体タンパク質発現細胞をァゴニスト活性を有する試験化合物に よつて刺激することによつて細胞内の Ca2 +濃度が上昇する。 これを利用すること によって細胞刺激活性を測定することができる。 (6) Ca 2 in by connexion cells to Yotsute stimulate cell stimulating activity measurement system Ofan receptor protein-expressing cells, characterized by measuring the release of intracellular Ca 2 + in the test compound having a Agonisuto activity + Increases concentration. By utilizing this, cell stimulating activity can be measured.
本方法により細胞刺激活性を測定する具体的な方法を以下に記す。  A specific method for measuring the cell stimulating activity according to this method is described below.
① ォーファン受容体タンパク質発現細胞を、 滅菌した顕微鏡用カバーグラス上 に播き、 約 2日後、 培養液を適当量 (例えば、 4 mM) の Fura- 2 AM (同仁化学研 究所) を縣濁した HBSSに置換し、 室温で約 2時間 30分おく。 (1) The orphan receptor protein-expressing cells were seeded on a sterile microscope cover glass. After about 2 days, the culture solution was suspended in an appropriate amount (for example, 4 mM) of Fura-2 AM (Dojindo Laboratories). Replace with HBSS and leave at room temperature for about 2 hours and 30 minutes.
② HBSSで洗浄した後、 キュベットにカバ一グラスをセットし、 蛍光測定器で、 試験化合物を加えたときの励起波長 340nm及び 380nmでの 505nmの蛍光強度の比の 上昇を測定する。 (2) After washing with HBSS, set a glass cover on the cuvette, and measure the increase in the ratio of the fluorescence intensity at 505 nm at excitation wavelengths of 340 nm and 380 nm when the test compound is added using a fluorimeter.
また、 以下のように FLIPR (モレキュラーデバイス社製) を使うこともできる。 すなわち、 ① 細胞懸濁液に Fluo- 3 AM (同仁化学研究所製) を添加し、 細胞に取 り込ませた後、 上清を遠心により数度洗浄後、 9 6穴プレートに細胞を播く。 ② FLIPR装置にセットし、 Fura- 2の場合と同様に試験化合物を加え、試験化合物 の添加によって観測される蛍光強度が変化することを測定する。  You can also use FLIPR (Molecular Devices) as follows. (1) Add Fluo-3 AM (manufactured by Dojindo Laboratories) to the cell suspension, allow the cells to take up, wash the supernatant several times by centrifugation, and seed the cells on a 96-well plate. . (2) Set on the FLIPR device, add the test compound as in the case of Fura-2, and measure the change in the observed fluorescence intensity due to the addition of the test compound.
ォーファン受容体タンパク質発現細胞に aequor i nなどのように細胞内 Caイオン の上昇によって発光するようなタンパクの遺伝子を共発現させておき、 細胞内 Ca ィオン濃度の上昇によつて aequor i nが Ca結合型となり発光することを利用して、 試験化合物の添加によって観測される発光強度が変化することを測定することに より、 細胞刺激活性を測定することも可能である。 この場合の方法は、 蛍光物質 を取り込ませないこと以外は上記と同様である。 The orphan receptor protein-expressing cells are co-expressed with a gene for a protein such as aequor in, which emits light due to an increase in intracellular Ca ions, and aequor in is converted to Ca-binding by increasing intracellular Ca ion concentration. By measuring the change in luminescence intensity observed with the addition of a test compound, Thus, the cell stimulating activity can be measured. The method in this case is the same as above except that the fluorescent substance is not incorporated.
また、 細胞内 Caイオン濃度の変動を測定し易くするために、 キメラ Gタンパク 質などの改変型 Gタンパク質を同時に発現させた細胞を使用することもできる。 該キメラ Gタンパク質とは、 G i、 G o、 G sなど Ca2 +をシグナル伝達系として 使用しない Gタンパク質を G 4、 などの Ca2 +をシグナル伝達系として使用す る Gタンパク質の機能ドメインで置換した Gタンパク質のことをいう。 該キメラ 夕ンパク質を使用することによって、 あらゆる Gタンパク質のシグナル伝達系を Ca2 +の変動でモニターすることができる。 In addition, in order to facilitate the measurement of the change in intracellular Ca ion concentration, cells that simultaneously express a modified G protein such as a chimeric G protein can be used. The chimeric G protein is a functional domain of a G protein that uses Ca 2+ as a signal transduction system, such as G 4 , a G protein that does not use Ca 2+ as a signal transduction system, such as Gi, Go, and Gs. Refers to the G protein replaced by. By using the chimeric protein, the signaling system of any G protein can be monitored by changes in Ca 2+ .
③ 上記①〜②の方法をォーファン受容体タンパク質を発現しない細胞を用いて 実施する。 (3) Perform steps (1) to (4) above using cells that do not express the orphan receptor protein.
( 7 ) イノシトールリン酸産生を測定することを特徴とする細胞刺激活性測定系 ォ一ファン受容体タンパク質発現細胞にァゴニスト活性を有する試験化合物を 添加すると、 細胞内イノシトール三リン酸濃度が上昇する。 試験化合物によって 生じるォーファン受容体タンパク質発現細胞におけるこの反応を観察することに より細胞刺激活性の測定を行なうことができる。  (7) Cell stimulating activity measuring system characterized by measuring inositol phosphate production When a test compound having agonist activity is added to a cell expressing a receptor receptor protein, the intracellular inositol triphosphate concentration increases. By observing this response in orphan receptor protein expressing cells produced by the test compound, the cell stimulating activity can be measured.
本方法により細胞刺激活性を測定する具体的な方法を以下に記す。  A specific method for measuring the cell stimulating activity according to this method is described below.
① 2 4穴プレートに播いて 1日目のォーファン受容体タンパク質発現細胞に myo- [2-¾] inos i tol (2. 5マイクロ Ci/we l 1)を添加した培地中で' 1日培養したォ 一ファン受容体タンパク質発現細胞を、よく洗浄後、試験化合物を添加し 10%過塩 素酸を加え反応を止める。  (1) Seed a 24-well plate and cultured for 1 day in a medium containing myo- [2-¾] inositol (2.5 micro Ci / wel 1) added to the orphan receptor protein-expressing cells on day 1 After washing well the cells expressing the receptor protein, add the test compound and add 10% perchloric acid to stop the reaction.
② 適当量 (例えば、 1. 5 M) の K0H, 適当量 (例えば、 60幽) の HEPES溶液で中 和し、 AGlx8樹脂 (Bio-Rad)を詰めたカラムに通し、 洗浄した後、 適当量(例えば 、 1 M ) HC00NH4 および適当量 (例えば、 0. 1M) HC00Hで溶出した放射活性を 液体シンチレーシヨンカウン夕一で測定する。 ② Neutralize with an appropriate amount (eg, 1.5 M) of K0H and an appropriate amount (eg, 60 Y) of HEPES solution, pass through a column packed with AGlx8 resin (Bio-Rad), wash, and (e.g., 1 M) HC00NH 4 and an appropriate amount (e.g., 0. 1M) eluted radioactivity HC00H measured by liquid scintillation counter evening one.
③ 上記①〜②の方法をォ一ファン受容体タンパク質を発現しない細胞を用いて 実施する。  (3) Perform steps (1) to (4) above using cells that do not express the receptor protein.
( E ) ァゴニスト活性を有する (試験) 化合物について:  (E) For (test) compounds having agonist activity:
本明細書において、 「ァゴ二スト活性を有する (試験) 化合物」 とは、 上記 ( C) に記載の試験化合物 (例えば天然 '非天然のペプチド、 天然 '非天然のタン パク質、 天然 ·非天然の非ペプチド性化合物、 合成化合物、 天然,非天然の発酵 生産物など) または試験化合物 (a)のうち、 上記 (D) に記載の細胞刺激活性測定 系のいずれか (好ましくは、 細胞外 pH (acidification rate) の変動を測定す ることを特徴とする細胞刺激活性測定系など) によりォーファン受容体タンパク 質発現細胞またはその細胞膜画分を用いた場合に細胞刺激活性が認められ、 ォー ファン受容体夕ンパク質を発現しない細胞またはその細胞膜画分を用いた場合に は細胞刺激活性が認められない試験化合物 (例えば天然,非天然のペプチド、 天 然 ·非天然のタンパク質、 天然 ·非天然の非ペプチド性化合物、 合成化合物、 天 然 ·非天然の発酵生産物など) のことをいう。 As used herein, the “(test) compound having agonist activity” refers to the above ( Test compounds described in C) (eg, natural 'non-natural peptides, natural' non-natural proteins, natural and non-natural non-peptidic compounds, synthetic compounds, natural and non-natural fermentation products, etc.) or test Among the compounds (a), any one of the cell stimulating activity measuring systems described in the above (D) (preferably, a cell stimulating activity measuring system characterized by measuring fluctuation of extracellular pH (acidification rate), etc.) ), Cell stimulating activity was observed when using orphan receptor protein-expressing cells or their cell membrane fractions, and cells that did not express orphan receptor protein or cell membrane fractions when using orphan receptor proteins were used. Test compounds with no stimulatory activity (eg, natural and non-natural peptides, natural and non-natural proteins, natural and non-natural non-peptidic compounds, synthetic compounds, natural and non-natural sources) It refers to such products).
より具体的には、 例えば、 ォーファン受容体タンパク質が FM— 3 (Tan, C. P. et al. , Genomics 52, 223-229, 1998など) の場合のァゴニスト活性を有する ( 試験) 化合物としては、 C末端に R— X— NH2構造 (Xは G l y、 A l a、 V a 1 , L e u, I l e、 S e r、 Th r、 Cy s、 Me t;、 G l u、 As p、 L y s、 Ar g、 H i s, Ph e、 Ty r、 T r p、 P r o, As n、 G i nなど の任意のアミノ酸残基を示す。 ) を有するペプチド、 より具体的には、 配列番号 : 2、 6および 20で表されるアミノ酸配列を含有するペプチドなどがあげられ る。 これらァゴニスト活性を有する (試験) 化合物であるペプチド、 タンパク質 、 化合物または発酵生産物も塩を形成していてもよく、 これらの塩としては、 生 理学的に許容される塩基 (例えばアルカリ金属など) や酸 (有機酸、 無機酸) と の塩があげられるが、 とりわけ生理学的に許容される酸付加塩などが好ましい。 このような塩としては例えば無機酸 (例えば、 塩酸、 リン酸、 臭化水素酸、 硫酸 ) との塩、 あるいは有機酸 (例えば、 酢酸、 ギ酸、 プロピオン酸、 フマル酸、 マ レイン酸、 コハク酸、 酒石酸、 クェン酸、 リンゴ酸、 シユウ酸、 安息香酸、 メタ ンスルホン酸、 ベンゼンスルホン酸) との塩などがあげられる。 More specifically, for example, a compound having an agonist activity when the orphan receptor protein is FM-3 (Tan, CP et al., Genomics 52, 223-229, 1998, etc.) is a C-terminal In the structure of R—X—NH 2 (X is Gly, Ala, Va1, Leu, Ile, Ser, Thr, Cys, Met ;, Glu, Asp, Lys, Ar g, His, Phe, Tyr, Trp, Pro, Asn, Gin, etc.), and more specifically, a peptide having SEQ ID NOs: 2, 6, and A peptide containing the amino acid sequence represented by 20; Peptides, proteins, compounds or fermentation products which are (test) compounds having these agonist activities may also form salts, and these salts may include physiologically acceptable bases (eg, alkali metals). And salts with an acid (organic acid or inorganic acid), and especially preferred are physiologically acceptable acid addition salts. Such salts include, for example, salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid) or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid) , Tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid).
上記 (D) に記載の細胞刺激活性測定系において、 試験化合物 (または試験化 合物 (a))がァゴニスト活性を有する (試験)化合物であるか否かの判断基準の具 体例を以下に示すが、 下記の判断基準はあくまでも例示であって、 試験化合物 ( または試験化合物(a)) がァゴニスト活性を有するか否かが下記の基準によって 限定的に解釈されるものではない。 In the cell stimulating activity measurement system described in (D) above, specific examples of criteria for determining whether a test compound (or test compound (a)) is a (test) compound having agonist activity are shown below. However, the following criteria are merely examples, and whether the test compound (or test compound (a)) has agonist activity is determined by the following criteria. It is not to be construed as limiting.
上記 (D) — ( 1 ) に記載の細胞外 p H (ac i di f i cat ion rate) の変動を測定 することを特徴とする細胞刺激活性測定系を用いた場合には、 試験化合物を細胞 に接触させる前の細胞外 p Hを 100%とした場合に、 試験化合物を細胞に接触さ せたときの反応のピーク時の細胞外 p Hが 105 %を越えるもので、 ォーファン受 容体タンパク質を発現しない細胞またはその細胞膜画分を用いた場合には細胞刺 激活性が認められない試験化合物についてはァゴニスト活性を有する (試験) 化 合物として選定する。  When a cell stimulating activity measurement system characterized by measuring the fluctuation of extracellular pH (acidifi cat ion rate) described in (D) — (1) above is used, the test compound is If the extracellular pH at the peak of the reaction when the test compound is brought into contact with the cells exceeds 105%, assuming that the extracellular pH before contacting with the cells is 100%, the orphan receptor protein A test compound that does not show cell stimulating activity when cells that do not express it or its cell membrane fraction is used is selected as a (test) compound having agonist activity.
上記 (D) - ( 2 ) に記載の標識した G T Pァ Sの放射活性を測定することを 特徴とする細胞刺激活性測定系を用いた場合には、 試験化合物を加えなかった実 験区の放射活性を 100%とし、 試験化合物を加えた実験区の放射活性が 105 %を越 えるもので、 ォーファン受容体タンパク質を発現しない細胞またはその細胞膜画 分を用いた場合には細胞刺激活性が認められない試験化合物についてはァゴニス ト活性を有する (試験) 化合物として選定する。  When a cell stimulating activity measuring system characterized by measuring the radioactivity of the labeled GTPaS described in (D)-(2) above was used, the radioactivity of the test group to which no test compound was added was measured. Assuming that the activity is 100%, the radioactivity of the experimental group containing the test compound exceeds 105%, and cell stimulating activity is observed when cells that do not express the orphan receptor protein or their cell membrane fractions are used. Test compounds that do not have any agonist activity are selected as (test) compounds.
上記 (D) — ( 3 ) に記載の細胞内 c AM Pの変動を測定することを特徴とす る細胞刺激活性測定系を用いた場合には、 c AMPの産生抑制作用を指標にする場 合には、 フォルスコリン刺激によって産生された cAMP量を 100 とし、 試験化合物 の添加によって産生された cAMP量が 95%以下であるもので、 ォーファン受容体夕 ンパク質を発現しない細胞またはその細胞膜画分を用いた場合には細胞刺激活性 が認められない試験化合物については、 ァゴニスト活性を有する (試験) 化合物 として選定する。一方、 c AMPの産生促進作用を指標にする場合には、 試験化合物 を添加しない場合の cAMP量を 100¾とし、 試験化合物の添加によって産生された cAMP量が 105 %以上であるもので、 ォーファン受容体タンパク質を発現しない細 胞またはその細胞膜画分を用いた場合には細胞刺激活性が認められない試験化合 物については、 ァゴニスト活性を有する (試験) 化合物として選定する。  When a cell stimulating activity measurement system characterized by measuring the intracellular cAMP fluctuation described in (D) to (3) above is used, a method using the cAMP production inhibitory effect as an index is used. In this case, the amount of cAMP produced by forskolin stimulation is assumed to be 100, the amount of cAMP produced by the addition of the test compound is 95% or less, and cells that do not express orphan receptor protein or their cell membrane fractions The test compound that does not show cell stimulating activity when using the same is selected as a (test) compound having agonist activity. On the other hand, when the cAMP production promoting effect is used as an index, the amount of cAMP when the test compound is not added is 100%, and the amount of cAMP produced by the addition of the test compound is 105% or more. A test compound that does not show cell stimulating activity when using cells that do not express a somatic protein or cell membrane fraction thereof is selected as a (test) compound having agonist activity.
上記 (D) — (4 ) に記載の CRE—レポ一夕一遺伝子を導入することを特徴とす る細胞刺激活性測定系を用いた場合、 c AMPの産生抑制作用を指標にする場合に は、 フオルスコリン刺激によって生じた発光量を 100%とし、試験化合物の添加に よって生じた発光量が 95%以下であるもので、 ォーファン受容体タンパク質を発 現しない細胞またはその細胞膜画分を用いた場合には細胞刺激活性が認められな い試験化合物については、 ァゴニスト活性を有する (試験) 化合物として選定す る。 一方、 C AMPの産生促進作用を指標にする場合には、 試験化合物を添加しない 場合の発光量を 100%とし、 試験化合物の添加によって産生された発光量が 105 % 以上であるもので、 ォ一ファン受容体タンパク質を発現しない細胞またはその細 胞膜画分を用いた場合には細胞刺激活性が認められない試験化合物については、 ァゴニスト活性を有する (試験) 化合物として選定する。 When using the cell stimulating activity measuring system characterized by introducing the CRE-repo overnight gene described in (D)-(4) above, when the cAMP production inhibitory effect is used as an index, The amount of luminescence generated by forskolin stimulation is 100%, and the luminescence generated by the addition of the test compound is 95% or less. A test compound that does not show cell stimulating activity when cells that do not appear or its cell membrane fraction is used is selected as a (test) compound having agonist activity. On the other hand, when the activity of promoting the production of CAMP is used as an index, the amount of luminescence without the addition of the test compound is 100%, and the amount of luminescence produced by the addition of the test compound is 105% or more. A test compound that does not show cell stimulating activity when using cells that do not express the monofan receptor protein or a cell membrane fraction thereof is selected as a (test) compound having agonist activity.
上記 (D) — ( 5 ) に記載のァラキドン酸遊離を測定することを特徴とする細 胞刺激活性測定系を用いた場合には、 試験化合物非添加反応バッファーによる培 地中の [¾]ァラキドン酸代謝物の量を 100%とし、 試験化合物を添加したときの培 地中の [ ]ァラキドン酸代謝物の量が 105 以上であるもので、 ォーファン受容体 タンパク質を発現しない細胞またはその細胞膜画分を用いた場合には細胞刺激活 性が認められない試験化合物については、 ァゴニスト活性を有する (試験) 化合 物として選定する。  When the cell stimulating activity measurement system characterized in that arachidonic acid release described in (D)-(5) above is used, [¾] arachidone in the medium with the reaction buffer containing no test compound was used. A cell that does not express the orphan receptor protein or its cell membrane fraction, with the amount of [] arachidonic acid metabolite in the culture medium being 105 or more when the test compound is added, with the amount of the acid metabolite being 100%. If the test compound does not show cell stimulating activity when used, select it as a (test) compound having agonist activity.
上記 (D) — ( 6 ) に記載の細胞内 Ca2 +の遊離を測定することを特徴とする細 胞刺激活性測定系を用いた場合には、 試験化合物を添加しない場合に観測される 蛍光強度を 100 %とし、 試験化合物を添加したときの蛍光強度が 105%以上である もので、 ォーファン受容体タンパク質を発現しない細胞またはその細胞膜画分を 用いた場合には細胞刺激活性が認められない試験化合物については、 ァゴニスト 活性を有する (試験) 化合物として選定する。 When a cell stimulating activity measuring system characterized by measuring intracellular Ca 2+ release described in (D) to (6) above is used, the fluorescence observed when no test compound is added is observed. The fluorescence intensity when the test compound is added is 105% or more with the intensity set to 100%, and no cell stimulating activity is observed when cells that do not express the orphan receptor protein or their cell membrane fractions are used. The test compound is selected as a (test) compound having agonist activity.
上記 (D) - ( 7 ) に記載のイノシトールリン酸産生を測定することを特徴と する細胞刺激活性測定系を用いた場合には、 試験化合物非添加反応バッファーに よる培地中の放射活性を 100%とし、 試験化合物を添加したときの培地中の放射 活性が 105%以上であるもので、 ォーファン受容体タンパク質を発現しない細胞ま たはその細胞膜画分を用いた場合には細胞刺激活性が認められない試験化合物に ついては、 ァゴニスト活性を有する (試験) 化合物として選定する。  When a cell stimulating activity measuring system characterized by measuring inositol phosphate production described in (D)-(7) above was used, the radioactivity in the medium with the test compound-free reaction buffer was reduced to 100%. %, The radioactivity in the medium when the test compound was added was 105% or more, and cell stimulating activity was observed when cells that did not express the orphan receptor protein or their cell membrane fractions were used. Test compounds that cannot be tested are selected as (test) compounds having agonist activity.
(F) ァゴニスト活性を有する (試験) 化合物の構造比較について:  (F) Structure comparison of (test) compounds having agonist activity:
上記 (E) により、 ァゴニスト活性を有する (試験) 化合物を選定した後、 各 ァゴニスト活性を有する (試験) 化合物の構造を比較することにより、 ァゴニス ト活性を有する (試験) 化合物の共通構造を推定 (または決定) し、 該共通構造 を有するリガンド候補物質を作成または取得する。 After selecting (test) compounds having agonist activity according to the above (E), comparing the structures of (test) compounds having each agonist activity, (Test) Estimate (or determine) the common structure of a compound having a common activity, and prepare or obtain a ligand candidate substance having the common structure.
該リガンド候補物質とは、 該ァゴ二スト活性を有する (試験) 化合物に共通の 構造を有し、 各試験化合物 (具体的には試験化合物 (a) ) に比し、 上記 (D) の細 胞刺激活性が強い物質 (例えば天然のペプチド、 天然のタンパク質、 天然の非べ プチド性化合物など) のことをいう。  The ligand candidate substance has a structure common to the (test) compound having the agonist activity. Compared with each test compound (specifically, test compound (a)), Substances with strong cell stimulating activity (eg, natural peptides, natural proteins, natural non-peptide compounds, etc.).
ァゴニスト活性を有する (試験) 化合物が天然 ·非天然のペプチド、 天然 -非 天然のタンパク質などの場合には、 それらのペプチドまたはタンパク質をコード するアミノ酸配列を比較し、 それらの相同性の高い部分配列、 あるいは類似した 立体構造を有する部分が共通構造といえる。  When the compound having agonist activity (test) is a natural or non-natural peptide, natural-non-natural protein, etc., the amino acid sequences encoding those peptides or proteins are compared, and their partial sequences with high homology are compared. Or, a portion having a similar three-dimensional structure can be said to be a common structure.
具体的には、 例えば、 ォーファン受容体タンパク質が FM— 3 (Tan, C. P. et al. , Genomics 52, 223-229, 1998など) である場合の共通構造としては、 配列番 号: 2、 6および 20で表されるアミノ酸配列を比較すれば、 「C末端に R— X _NH2構造 (Xは任意のアミノ酸残基を示す。 ) を有する」 という共通構造が 導き出せる。 該共通構造から、 本発明のスクリーニング方法またはリガンド決定 方法において、 ォーファン受容体タンパク質が FM— 3である場合、 共通構造を 有するリガンド候補物質、 ひいては FM— 3の (内因性) リガンドはその C末端 に R— X_NH2構造を有するペプチドであると考えられる。 Specifically, for example, when the orphan receptor protein is FM-3 (Tan, CP et al., Genomics 52, 223-229, 1998, etc.), the common structure includes SEQ ID NO: 2, 6, and By comparing the amino acid sequences represented by 20, a common structure can be derived that has an R—X —NH 2 structure (X represents an arbitrary amino acid residue) at the C-terminus. From the common structure, in the screening method or the ligand determination method of the present invention, when the orphan receptor protein is FM-3, the ligand candidate substance having the common structure, and further, the (endogenous) ligand of FM-3 is the C-terminal thereof. It is considered that the peptide has an R—X_NH 2 structure.
C末端に R— X— N H 2構造を有するペプチドとしては、哺乳類では A-18-F-NH, 、 F-8-F-NH2 (Perry, S. J. et al. FEBS Lett. 409: 426-430, 1997) 、 prolactin-releasing peptide (Hinuma, S. et al. Nature 393: 272-276, 1998 ) などが知られている。 また、 下等動物では一群の RFアミドペプチドファミリ 一として普遍的に存在している。 更に哺乳類についても未知の R— X— NH2ぺ プチドが下等動物と同様に多様に存在すると考えられ、 哺乳類における新規な R _X— NH2ペプチドの中に FM— 3の (内因性) リガンドが存在すると考えら れる。 Peptides having an R—X—NH 2 structure at the C-terminus include A-18-F-NH, and F-8-F-NH 2 in mammals (Perry, SJ et al. FEBS Lett. 409: 426-430). , 1997) and prolactin-releasing peptide (Hinuma, S. et al. Nature 393: 272-276, 1998). In lower animals, it is ubiquitous as a family of RF amide peptide families. Furthermore, it is thought that unknown R—X—NH 2ぺ peptides are present in mammals as diverse as lower animals, and a new R _X—NH 2 peptide in mammals contains FM-3 (endogenous) ligand. Is considered to exist.
ァゴニスト活性を有する (試験) 化合物が、 天然 ·非天然の非ペプチド性化合 物、 合成化合物などの場合には、 それらの化合物の化学構造を比較し、 共通性の ある基本骨格 (例えば、 特定の環構造、 例、 「脂環式炭化水素」 としてのシクロ アルキル、 シクロアルケニル、 シクロアルカンジェニルなどの飽和又は不飽和の 脂環式炭化水素、 「複素環」 としての芳香族複素環、 飽和あるいは不飽和の非芳 香族複素環 (脂肪族複素環) 等) が共通構造といえる。 When the (test) compound having agonist activity is a natural or non-natural non-peptidic compound or a synthetic compound, the chemical structures of those compounds are compared, and a common basic skeleton (for example, specific Ring structures, eg, cyclo as “cycloaliphatic hydrocarbon” Saturated or unsaturated alicyclic hydrocarbons such as alkyl, cycloalkenyl, and cycloalkenyl, aromatic heterocycles as "heterocycles", saturated or unsaturated non-aromatic heterocycles (aliphatic heterocycles) Etc.) can be said to be a common structure.
また、 本発明のリガンドの決定方法は、 上記の共通構造を指標として、 リガン ドを決定するため、 リガンドと構造上の類似性が高いリガンドのサブタイプを取 得することも、 従来法に比べ、 格段に容易かつ確実となる。  In addition, the ligand determination method of the present invention determines ligands using the above-mentioned common structure as an index, so that obtaining a subtype of a ligand having a high structural similarity to the ligand can also be compared with the conventional method. It becomes much easier and more reliable.
(G) ァゴニスト活性を有する (試験) 化合物が有する共通構造から推定 (また は決定) されたリガンド候補物質の作成または取得以降の工程について: 以下に上記 (F) によりァゴニスト活性を有する (試験) 化合物が有する共通 構造から推定 (または決定) されたリガンド候補物質の作成または取得方法につ いて具体的に説明する。 ,  (G) Having agonist activity (test) Regarding the steps after the creation or acquisition of the ligand candidate deduced (or determined) from the common structure possessed by the compound: The following have the agonist activity according to (F) above (test) A specific description will be given of a method of creating or obtaining a candidate ligand substance estimated (or determined) from the common structure of the compound. ,
(1) 共通構造を有する天然のペプチド、 天然のタンパク質、 天然の非べプチ ド性化合物を検索して、 共通構造を有するリガンド候補物質を選定したのち、 該 共通構造を有するリガンド候補物質を作成または取得する方法。  (1) Search for natural peptides, natural proteins and natural non-peptide compounds having a common structure, select candidate ligands having a common structure, and create candidate ligands having the common structure Or how to get.
上記 (F) に記載の試験化合物 (具体的には試験化合物 (a)) の共通構造をもと に、 共通構造を有する天然のペプチド、 天然のタンパク質、 天然の非ペプチド性 化合物を検索することによりリガンドまたはそのサブタイプを推定することがで さる。  Based on the common structure of the test compound described in (F) above (specifically, test compound (a)), search for natural peptides, natural proteins, and natural non-peptidic compounds having a common structure. Can be used to estimate the ligand or its subtype.
利用できる公知のデータベースなどは種々存在するが、 ^表的なものをあげれ ば、 例えば、 Bei lstein Handbook of Organic Chemistry (Bei lstein社) 、 CROPR(Serwent Crop Protection Registry)ファイル (Derwent社) 、 Derwent Drug ファイル (Derwent社) 、 The Merck Index (Merck社) などがあげられる。  There are a variety of known databases that can be used. File (Derwent) and The Merck Index (Merck).
次に、 推定されたリガンドについて上記 (D) に記載の細胞刺激活性測定系を 用いて、 細胞刺激活性を測定し、 リガンド候補物質との細胞刺激活性と比較する ことにより、 リガンドまたはそのサブタイプであるか否かを決定することができ る。  Next, the cell stimulating activity of the putative ligand is measured using the cell stimulating activity measuring system described in (D) above, and is compared with the cell stimulating activity with the ligand candidate substance. Can be determined.
(2) (ァゴ二スト活性を有する (試験) 化合物が、 ペプチド、 タンパク質ま たはそれらの塩である場合に) 共通構造をコ一ドする塩基配列を含有するプライ マーまたはプローブを作成して、 リガンドまたはそのサブタイプをコードする c D N Aまたは遺伝子をクローニングすることによりリガンド候補物質を取得する 方法。 (2) When the (test) compound having agonist activity is a peptide, protein, or a salt thereof, a primer or probe containing a base sequence encoding a common structure is prepared. And encodes the ligand or its subtype c A method for obtaining candidate ligand substances by cloning DNA or gene.
まず、 上記 (F ) に記載のァゴニスト活性を有する (試験) 化合物の共通構造 、 即ち 7ゴニスト活性を有する (試験) 化合物をコードするアミノ酸配列間の相 同性の高い配列部分をコードする塩基配列を含有するプライマーまたはプローブ を作成する。  First, the common structure of the (test) compound having the agonist activity described in (F) above, that is, the base sequence encoding the highly homologous sequence portion between the amino acid sequences encoding the (test) compound having the 7 gonist activity, Create primers or probes to contain.
次に、 該プライマーを用いて、 自体公知の P C R法によって、 ヒト、 温血動物 (例えば、 モルモット、 ラッ卜、 マウス、 ブタ、 ヒッジ、 ゥシ、 サルなど) およ び魚類などのあらゆる組織 (たとえば、 下垂体、 滕臓、 脳、 腎臓、 肝臓、 生殖腺 、 甲状腺、 胆のう、 骨髄、 副腎、 皮膚、 筋肉、 肺、 消化管、 血管、 心臓など) ま たは細胞由来のゲノム D N Aライブラリー、 c D N Aライブラリ一などから目的 とするリガンド候補物質をコードする D N Aを増幅する。  Next, using the primers, PCR is carried out in a manner known per se, and all tissues (eg, humans, warm-blooded animals (eg, guinea pigs, rats, mice, pigs, sheep, wedges, monkeys, etc.) and fish) are obtained. For example, pituitary gland, brain, brain, kidney, liver, gonad, thyroid, gall bladder, bone marrow, adrenal gland, skin, muscle, lung, digestive tract, blood vessel, heart, etc.) or genomic DNA library derived from cells, c Amplify DNA encoding the target ligand candidate substance from a DNA library or the like.
クローン化されたリガンド候補物質をコードする塩基配列を含有する c D NA は目的によりそのまま、 または所望により制限酵素で消化したり、 リンカ一を付 加したりして使用することができる。 該 D NAはその 5 ' 末端側に翻訳開始コド ンとしての A T Gを有し、 また 3 ' 末端側には翻訳終止コドンとしての T A A、 T GAまたは TA Gを有していてもよい。 これらの翻訳開始コドンや翻訳終止コ ドンは、 適当な合成 D N Aアダプターを用いて付加することもできる。  The cDNA containing the nucleotide sequence encoding the cloned ligand candidate substance can be used as it is depending on the purpose, or digested with a restriction enzyme or added with a linker if desired. The DNA may have ATG as a translation initiation codon at the 5 'end and may have TAA, TGA or TAG as a translation stop codon at the 3' end. These translation initiation codon and translation termination codon can also be added using a suitable synthetic DNA adapter.
次に、 上記 (A) および (B ) に記載したォ一ファン受容体タンパク質発現細 胞の製造方法に準じて、 リガンド候補物質をコードする D NAを含有する形質転 換体を培養し、 該培養物から例えば下記の方法により、 リガンド候補物質を分離 精製することができる。  Next, a transformant containing DNA encoding a ligand candidate substance is cultured according to the method for producing cells expressing an orphan receptor protein described in (A) and (B) above, and the culture is performed. The candidate ligand substance can be separated and purified from the product by, for example, the following method.
すなわち、 培養後、 自体公知の方法で、 菌体あるいは細胞を集め、 これを適当 な緩衝液に懸濁し、 超音波、 リゾチームおよび/または凍結融解によって菌体ぁ るいは細胞を破壊した後、 遠心分離やろ過により推定されるリガンドまたはその サブタイプの租抽出液を得る方法などが適宜用いられる。 緩衝液の中に尿素や塩 酸グアジニンなどのタンパク変性剤や、 トリトン X— 1 0 0 (登録商標。 以下 T Mと省略することがある。 ) などの界面活性剤が含まれていてもよい。  That is, after culturing, cells or cells are collected by a method known per se, suspended in a suitable buffer, disrupted by ultrasonication, lysozyme and / or freeze-thawing, and then centrifuged. A method of obtaining a liquid extract of a ligand or a subtype thereof estimated by separation or filtration is appropriately used. The buffer may contain a protein denaturing agent such as urea or guanidine hydrochloride, or a surfactant such as Triton X-100 (registered trademark, sometimes abbreviated as TM hereinafter).
このようにして得られた培養上清、 あるいは抽出液中に含まれるリガンド候補 物質の精製は、 自体公知の分離 ·精製法を適切に組み合わせて行うことができる 。 これらの公知の分離,精製法としては、 塩析ゃ溶媒沈殿法などの溶解度を利用 する方法、 透析法、 限外ろ過法、 ゲルろ過法、 および S D S—ポリアクリルアミ ドゲル電気泳動法などの主として分子量の差を利用する方法、 イオン交換クロマ トグラフィーなどの荷電の差を利用する方法、 ァフィ二ティーク口マトグラフィ 一などの特異的親和性を利用する方法、 逆相高速液体クロマトグラフィーなどの 疎水性の差を利用する方法、 等電点電気泳動法やクロマトフォーカシングなどの 等電点の差を利用する方法などが用いられる。 Ligand candidates contained in the culture supernatant or extract obtained in this way The substance can be purified by appropriately combining known separation and purification methods. These known separation and purification methods mainly include methods using solubility such as salting out and solvent precipitation, dialysis, ultrafiltration, gel filtration, and SDS-polyacrylamide gel electrophoresis. Method using difference in molecular weight, Method using difference in charge such as ion exchange chromatography, Method using specific affinity such as affinity mouth chromatography, Hydrophobicity such as reverse phase high performance liquid chromatography A method using the difference between isoelectric points, such as isoelectric focusing and chromatofocusing, is used.
かくして得られるリガンド候補物質が遊離体で得られた場合には、 自体公知の 方法あるいはそれに準じる方法によって塩に変換することができ、 逆に塩で得ら れた場合には自体公知の方法あるいはそれに準じる方法により、 遊離体または他 の塩に変換することができる。  When the thus obtained ligand candidate substance is obtained in a free form, it can be converted to a salt by a method known per se or a method analogous thereto, and conversely, when it is obtained as a salt, a method known per se or The compound can be converted into a free form or another salt by an analogous method.
また、 リガンド候補物質をコードするアミノ酸配列から、 自体公知のタンパク 質の合成法に従って、 あるいはリガンド候補物質を含有するタンパク質を適当な ぺプチダーゼで切断することによって製造することができる。 タンパク質の合成 法としては、 例えば固相合成法、 液相合成法のいずれによっても良い。 すなわち 、 リガンド候補物質を構成し得る部分ペプチドもしくはアミノ酸と残余部分とを 縮合させ、 生成物が保護基を有する場合は保護基を脱離することにより目的のリ ガンド候補物質を製造することができる。 公知の縮合方法や保護基の脱離として は、 例えば、 以下の①〜⑤に記載された方法が挙げられる。  Further, it can be produced from an amino acid sequence encoding a ligand candidate substance according to a known method for synthesizing a protein, or by cleaving a protein containing a ligand candidate substance with an appropriate peptidase. As a method for synthesizing a protein, for example, any of a solid phase synthesis method and a liquid phase synthesis method may be used. That is, the target ligand candidate substance can be produced by condensing a partial peptide or amino acid that can constitute the ligand candidate substance with the remaining part, and if the product has a protective group, removing the protective group. . Known condensation methods and elimination of protecting groups include, for example, the methods described in the following ① to ⑤.
① M. Bodanszky および M. A. Ondet t i , ペプチド シンセシス (Pept i de Synthes i s), Intersc ience Publ i shers, New York (1966年)  ① M. Bodanszky and M. A. Ondet ti, Peptide synthesis, Interscience Publisher, New York (1966)
② Schroederおよび Luebke、ザペプチド(The Pept i de) , Academic Press, New York (1965年)  ② Schroeder and Luebke, The Peptide, Academic Press, New York (1965)
③泉屋信夫他、 ペプチド合成の基礎と実験、 丸善 (株) (1975年) (3) Nobuo Izumiya et al. Basics and experiments on peptide synthesis, Maruzen Co., Ltd. (1975)
④矢島治明 および榊原俊平、 生化学実験講座 1、 蛋白質の化学 IV、 205、 (1977 年)  治 Haruaki Yajima and Shunpei Sakakibara, Laboratory of Biochemical Experiments 1, Protein Chemistry IV, 205, (1977)
⑤矢島治明監修、 続医薬品の開発第 14巻ペプチド合成広川書店  治 Supervised by Haruaki Yajima, Development of Pharmaceuticals Volume 14
また、 反応後は通常の精製法、 たとえば、 溶媒抽出 ·蒸留 ·カラムクロマトグ ラフィー ·液体クロマトグラフィー ·再結晶などを組み合わせてリガンド候補物 質を精製単離することができる。 上記方法で得られるリガンド候補物質が遊離体 である場合は、 公知の方法によって適当な塩に変換することができるし、 逆に塩 で得られた場合は、 公知の方法によって遊離体に変換することができる。 After the reaction, use standard purification methods such as solvent extraction, distillation, and column chromatography. The candidate ligand can be purified and isolated by a combination of laffy, liquid chromatography, and recrystallization. When the ligand candidate substance obtained by the above method is a free form, it can be converted to an appropriate salt by a known method. Conversely, when it is obtained as a salt, it is converted to a free form by a known method. be able to.
リガンド候補物質について上記 (D) に記載の細胞刺激活性測定系を用いて、 細胞刺激活性を測定し、 試験化合物(具体的には試験化合物 (a)) との細胞刺激活 性と比較することにより、 ァゴニスト (リガンド) 活性の有無を確認することが できる。 ァゴニスト (リガンド) 活性が認められたリガンド候補物質が、 ォーフ アン受容体タンパク質の (内因性) リガンドまたはそのサブタイプであるか否か は、 下記 (J) に記載のリガンド決定方法により確認することができる。  Measure the cell stimulating activity of the candidate ligand using the cell stimulating activity measuring system described in (D) above, and compare it with the test compound (specifically, test compound (a)). Thus, the presence or absence of agonist (ligand) activity can be confirmed. Whether or not the candidate ligand for which agonist (ligand) activity is recognized is the (endogenous) ligand of the orphan receptor protein or its subtype should be confirmed by the ligand determination method described in (J) below. Can be.
また、 ジーントラッパーのように上記プロ一ブを使って目的の遺伝子の m R N Aを精製し、 その m R N Aからリガンド候補物質の c D N Aを敢得することもで きる。 さらに上記 (A) に記載したォーファン受容体タンパク質の製造方法に準 じて、 リガンド候補物質をコードする DN Aを含有する形質転換体を培養するこ とによってリガンド候補物質を得ることができる。  In addition, it is also possible to purify mRNA of the target gene by using the above-mentioned probe like a gene trapper, and to obtain cDNA as a ligand candidate substance from the mRNA. Furthermore, a candidate ligand substance can be obtained by culturing a transformant containing DNA encoding the candidate ligand substance according to the method for producing an orphan receptor protein described in (A) above.
(3) (ァゴ二スト活性を有する (試験) 化合物が、 ペプチド、 タンパク質また はそれらの塩である場合に) 共通構造を有するペプチドまたはタンパク質を配列 デ—夕—ベースを検索することによりリガンド候補物質を探索する方法。  (3) When the (test) compound having agonist activity is a peptide, protein or a salt thereof, a peptide or protein having a common structure is sequenced to form a ligand by searching the database. How to search for candidate substances.
上記 (F) に記載のァゴニスト活性を有する (試験) 化合物の共通構造、 即ち ァゴニスト活性を有する (試験) 化合物をコードするアミノ酸配列間の相同性の 高い配列部分をコードする塩基配列を含有するべプチドまたはタンパク質を配列 データーベースを検索して、 リガンド候補物質を決定することができる。  The compound having the agonist activity described in (F) above (test) should have a common structure, that is, a base sequence encoding a sequence with high homology between the amino acid sequences encoding the compounds having agonist activity (test). Peptides or proteins can be searched in sequence databases to determine candidate ligands.
配列データーベースとしては、例えば、 GenBank (登録商標)ファイル (National Institute of Health) 、 VTS (Virtual Transcribed Sequence) などがあげら れる。  Examples of the sequence database include GenBank (registered trademark) file (National Institute of Health), VTS (Virtual Transcribed Sequence) and the like.
リガンド候補物質をコードする塩基配列が決定されれば、 上記 (G) ^2に記 載の方法に準じて、 リガンド候補物質を取得することが可能である。  Once the nucleotide sequence encoding the candidate ligand substance is determined, the candidate ligand substance can be obtained according to the method described in (G) ^ 2 above.
また、 データーベースでの検索の結果、 リガンド候補物質の一部をコードする と推定される配列が判明した場合には、 該配列をもとにプライマ一またはプロ一 ブを作成して、 上記 (G) — 2に記載の方法に準じて、 リガンド候補物質を取得 することが可能である。 When a database search reveals a sequence presumed to encode a part of a candidate ligand substance, primers or pro- It is possible to obtain ligand candidates according to the method described in (G) -2 above.
( 4 ) 共通構造を認識する抗体を作成することによりリガンド候補物質を探索す る方法。  (4) A method for searching for a candidate ligand by creating an antibody that recognizes a common structure.
上記 (F ) に記載のァゴニスト活性を有する (試験) 化合物の共通構造、 即ち ァゴニスト活性を有する (試験) 化合物をコードするアミノ酸配列間の相同性の 高い配列部分で表されるペプチドを上記のペプチド (タンパク質) 合成方法を用 いて、 作成する。  A peptide represented by a sequence having high homology between amino acid sequences encoding a compound having the agonist activity (test) having the agonist activity described in the above (F), that is, a compound having the agonist activity (test) (Protein) Created using a synthetic method.
次に該ペプチドに対する抗体を下記の方法に従って作成する。 なお、 抗体は該 ペプチドを認識し得る抗体であれば、 ポリクロ一ナル抗体、 モノクローナル抗体 の何れであってもよい。  Next, an antibody against the peptide is prepared according to the following method. The antibody may be any of a polyclonal antibody and a monoclonal antibody as long as the antibody can recognize the peptide.
該ペプチドに対する抗体は、 該ペプチドを抗原として用い、 自体公知の抗体ま たは抗血清の製造法に従って製造することができる。  An antibody against the peptide can be produced by using the peptide as an antigen according to a method for producing an antibody or antiserum known per se.
〔モノクローナル抗体の作製〕  [Preparation of monoclonal antibody]
( a ) モノクロナール抗体産生細胞の作製  (a) Preparation of monoclonal antibody-producing cells
該ぺプチドは、 温血動物に対して投与により抗体産生が可能な部位にそれ自体 あるいは担体、 希釈剤とともに投与される。 投与に際して抗体産生能を高めるた め、 完全フロイントアジュバントゃ不完全フロイントアジュバントを投与しても よい。 投与は通常 2〜 6週毎に 1回ずつ、 計 2〜1 0回程度行われる。 用いられ る温血動物としては、 例えば、 サル、 ゥサギ、 ィヌ、 モルモット、 マウス、 ラッ 卜、 ヒッジ、 ャギ、 ニヮトリなどがあげられる。  The peptide is administered to a warm-blooded animal at a site where the antibody can be produced by administration, itself or together with a carrier or diluent. Complete Freund's adjuvant or incomplete Freund's adjuvant may be administered in order to enhance the antibody-producing ability upon administration. Administration is usually performed once every 2 to 6 weeks, for a total of about 2 to 10 times. The warm-blooded animals used include, for example, monkeys, egrets, dogs, guinea pigs, mice, rats, sheep, goats, and chickens.
モンクローナル抗体産生細胞の作製に際しては、 抗原で免疫された温血動物、 例えばマウスから抗体価の認められた個体を選択し最終免疫の 2〜 5日後に脾臓 またはリンパ節を採取し、 それらに含まれる抗体産生細胞を同種または異種動物 の骨髄腫細胞と融合させることにより、 モノクロ一ナル抗体産生ハイプリドーマ を調製することができる。 抗血清中の抗体価の測定は、 例えば、 後記の標識化べ プチドと抗血清とを反応させたのち、 抗体に結合した標識剤の活性を測定するこ とにより行なうことができる。 融合操作は既知の方法、 例えば、 ケ一ラーとミル スタインの方法 〔ネイチヤー (Nature) , 256、 495 (1975)〕 に従い実施すること 639 When producing monclonal antibody-producing cells, a warm-blooded animal immunized with an antigen, for example, a mouse with an antibody titer is selected from a mouse, and the spleen or lymph node is collected 2 to 5 days after the final immunization. Monoclonal antibody-producing hybridomas can be prepared by fusing the antibody producing cells contained with myeloma cells of the same or different species. The antibody titer in the antiserum can be measured, for example, by reacting the labeled peptide described below with the antiserum, and then measuring the activity of the labeling agent bound to the antibody. The fusion procedure should be performed according to known methods, for example, the method of Köhler and Milstein [Nature, 256, 495 (1975)]. 639
32 32
ができる。 融合促進剤としては、 例えば、 ポリエチレングリコール (PEG) や センダイウィルスなどがあげられるが、 好ましくは P E Gが用いられる。 Can be. Examples of the fusion promoter include polyethylene glycol (PEG) and Sendai virus, but PEG is preferably used.
骨髄腫細胞としては、 例えば、 NS— 1、 P 3U1、 S P 2/0, AP— 1な どの温血動物の骨髄腫細胞があげられるが、 P 3U1が好ましく用いられる。 用 いられる抗体産生細胞 (脾臓細胞) 数と骨髄腫細胞数との好ましい比率は 1 : 1 〜20 : 1程度であり、 PEG (好ましくは PEG 1000〜PEG6000) が 10〜 80 %程度の濃度で添加され、 20〜 40で、 好ましくは 30〜 37 °C で 1〜 10分間ィンキュペートすることにより効率よく細胞融合を実施できる。 モノクローナル抗体産生ハイブリドーマのスクリ一ニングには種々の方法が使 用できるが、 例えば、 ペプチド抗原を直接あるいは担体とともに吸着させた固相 (例、 マイクロプレート) にハイプリドーマ培養上清を添加し、 次に放射性物質 や酵素などで標識した抗免疫グロプリン抗体 (細胞融合に用いられる細胞がマウ スの場合、 抗マウス免疫グロブリン抗体が用いられる) またはプロテイン Aを加 え、 固相に結合したモノクローナル抗体を検出する方法、 抗免疫グロブリン抗体 またはプロテイン Aを吸着させた固相にハイプリドーマ培養上清を添加し、 放射 性物質や酵素などで標識したペプチドを加え、 固相に結合したモノクローナル抗 体を検出する方法などがあげられる。  Examples of myeloma cells include myeloma cells of warm-blooded animals such as NS-1, P3U1, SP2 / 0, and AP-1, but P3U1 is preferably used. The preferred ratio between the number of antibody-producing cells (spleen cells) used and the number of myeloma cells used is about 1: 1 to 20: 1, and PEG (preferably PEG1000 to PEG6000) is used at a concentration of about 10 to 80%. Cell fusion can be carried out efficiently by adding and incubating at 20 to 40, preferably at 30 to 37 ° C for 1 to 10 minutes. Various methods can be used to screen monoclonal antibody-producing hybridomas. For example, a hybridoma culture supernatant is added to a solid phase (eg, microplate) on which a peptide antigen is adsorbed directly or together with a carrier. An anti-immunoglobulin antibody (anti-mouse immunoglobulin antibody is used if the cell used for cell fusion is mouse) or protein A is added to the monoclonal antibody bound to the solid phase. Detection method, Add the hybridoma culture supernatant to the solid phase to which anti-immunoglobulin antibody or protein A is adsorbed, add peptides labeled with radioactive substances, enzymes, etc., and detect the monoclonal antibody bound to the solid phase And the like.
モノク口一ナル抗体の選別は、 自体公知あるいはそれに準じる方法に従って行 なうことができる。 通常 HAT (ヒポキサンチン、 アミノプテリン、 チミジン) を添加した動物細胞用培地で行なうことができる。 選別および育種用培地として は、 ハイプリドーマが生育できるものならばどのような培地を用いても良い。 例 えば、 1〜20%、好ましくは 10〜20%の牛胎児血清を含む RPM I 164 0培地、 1〜10%の牛胎児血清を含む G I T培地 (和光純薬工業 (株) ) ある いはハイプリドーマ培養用無血清培地 (SFM— 101、 日水製薬 (株) ) など を用いることができる。 培養温度は、 通常 20〜 40 °C、 好ましくは約 37 °Cで ある。 培養時間は、 通常 5日〜 3週間、 好ましくは 1週間〜 2週間である。 培養 は、 通常 5%炭酸ガス下で行なうことができる。 ハイプリドーマ培養上清の抗体 価は、 上記の抗血清中の抗体価の測定と同様にして測定できる。  Monoclonal antibodies can be selected according to a method known per se or a method analogous thereto. Usually, it can be performed in a medium for animal cells supplemented with HAT (hypoxanthine, aminopterin, thymidine). As a medium for selection and breeding, any medium can be used as long as the hybridoma can grow. For example, RPMI 1640 medium containing 1 to 20%, preferably 10 to 20% fetal bovine serum, GIT medium containing 1 to 10% fetal bovine serum (Wako Pure Chemical Industries, Ltd.) or A serum-free medium for hybridoma culture (SFM-101, Nissui Pharmaceutical Co., Ltd.) or the like can be used. The culture temperature is usually 20 to 40 ° C, preferably about 37 ° C. The culture time is generally 5 days to 3 weeks, preferably 1 week to 2 weeks. The culture can be usually performed under 5% carbon dioxide gas. The antibody titer of the hybridoma culture supernatant can be measured in the same manner as the measurement of the antibody titer in the antiserum described above.
(b) モノクロナ一ル抗体の精製 モノクローナル抗体の分離精製は、 自体公知の方法、 例えば、 免疫グロブリン の分離精製法 〔例、 塩析法、 アルコール沈殿法、 等電点沈殿法、 電気泳動法、 ィ オン交換体 (例、 D E A E) による吸脱着法、 超遠心法、 ゲルろ過法、 抗原結合 固相あるいはプロテイン Aあるいはプロテイン Gなどの活性吸着剤により抗体の みを採取し、 結合を解離させて抗体を得る特異的精製法〕 に従って行なうことが できる。 (b) Purification of monoclonal antibodies Monoclonal antibodies can be separated and purified by methods known per se, for example, immunoglobulin separation and purification methods (eg, salting out method, alcohol precipitation method, isoelectric point precipitation method, electrophoresis method, ion exchanger (eg, DEAE) Absorption and desorption method, ultracentrifugation method, gel filtration method, antigen binding Solid phase or specific purification method of collecting antibody only with an active adsorbent such as protein A or protein G and dissociating the bond to obtain the antibody) Can do it.
〔ポリクローナル抗体の作製〕  (Preparation of polyclonal antibody)
上記ペプチド抗体は、 それ自体公知あるいはそれに準じる方法に従って製造す ることができる。 例えば、 免疫抗原 (ペプチド抗原) 自体、 あるいはそれとキヤ リア一ペプチドとの複合体をつくり、 上記のモノクローナル抗体の製造法と同様 に温血動物に免疫を行ない、 該免疫動物からぺプチドに対する抗体含有物を採取 して、 抗体の分離精製を行なうことにより製造することができる。  The above-mentioned peptide antibody can be produced according to a method known per se or a method analogous thereto. For example, a immunizing antigen (peptide antigen) itself or a complex thereof with a carrier peptide is formed, and a warm-blooded animal is immunized in the same manner as in the above-described monoclonal antibody production method. It can be produced by collecting the substance and separating and purifying the antibody.
温血動物を免疫するために用いられる免疫抗原とキャリア一蛋白質との複合体 に関し、 キャリアーペプチドの種類およびキャリアーとハプテンとの混合比は、 キャリアーに架橋させて免疫したハプテンに対して抗体が効率良くできれば、 ど の様なものをどの様な比率で架橋させてもよいが、 例えば、 ゥシ血清アルブミン ゃゥシサイログロブリン、 へモシァニン等を重量比でハプテン 1に対し、 約 0 . 1〜 2 0、 好ましくは約 1 ~ 5の割合で力プルさせる方法が用いられる。  Regarding the complex of immunizing antigen and carrier-protein used for immunizing warm-blooded animals, the type of carrier peptide and the mixing ratio of carrier and hapten depend on the efficiency of the antibody against hapten immunized by cross-linking with the carrier. It is possible to crosslink any material at any ratio, if possible.For example, serum serum albumin, thyroglobulin, hemocyanin, etc. are used in a weight ratio of about 0.1 to 2 with respect to 1 hapten. A method of pulling force at a rate of 0, preferably about 1 to 5 is used.
また、 ハプテンとキャリアーの力プリングには、 種々の縮合剤を用いることが できるが、 ダルタルアルデヒドやカルポジイミド、 マレイミド活性エステル、 チ オール基、 ジチオビリジル基を含有する活性エステル試薬等が用いられる。 縮合生成物は、 温血動物に対して、 抗体産生が可能な部位にそれ自体あるいは 担体、 希釈剤とともに投与される。 投与に際して抗体産生能を高めるため、 完全 フロイントアジュバントゃ不完全フロイントアジュバントを投与してもよい。 投 与は、 通常約 2〜 6週毎に 1回ずつ、 計約 3〜 1 0回程度行なわれる。  Further, various condensing agents can be used for force coupling between the hapten and the carrier. For example, an active ester reagent containing a daltaraldehyde, a carbodiimide, a maleimide active ester, a thiol group or a dithioviridyl group is used. The condensation product is administered to a warm-blooded animal itself or together with a carrier or diluent at a site where antibody production is possible. Complete Freund's adjuvant / incomplete Freund's adjuvant may be administered in order to enhance the antibody-producing ability upon administration. The dose is usually given once every 2 to 6 weeks, for a total of about 3 to 10 times.
ポリクローナル抗体は、 上記の方法で免疫された温血動物の血液、 腹水など、 好ましくは血液から採取することができる。  The polyclonal antibody can be collected from the blood, ascites, etc., preferably from the blood of a warm-blooded animal immunized by the above method.
抗血清中のポリクローナル抗体価の測定は、 上記の抗血清中の抗体価の測定と 同様にして測定できる。 ポリクローナル抗体の分離精製は、 上記のモノクローナ ル抗体の分離精製と同様の免疫グロプリンの分離精製法に従って行なうことがで さる。 The measurement of the polyclonal antibody titer in the antiserum can be performed in the same manner as the measurement of the antibody titer in the antiserum described above. Separation and purification of polyclonal antibody Immunoglobulin separation and purification methods similar to those for antibody isolation and purification.
かくして得られるァゴニスト活性を有する (試験) 化合物の共通構造を認識す る抗体の交差反応性を利用して、 リガンド候補物質を検出し、 その免疫活性を指 標として各種抽出法、 クロマトグラフィーを組み合わせることによって、 リガン ド候補物質を得ることができる。  By using the cross-reactivity of an antibody that recognizes the common structure of the compound having agonist activity thus obtained, a candidate ligand is detected, and various immunoassays are used as indicators to combine various extraction methods and chromatography. By doing so, candidate ligand substances can be obtained.
(H) ォーファン受容体夕ンパク質の機能を促進または阻害する化合物のスクリ 一二ング方法について:  (H) Methods for screening for compounds that promote or inhibit the function of orphan receptor proteins:
上記 (G) において取得されたリガンド候補物質を用いて、 ォーファン受容体 タンパク質の機能を促進する化合物 (高活性ァゴニスト) またはその機能を阻害 する化合物 (アン夕ゴニスト) をスクリーニングすることが可能である。  Using the candidate ligands obtained in (G) above, it is possible to screen for a compound that promotes the function of the orphan receptor protein (highly active agonist) or a compound that inhibits the function (antagonist). .
ォ一ファン受容体タンパク質の機能を促進する化合物を 「高活性ァゴニスト」 と記載するが、 「高活性」 とは、 上記 (E) に記載の 「ァゴ二スト活性を有する (試験) 化合物」 に比べて、 より細胞刺激活性 (具体的には、 上記 (D) に記載 の細胞刺激活性など) などが強いことを意味する。  A compound that promotes the function of an orphan receptor protein is referred to as a “highly active agonist”. “Highly active” refers to a “(test) compound having an agonist activity” described in the above (E). This means that the cell stimulating activity (specifically, the cell stimulating activity described in the above (D), etc.) is stronger than that of.
以下にそのスクリーニング方法を詳述する。  Hereinafter, the screening method will be described in detail.
ォーファン受容体夕ンパク質を用いるか、 または組換え型ォーファン受容体夕 ンパク質の発現系を構築し、 該発現系を用いた受容体結合アツセィ系を用いるこ とによって、 上記 (G) において取得されたリガンド候補物質とォーファン受容 体タンパク質との結合性を変化させる化合物 (例えば、 ペプチド、 蛋白質、 非べ プチド性化合物、 合成化合物、 発酵生産物など) またはその塩を効率よくスクリ 一二ングすることができる。  The above-mentioned (G) is obtained by using an orphan receptor protein or by constructing an expression system for a recombinant orphan receptor protein and using a receptor-binding atsey system using the expression system. Efficiently screens compounds that alter the binding between the selected ligand candidate and the orphan receptor protein (eg, peptides, proteins, non-peptide compounds, synthetic compounds, fermentation products, etc.) or salts thereof be able to.
すなわち、  That is,
まず、 ォーファン受容体タンパク質発現細胞またはその細胞膜画分にリガンド 候補物質を接触させた場合と試験化合物 ( (即ち、該ォーファン受容体タンパク 質発現細胞またはその細胞膜画分に該ォーファン受容体夕ンパク質の機能を促進 または阻害する化合物の候補物質) を接触された場合における上記 (D) に記載 した (a ) 細胞外 p Hの変動、 (b)ァラキドン酸遊離、 (c)アセチルコリン遊離、 First, a case where a ligand candidate substance is brought into contact with an orphan receptor protein-expressing cell or a cell membrane fraction thereof and a test compound ((i.e., the orphan receptor protein is added to the orphan receptor protein-expressing cell or its cell membrane fraction) (D) (a) fluctuations in extracellular pH, (b) arachidonic acid release, (c) acetylcholine release,
(d)細胞内 C a 遊離、 (e)細胞内 c AM Pの変動、 (f)細胞内 c GM Pの変動、 (g)イノシトールリン酸産生、 (h)細胞膜電位変動、 (i)細胞内蛋白質のリン酸化、 (j ) c _ f o sの活性化、 (k ) G T P r Sの結合、 (1 ) レポ一夕一遺伝子の発 現などを指標とした細胞刺激活性を比較する。 (d) intracellular C a release, (e) fluctuation of intracellular cAMP, (f) fluctuation of intracellular cGMP, (g) inositol phosphate production, (h) fluctuations in cell membrane potential, (i) phosphorylation of intracellular proteins, (j) activation of c_fos, (k) binding of GTP r S, (1) repo overnight Compare cell stimulating activities using the expression of one gene as an index.
ォーファン受容体タンパク質発現細胞またはその細胞膜画分にリガンド候補物 質を接触させた場合の細胞刺激活性に比し、試験化合物 (b) (即ち、該ォ一ファン 受容体夕ンパク質発現細胞またはその細胞膜画分に該ォーファン受容体夕ンパク 質の機能を促進または阻害す'る化合物の候補物質) を接触された場合の細胞刺激 活性が強い場合には、 該試験化合物 (b) (または候補物質) は、 該ォ一ファン受容 体タンパク質の機能を促進する化合物 (いわゆるァゴニス卜) である可能性が高 い。 .  The test compound (b) (i.e., the orphan receptor protein-expressing cell or a cell thereof) is compared with the cell stimulating activity when the ligand candidate substance is brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction. When the cell membrane fraction is contacted with a candidate compound of a compound that promotes or inhibits the function of the orphan receptor protein), the test compound (b) (or the candidate substance) ) Is likely to be a compound that promotes the function of the orphan receptor protein (so-called agonist). .
該試験化合物 (b) (または候補物質)が該ォーファン受容体タンパク質の機能を (選択的に、 Spec i f i cに) 促進する化合物 (いわゆるァゴニスト) であるか否か は、該ォーファン受容体タンパク質と該試験化合物 (b) (または候補物質) との特 異的結合量を測定すればよい。  Whether or not the test compound (b) (or candidate substance) is a compound (so-called agonist) that promotes the function of the orphan receptor protein (selectively, specifically) depends on whether the orphan receptor protein and the The amount of specific binding to test compound (b) (or candidate substance) may be measured.
特異的結合量の測定方法としては、例えば、標識した試験化合物 (b) (または候 補物質) をォ一ファン受容体タンパク質に接触させた場合における、 標識した試 験化合物 (b) (または候補物質)の該ォーファン受容体タンパク質に対する結合量 を測定する方法などがあげられる。 測定結果、 十分な結合量 (非特異結合に対し て 1 %以上の結合量の増加、 好ましくは 1 0 %以上の結合量の増加) が認められ れば、該試験化合物 (b) (または候補物質) は該ォーファン受容体タンパク質の機 能を促進する化合物 (いわゆるァゴニスト) と認められる。  As a method for measuring the specific binding amount, for example, when a labeled test compound (b) (or a candidate substance) is brought into contact with an orphan receptor protein, a labeled test compound (b) (or candidate And the like, for example, a method of measuring the binding amount of the substance) to the orphan receptor protein. As a result of the measurement, if a sufficient binding amount (an increase in the binding amount of 1% or more relative to the non-specific binding, preferably an increase in the binding amount of 10% or more) is observed, the test compound (b) (or the candidate) Substance) is recognized as a compound that promotes the function of the orphan receptor protein (so-called agonist).
該測定方法の具体的な説明を以下にする。  The specific description of the measuring method will be described below.
まず、 該測定方法に用いるォーファン受容体タンパク質としては、 前記したォ 一ファン受容体タンパク質を含有するものであれば何れのものであってもよい。 スクリーニングに用いる大量のォーファン受容体タンパク質を得るには、 組換え 体を用いて大量発現させたォーファン受容体タンパク質などが適している。  First, the orphan receptor protein used in the measurement method may be any as long as it contains the above-mentioned orphan receptor protein. In order to obtain a large amount of the orphan receptor protein used for screening, an orphan receptor protein or the like which is expressed in a large amount using a recombinant is suitable.
ォーファン受容体タンパク質を製造するには、 前述の方法が用いられるが、 ォ ーファン受容体夕ンパク質をコードする D NAを前出の動物細胞や昆虫細胞で発 現することにより行なうことが好ましい。 目的とする蛋白質部分をコードする D 639 The above-mentioned method is used for producing the orphan receptor protein, but it is preferably carried out by expressing DNA encoding the orphan receptor protein in the above-mentioned animal cells or insect cells. D that encodes the desired protein part 639
36 36
NA断片には相補 DNAが用いられるが、 必ずしもこれに制約されるものではな い。 例えば、 遺伝子断片や合成 DN Aを用いてもよい。 ォーファン受容体タンパ ク質をコードする DNA断片を宿主動物細胞に導入し、 それらを効率よく発現さ せるためには、 該 DN A断片を昆虫を宿主とするバキュロウィルスに属する核多 角体病ウィルス (nuclear poly edrosis virus; NPV) のポリヘドリンプロモ —夕一、 S V40由来のプロモー夕一、 レトロウイ レスのプロモー夕一、 メタ口 チォネインプロモーター、 ヒトヒ一卜ショックプロモー夕一、 サイトメガロウイ ルスプロモー夕一、 SRひプロモーターなどの下流に組み込むのが好ましい。 発 現したレセプ夕一の量と質の検査はそれ自体公知の方法で行うことができる。 例 えば、 文献 〔Nambi, P. ら、 ザ ·ジャーナル ·ォブ 'バイオロジカル ·ケミスト リ一 (J. Biol. Chem. ) , 267巻, 19555〜19559頁, 1992年〕 に記載の方法に従って 行なうことができる。 Complementary DNA is used for the NA fragment, but is not necessarily limited to this. For example, a gene fragment or a synthetic DNA may be used. In order to introduce a DNA fragment encoding an orphan receptor protein into a host animal cell and express them efficiently, the DNA fragment should be a baculovirus belonging to a baculovirus using an insect as a host. (Nuclear poly edrosis virus; NPV) In the evening, it is preferable to incorporate it downstream such as the SR promoter. Inspection of the quantity and quality of the receptor that has occurred can be carried out in a manner known per se. For example, the method is carried out according to the method described in the literature [Nambi, P. et al., The Journal of Biological Chemistry, 267, 19555-19559, 1992]. be able to.
したがって、 上記測定方法において、 ォーファン受容体タンパク質を含有する ものとしては、 それ自体公知の方法に従って精製したォ一ファン受容体タンパク 質であってもよいし、 ォ一ファン受容体タンパク質を含有する細胞を用いてもよ く、 またォーファン受容体タンパク質を含有する細胞の膜画分を用いてもよい。 ォーファン受容体夕ンパク質を含有する細胞としては、 該受容体夕ンパク質を 発現した宿主細胞をいうが、 該宿主細胞としては、 昆虫細胞、 動物細胞などが好 ましい。  Therefore, in the above-mentioned measurement method, the orphan receptor protein may be an orphan receptor protein purified according to a method known per se, or a cell containing orphan receptor protein. Alternatively, a membrane fraction of cells containing an orphan receptor protein may be used. The cell containing the orphan receptor protein refers to a host cell that has expressed the receptor protein, and the host cell is preferably an insect cell, an animal cell, or the like.
細胞膜画分としては、 細胞を破砕した後、 それ自体公知の方法で得られる細胞 膜が多く含まれる画分のことをいう。 細胞の破砕方法としては、 Potter— Elvehjem型ホモジナイザーで細胞を押し潰す方法、 ヮーリングブレンダーゃポリ トロン (Kinematica社製) のよる破砕、 超音波による破砕、 フレンチプレスなど で加圧しながら細胞を細いノズルから噴出させることによる破砕などがあげられ る。 細胞膜の分画には、 分画遠心分離法や密度勾配遠心分離法などの遠心力によ る分画法が主として用いられる。 例えば、 細胞破砕液を低速 (500 r pm〜3 000 r pm) で短時間 (通常、 約 1分〜 10分) 遠心し、 上清をさらに高速 ( 15000 r pm〜30000 r pm) で通常 30分〜 2時間遠心し、 得られる 沈澱を膜画分とする。 該膜画分中には、 発現したォーファン受容体タンパク質と 細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。 The cell membrane fraction refers to a fraction abundant in cell membrane obtained by disrupting cells and then obtained by a method known per se. Cells can be crushed by crushing the cells with a Potter-Elvehjem homogenizer, crushing with a Pelling Blender ゃ polytron (manufactured by Kinematica), crushing with ultrasonic waves, or narrowing the cells while pressing with a French press. Crushing by erupting from the ground. For cell membrane fractionation, centrifugal fractionation methods such as differential centrifugation and density gradient centrifugation are mainly used. For example, the cell lysate is centrifuged at a low speed (500 rpm to 3000 rpm) for a short time (typically about 1 to 10 minutes), and the supernatant is further centrifuged at a higher speed (15000 rpm to 30000 rpm) for 30 min. Centrifuge for 1 minute to 2 hours, and use the resulting precipitate as the membrane fraction. In the membrane fraction, the expressed orphan receptor protein and It contains a lot of membrane components such as cell-derived phospholipids and membrane proteins.
該ォーファン受容体夕ンパク質を含有する細胞や膜画分中のォ一ファン受容体 タンパク質の量は、 1細胞当たり 10 〜10 分子であるのが好ましく、 10 The amount of the orphan receptor protein in the cell or membrane fraction containing the orphan receptor protein is preferably 10 to 10 molecules per cell,
〜10 分子であるのが好適である。 Preferably, it is 10 molecules.
標識した試験化合物 (b) (または候補物質) としては、 例えば 〔3H〕 、 〔125 As the labeled test compound (b) (or candidate substance), for example, [ 3 H], [ 125 ]
I〕 、 〔14C〕 、 〔35S〕 などで標識された試験化合物 (b) (または候補物質) などが用いられる。 Test compounds (b) (or candidate substances) labeled with [I], [ 14 C], [ 35 S], etc. are used.
該測定方法を行なうには、 まずォ一ファン受容体タンパク質を含有する細胞ま たは細胞の膜画分を、 スクリーニングに適したバッファーに懸濁することにより レセプ夕一蛋白質標品を調製する。 バッファーには、 pH4〜10 (望ましくは pH6〜8) のリン酸バッファー、 トリス—塩酸バッファ一などの候補物質とレ セプ夕一蛋白質との結合を阻害しないバッファーであればいずれでもよい。 また 、 非特異的結合を低減させる目的で、 CHAPS、 Twe e n-80™ (花王一 アトラス社) 、 ジギトニン、 デォキシコレートなどの界面活性剤をバッファ一に 加えることもできる。 さらに、 プロテア一ゼによるレセプターやリガンドの分解 を抑える目的で P MS F、 ロイぺプチン、 E—64 (ペプチド研究所製) 、 ぺプ ス夕チンなどのプロテアーゼ阻害剤を添加することもできる。 0. 0 lm l〜l 0m 1の該レセプター溶液に、 一定量 (5000 c pm〜500000 c pm) の標識した試験化合物 (b) (または候補物質) を添加する。 反応は約 0°Cから 50 °C、 望ましくは約 4 °Cから 37 °Cで、 約 20分から 24時間、 望ましくは約 30 分から 3時間行う。 反応後、 ガラス繊維濾紙等で濾過し、 適量の同バッファーで 洗浄した後、 ガラス繊維濾紙に残存する放射活性を液体シンチレーシヨンカウン 夕一またはァ—カウンターで計測する。  In order to carry out the measurement method, first, a receptor protein protein preparation is prepared by suspending a cell containing the o-phan receptor protein or a membrane fraction of the cell in a buffer suitable for screening. The buffer may be any buffer as long as it does not inhibit the binding of the candidate substance such as a phosphate buffer having a pH of 4 to 10 (preferably pH 6 to 8) or Tris-HCl buffer to the receptor protein. In order to reduce non-specific binding, a surfactant such as CHAPS, Tween-80 ™ (Kaoichi Atlas), digitonin, or dexcholate can be added to the buffer. Furthermore, protease inhibitors such as PMSF, leptin, E-64 (manufactured by Peptide Research Laboratories), and peptidyltin can be added for the purpose of suppressing the degradation of receptors and ligands by proteases. To 0.0 lm l to 10 ml of the receptor solution, an aliquot (5000 cpm to 500,000 cpm) of the labeled test compound (b) (or candidate substance) is added. The reaction is carried out at about 0 ° C to 50 ° C, preferably about 4 ° C to 37 ° C, for about 20 minutes to 24 hours, preferably for about 30 minutes to 3 hours. After the reaction, the reaction solution is filtered through a glass fiber filter, washed with an appropriate amount of the same buffer, and the radioactivity remaining on the glass fiber filter is measured using a liquid scintillation counter or a counter.
一方、 ォーファン受容体夕ンパク質発現細胞またはその細胞膜画分にリガンド 候補物質を接触させた場合の細胞刺激活性に比べ、 該ォーファン受容体タンパク 質発現細胞またはその細胞膜画分に試験化合物 (b) (即ち、該ォーファン受容体夕 ンパク質の機能を促進または阻害する化合物の候補物質) を接触させた場合の細 胞刺激活性が弱いまたは認められない場合には、該試験化合物 (b) (または候補物 質) は、 該ォーファン受容体タンパク質の機能を阻害する化合物 (いわゆるアン タゴニスト) である可能性がある。 On the other hand, the test compound (b) was added to the orphan receptor protein-expressing cell or its cell membrane fraction in comparison with the cell stimulating activity when the ligand candidate substance was brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction. (I.e., when the cell stimulating activity upon contact with the orphan receptor protein is weak or not observed), the test compound (b) (or Candidate substances) are compounds that inhibit the function of the orphan receptor protein (so-called (Agonist).
また、 ォーファン受容体夕ンパク質発現細胞またはその細胞膜画分にリガンド 候補物質を接触させた場合の細胞刺激活性に比べ、試験化合物 (b) (または該ォー ファン受容体夕ンパク質発現細胞またはその細胞膜画分に該ォーファン受容体夕 ンパク質の機能を促進または阻害する化合物の候補物質) およびリガンド候補物 質を接触させた場合の細胞刺激活性が弱いまたは認められない場合には、 該試験 化合物 (b) (または候補物質) は、 該ォーファン受容体タンパク質の機能を阻害す る化合物 (いわゆるアンタゴニスト) である可能性がある。  In addition, the test compound (b) (or the orphan receptor protein-expressing cell or the cell membrane fraction) was compared with the cell stimulating activity when the ligand candidate substance was brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction. If the cell membrane fraction is brought into contact with a candidate compound of a compound that promotes or inhibits the function of the orphan receptor protein) and a candidate ligand, if the cell stimulating activity is weak or not observed, the test is performed. Compound (b) (or candidate substance) may be a compound (a so-called antagonist) that inhibits the function of the orphan receptor protein.
該試験化合物 ( (または候補物質)が該ォーファン受容体タンパク質の機能を (選択的に、 Speci f i cに) 阻害する化合物 (いわゆるァゴニスト) であるか否か は、 該ォーファン受容体夕ンパク質との特異的結合量を測定すればよい。  Whether or not the test compound (or candidate substance) is a compound (so-called agonist) that inhibits the function of the orphan receptor protein (selectively to Specific) depends on whether the test compound (or the candidate substance) inhibits the function of the orphan receptor protein. What is necessary is just to measure the amount of specific binding.
特異的結合量の測定方法としては、 例えば、 標識した試験化合物 (b) (または候 補物質) をォーファン受容体タンパク質に接触させた場合における、 標識した試 験化合物 (b) (または候補物質)の該ォーファン受容体タンパク質に対する結合量 を測定する方法などがあげられる。 測定結果、 十分な結合量 (非特異結合に対し て 1 %以上の結合量の増加、 好ましくは 1 0 %以上の結合量の増加) が認められ れば、 該試験化合物 (b) (または候補物質) は該ォーファン受容体タンパク質の機 能を阻害する化合物 (いわゆるアンタゴニスト) と認められる。  As a method for measuring the specific binding amount, for example, a labeled test compound (b) (or a candidate substance) when a labeled test compound (b) (or a candidate substance) is brought into contact with an orphan receptor protein And the method of measuring the amount of binding to the orphan receptor protein. As a result of the measurement, if a sufficient binding amount (an increase in the binding amount of 1% or more with respect to the non-specific binding, preferably an increase in the binding amount of 10% or more) is recognized, the test compound (b) (or candidate) Substance) is recognized as a compound that inhibits the function of the orphan receptor protein (a so-called antagonist).
該測定方法としては、 上記のォーファン受容体夕ンパク質の機能を促進する化 合物 (いわゆる高活性ァゴニスト) をスクリーニングする際の測定方法と同様の 方法などが用いられる。  As the measurement method, the same method as the above-mentioned method for screening a compound that promotes the function of the orphan receptor protein (a so-called highly active agonist) and the like are used.
また、 標識したリガンド候補物質を、 ォーファン受容体タンパク質に接触させ た場合と、 標識したリガンド候補物質および試験化合物 (b) (即ち、 ォーファン受 容体夕ンパク質の機能を阻害する化合物の候補物質) をォーファン受容体タンパ ク質に接触させた場合における、 標識したリガンド候補物質の該ォーファン受容 体タンパク質に対する結合量を測定し、 比較することにより、 ォーファン受容体 夕ンパク質の機能を阻害する化合物をスクリ一二ングすることも可能である。 該スクリーニング方法の具体的な説明を以下にする。  In addition, when a labeled ligand candidate is brought into contact with an orphan receptor protein, a labeled ligand candidate and a test compound (b) (ie, a candidate for a compound that inhibits the function of orphan receptor protein) By contacting the orphan receptor protein with the orphan receptor protein, the amount of binding of the labeled ligand candidate substance to the orphan receptor protein is measured and compared to determine the compound that inhibits the function of the orphan receptor protein. It is also possible to screen. The specific description of the screening method is as follows.
まず、 本発明のスクリーニング方法に用いるォーファン受容体タンパク質とし ては、 前記したォ一ファン受容体夕ンパク質を含有するものであれば何れのもの であってもよい。 スクリーニングに用いる大量のォーファン受容体タンパク質を 得るには、 組換え体を用いて大量発現させたォーファン受容体タンパク質などが 適している。 First, the orphan receptor protein used in the screening method of the present invention is Any one may be used as long as it contains the above-mentioned protein receptor protein. In order to obtain a large amount of the orphan receptor protein used for screening, an orphan receptor protein or the like which is expressed in large amounts using a recombinant is suitable.
ォーファン受容体タンパク質を製造するには、 前述の方法が用いられるが、 ォ ーファン受容体夕ンパク質をコードする D N Aを前出の動物細胞や昆虫細胞で発 現することにより行なうことが好ましい。 目的とする蛋白質部分をコードする D N A断片には相補 D N A力用いられるが、 必ずしもこれに制約されるものではな い。 例えば、 遺伝子断片や合成 D NAを用いてもよい。 ォ一ファン受容体タンパ ク質をコードする D NA断片を宿主動物細胞に導入し、 それらを効率よく発現さ せるためには、 該 D N A断片を昆虫を宿主とするバキュロウィルスに属する核多 角体病ウィルス (nuc l ear po lyhedros i s vi rus; N P V) のポリヘドリンプロモ —ター、 S V 4 0由来のプロモーター、 レトロウイルスのプロモーター、 メタ口 チォネインプロモーター、 ヒトヒートショックプロモーター、 サイトメガロウイ ルスプロモーター、 S R aプロモーターなどの下流に組み込むのが好ましい。 発 現したレセプ夕一の量と質の検査はそれ自体公知の方法で行うことができる。 例 えば、 文献 〔Nambi, P. ら、 ザ'ジャーナル'ォブ'バイオロジカル 'ケミスト リー (J. Bi o l. C em. ) , 267巻, 19555〜19559頁, 1992年〕 に記載の方法に従って 行なうことができる。  The above-mentioned method is used to produce the orphan receptor protein, but it is preferably carried out by expressing DNA encoding the orphan receptor protein in the above-mentioned animal cells or insect cells. The complementary DNA fragment is used for the DNA fragment encoding the protein portion of interest, but is not necessarily limited to this. For example, a gene fragment or a synthetic DNA may be used. In order to introduce a DNA fragment encoding an orphan receptor protein into a host animal cell and to express them efficiently, the DNA fragment must be converted to a nucleopolyhedron belonging to a baculovirus using an insect as a host. Polyhedrin promoter of the disease virus (nul ear polyhedros is virus; NPV), promoter derived from SV40, retrovirus promoter, metamouth thionine promoter, human heat shock promoter, cytomegalovirus promoter Preferably, it is incorporated downstream such as the SRa promoter. Inspection of the quantity and quality of the receptor that has occurred can be carried out in a manner known per se. For example, a method described in the literature [Nambi, P. et al., The 'Journal of Biological' Chemistry (J. Biol. Cem.), 267, 19555-19559, 1992] It can be done according to.
したがって、 上記スクリーニング方法において、 ォーファン受容体タンパク質 を含有するものとしては、 それ自体公知の方法に従って精製したォーファン受容 体タンパク質であってもよいし、 ォーファン受容体タンパク質を含有する細胞を 用いてもよく、 またォーファン受容体夕ンパク質を含有する細胞の膜画分を用い てもよい。  Therefore, in the above screening method, the orphan receptor protein may be an orphan receptor protein purified according to a method known per se, or a cell containing the orphan receptor protein may be used. Alternatively, a membrane fraction of cells containing orphan receptor protein may be used.
ォーファン受容体タンパク質含有する細胞としては、 該レセプ夕ー蛋白質等を 発現した宿主細胞をいうが、 該宿主細胞としては、 昆虫細胞、 動物細胞などが好 ましい。  The cell containing the orphan receptor protein refers to a host cell that expresses the receptor protein or the like, and the host cell is preferably an insect cell, an animal cell, or the like.
細胞膜画分としては、 細胞を破砕した後、 それ自体公知の方法で得られる細胞 膜が多く含まれる画分のことをいう。 細胞の破砕方法としては、 Po t t er— Elvehjem型ホモジナイザーで細胞を押し潰す方法、 ヮ一リングブレンダーゃポリ トロン (Kinematica社製) のよる破砕、 超音波による破砕、 フレンチプレスなど で加圧しながら細胞を細いノズルから噴出させることによる破砕などがあげられ る。 細胞膜の分画には、 分画遠心分離法や密度勾配遠心分離法などの遠心力によ る分画法が主として用いられる。 例えば、 細胞破碎液を低速 (500 r pm〜3 000 r pm) で短時間 (通常、 約 1分〜 10分) 遠心し、 上清をさらに高速 ( 15000 r pm〜30000 r pm) で通常 30分〜 2時間遠心し、 得られる 沈澱を膜画分とする。 該膜画分中には、 発現したォーファン受容体タンパク質と 細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。 The cell membrane fraction refers to a fraction abundant in cell membrane obtained by disrupting cells and then obtained by a method known per se. Cell disruption methods include Potter— The method of crushing cells with an Elvehjem type homogenizer, crushing with a one-ring blender Polytron (manufactured by Kinematica), crushing by ultrasonic waves, crushing by ejecting cells from a thin nozzle while applying pressure with a French press, etc. can give. For cell membrane fractionation, centrifugal fractionation methods such as differential centrifugation and density gradient centrifugation are mainly used. For example, the cell lysate is centrifuged at a low speed (500 rpm to 3000 rpm) for a short time (typically about 1 minute to 10 minutes), and the supernatant is further centrifuged at a higher speed (15000 rpm to 30000 rpm) for 30 minutes. Centrifuge for 1 minute to 2 hours, and use the resulting precipitate as the membrane fraction. The membrane fraction is rich in the expressed orphan receptor protein and membrane components such as cell-derived phospholipids and membrane proteins.
該ォーファン受容体夕ンパク質を含有する細胞や膜画分中のォーファン受容体 タンパク質の量は、 1細胞当たり 10 〜10 分子であるのが好ましく、 10 〜10 分子であるのが好適である。 .なお、 発現量が多いほど膜画分当たりのリ ガンド結合活性 (比活性) が高くなり、 高感度なスクリーニング系の構築が可能 になるばかりでなく、 同一ロットで大量の試料を測定できるようになる。  The amount of the orphan receptor protein in the cell or membrane fraction containing the orphan receptor protein is preferably 10 to 10 molecules per cell, and more preferably 10 to 10 molecules per cell. The higher the expression level, the higher the ligand binding activity (specific activity) per membrane fraction, which not only enables the construction of a highly sensitive screening system, but also enables the measurement of a large number of samples in the same lot. become.
リガンド候補物質とォーファン受容体夕ンパク質との結合性を変化させる化合 物をスクリーニングする方法を実施するためには、 例えば、 適当なォーファン受 容体タンパク質画分と、 標識したリガンドまたはそのサブタイプが必要である。 標識したリガンド候補物質としては、 例えば 〔3H〕 、 〔125 I〕 、 〔14C〕 、 〔 35 S〕 などで標識されたリガンド候補物質などが用いられる。 In order to carry out a method for screening a compound that alters the binding between a ligand candidate substance and an orphan receptor protein, for example, an appropriate orphan receptor protein fraction and a labeled ligand or a subtype thereof are used. is necessary. As the labeled ligand candidate substance, for example, a ligand candidate substance labeled with [ 3 H], [ 125 I], [ 14 C], [ 35 S] or the like is used.
具体的には、 ォーファン受容体タンパク質の機能を阻害する化合物のスクリー ニングを行なうには、 まずォ一ファン受容体タンパク質を含有する細胞または細 胞の膜画分を、 スクリーニングに適したバッファーに懸濁することによりレセプ ター蛋白質標品を調製する。 バッファーには、 pH4〜10 (望ましくは pH6 〜8) のリン酸バッファ一、 卜リス一塩酸バッファ一などのリガンドとレセプ夕 —蛋白質との結合を阻害しないバッファーであればいずれでもよい。 また、 非特 異的結合を低減させる目的で、 CHAPS、 Twe e n - 80™ (花王—ァトラ ス社) 、 ジギトニン、 デォキシコレートなどの界面活性剤をバッファーに加える こともできる。 さらに、 プロテアーゼによるレセプターやリガンドの分解を抑え る目的で PMSF、 ロイぺプチン、 E— 64 (ペプチド研究所製) 、 ぺプス夕チ ンなどのプロテアーゼ阻害剤を添加することもできる。 0. 01m l〜: L Oml の該レセプ夕一溶液に、 一定量 (5000 c pm〜500000 c pm) の標識 したリガンド候補物質を添加し、 同時に 10— 4M〜10_1DMの試験化合物(b) (即ち、 ォーファン受容体タンパク質の機能を阻害する化合物の候補物質) を共 存させる。 非特異的結合量 (NSB) を知るために大過剰の未標識のリガンド候 補物質を加えた反応チューブも用意する。 反応は約 0°Cから 50T、 望ましくは 約 4でから 3 で、 約 20分から 24時間、 望ましくは約 30分から 3時間行 う。 反応後、 ガラス繊維濾紙等で濾過し、 適量の同バッファ一で洗浄した後、 ガ ラス繊維濾紙に残存する放射活性を液体シンチレーションカウンターまたはァ一 カウン夕一で計測する。 拮抗する物質がない場合のカウント(B。) から非特異的 結合量 (NSB) を引いたカウント (B。― NSB) を 100%とした時、 特異 的結合量 (B— NSB) が、 例えば、 50%以下になる試験化合物(b) (即ち、 ォ ーファン受容体夕ンパク質の機能を阻害する化合物の候補物質) をォーファン受 容体タンパク質の機能を阻害する化合物 (いわゆるアン夕ゴニスト) として選択 することができる。 Specifically, to screen for compounds that inhibit the function of orphan receptor protein, the membrane fraction of cells or cells containing orphan receptor protein is first suspended in a buffer suitable for screening. Prepare a receptor protein standard by turbidity. The buffer may be any buffer that does not inhibit the binding of the ligand to the receptor protein, such as a phosphate buffer having a pH of 4 to 10 (preferably pH 6 to 8) or a buffer of tris-hydrochloride. Surfactants such as CHAPS, Tween-80 ™ (Kao-Atras), digitonin, and dexcholate can also be added to the buffer to reduce non-specific binding. In addition, PMSF, Leptin, E-64 (manufactured by Peptide Research Institute), A protease inhibitor such as a protein may also be added. 0. 01m l~: L to the receptions evening first solution of OML, a certain amount (5000 c pm~500000 c pm) labeled added ligand candidates, simultaneously 10- 4 M~10_ 1D test compound M ( b) (ie, a candidate compound that inhibits the function of orphan receptor protein). Prepare a reaction tube containing a large excess of unlabeled ligand candidate to determine the amount of non-specific binding (NSB). The reaction is carried out at about 0 ° C to 50T, preferably at about 4 to 3, for about 20 minutes to 24 hours, preferably for about 30 minutes to 3 hours. After the reaction, the solution is filtered through a glass fiber filter paper and the like, washed with an appropriate amount of the same buffer, and the radioactivity remaining on the glass fiber filter paper is measured with a liquid scintillation counter or a glass counter. When the count (B.-NSB) obtained by subtracting the non-specific binding amount (NSB) from the count (B.) when there is no antagonistic substance is 100%, the specific binding amount (B-NSB) is, for example, And 50% or less of the test compound (b) (ie, a candidate compound that inhibits the function of the orphan receptor protein) is selected as the compound that inhibits the function of the orphan receptor protein (so-called angiogonist). can do.
(I) 上記 (Η) に記載の試験化合物 (b) (即ち、 ォーファン受容体タンパク質の 機能を促進または阻害する化合物の候補物質) 、 ォ一ファン受容体タンパク質の 機能を促進または阻害する化合物について:  (I) The test compound (b) described in (Η) above (that is, a candidate compound for promoting or inhibiting the function of orphan receptor protein) and the compound that promotes or inhibits the function of orphan receptor protein :
試験化合物 (b) (即ち、ォ一ファン受容体タンパク質の機能を促進または阻害す る化合物の候補物質) としては、 天然 '非天然のペプチド、 天然 ·非天然のタン パク質、 天然 ·非天然の非ペプチド性化合物、 合成化合物、 天然 ·非天然の発酵 生産物などから選ばれる。  The test compound (b) (ie, a candidate compound that promotes or inhibits the function of an orphan receptor protein) includes a natural 'non-natural peptide, a natural and non-natural protein, a natural and non-natural Non-peptidic compounds, synthetic compounds, natural and non-natural fermentation products, etc.
ォーファン受容体タンパク質の機能を促進または阻害する化合物としては、 上 記 (H) に記載のスクリーニング方法において、 ォーファン受容体タンパク質の 機能を促進する化合物またはォーファン受容体タンパク質の機能を阻害する化合 物と認められる化合物のことを意味し、 該化合物は塩を形成していてもよい。 該化合物の塩としては、 生理学的に許容される塩基 (例えばアルカリ金属など ) や酸 (有機酸、 無機酸) との塩があげられるが、 とりわけ生理学的に許容され る酸付加塩などが好ましい。 このような塩としては例えば無機酸 (例えば、 塩酸 T/JP00/05639 The compound that promotes or inhibits the function of the orphan receptor protein includes the compound that promotes the function of the orphan receptor protein or the compound that inhibits the function of the orphan receptor protein in the screening method described in (H) above. Means a recognized compound, which may form a salt. Examples of the salt of the compound include salts with a physiologically acceptable base (eg, an alkali metal or the like) and an acid (organic acid, inorganic acid), and particularly preferred are physiologically acceptable acid addition salts. . Such salts include, for example, inorganic acids (eg, hydrochloric acid T / JP00 / 05639
42 42
、 リン酸、 臭化水素酸、 硫酸) との塩、 あるいは有機酸 (例えば、 酢酸、 ギ酸、 プロピオン酸、 フマル酸、 マレイン酸、 コハク酸、 酒石酸、 クェン酸、 リンゴ酸 、 シユウ酸、 安息香酸、 メタンスルホン酸、 ベンゼンスルホン酸) との塩などが あげられる。 , Phosphoric acid, hydrobromic acid, sulfuric acid) or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid) Methanesulfonic acid, benzenesulfonic acid) and the like.
また、 上記 (H) の方法で得られうるォーファン受容体タンパク質の機能を促 進 (高活性ァゴニスト) または阻害 (アンタゴニスト) する化合物は、 後述の ( 内因性) リガンドまたはそのサブタイプが有する生理活性と同様の作用を有して いるので、 該リガンド活性に応じて安全で低毒性な医薬として有用である。  In addition, compounds that promote (highly active agonist) or inhibit (antagonist) the function of orphan receptor protein obtainable by the above method (H) include the following (endogenous) ligands or biological activities possessed by the subtypes thereof. Since it has the same action as that described above, it is useful as a safe and low-toxic drug according to the ligand activity.
ォーファン受容体タンパク質に対するアン夕ゴニストは、 ォーファン受容体夕 ンパク質に対するリガンドまたはそのサブタイプが有する生理活性を抑制するこ とができるので、 該リガンド活性を抑制する安全で低毒性な医薬として有用であ る。  Antagonists against orphan receptor proteins can suppress the physiological activity of ligands or subtypes of orphan receptor proteins, and thus are useful as safe and low-toxic drugs that suppress the ligand activities. is there.
ォーファン受容体タンパク質に対する高活性ァゴニストは、 ォーファン受容体 夕ンパク質に対するリガンドが有する生理活性を増強するための安全で低毒性な 医薬として有用である。  The highly active agonist against the orphan receptor protein is useful as a safe and low-toxic drug for enhancing the physiological activity of the ligand for the orphan receptor protein.
本発明の方法を用いて得られうるアン夕ゴニスト、 高活性ァゴニストを医薬組 成物として使用する場合、 常套手段に従って投与することができる。 例えば、 錠 剤、 カプセル剤、 エリキシル剤、 マイクロカプセル剤、 無菌性溶液、 懸濁液剤な どとすることができる。  When an agonist and a highly active agonist that can be obtained by the method of the present invention are used as a pharmaceutical composition, they can be administered in a conventional manner. For example, tablets, capsules, elixirs, microcapsules, sterile solutions, suspensions and the like can be used.
このようにして得られる製剤は安全で低毒性であるので、 例えば、 ヒトゃ哺乳 動物 (例えば、 ラット、 マウス、 ゥサギ、 ヒッジ、 ブタ、 ゥシ、 ネコ、 ィヌ、 サ ルなど) に対して投与することができる。  The preparations obtained in this way are safe and low toxic, so they can be used, for example, in humans and mammals (for example, rats, mice, egrets, sheep, pigs, pigs, cats, dogs, dogs, etc.). Can be administered.
該リガンドまたはそのサブ夕イブ、 およびアンタゴニスト、 ァゴニストの投与 量は、 投与対象、 対象臓器、 症状、 投与方法などにより差異はあるが、 経口投与 の場合、 一般的に例えば、 一日につき約 0. 1〜 1 0 O m g、 好ましくは約 1 . 0 〜5 0 m g、 より好ましくは約 1 . 0〜 2 O m gである。 非経口的に投与する場 合は、 その 1回投与量は投与対象、 対象臓器、 症状、 投与方法などによっても異 なるが、 例えば、 注射剤の形では通常例えば、 一日につき約 0. 0 1〜3 0 m g 程度、 好ましくは約 0 . 1〜2 O m g程度、 より好ましくは約 0 . l〜1 0 m g 程度を静脈注射により投与するのが好都合である。 他の動物の場合も、 6 0 k g 当たりに換算した量を投与することができる。 The dosage of the ligand or its subgroup, antagonist, and agonist varies depending on the administration subject, target organ, symptom, administration method, and the like.In the case of oral administration, for example, about 0. It is 1 to 100 mg, preferably about 1.0 to 50 mg, more preferably about 1.0 to 2 mg. In the case of parenteral administration, the single dose varies depending on the administration subject, target organ, symptoms, administration method, etc.For example, in the case of an injection, it is usually, for example, about 0.0 per day. About 1 to 30 mg, preferably about 0.1 to 2 Omg, more preferably about 0.1 to 10 mg It is convenient to administer the degree by intravenous injection. In the case of other animals, the dose can be administered in terms of 60 kg.
( J ) ォーファン受容体夕ンパク質のリガンドまたはそのサブタイプの決定方法 について:  (J) Method for determining orphan receptor protein ligand or subtype thereof:
本発明は、 上記 (H) に記載のォーファン受容体タンパク質の機能を促進また は阻害する化合物のスクリーニング方法を提供するのみならず、 ァゴニスト活性 を有する (試験) 化合物の共通構造を指標として、 該ォーファン受容体タンパク 質のリガンドまたはそのサブタイプをより効率的に、 確実に決定する方法をも提 供する。  The present invention not only provides a method for screening a compound that promotes or inhibits the function of the orphan receptor protein described in the above (H), but also uses, as an index, the common structure of (test) compounds having agonist activity. Methods for more efficiently and reliably determining ligands for orphan receptor proteins or subtypes thereof are also provided.
即ち、  That is,
(i) ォーファン受容体夕ンパク質発現細胞またはその細胞膜画分に試験化合物 を接触させ、 該ォーファン受容体タンパク質を介する細胞刺激活性を測定し、 (i i) 各試験化合物の細胞刺激活性を比較することにより、 ァゴニスト活性を有 する試験化合物の共通構造を決定し、  (i) bringing a test compound into contact with orphan receptor protein-expressing cells or a cell membrane fraction thereof, measuring the cell stimulating activity mediated by the orphan receptor protein, and (ii) comparing the cell stimulating activities of each test compound Thus, the common structure of the test compound having agonist activity is determined,
(i i i) 該共通構造を有するリガンド候補物質の該ォーファン受容体タンパク質へ の特異的結合量を測定することにより、 該ォーファン受容体夕ンパク質のリガン ドまたはそのサブタイプを決定する方法を提供するものである。 (iii) a method for determining the ligand of the orphan receptor protein or a subtype thereof by measuring the amount of specific binding of the ligand candidate substance having the common structure to the orphan receptor protein. Things.
より具体的には、  More specifically,
(i) ォーファン受容体夕ンパク質発現細胞またはその細胞膜画分に試験化合物 (a)を接触させた場合と、 ォーファン受容体タンパク質を発現しない細胞または その細胞膜画分に試験化合物(a)を接触させた場合において、 それぞれの細胞刺 激活性を測定し、  (i) Contacting test compound (a) with orphan receptor protein-expressing cells or its cell membrane fraction, and contacting test compound (a) with cells not expressing orphan receptor protein or its cell membrane fraction In this case, each cell stimulating activity was measured,
(i i) 各試験化合物 (a)の細胞刺激活性を比較することにより、 ァゴニスト活性を 有する化合物を得、  (i i) By comparing the cell stimulating activity of each test compound (a), a compound having agonist activity is obtained,
(i i i) ァゴニスト活性を有する該化合物が有する共通構造から推定されたリガン ド候補物質の該ォーファン受容体夕ンパク質への特異的結合量を測定することに より、 該ォ一ファン受容体夕ンパク質のリガンドまたはそのサブ夕ィプを決定す る方法を提供する。 (iii) measuring the specific binding amount of the candidate ligand substance to the orphan receptor protein deduced from the common structure possessed by the compound having agonist activity, whereby the orphan receptor protein is measured. Methods for determining quality ligands or sub-types thereof are provided.
該決定方法中、 (ί) ォーファン受容体タンパク質発現細胞またはその細胞膜 画分に試験化合物 (具体的には試験化合物 (a) ) を接触させ、 該ォーファン受容体 タンパク質を介する細胞刺激活性を測定し、 In the determination method, (ί) an orphan receptor protein-expressing cell or a cell membrane thereof A test compound (specifically, test compound (a)) is brought into contact with the fraction, and the cell stimulating activity mediated by the orphan receptor protein is measured.
(i i) 各試験化合物 (具体的には試験化合物 (a) ) の細胞刺激活性を比較すること により、 ァゴニスト活性を有する (試験) 化合物を得、 ァゴニスト活性を有する 該化合物が有する共通構造を推定 (または決定) しリガンド候補物質を得る工程 に関しては、 上記と同様の方法が用いられる。  (ii) By comparing the cell stimulating activity of each test compound (specifically, test compound (a)), a (test) compound having agonist activity was obtained, and the common structure of the compound having agonist activity was estimated. With respect to the step of obtaining (or determining) the ligand candidate substance, the same method as described above is used.
次に、 該共通構造を有するリガンド候補物質 (上述) を用いて、 該リガンド候 補物質が、 (内因性) のリガンドまたはそのサブタイプであるかを決定する方法 を以下に詳述する。  Next, a method for determining whether the ligand candidate is a (endogenous) ligand or a subtype thereof using the ligand candidate substance having the common structure (described above) will be described in detail below.
上記リガンド候補物質がォーファン受容体夕ンパク質の Spec i f i cなリガンドで あるか否かは、 リガンド候補物質の該ォーファン受容体夕ンパク質への特異的結 合量を測定することにより決定することができる。  Whether or not the ligand candidate substance is a specific ligand of orphan receptor protein can be determined by measuring the amount of specific binding of the candidate ligand to the orphan receptor protein. it can.
すなわち、 標識したリガンド候補物質をォーファン受容体タンパク質 (こ接触さ せた場合における、 標識したリガンド候補物質の該ォ一ファン受容体夕ンパク質 に対する結合量を測定する方法などがあげられる。 測定結果、 十分な結合量 (非 特異結合に対して 1 %以上の結合量の増加、 好ましくは 1 0 %以上の結合量の増 カロ) が認められれば、 該候補物質は該ォーファン受容体タンパク質の (内因性) リガンドであると認められる。  That is, there is a method of measuring the amount of binding of the labeled candidate ligand to the orphan receptor protein when the labeled candidate ligand is brought into contact with an orphan receptor protein. If a sufficient binding amount (an increase in the binding amount of 1% or more with respect to the non-specific binding, and preferably an increase in the binding amount of 10% or more) is recognized, the candidate substance is identified as ( Endogenous) is recognized as a ligand.
逆に十分な結合量が認められない場合には、 該リガンド候補物質は細胞刺激活 性を有するものの、 該ォーファン受容体タンパク質に対する特異的な結合能が低 い物質、 即ち、 ノンスぺシフィックなァゴニスト様物質である可能性が高い。 該決定方法の具体的な説明を以下にする。  Conversely, when a sufficient binding amount is not observed, the ligand candidate substance has a cell-stimulating activity but has a low specific binding ability to the orphan receptor protein, ie, a nonspecific agonist. Is likely to be a similar substance. A specific description of the determination method will be given below.
まず、 該決定方法に用いるォーファン受容体タンパク質としては、 前記したォ ーファン受容体夕ンパク質を含有するものであれば何れのものであってもよい。 スクリーニングに用いる大量のォーファン受容体タンパク質を得るには、 組換え 体を用いて大量発現させたォ一ファン受容体タンパク質などが適している。 ォーファン受容体タンパク質を製造するには、 前述の方法が用いられるが、 ォ 一ファン受容体タンパク質をコードする D N Aを前出の動物細胞や昆虫細胞で発 現することにより行なうことが好ましい。 目的とする蛋白質部分をコードする D 639 First, the orphan receptor protein used in the determination method may be any as long as it contains the above-described orphan receptor protein. In order to obtain a large amount of orphan receptor protein used for screening, an orphan receptor protein or the like which is expressed in large amounts using a recombinant is suitable. The above-mentioned method is used to produce the orphan receptor protein, but it is preferably carried out by expressing the DNA encoding the orphan receptor protein in the above-mentioned animal cells or insect cells. D that encodes the desired protein part 639
45 45
N A断片には相補 D N A力 S用いられるが、 必ずしもこれに制約されるものではな レ^ 例えば、 遺伝子断片や合成 D N Aを用いてもよい。 ォーファン受容体タンパ ク質をコードする D N A断片を宿主動物細胞に導入し、 それらを効率よく発現さ せるためには、 該 D N A断片を昆虫を宿主とするバキュロウィルスに属する核多 角体病ウィルス (nucl ear polyhedros i s vi rus; N P V) のポリヘドリンプロモ —夕一、 S V 4 0由来のプロモーター、 レトロウイルスのプロモーター、 メタ口 チォネインプロモーター、 ヒトヒートショックプロモーター、 サイトメガロウイ ルスプロモー夕一、 S R αプロモータ一などの下流に組み込むのが好ましい。 発 現したレセプ夕一の量と質の検査はそれ自体公知の方法で行うことができる。 例 えば、 文献 〔Najiibi, P. ら、 ザ ·ジャーナル ·ォブ 'バイオロジカル ·ケミスト リ一 (J. Bi ol. Chem. ) , 267巻, 19555〜19559頁, 1992年〕 に記載の方法に従って 行なうことができる。 The complementary DNA is used for the NA fragment, but is not necessarily limited to this. For example, a gene fragment or a synthetic DNA may be used. In order to introduce a DNA fragment encoding an orphan receptor protein into a host animal cell and express them efficiently, the DNA fragment must be transferred to a nucleophilic polyhedrosis virus belonging to a baculovirus using an insect as a host. nucl ear polyhedros is virus (NPV) polyhedrin promoter — Yuichi, SV40-derived promoter, retroviral promoter, metamouth thionine promoter, human heat shock promoter, cytomegalovirus promoter, SR α Preferably, it is incorporated downstream, such as a promoter. Inspection of the quantity and quality of the receptor that has occurred can be carried out in a manner known per se. For example, according to the method described in the literature [Najiibi, P. et al., The Journal of Biological Chemistry, 267, 19555-19559, 1992]. Can do it.
したがって、 上記測定方法において、 ォーファン受容体タンパク質を含有する ものとしては、 それ自体公知の方法に従って精製したォーファン受容体タンパク 質であってもよいし、 ォーファン受容体タンパク質を含有する細胞を用いてもよ く、 またォーファン受容体タンパク質を含有する細胞の膜画分を用いてもよい。 ォーファン受容体タンパク質を含有する細胞としては、 該受容体タンパク質を 発現した宿主細胞をいうが、 該宿主細胞としては、 昆虫細胞、 動物細胞などが好 ましい。  Therefore, in the above measurement method, the substance containing the orphan receptor protein may be an orphan receptor protein purified according to a method known per se, or a cell containing the orphan receptor protein may be used. Alternatively, a membrane fraction of a cell containing an orphan receptor protein may be used. The cell containing the orphan receptor protein refers to a host cell that has expressed the receptor protein, and the host cell is preferably an insect cell, an animal cell, or the like.
細胞膜画分としては、 細胞を破砕した後、 それ自体公知の方法で得られる細胞 膜が多く含まれる画分のことをいう。 細胞の破砕方法としては、 Pot ter— Elvehj em型ホモジナイザーで細胞を押し潰す方法、 ヮーリングブレンダーゃポリ トロン (Kinemat ica社製) のよる破砕、 超音波による破砕、 フレンチプレスなど で加圧しながら細胞を細いノズルから噴出させることによる破砕などがあげられ る。 細胞膜の分画には、 分画遠心分離法や密度勾配遠心分離法などの遠心力によ る分画法が主として用いられる。 例えば、 細胞破砕液を低速 (5 0 0 r p m〜3 0 0 0 r p m) で短時間 (通常、 約 1分〜 1 0分) 遠心し、 上清をさらに高速 ( 1 5 0 0 0 r p m〜3 0 0 0 0 r p m) で通常 3 0分〜 2時間遠心し、 得られる 沈澱を膜画分とする。 該膜画分中には、 発現したォーファン受容体タンパク質と 細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。 The cell membrane fraction refers to a fraction abundant in cell membrane obtained by disrupting cells and then obtained by a method known per se. Cells can be crushed by crushing the cells with a Potter-Elvehj em-type homogenizer, crushing with a Perling Blender ゃ Polytron (Kinematica), crushing with ultrasonic waves, or applying pressure with a French press, etc. And crushing by ejecting the gas from a thin nozzle. For cell membrane fractionation, centrifugal fractionation methods such as differential centrifugation and density gradient centrifugation are mainly used. For example, the cell lysate is centrifuged at a low speed (500 rpm to 300 rpm) for a short time (usually about 1 to 10 minutes), and the supernatant is further centrifuged at a high speed (1500 to 300 rpm). The mixture is centrifuged at 0,000 rpm for 30 minutes to 2 hours, and the resulting precipitate is used as the membrane fraction. In the membrane fraction, the expressed orphan receptor protein and It contains a lot of membrane components such as cell-derived phospholipids and membrane proteins.
該ォーファン受容体夕ンパク質を含有する細胞や膜画分中のォーファン受容体 タンパク質の量は、 1細胞当たり 10 〜10 分子であるのが好ましく、 10 The amount of the orphan receptor protein in the cell or membrane fraction containing the orphan receptor protein is preferably 10 to 10 molecules per cell,
〜10 分子であるのが好適である。 Preferably, it is 10 molecules.
標識したリガンド候補物質としては、 例えば 〔3H〕 、 C125 I] 、 〔14C〕 、Examples of labeled ligand candidate substances include [ 3 H], C 125 I], [ 14 C],
35s〕 などで標識されたリガンド候補物質などが用いられる。 A ligand candidate substance labeled with [ 35 s] or the like is used.
該測定方法を行なうには、 まずォーファン受容体タンパク質を含有する細胞ま たは細胞の膜画分を、 スクリーニングに適したバッファーに懸濁することにより レセプ夕一蛋白質標品を調製する。 バッファーには、 pH4〜10 (望ましくは pH6〜8) のリン酸バッファー、 トリスー塩酸バッファ一などの候補物質とレ セプター蛋白質との結合を阻害しないバッファ一であればいずれでもよい。 また 、 非特異的結合を低減させる目的で、 CHAPS、 Twe e n - 80™ (花王— アトラス社) 、 ジギトニン、 デォキシコレートなどの界面活性剤をバッファ一に 加えることもできる。 さらに、 プロテアーゼによるレセプ夕一やリガンドの分解 を抑える目的で PMSF、 ロイぺプチン、 E— 64 (ペプチド研究所製) 、 ぺプ ス夕チンなどのプロテアーゼ阻害剤を添加することもできる。 0. 0 lm l〜'l 0mlの該レセプ夕ー溶液に、 一定量 (5000 c pn!〜 500000 c m) の標識した候補物質を添加する。 反応は約 0°Cから 50 、 望ましくは約 4でか ら 37°Cで、 約 20分から 24時間、 望ましくは約 30分から 3時間行う。 反応 後、 ガラス繊維濾紙等で濾過し、 適量の同バッファーで洗浄した後、 ガラス繊維 濾紙に残存する放射活性を液体シンチレ一ションカウンタ一または τ一カウンタ 一で計測する。  To carry out the measurement method, first, a cell containing the orphan receptor protein or a membrane fraction of the cell is suspended in a buffer suitable for screening to prepare a receptor protein sample. Any buffer may be used as long as it does not inhibit the binding of the candidate protein to the receptor protein, such as a phosphate buffer having a pH of 4 to 10 (preferably pH 6 to 8) or a tris-HCl buffer. In addition, surfactants such as CHAPS, Tween-80 ™ (Kao-Atlas), digitonin, and dexcholate can be added to the buffer for the purpose of reducing non-specific binding. In addition, protease inhibitors such as PMSF, leptin, E-64 (manufactured by Peptide Research Laboratories), and peptide suptin can be added for the purpose of suppressing receptor degradation and ligand degradation by proteases. To 0.00 l to 'l 0 ml of the receptor solution, add a fixed amount (5000 cpn! To 500,000 cm) of the labeled candidate substance. The reaction is carried out at about 0 ° C. to 50 °, preferably about 4 ° to 37 ° C., for about 20 minutes to 24 hours, preferably for about 30 minutes to 3 hours. After the reaction, the solution is filtered through a glass fiber filter or the like, washed with an appropriate amount of the same buffer, and the radioactivity remaining on the glass fiber filter is measured by a liquid scintillation counter or a τ-counter.
本明細書および図面において、 塩基やアミノ酸などを略号で表示する場合、 I U P AC— I UB Commission on Biochemical Nomenclature ίこよる田各号あるレ は当該分野における慣用略号に基づくものであり、 その例を下記する。 またアミ ノ酸に関し光学異性体があり得る場合は、 特に明示しなければ L体を示すものと する。  In the present specification and drawings, when bases and amino acids are indicated by abbreviations, the IUP AC-I UB Commission on Biochemical Nomenclature is based on a common abbreviation in the field, and examples thereof are as follows. See below. If there is an optical isomer of the amino acid, the L-form is indicated unless otherwise specified.
DNA :デォキシリボ核酸  DNA: Deoxyribonucleic acid
cDNA :相補的デォキシリボ核酸 A アデニン cDNA: Complementary deoxyribonucleic acid A adenine
T チミン  T thymine
G グァニン  G Guanin
C C
RNA リボ核酸 RNA ribonucleic acid
mRNA メッセンジャーリボ核酸 dATP デォキシアデノシン三リン酸 dTTP デォキシチミジン三リン酸 dGTP デォキシグアノシン三リン酸 d CTP デォキシシチジン三リン酸 . ATP アデノシン三リン酸 mRNA Messenger ribonucleic acid dATP Deoxyadenosine triphosphate dTTP Deoxythymidine triphosphate dGTP Deoxyguanosine triphosphate d CTP Deoxycytidine triphosphate. ATP Adenosine triphosphate
EDTA エチレンジァミン四酢酸 SDS ドデシル硫酸ナトリウム G 1 y グリシン EDTA Ethylenediaminetetraacetic acid SDS Sodium dodecyl sulfate G 1 y Glycine
A 1 a ァラニン A 1 a Alanin
Va 1 バリン Va 1 Valine
Leu Leu
I 1 e  I 1 e
S e r セリン S e r serine
Th r スレオニン Th r threonine
Cy s Cy s
Me t メチォニン Me t Methionin
G 1 u ダル夕ミン酸 G 1 u Dalminic acid
As p ァスパラギン酸 As p Aspartic acid
L y s リジン Lys lysine
A r g アルギニン A r g Arginine
H i s ヒスチジン H is histidine
P h e フエ二ルァラニン P h e feniralanin
T y r チロシン T r p : トリブトファン T yr tyrosine T rp: Tribute fan
P r o :プロリン  Pro: Proline
Λ o -n . • , フ /ノヽノ:ヤ^ノ、ノ  Λ o -n. •, // ノ ヽ ノ : ヤ ^ ノ 、 ノ
G 1 n :グルタミン  G 1 n: Glutamine
pG 1 u : ピログルタミン酸  pG 1 u: pyroglutamic acid
HEPE S : N- [2-ヒドロキシェチル]ピペラジン- Ν'- [2 -エタンスルホン 酸]  HEPE S: N- [2-hydroxyethyl] piperazine-Ν '-[2-ethanesulfonic acid]
HB S S Hank's Balanced Salt Solution 本明細書の配列表の配列番号は、 以下の配列を示す。  HBS S Hank's Balanced Salt Solution The sequence numbers in the sequence listing in this specification indicate the following sequences.
〔配列番号: 1〕  [SEQ ID NO: 1]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照 The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
) o ) o
〔配列番号: 2〕 - 後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照 [SEQ ID NO: 2]-shows the amino acid sequence of the sample used in Example 1 described later (see Table 1).
) )
〔配列番号: 3〕  [SEQ ID NO: 3]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照 The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
) )
〔配列番号: 4〕  [SEQ ID NO: 4]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照 The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
) )
〔配列番号: 5〕  [SEQ ID NO: 5]
後述の実施例 1で用いられたサンプルが有ずるアミノ酸配列を示す (表 1参照' )  The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
〔配列番号: 6〕  [SEQ ID NO: 6]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照 The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
) )
〔配列番号: 7〕 後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照 ) 。 [SEQ ID NO: 7] The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
〔配列番号: 8〕  [SEQ ID NO: 8]
後述の実施例 1で用いられたサンブルが有するアミノ酸配列を示す (表 1参照 。  The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
〔配列番号: 9〕  [SEQ ID NO: 9]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照 ) 。  The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
〔配列番号: 1 0〕  [SEQ ID NO: 10]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照  The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
〔配列番号: 1 1〕 [SEQ ID NO: 11]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照 〔配列番号: 1 2〕  2 shows the amino acid sequence of the sample used in Example 1 described later (see Table 1 [SEQ ID NO: 12]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照  The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
〔配列番号: 1 3〕 [SEQ ID NO: 13]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照 )  Shows the amino acid sequence of the sample used in Example 1 described below (see Table 1)
〔配列番号: 1 4〕  [SEQ ID NO: 14]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照  The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
〔配列番号: 1 5〕 [SEQ ID NO: 15]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照  The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
〔配列番号: 1 6〕 [SEQ ID NO: 16]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照 〔配列番号: 17〕 The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1). [SEQ ID NO: 17]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照  The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
〔配列番号: 18〕 [SEQ ID NO: 18]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照  The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
〔配列番号: 19〕 [SEQ ID NO: 19]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照 〔配列番号: 20〕  2 shows the amino acid sequence of the sample used in Example 1 described later (see Table 1 [SEQ ID NO: 20]
後述の実施例 1で用いられたサンプルが有するアミノ酸配列を示す (表 1参照  The amino acid sequence of the sample used in Example 1 described below is shown (see Table 1).
〔配列番号: 21〕 [SEQ ID NO: 21]
ヒト型 FM— 3をコードする DN Aの塩基配列を示す (後述の参考例 1) 。 〔配列番号: 22〕  1 shows the nucleotide sequence of DNA encoding human FM-3 (Reference Example 1 described later). [SEQ ID NO: 22]
後述の参考例 1で用いられた FM3 F 2の塩基配列を示す。  7 shows the nucleotide sequence of FM3F2 used in Reference Example 1 described later.
〔配列番号: 23〕  [SEQ ID NO: 23]
後述の参考例 1で用いられた F M 3 R 2の塩基配列を示す。 実施例  7 shows the base sequence of FM 3 R2 used in Reference Example 1 described later. Example
以下に参考例および実施例を示して、 本発明をより詳細に説明するが、 これら は本発明の範囲を限定するものではない。  Hereinafter, the present invention will be described in more detail with reference to Reference Examples and Examples, but these do not limit the scope of the present invention.
参考例 1 ヒト型 FM— 3発現 CHO細胞の作成 (特願 2000-52251号実施例 1参 照) Reference Example 1 Preparation of human-type FM-3 expressing CHO cells (See Example 1 of Japanese Patent Application No. 2000-52251)
ヒト型 FM— 3の取得は以下のように行った。 Genomics 52, 223-229 (1998) に 報告されているヒト型 F M— 3の配岁 Uに基づき以下の 2種類の合成 DNAを合成し た。  The human type FM-3 was obtained as follows. The following two types of synthetic DNAs were synthesized based on the arrangement U of human FM-3 reported in Genomics 52, 223-229 (1998).
F 3F2: 5'-GTCGACCATGGCTTGCAATGGCAGTGCGGCCAGG-3' (配列番号: 22)  F 3F2: 5'-GTCGACCATGGCTTGCAATGGCAGTGCGGCCAGG-3 '(SEQ ID NO: 22)
FM3R2: 5'-GCTAGCTCAGGATGGATCGGTCTCTTGCTG-3' (配列番号: 23) これらの合成 DNAを用いてヒト胎児脳 cDNAより PCRにて取得した。 PCRの反応液 はラット視床下部 cDNA溶液 1 ιι\ (0.2 ng poly(A)+RNA由来) 、 1 丽 2 (10 MM) 、 1 1 FM3R2 (10 M) 、 5 1添付の 10 x反応液、 5 1 dNTP (lOmM) 、 1 1 Ex Taq (夕カラ) 、 36 1 蒸留水を加えて合計 50 1にした。 反応液を ThermalCycler9600を用いて PCR反応にかけた。 PCRの条件は 95°C'2 分の変性の後 、 98 - 10秒、 65で · 10秒、 · 90秒のサイクルを 28回繰り返した。 PCR産物 の一部を用いて電気泳動で約 1, 2 kbの PCR産物の増幅を確認した後、 PCR産物を TA クローニングキット (Invitrogen社) を用いて大腸菌にサブクローニングした。 サブクローニングで得られた大腸菌からプラスミドをプラスミド抽出機 (クラポ ゥ社) を用いて抽出し、 挿入断片の塩基配列を決定し、 その配列が上記の文献に 報告されているものと同じヒト型 FM— 3cDNA (配列番号: 21) であることを 確認した。 次にそのプラスミドから制限酵素 S a 1 Iおよび Nh e Iによって消 化後約 1.2 kbのヒト型 FM— 3cDNA断片を得た。 さらに、 動物細胞用の発現べク 夕一である ρΑΚΚΟ— 1 1 1Hはマルチクローニングサイト部分の制限酵素サ イト S a 1 Iおよび Nh e Iによって消化後、 電気泳動を行い、 ベクター部分を 回収した。 以上の操作によって調製したヒト型 FM_ 3cDNA断片および発現べク 夕一をライゲーシヨンによって連結し、大腸菌 JM109を形質転換して E. coli JM109ZpAKKOFM3を得た。 FM3R2: 5'-GCTAGCTCAGGATGGATCGGTCTCTTGCTG-3 '(SEQ ID NO: 23) Using these synthetic DNAs, human fetal brain cDNA was obtained by PCR. The PCR reaction solution was rat hypothalamus cDNA solution 1 ιι \ (from 0.2 ng poly (A) + RNA), 1 丽 2 (10 MM), 11 FM3R2 (10 M), 51 1x attached reaction solution, 51 dNTP (10 mM), 11 Ex Taq (evening color) and 36 1 distilled water were added to make a total of 501. The reaction solution was subjected to a PCR reaction using a ThermalCycler 9600. The PCR conditions were: denaturation at 95 ° C for 2 minutes, and a cycle of 98-10 seconds, 65 at 10 seconds, and 90 seconds was repeated 28 times. After confirming the amplification of a PCR product of about 1 or 2 kb by electrophoresis using a part of the PCR product, the PCR product was subcloned into E. coli using a TA cloning kit (Invitrogen). Plasmids were extracted from the E. coli obtained by subcloning using a plasmid extractor (Kurapo Co., Ltd.), the base sequence of the inserted fragment was determined, and the sequence was the same as that reported in the above-mentioned literature. It was confirmed to be 3 cDNA (SEQ ID NO: 21). Next, a human FM-3 cDNA fragment of about 1.2 kb was obtained from the plasmid after digestion with the restriction enzymes Sa1I and NheI. Furthermore, the expression vector for animal cells, ρΑΚΚΟ-111H, was digested with the restriction enzyme sites Sa1I and NheI at the multiple cloning site, followed by electrophoresis, and the vector was recovered. . The human FM_3 cDNA fragment and the expression vector prepared by the above procedure were ligated by ligation, and E. coli JM109 was transformed to obtain E. coli JM109ZpAKKOFM3.
形質転換体 E. coli JM109/pAKK〇FM3を培養し、プラスミド pAK KOFM 3の DNAを大量に調製した。  The transformant E. coli JM109 / pAKKΔFM3 was cultured to prepare a large amount of plasmid pAK KOFM3 DNA.
そのプラスミド DNAのうちの 20 igを 1mlの生理的食塩水 (PBS)に溶解 後、 ジーントランスファ一 (和光純薬) のバイアルに注入し、 ポルテックスミキ サーを用いて激しく撹拌して DN Aを含有するリボソームを形成させた。. CHO d h f r 細胞 1ないし 2 X 1 0 個を直径 35 mmの細胞培養用シャーレに播種 し、 20時間培養した後に培養液を新鮮なものに交換した。 各シャーレに対して After dissolving 20 ig of the plasmid DNA in 1 ml of physiological saline (PBS), inject it into a vial of Gene Transfer (Wako Pure Chemical), and vigorously shake using a Portex mixer to remove DNA. The containing ribosome was allowed to form. 1 to 2 × 10 CHO dhfr cells were seeded on a 35 mm diameter cell culture dish, and cultured for 20 hours, and the culture solution was replaced with fresh one. For each petri dish
0. 5 の DNAに相当する量 (25 1) のリボソーム液を滴下し、 16時間 インキュベーションを行ってプラスミド DNAの導入を行った。 さらに新鮮な培 地に交換して 1日間培養した後、 選択培地に交換して 3日間培養を続け、 最後に ト リ プシン消化を行って分散させた細胞を低密度で選択培地 ( 0/05639 The amount of (251) ribosome solution corresponding to 0.5 DNA was added dropwise and incubated for 16 hours to introduce the plasmid DNA. Furthermore, after replacing the medium with fresh medium and culturing for 1 day, the medium is replaced with the selection medium and culturing is continued for 3 days. Finally, the cells dispersed by trypsin digestion are dispersed at a low density in the selection medium ( 0/05639
52 52
deoxyr ibonucleosides¾ ^D^ribonucleosidesを含有しなレ minimum essential medium, alpha mediumに 10 %透析ゥシ血清を加えたもの) 中に播種し、 形質転 換体の選択を行った。 形質転換体のみが選択培地中で増殖することが可能であり 、 継代を繰り返すことによって選択を重ね、 CH〇— FM3細胞を樹立した。 実施例 1 各種ペプチドサンプルを用いたサイトセンサ一アツセィによる FM - 3 発現 CH0細胞に対する刺激活性の検出 Deoxyr ibonucleosides (a minimum essential medium, alpha medium containing 10% dialyzed serum) containing no D ^ ribonucleosides) were selected for transformants. Only the transformants can grow in the selection medium, and the selection is repeated by repeating the passage, and CH〇-FM3 cells are established. Example 1 Detection of stimulatory activity on FM-3 expressing CH0 cells by cytosensor-Attach using various peptide samples
FM- 3発現 CHO細胞を、 2.7xl05cells/capsuleの密度でサイトセンサー用力 プセルに播種し、 一晩培養した後にサイトセンサ一のワークステーションに装 着した。サイトセンサーの流路にセットしたアツセィ用の培地 (0.1%のゥシ血 清アルブミンを含有する low buffered RPMI1640 medium) を、 ポンプ ON (80 秒間) ポンプ OFF (40秒間) のサイクルで細胞に供給し、 各サイクルごとに ポンプ停止 8秒後から 30秒間の細胞外 ρΗの変化率を acidification rateと して算出した。 acidification rateの経時変化をモニターし、 安定した値を示 すようになったところで流路の切り換えによって細胞に表に示した各べプチド を 7分 2秒間暴露した。 各ゥエルの Ac i cH Π ca t i on Ra t eの値をぺプチドを暴露 する直前の 3サイクルの値を 100%として標準化し、細胞の反応の比較を行なつ た。 暴露したサンプルの濃度は 1〜10 とした。 The FM- 3 expressing CHO cells were seeded in 2.7xl0 5 cells / capsule density sites for sensor power capsule of, was charged wearing site sensors one workstation after overnight culture. A cell culture medium (low buffered RPMI1640 medium containing 0.1% serum albumin) set in the flow path of the site sensor is supplied to the cells in a cycle of pump ON (80 seconds) and pump OFF (40 seconds). In each cycle, the rate of change in extracellular ρΗ from 8 seconds after the pump was stopped for 30 seconds was calculated as the acidification rate. The time course of the acidification rate was monitored, and when the value became stable, the cells were exposed to the peptides shown in the table for 7 minutes and 2 seconds by switching the flow path. The values of the AcHcCationRate for each well were normalized to the values of the three cycles immediately before exposure to the peptide as 100%, and the cell responses were compared. The concentration of the exposed samples was 1-10.
ぺプチドサンプルの FM- 3発現 CH0細胞に対する刺激活性のサイトセンサーァ ッセィによる検出結果を表 1に示す。  Table 1 shows the results of detection of the stimulating activity of peptide samples on FM-3 expressing CH0 cells by cytosensory assay.
反応のピーク時の acidification rateの値が 120%を超えるものについては ( 〇) 、 120%以下であるが明らかに反応と認められるものについては (△) 、 反 応が認められないものは (X) 、 どちらとも言えないものは (?) で表示した その結果、 FM-3発現 CHO細胞は H- 2980、 F-8-F- H2 およびァメフラシ ( If the value of the acidification rate at the peak of the reaction exceeds 120% (で), if the value is 120% or less but the reaction is clearly recognized (△), if the reaction is not recognized ((), ), And those that can not be said are indicated by (?). As a result, CHO cells expressing FM-3 were found to be H-2980, F-8-F-H2 and Amefurashi (
Aplysia) 由来のペプチド Smal 1 Cardioactive Peptide B (SCPB) に反応が検出 された。 特にこれらのなかでは、 SCPBに対する反応が最も強かった。 表 1 Aplysia) -derived peptide Smal 1 Cardioactive Peptide B (SCPB). Of these, the response to SCPB was the strongest. table 1
Figure imgf000055_0001
Figure imgf000055_0001
反応の検出されたペプチド (H- 2980、 F- 8-F- NH2、 SCPB) の構造を比較し、 す ベてに共通する構造として C-末端部分の R-X-NH2構造を見出した。 The reaction of the detected peptide (H- 2980, F- 8-F- NH2, SCPB) comparing the structure of, found RX-NH 2 structure C- terminal part a common structure Te to base.
ァミノ酸配列の共通性を比較したものを図 1に示す。  FIG. 1 shows a comparison of the similarity of the amino acid sequences.
SCPBに対する反応が最も強いことから FM-3の内因性リガンドは C -末端 R- X-NH2 構造に加えて、他の部分においても SCPBに類似の構造をとることが予想された 。 また、 H-2980および F-8- F- NH2に対しても部分的に類似の構造をとると考え られる。 このような予測のもとに既知のペプチドを検索した結果、 ニューロメ ジン U (N MU - 8 ) が見出された。 産業上の利用可能性 Endogenous ligand of FM-3 since the reaction is strongest against SCPB is C - in addition to the terminal R- X-NH 2 structure was expected to take a structure similar to SCPB in other parts. In addition, it is considered that H-2980 and F-8-F-NH2 have partially similar structures. As a result of searching for a known peptide based on such prediction, neuromedin U (NMU-8) was found. Industrial applicability
本発明の方法、 即ちォーファン受容体タンパク質発現細胞もしくはその細胞膜 画分またはォーファン受容体夕ンパク質発現細胞もしくはその細胞膜画分に発現 したォーファン受容体夕ンパク質に試験化合物を接触させ、 ォ一ファン受容体夕 ンパク質を介する細胞刺激活性を測定し、 各試験化合物の細胞刺激活性を比較す ることにより、 ァゴニストを選定した後、 各ァゴニストの構造を比較することに よって、 ォーファン受容体タンパク質のリガンドまたはそのサブタイプ、 アン夕 ゴニスト ·高活性ァゴニス卜などを効率的かつ確実に取得できる。  The method of the present invention comprises contacting a test compound with orphan receptor protein-expressing cells or a cell membrane fraction thereof or orphan receptor protein expressed in orphan receptor protein-expressing cells or cell membrane fraction thereof. By measuring the cell stimulating activity via the receptor protein and comparing the cell stimulating activities of each test compound, an agonist is selected, and the structure of each agonist is compared to determine the orphan receptor protein. It is possible to obtain ligands or their subtypes, angiogonists and highly active agonists efficiently and reliably.

Claims

請 求 の 範 囲 The scope of the claims
(i) ォーファン受容体夕ンパク質発現細胞またはその細胞膜画分に試験化合物 (a)を接触させた場合と、 ォーファン受容体タンパク質を発現しない細胞または その細胞膜画分に試験化合物(a)を接触させた場合において、 それぞれの細胞刺 激活性を測定し、 (i) Contacting test compound (a) with orphan receptor protein-expressing cells or its cell membrane fraction, and contacting test compound (a) with cells not expressing orphan receptor protein or its cell membrane fraction In this case, each cell stimulating activity was measured,
(i i) 各試験化合物 (a)の細胞刺激活性を比較することにより、 ァゴニスト活性を 有する化合物を得、  (i i) By comparing the cell stimulating activity of each test compound (a), a compound having agonist activity is obtained,
(i i i) ① ァゴニスト活性を有する該化合物が有する共通構造から推定されたリ ガンド候補物質を該ォーファン受容体夕ンパク質発現細胞またはその細胞膜画分 に接触させた場合と試験化合物 (b)を該ォーファン受容体夕ンパク質発現細胞ま たはその細胞膜画分に接触させた場合における細胞刺激活性を比較し、 および ②該ォーファン受容体タンパク質と試験化合物 (b)との特異的結合量を測定する ことを特徴とする該ォーファン受容体タンパク質の機能を促進または阻害する化 合物またはその塩のスクリーニング方法。  (iii) (i) The case where the candidate ligand substance deduced from the common structure possessed by the compound having agonist activity is brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction, and the case where the test compound (b) is Compare the cell stimulating activities when contacted with orphan receptor protein-expressing cells or their cell membrane fractions, and ② measure the specific binding of the orphan receptor protein to test compound (b) A method for screening a compound or a salt thereof that promotes or inhibits the function of the orphan receptor protein.
2 . 請求項 1記載のスクリーニング方法によって得られうる化合物またはその 2. A compound obtainable by the screening method according to claim 1 or a compound thereof
3 . 3.
(0 ォーファン受容体夕ンパク質発現細胞またはその細胞膜画分に試験化合物 (a)を接触させた場合と、 ォーファン受容体タンパク質を発現しない細胞または その細胞膜画分に試験化合物(a)を接触させた場合において、 それぞれの細胞刺 激活性を測定し、  (0) The test compound (a) was brought into contact with the orphan receptor protein-expressing cell or its cell membrane fraction, and the test compound (a) was brought into contact with a cell that does not express the orphan receptor protein or its cell membrane fraction. The cell stimulating activity of each
(i i ) 各試験化合物 (a)の細胞刺激活性を比較することにより、 ァゴニスト活性を 有する化合物を得、  (ii) comparing the cell stimulating activity of each test compound (a) to obtain a compound having agonist activity,
(i i i) ァゴニスト活性を有する該化合物が有する共通構造から推定されたリガン ド候補物質の該ォーファン受容体夕ンパク質への特異的結合量を測定することに より、 該ォ一ファン受容体夕ンパク質のリガンドまたはそのサブタイプを決定す る方法。 (iii) measuring the specific binding amount of the candidate ligand substance to the orphan receptor protein deduced from the common structure possessed by the compound having agonist activity, whereby the orphan receptor protein is measured. Quality ligand or its subtype Way.
PCT/JP2000/005639 1999-08-24 2000-08-23 Screening method WO2001014883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU67264/00A AU6726400A (en) 1999-08-24 2000-08-23 Screening method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/236597 1999-08-24
JP23659799 1999-08-24

Publications (1)

Publication Number Publication Date
WO2001014883A1 true WO2001014883A1 (en) 2001-03-01

Family

ID=17003012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005639 WO2001014883A1 (en) 1999-08-24 2000-08-23 Screening method

Country Status (2)

Country Link
AU (1) AU6726400A (en)
WO (1) WO2001014883A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087366A1 (en) * 2002-04-16 2003-10-23 Kyowa Hakko Kogyo Co., Ltd. Endocrine cell lines and method of using the same
KR20100060752A (en) * 2008-11-28 2010-06-07 (주)아모레퍼시픽 Method for screening harmful responses of skin by pollen, house dust mite or yellow sand dust, and the composition for skin external application controlling the responses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970289A (en) * 1995-06-27 1997-03-18 Takeda Chem Ind Ltd Human crf2 recepter protein, its production and use
JPH10127289A (en) * 1996-10-29 1998-05-19 Takeda Chem Ind Ltd New g protein conjugate type receptor protein and its dna
JPH10313866A (en) * 1997-05-15 1998-12-02 Shionogi & Co Ltd Screening of agonist or antagonist of doc2alpha-munc13 combination
JPH11127872A (en) * 1997-08-11 1999-05-18 Japan Tobacco Inc New intranuclear receptor protein, gene and its use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970289A (en) * 1995-06-27 1997-03-18 Takeda Chem Ind Ltd Human crf2 recepter protein, its production and use
JPH10127289A (en) * 1996-10-29 1998-05-19 Takeda Chem Ind Ltd New g protein conjugate type receptor protein and its dna
JPH10313866A (en) * 1997-05-15 1998-12-02 Shionogi & Co Ltd Screening of agonist or antagonist of doc2alpha-munc13 combination
JPH11127872A (en) * 1997-08-11 1999-05-18 Japan Tobacco Inc New intranuclear receptor protein, gene and its use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087366A1 (en) * 2002-04-16 2003-10-23 Kyowa Hakko Kogyo Co., Ltd. Endocrine cell lines and method of using the same
KR20100060752A (en) * 2008-11-28 2010-06-07 (주)아모레퍼시픽 Method for screening harmful responses of skin by pollen, house dust mite or yellow sand dust, and the composition for skin external application controlling the responses
KR101601865B1 (en) 2008-11-28 2016-03-09 (주)아모레퍼시픽 Method for screening harmful responses of skin by pollen house dust mite or yellow sand dust and the composition for skin external application controlling the responses

Also Published As

Publication number Publication date
AU6726400A (en) 2001-03-19

Similar Documents

Publication Publication Date Title
US7419956B2 (en) Isolated physiologically active peptide and use thereof
US7608409B2 (en) Screening assay using G-protein coupled receptor protein OT7T175
EP0845529A2 (en) Human G-protein coupled receptor protein cloned form fetal brain CDNA library
JP2002507892A (en) Cloning and characterization of human adenylate cyclase
KR20010081109A (en) Novel g protein-coupled receptor protein, its dna and ligand thereof
US7138249B2 (en) Screening method
WO2001040797A1 (en) Screening method
WO2001014883A1 (en) Screening method
JP2002514926A (en) Cloning and characterization of human adenylate cyclase
JP2000050875A (en) New g protein-conjugated type receptor protein and dna thereof
EP1357129A2 (en) Novel physiologically active peptide and use thereof
JP2001128695A (en) Screening method
JP4637378B2 (en) Screening method
JP2001309792A (en) Method for screening
JP4780365B2 (en) MCH receptor antagonist / agonist screening method
JP2000166576A (en) New g-protein-conjugated type receptor protein and its dna
Ziemek Development of binding and functional assays for the neuropeptide YY 2 and Y 4 receptors
Ji Oligomers of G proteins identified in live CHO cells and extracts of Sf9 cells
EP1357187A1 (en) Novel physiologically active peptide and use thereof
JP2002000281A (en) New g-protein-coupled receptor protein and dna thereof
JPH08319296A (en) Human lh-rh receptor protein, its production and use thereof
JP2002238584A (en) Novel mas receptor-analogous protein and dna thereof
JP2002360281A (en) New g-protein-coupled receptor protein and its dna
WO2001068847A1 (en) Novel mass receptor-analogous proteins and dnas thereof
JP2001136981A (en) New g-protein conjugate-type receptor protein and dna thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AU AZ BA BB BG BR BY BZ CA CN CR CU CZ DM DZ EE GD GE HR HU ID IL IN IS JP KG KR KZ LC LK LR LT LV MA MD MG MK MN MX MZ NO NZ PL RO RU SG SI SK TJ TM TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP