WO2001014282A1 - Method for the production of zirconium dioxide fibers - Google Patents

Method for the production of zirconium dioxide fibers Download PDF

Info

Publication number
WO2001014282A1
WO2001014282A1 PCT/EP2000/007827 EP0007827W WO0114282A1 WO 2001014282 A1 WO2001014282 A1 WO 2001014282A1 EP 0007827 W EP0007827 W EP 0007827W WO 0114282 A1 WO0114282 A1 WO 0114282A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium
fibers
zirconium dioxide
formic acid
solution
Prior art date
Application number
PCT/EP2000/007827
Other languages
German (de)
French (fr)
Inventor
Hans-Josef Sterzel
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Publication of WO2001014282A1 publication Critical patent/WO2001014282A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6225Fibres based on zirconium oxide, e.g. zirconates such as PZT

Definitions

  • the present invention relates to a method for producing zirconia fibers.
  • the invention further relates to a method for producing stabilized zirconium dioxide fibers, in which the tetragonal modification of the zirconium dioxide is stabilized against the conversion into the monoclinic modification by means of stabilizing additives.
  • zirconium dioxide Due to its properties, zirconium dioxide is being used to an increasing extent in those areas of application where the mechanical, thermal and chemical resistance of the material is required. Zirconium dioxide, for example, can be used alone or in a mixture with other oxides as a material for the production of shaped bodies or fibers made of sintered ceramic. Zirconium dioxide fibers are used, for example, in special applications for thermal insulation. Another area of application is the fiber reinforcement of metals in order to increase their strength and creep resistance. This applies in particular to fiber-reinforced titanium and titanium alloys, since titanium reacts with the aluminum oxide fibers used in other metals under certain conditions.
  • zirconium dioxide fibers are good oxygen ion conductors at higher temperatures, for example above 800 ° C., and are therefore used in corresponding components such as sensors or fuel cells.
  • zirconia fibers are inert to strong alkalis and chlorine, which makes them possible asbestos substitutes in diaphragms for chlor-alkali electrolysis.
  • the zirconium dioxide powder used for these sintered bodies or fibers is generally used in a stabilized form, as a result of which the tetragonal high-temperature modification is retained even when it is cooled to the application temperature.
  • the zirconium dioxide powder is mixed with other oxides such as e.g. B. yttrium oxide, cerium oxide, rare earth oxides, calcium oxide, magnesium oxide or doped with mixtures of these oxides. So that from the stabilized zirconia, for. B.
  • zirconia fibers are drawn from a melt of zirconia in accordance with the teaching of US-A 3944640.
  • This method is economically unsatisfactory due to its high energy costs.
  • T. Yogo in J. Mater. Be. 25 (5) (1990) 2394-2398 and Y. Abe, H. Tomioka, T. Gunji, Y. Nagao and T. Misono in J. Mater. Be. Lett. 13 (13) (1994) 960-962 teach processes in which polymeric zirconium-organic compounds are formed into fibers and then converted into zirconium dioxide fibers by pyrolysis. This process is also economically unsatisfactory since the detour via the zirconium organic compound is cumbersome.
  • powdered zirconium dioxide is processed into fibers.
  • stabilized zirconium dioxide particles with particle sizes between 0.1 and 1 micrometer are dispersed in an auxiliary polymer or its solution and the viscous mixture obtained is extruded through fine nozzles.
  • the solvent is then removed by slow heating, the polymer is burned out and the finished fiber is produced by sintering at a temperature of 1300 ° C. to 1500 ° C.
  • EP-A 383 051 disclosed start from zirconium dioxide sols, which are usually prepared by hydrolysis of alkoxy zirconium compounds. The brine is spun and the finished fiber is produced by firing. The use of alkoxy zirconium compounds as starting material makes these processes economically unsatisfactory.
  • Another group of known processes starts from dissolved zirconium compounds, the solution being deformed into fibers, which are then converted to zirconium dioxide by calcination. Examples of such processes are disclosed in JP-A 04-100 921, JP-A 02-097 425 or JP-A 05-321 036. All known processes that start from dissolved zirconium compounds require careful control of the process conditions, since even small deviations lead to unsatisfactory results. In particular, the premature formation of solid particles should be avoided, since these act as predetermined breaking points in the later fiber. Another disadvantage of many such processes is that they start from chloride-containing zirconium compounds. Chloride residues in the finished fiber can permanently deteriorate their properties and also lead to corrosion problems in some areas of application.
  • ü ⁇ -A-6X ⁇ 289130 teaches " a process for producing stabilized zirconia fibers by spinning a solution of zirconium formate containing 5 to 30% by weight of zirconium acetate, based on the total salt content of the solution, and subsequent sintering. If less zirconium acetate is used in this process, non-spinnable solutions are formed; if more is used, the strength of the fibers obtained is reduced.
  • DE-A 196 19 638 discloses a process for the production of optionally stabilized zirconium dioxide powder from a solution of a chloride-free zirconium compound in a formic acid / water mixture.
  • the task is to find a further, simple and economically satisfactory process for the production of zirconium dioxide fibers, which enables the production of good quality, optionally stabilized fibers. Accordingly, a process for the production of zirconium dioxide fibers by spinning a solution of a zirconium compound and subsequent calcination has been found, which is characterized in that a solution of a zirconium compound in a formic acid / water mixture is used.
  • the method according to the invention enables simple and economical production of high-quality, optionally stabilized zirconium dioxide fibers with excellent properties.
  • the fibers can also be produced without the use of chloride-containing raw materials.
  • a spinnable solution of a zirconium compound in a formic acid / water mixture is produced.
  • a zirconium compound preferably a chloride-free zirconium compound
  • Zirconium oxide hydrate or basic zirconium carbonate for example, is used as the zirconium compound.
  • the molar ratio of formic acid to water in this solvent is 1: 1 to 1: 3, preferably 1: 1.5 to 1: 2.5 and very particularly preferably 1: 1.8 to 1: 2.2.
  • the formic acid / water mixture preferably contains no further components.
  • the solution can be prepared at room temperature or a slightly elevated temperature, but the use of a dissolving temperature in the range of is preferred 50 to 95 ° C, preferably in the range of 70 to 85 ° C.
  • a dissolving temperature in the range of is preferred 50 to 95 ° C, preferably in the range of 70 to 85 ° C.
  • the mixture of formic acid and water is introduced and the solids are metered in, but the reverse order is also possible. If carbonate is used, the metering rate is preferably set so that the reactor contents are not overexposed.
  • z. B 1 kg of basic zirconium carbonate in a mixture of 0.4 kg of water and 0.5 kg of formic acid to obtain a low-viscosity, clear solution. It is also possible to produce a highly viscous, also clear solution by dissolving 1 kg of basic zirconium carbonate in just 0.24 kg of water and 0.307 kg of formic acid.
  • a low-viscosity solution is concentrated by concentrating the solvent, or a high-viscosity solution is diluted by adding further solvent.
  • the zirconium compound is preferably dissolved in approximately the same amount by weight of the formic acid / water mixture.
  • the production of stabilized zirconium dioxide fibers is optionally also possible.
  • additives are added to the zirconium dioxide before, during or after its production, which stabilize the tetragonal modification in relation to the conversion into the monoclinic modification.
  • stabilizing compounds or precursors of such compounds which are advantageously also soluble in the formic acid / water mixture, are mixed in as solids in the zirconium compounds used in the process according to the invention before they are dissolved in the formic acid / water mixture.
  • stabilizing additives or precursors of such additives can be added to the zirconium dioxide fibers produced according to the invention, for. B.
  • At least one stabilizing additive and / or at least one precursor of such a stabilizing additive is preferably dissolved together with the zirconium compound in the mixture of formic acid and water.
  • An yttrium compound is preferably used as the stabilizing additive or precursor. Preference is given to using a chloride-free yttrium compound which is soluble in the mixture of formic acid and water used as solvent. Suitable yttrium-containing compounds are e.g. B.
  • the amount of yttrium compound becomes so dimensioned so that the zirconia fibers have an yttria content of 2 to 10 mol%, preferably 2.5 to 5 mol%.
  • the total amount of compounds to be dissolved is preferably dissolved in approximately the same amount by weight of the formic acid / water mixture.
  • the solution After the solution has been prepared, it is stirred or left to stand until it is completely clear after one or after cooling to a temperature below 30.degree. In general, this is the case after leaving at room temperature for a maximum of 20 hours. If the solution is prepared at an elevated temperature, it should be noted that the solution is formed more quickly, but is usually cloudy above 30 ° C.
  • the viscosity of the solution is then adjusted so that it is spinnable.
  • solvent is drawn off (preferably by means of negative pressure at room temperature) or solvent is added.
  • the viscosity at room temperature is preferably at a shear rate of 10 s -1 in the range from 2000 to 10,000 dPas. This corresponds to a solids content of the spinning mass, calculated as oxides (Zr0 or possibly Zr0 / stabilizer, for example Y 2 O 3 ) in the range from 40 to 50% by weight.
  • the spinnable solution is then spun into fibers using conventional spinning techniques.
  • the spinning process can take place in air and at room temperature.
  • the fibers produced usually have diameters of 5 to 20 micrometers and are either drawn directly from the solution at speeds of up to 1 m / s or, following the spinning process, at speeds of up to 10 m / s to give fibers with diameters in the range from Stretched 2 to 10 microns.
  • the so-called "green" fibers produced in this way dry very quickly due to the high solids content, with the formation of glass-like amorphous fibers which do not stick together.
  • the reworking of green zirconium dioxide fibers to the end product is known. If necessary, formic acid and / or water still present is removed from the green fiber (“drying”) by exposing the green fibers to a temperature of at least 100 ° C., generally a temperature below 300 ° C. is sufficient for this.
  • the finished zirconium dioxide fibers are then produced in the usual way by calcining the optionally dried green fibers at a temperature of at least 600 ° C. If the heating rates used are unusually low to these temperatures, shift the temperature range to be applied slightly downwards, with unusually high heating rates upwards.
  • spinning is preferably carried out at the lower end of a heatable shaft with a length of up to 10 m, which is heated to temperatures of, for example, 1500 ° C.
  • the stretching takes place immediately after the fibers exit the spinnerets.
  • Finished zirconium dioxide continuous fibers are obtained at the top of the shaft.
  • Short fibers are preferably produced in a centrifugal process, in which the solution is pressed through a rotating, cooled spinning head with spinnerets located on the circumference. The head is in an oven heated to 1200 to 1500 ° C. This process creates finished short zirconium dioxide fibers up to 2 mm long.
  • the fibers drawn manually in air at room temperature with a glass rod, were heated in air in an oven to 1450 ° C, left at this temperature for 10 minutes and then cooled. Flexible zirconium dioxide fibers with diameters of 5 to 10 micrometers were created.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The invention relates to zirconium dioxide fibers which are produced by spinning a zirconium compound solution in a mixture of formic acid and water in a molar ratio of 1:1 to 1:3 and then performing sintering.

Description

Verfahren zur Herstellung von ZirkoniumdioxidfasernProcess for the production of zirconia fibers
Beschreibungdescription
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Zirkoniumdioxidfasern. Die Erfindung betriffft weiterhin ein Verfahren zur Herstellung von stabilisierten Zirkoniumdioxidfa- sern, in denen die tetragonale Modifikation des Zirkoniumdioxids durch stabilisierende Zusätze gegen die Umwandlung in die mono- kline Modifikation stabilisiert ist.The present invention relates to a method for producing zirconia fibers. The invention further relates to a method for producing stabilized zirconium dioxide fibers, in which the tetragonal modification of the zirconium dioxide is stabilized against the conversion into the monoclinic modification by means of stabilizing additives.
Zirkoniumdioxid wird aufgrund seiner Eigenschaften in zunehmendem Maße in solchen Anwendungsbereichen eingesetzt, in denen hohe me- chanische, thermische und chemische Beständigkeit des Werkstoffs gefordert ist. Zirkoniumdioxid kann beispielsweise alleine oder im Gemisch mit anderen Oxiden als Werkstoff zur Herstellung von Formkörpern oder Fasern aus Sinterkeramik eingesetzt werden. Zirkoniumdioxidfasern werden beispielsweise in Spezialanwendungen zur Wärmeisolation eingesetzt. Ein weiterer Anwendungsbereich ist die Faserverstärkung von Metallen, um deren Festigkeit und Kriechfestigkeit zu erhöhen. Dies gilt insbesondere für faserverstärktes Titan und Titanlegierungen, da Titan mit den bei anderen Metallen verwendeten Aluminiumoxidfasern unter bestimmten Bedin- gungen reagiert. Weiterhin sind Zirkoniumdioxidfasern bei höheren Temperaturen, etwa oberhalb von 800 °C, gute Sauerstoffionenleiter und werden deshalb in entsprechenden Bauelementen wie Sensoren oder Brennstoffzellen verwendet. Außerdem sind Zirkoniumdioxidfasern inert gegen starke Alkalien und Chlor, was sie zu möglichen Asbestersatzstoffen in Diaphragmen zur Chloralkalielektrolyse macht.Due to its properties, zirconium dioxide is being used to an increasing extent in those areas of application where the mechanical, thermal and chemical resistance of the material is required. Zirconium dioxide, for example, can be used alone or in a mixture with other oxides as a material for the production of shaped bodies or fibers made of sintered ceramic. Zirconium dioxide fibers are used, for example, in special applications for thermal insulation. Another area of application is the fiber reinforcement of metals in order to increase their strength and creep resistance. This applies in particular to fiber-reinforced titanium and titanium alloys, since titanium reacts with the aluminum oxide fibers used in other metals under certain conditions. Furthermore, zirconium dioxide fibers are good oxygen ion conductors at higher temperatures, for example above 800 ° C., and are therefore used in corresponding components such as sensors or fuel cells. In addition, zirconia fibers are inert to strong alkalis and chlorine, which makes them possible asbestos substitutes in diaphragms for chlor-alkali electrolysis.
Das für diese Sinterkörper oder Fasern verwendete Zirkoniumdioxidpulver wird in der Regel in stabilisierter Form eingesetzt, wodurch die tetragonale Hochtemperaturmodifikation auch bei Abkühlung auf Anwendungstemperatur erhalten bleibt. Um diese Stabilisierung zu erreichen, wird das Zirkoniumdioxidpulver mit anderen Oxiden wie z. B. Yttriumoxid, Ceroxid, Oxiden der Seltenen Erden, Calciumoxid, Magnesiumoxid oder mit Gemischen dieser Oxide dotiert. Damit die aus dem stabilisierten Zirkondioxid, z. B. durch Pressen, Spritzguß, Schlickerguß oder Verspinnen hergestellten Grünlinge das gewünschte Sinterverhalten und die gesinterten Formkörper oder Fasern die angestrebten guten mechanischen, thermischen und chemischen Eigenschaften aufweisen, ist es notwendig, daß das zudotierte Oxid möglichst gleichmäßig in dem Zirkondioxidgitter verteilt ist. Verfahren zur Herstellung von nicht stabilisierten oder stabilisierten Zirkoniumdioxidfasern sind bekannt.The zirconium dioxide powder used for these sintered bodies or fibers is generally used in a stabilized form, as a result of which the tetragonal high-temperature modification is retained even when it is cooled to the application temperature. In order to achieve this stabilization, the zirconium dioxide powder is mixed with other oxides such as e.g. B. yttrium oxide, cerium oxide, rare earth oxides, calcium oxide, magnesium oxide or doped with mixtures of these oxides. So that from the stabilized zirconia, for. B. by pressing, injection molding, slip casting or spinning green parts produced the desired sintering behavior and the sintered molded body or fibers have the desired good mechanical, thermal and chemical properties, it is necessary that the added oxide is distributed as evenly as possible in the zirconia lattice. V out for the production of non-stabilized or stabilized zirconia fiber are known.
Beispielsweise werden Zirkoniumdioxidfasern gemäß der Lehre von US-A 3944640 aus einer Schmelze von Zirkoniumdioxid gezogen. Dieses Verfahren ist aufgrund seiner hohen Ergiekosten wirtschaftlich unbefriedigend. T. Yogo, in J. Mater. Sei. 25(5) (1990) 2394-2398 sowie Y. Abe, H. Tomioka, T. Gunji, Y. Nagao und T. Mi- sono in J. Mater. Sei. Lett. 13(13) (1994) 960-962 lehren Verfah- ren, bei denen polymere zirkoniumorganische Verbindungen zu Fasern geformt und anschließend durch Pyrolyse in Zirkoniumdioxidfasern umgewandelt werden. Auch dieses Verfahren ist wirtschaftlich unbefriedigend, da der Umweg über die zirkoniumorganische Verbindung umständlich ist.For example, zirconia fibers are drawn from a melt of zirconia in accordance with the teaching of US-A 3944640. This method is economically unsatisfactory due to its high energy costs. T. Yogo, in J. Mater. Be. 25 (5) (1990) 2394-2398 and Y. Abe, H. Tomioka, T. Gunji, Y. Nagao and T. Misono in J. Mater. Be. Lett. 13 (13) (1994) 960-962 teach processes in which polymeric zirconium-organic compounds are formed into fibers and then converted into zirconium dioxide fibers by pyrolysis. This process is also economically unsatisfactory since the detour via the zirconium organic compound is cumbersome.
In anderen bekannten Verfahren, beispielsweise dem in DE-A 30 28 314 offenbarten, wird pulverförmiges Zirkoniumdioxid zu Fasern verarbeitet. Dazu werden gegebenenfalls stabilisierte Zirkondioxidpartikel mit Partikelgrößen zwischen 0,1 und 1 Mikro- meter in einem Hilfspolymeren oder desen Lösung dispergiert und das erhaltene viskose Gemenge durch feine Düsen extrudiert. Anschließend wird durch langsames Erhitzen das Lösungsmittel entfernt, das Polymere ausgebrannt und durch Sinterung bei einer Temperatur von 1300 °C bis 1500 °C die fertige Faser erzeugt. Diese Verfahren führen in der Regel zu vergleichsweise brüchigen Fasern.In other known processes, for example the one disclosed in DE-A 30 28 314, powdered zirconium dioxide is processed into fibers. For this purpose, stabilized zirconium dioxide particles with particle sizes between 0.1 and 1 micrometer are dispersed in an auxiliary polymer or its solution and the viscous mixture obtained is extruded through fine nozzles. The solvent is then removed by slow heating, the polymer is burned out and the finished fiber is produced by sintering at a temperature of 1300 ° C. to 1500 ° C. These processes usually lead to comparatively brittle fibers.
Wiederum andere Verfahren, etwa die in EP-A 375 158 oderStill other processes, such as those in EP-A 375 158 or
EP-A 383 051 offenbarten, gehen von Zirkoniumdioxidsolen aus, die üblicherweise durch Hydrolyse von Alkoxizirkonverbindungen hergestellt werden. Die Sole werden versponnen und durch Brennen wird die fertige Faser erzeugt. Die Verwendung von Alkoxizirkonverbindungen als Ausgangsstoff macht diese Verfahren wirtschaftlich unbefriedigend.EP-A 383 051 disclosed start from zirconium dioxide sols, which are usually prepared by hydrolysis of alkoxy zirconium compounds. The brine is spun and the finished fiber is produced by firing. The use of alkoxy zirconium compounds as starting material makes these processes economically unsatisfactory.
Eine weitere Gruppe bekannter Verfahren geht von gelösten Zirkoniumverbindungen aus, wobei die Lösung zu Fasern verformt wird, die anschließend durch Kalzination zu Zirkoniumdioxid umgewandelt werden. Beispiele für solche Verfahren sind in JP-A 04-100 921, JP-A 02-097 425 oder JP-A 05-321 036 offenbart. Alle bekannten Verfahren, die von gelösten Zirkoniumverbindungen ausgehen, erfordern eine sorgfältige Kontrolle der Verfahrensbedingungen, da schon kleine Abweichungen zu unbefriedigenden Resulaten führen. Insbesondere sollte die verfrühte Bildung von Feststoffpartikeln vermieden werden, da diese in der späteren Faser als Sollbruchstellen wirken. Ein weiterer Nachteil vieler solcher Verfahren ist, daß sie von chloridhaltigen Zirkoniumverbindungen ausgehen. Chloridreste in der fertigen Faser können deren Eigenschaften nachhaltig verschlechtern und auch in manchen Anwendungsbereichen zu Korrosionsproblemen führen.Another group of known processes starts from dissolved zirconium compounds, the solution being deformed into fibers, which are then converted to zirconium dioxide by calcination. Examples of such processes are disclosed in JP-A 04-100 921, JP-A 02-097 425 or JP-A 05-321 036. All known processes that start from dissolved zirconium compounds require careful control of the process conditions, since even small deviations lead to unsatisfactory results. In particular, the premature formation of solid particles should be avoided, since these act as predetermined breaking points in the later fiber. Another disadvantage of many such processes is that they start from chloride-containing zirconium compounds. Chloride residues in the finished fiber can permanently deteriorate their properties and also lead to corrosion problems in some areas of application.
"ü^-A-6X^289130 lehrt "ein Verfahren zur Herstellung von stabilisierten Zirkoniumdioxidfasern durch Verspinnen einer Lösung von Zirkoniumformiat , die 5 bis 30 Gew. -% Zirkoniumacetat, bezogen auf den gesamten Salzgehalt der Lösung, enthält, und anschließende Sinterung. ird in diesem Verfahren weniger Zirkoniumacetat eingesetzt, so entstehen nicht verspinnbare Lösungen, wird mehr eingesetzt, so verringert sich die Festigkeit der erhaltenen Fasern. " ü ^ -A-6X ^ 289130 teaches " a process for producing stabilized zirconia fibers by spinning a solution of zirconium formate containing 5 to 30% by weight of zirconium acetate, based on the total salt content of the solution, and subsequent sintering. If less zirconium acetate is used in this process, non-spinnable solutions are formed; if more is used, the strength of the fibers obtained is reduced.
DE-A 196 19 638 offenbart ein Verfahren zur Herstellung von wahl- weise stabilisiertem Zirkoniumdioxidpulver aus einer Lösung einer chloridfreien Zirkoniumverbindung in einem Ameisensäure-Wasser - Gemisch.DE-A 196 19 638 discloses a process for the production of optionally stabilized zirconium dioxide powder from a solution of a chloride-free zirconium compound in a formic acid / water mixture.
Angesichts des Stand der Technik stellt sich die Aufgabe, ein weiteres, einfaches und wirtschaftlich befriedigendes Verfahren zur Herstellung von Zirkoniumdioxidfasern zu finden, das die Herstellung qualitativ guter, wahlweise stabilisierter Fasern ermöglicht. Dementsprechend wurde ein Verfahren zur Herstellung von Zirkoniumdioxidfasern durch Verspinnen einer Lösung einer Zirko- niumverbindung und anschließende Kalzination gefunden, das dadurch gekennzeichnet ist, daß man eine Lösung einer Zirkoniumverbindung in einem Ameisensäure-Wasser-Gemisch verwendet.In view of the prior art, the task is to find a further, simple and economically satisfactory process for the production of zirconium dioxide fibers, which enables the production of good quality, optionally stabilized fibers. Accordingly, a process for the production of zirconium dioxide fibers by spinning a solution of a zirconium compound and subsequent calcination has been found, which is characterized in that a solution of a zirconium compound in a formic acid / water mixture is used.
Mit dem erfindungsgemäßen Verfahren ist die einfache und wirt- schaftliche Herstellung hochwertiger, wahlweise stabilisierter Zirkoniumdioxidfasern mit hervorragenden Eigenschaften möglich. Die Fasern können auch ohne Verwendung chloridhaltiger Ausgangs- Stoffe hergestellt werden.The method according to the invention enables simple and economical production of high-quality, optionally stabilized zirconium dioxide fibers with excellent properties. The fibers can also be produced without the use of chloride-containing raw materials.
Im ersten Schritt des erfindungsgemäßen Verfahrens wird eine verspinnbare Lösung einer Zirkoniumverbindung in einem Ameisensäure- Wasser-Gemisch hergestellt. Dazu wird eine Zirkoniumverbindung, vorzugsweise eine chloridfreie Zirkoniumverbindung, in einem Ameisensäure-Wasser-Gemisch gelöst. Als Zirkoniumverbindung wird beispielsweise Zirkoniumoxidhydrat oder basisches Zirkoniumcarbo - nat verwendet. Das Molverhältnis von Ameisensäure zu Wasser in diesem Lösungsmittel beträgt im 1 : 1 bis 1 : 3, bevorzugt 1 : 1,5 bis 1 : 2,5 und ganz besonders bevorzugt 1 : 1,8 bis 1 : 2,2. Vorzugsweise enthält die Ameisensäure -Wasser -Mischung keine weiteren Komponenten. Die Lösung kann bei Raumtemperatur oder geringfügig erhöhter Temperatur hergestellt werden, bevorzugt ist jedoch die Anwendung einer Lösetemperatur im Bereich von 50 bis 95 °C, vorzugsweise im Bereich von 70 bis 85 °C. Im allgemeinen wird das Gemisch aus Ameisensäure und Wasser vorgelegt und die Feststoffe werden zudosiert, die umgekehrte Reihenfolge ist jedoch ebenfalls möglich. Wenn Carbonat verwendet wird, so stellt man die Dosierrate vorzugsweise so ein, daß gerade kein Überschäumen des Reaktorinhalts stattfindet.In the first step of the method according to the invention, a spinnable solution of a zirconium compound in a formic acid / water mixture is produced. For this purpose, a zirconium compound, preferably a chloride-free zirconium compound, is dissolved in a formic acid / water mixture. Zirconium oxide hydrate or basic zirconium carbonate, for example, is used as the zirconium compound. The molar ratio of formic acid to water in this solvent is 1: 1 to 1: 3, preferably 1: 1.5 to 1: 2.5 and very particularly preferably 1: 1.8 to 1: 2.2. The formic acid / water mixture preferably contains no further components. The solution can be prepared at room temperature or a slightly elevated temperature, but the use of a dissolving temperature in the range of is preferred 50 to 95 ° C, preferably in the range of 70 to 85 ° C. In general, the mixture of formic acid and water is introduced and the solids are metered in, but the reverse order is also possible. If carbonate is used, the metering rate is preferably set so that the reactor contents are not overexposed.
Prinzipiell ist es möglich, durch Lösen von z. B. 1 kg basischem Zirkoniumcarbonat in einer Mischung von 0,4 kg Wasser und 0,5 kg Ameisensäure eine niedrigviskose, klare Lösung zu erhalten. Es ist genauso möglich, durch Lösen von 1 kg basischem Zirkoniumcarbonat in nur 0,24 kg Wasser und 0,307 kg Ameisensäure eine hochviskose, ebenfalls klare Lösung herzustellen. Um optimale Ver- spinnbarkeit zu erreichen, wird eine niedrigviskose Lösung durch Einengen des Lösungsmittels aufkonzentriert oder eine hochviskose Lösung durch Zugabe von weiterem Lösungsmittel verdünnt. Um derartige zusätzliche Verfahrenschritte möglichst einzusparen, wird vorzugsweise die Zirkoniumverbindung in etwa der gleichen Gewichtsmenge des Ameisensäure-Wasser -Gemisches gelöst.In principle, it is possible, by loosening z. B. 1 kg of basic zirconium carbonate in a mixture of 0.4 kg of water and 0.5 kg of formic acid to obtain a low-viscosity, clear solution. It is also possible to produce a highly viscous, also clear solution by dissolving 1 kg of basic zirconium carbonate in just 0.24 kg of water and 0.307 kg of formic acid. In order to achieve optimum spinnability, a low-viscosity solution is concentrated by concentrating the solvent, or a high-viscosity solution is diluted by adding further solvent. In order to save such additional process steps as much as possible, the zirconium compound is preferably dissolved in approximately the same amount by weight of the formic acid / water mixture.
Mit dem erfindungsgemäßen Verfahren ist wahlweise auch die Herstellung stabilisierter Zirkoniumdioxidfasern möglich. Dazu werden dem Zirkoniumdioxid vor, während oder nach seiner Herstellung Zusätze beigefügt, die die tetragonale Modifikation gegenüber der Umwandlung in die monokline Modifikation stabilisieren. Beispielsweise werden den Zirkoniumverbindungen, die im erfindungs- gemäßen Verfahren eingesetzt werden, vor deren Lösung im Ameisensäure-Wasser-Gemisch stabilisierende Verbindungen oder Vorläufer solcher Verbindungen, die vorteilhafterweise ebenfalls im Amei- sensäure-Wasser-Gemisch löslich sind, als Feststoffe untergemischt werden. Ebenso können den erfindungsgemäß hergestellten Zirkoniumdioxidfasern nach ihrer Herstellung stabilisierende Zusätze oder Vorläufer solcher Zusätze beigegeben werden, z. B. durch Auffällen von Vorläufern stabilisierender Oxide in Form von Oxidhydraten, Carbonaten, Oxalaten oder ähnlichen, durch Kalzina- tion in Oxide überführbaren Verbindungen in Suspension, Entfernung der flüchtigen Bestandteile der Suspension und Kalzination. In bevorzugter Weise wird jeodch mindestens ein stabilisierender Zusatz und/oder mindestens eine Vorstufe eines solchen stabili- sierenden Zusatzes gemeinsam mit der Zirkoniumverbindung in der Mischung aus Ameisensäure und Wasser gelöst. In bevorzugter Weise wird als stabilisierender Zusatz oder Vorstufe eine Yttriumverbindung verwendet. Bevorzugt ist die Verwendung einer chloridfreien Yttriumverbindung, die in dem als Lösungsmittel verwende- ten Gemisch aus Ameisensäure und Wasser löslich ist. Geeignete yttriumhaltige Verbindungen sind z. B. Yttriumoxid oder Yttrium- carbonat. Im allgemeinen wird die Menge an Yttriumverbindung so bemessen, daß die Zirkoniumdioxidfasern einen Yttriumoxidgehalt von 2 bis 10 Mol-%, vorzugsweise 2,5 bis 5 Mol-% aufweisen. Bei der Herstellung stabiliserter Zirkoniumdioxidfasern wird vorzugsweise die Gesmatmenge an zu lösenden Verbindungen in etwa der gleichen Gewichtsmenge Ameisensäure -Wasser-Gemisch gelöst.With the method according to the invention, the production of stabilized zirconium dioxide fibers is optionally also possible. For this purpose, additives are added to the zirconium dioxide before, during or after its production, which stabilize the tetragonal modification in relation to the conversion into the monoclinic modification. For example, stabilizing compounds or precursors of such compounds, which are advantageously also soluble in the formic acid / water mixture, are mixed in as solids in the zirconium compounds used in the process according to the invention before they are dissolved in the formic acid / water mixture. Likewise, stabilizing additives or precursors of such additives can be added to the zirconium dioxide fibers produced according to the invention, for. B. by precipitation of precursors of stabilizing oxides in the form of oxide hydrates, carbonates, oxalates or similar compounds which can be converted into oxides by calcination in suspension, removal of the volatile constituents of the suspension and calcination. However, at least one stabilizing additive and / or at least one precursor of such a stabilizing additive is preferably dissolved together with the zirconium compound in the mixture of formic acid and water. An yttrium compound is preferably used as the stabilizing additive or precursor. Preference is given to using a chloride-free yttrium compound which is soluble in the mixture of formic acid and water used as solvent. Suitable yttrium-containing compounds are e.g. B. yttrium oxide or yttrium carbonate. In general, the amount of yttrium compound becomes so dimensioned so that the zirconia fibers have an yttria content of 2 to 10 mol%, preferably 2.5 to 5 mol%. In the production of stabilized zirconium dioxide fibers, the total amount of compounds to be dissolved is preferably dissolved in approximately the same amount by weight of the formic acid / water mixture.
Nach der Herstellung der Lösung wird diese solange gerührt oder stehengelassen, bis sie nach bei einer oder nach Abkühlung auf eine Temperatur unterhalb von 30 °C vollständig klar ist. Im all- gemeinen ist dies bei Stehenlassen bei Raumtemperatur nach längstens 20 Stunden der Fall. Wird die Lösung bei erhöhter Temperatur hergestellt, ist zu beachten, daß die Lösung zwar schneller gebildet wird, sie jedoch oberhalb von 30 °C normalerweise trübe ist.After the solution has been prepared, it is stirred or left to stand until it is completely clear after one or after cooling to a temperature below 30.degree. In general, this is the case after leaving at room temperature for a maximum of 20 hours. If the solution is prepared at an elevated temperature, it should be noted that the solution is formed more quickly, but is usually cloudy above 30 ° C.
Anschließend wird die Viskosität der Lösung so eingestellt, daß diese spinnfähig ist. Dazu wird entweder Lösungsmittel abgezogen (vorzugsweise mittels Unterdruck bei Raumtemperatur) oder Lösungsmittel hinzugegeben. Vorzugsweise liegt die Viskosität bei Raumtemperatur bei einem Schergefälle von 10 s"1 im Bereich von 2000 bis 10 000 dPas. Dies entspricht einem Feststoffgehalt der Spinnmasse, berechnet als Oxide (Zr0 oder gegebenenf lls Zr0/ Stabilisator, beispielsweise Y203) im Bereich von 40 bis 50 Gew. -%.The viscosity of the solution is then adjusted so that it is spinnable. For this purpose, either solvent is drawn off (preferably by means of negative pressure at room temperature) or solvent is added. The viscosity at room temperature is preferably at a shear rate of 10 s -1 in the range from 2000 to 10,000 dPas. This corresponds to a solids content of the spinning mass, calculated as oxides (Zr0 or possibly Zr0 / stabilizer, for example Y 2 O 3 ) in the range from 40 to 50% by weight.
Die spinnfähige Lösung wird anschließend mittels üblicher Spinntechniken zu Fasern versponnen. Der Spinnvorgang kann an Luft und bei Raumtemperatur erfolgen. Die hergestellten Fasern weisen üblicherweise Durchmesser von 5 bis 20 Mikrometer auf, und werden entweder mit Geschwindigkeiten bis zu 1 m/s direkt aus der Lösung gezogen oder im Anschluß an den Spinnvorgang mit Geschwindigkeiten bis zu 10 m/s zu Fasern mit Durchmessern im Bereich von 2 bis 10 Mikrometer verstreckt. Die so hergestellten sogenannten „grünen" Fasern trocknen aufgrund des hohen Feststofgehalts sehr schnell unter Bildung glasartiger amorpher Fasern, die nicht zusammenkleben.The spinnable solution is then spun into fibers using conventional spinning techniques. The spinning process can take place in air and at room temperature. The fibers produced usually have diameters of 5 to 20 micrometers and are either drawn directly from the solution at speeds of up to 1 m / s or, following the spinning process, at speeds of up to 10 m / s to give fibers with diameters in the range from Stretched 2 to 10 microns. The so-called "green" fibers produced in this way dry very quickly due to the high solids content, with the formation of glass-like amorphous fibers which do not stick together.
Die Umarbeitung grüner Zirkoniumdioxidf sern zum Endprodukt ist bekannt. Falls erforderlich, wird noch vorhandene Ameisensäure und/oder noch vorhandenes Wasser aus der grünen Faser entfernt („Trocknung") , indem die grünen Fasern einer Temperatur von mindestens 100 °C ausgesetzt werden, im allgemeinen genügt dazu eine Temperatur unterhalb von 300 °C. Die fertigen Zirkoniumdioxidfasern werden anschließend in üblicher Weise durch Kalzination der gegebenenfalls getrockneten grünen Fasern bei einer Temperatur von mindestens 600 °C hergestellt. Wenn die angewendeten Aufheiz - raten auf diese Temperaturen unüblich niedrig sind, verschieben sich die anzuwendenden Temperaturbereich etwas nach unten, bei unüblich hohen Heizraten nach oben. Zur technischen Herstellung von Endlosfasern erfolgt die Verspinnung vorzugsweise am unteren Ende eines beheizbaren Schachts mit einer Länge von bis zu 10 m, der auf Temperaturen von beispielsweise 1500 °C aufgeheizt ist. Das Verstrecken erfolgt direkt nach dem Austritt der Fasern aus den Spinndüsen. Am oberen Ende des Schachts werden so fertige Zirkoniumdioxid-Endlosfasern gewonnen. Kurzfasern werden vorzugsweise im Schleuderverfahren hergestellt, indem die Lösung durch einem sich drehenden gekühlten Spinnkopf mit am Umfang befindlichen Spinndüsen gepreßt wird. Der Kopf befindet sich in einem auf 1200 bis 1500 °C beheizten Ofen. Mit diesem Verfahren entstehen bis zu 2 mm lange fertige Zirkoniumdioxid-Kurzf sern.The reworking of green zirconium dioxide fibers to the end product is known. If necessary, formic acid and / or water still present is removed from the green fiber (“drying”) by exposing the green fibers to a temperature of at least 100 ° C., generally a temperature below 300 ° C. is sufficient for this. The finished zirconium dioxide fibers are then produced in the usual way by calcining the optionally dried green fibers at a temperature of at least 600 ° C. If the heating rates used are unusually low to these temperatures, shift the temperature range to be applied slightly downwards, with unusually high heating rates upwards. For the technical production of continuous fibers, spinning is preferably carried out at the lower end of a heatable shaft with a length of up to 10 m, which is heated to temperatures of, for example, 1500 ° C. The stretching takes place immediately after the fibers exit the spinnerets. Finished zirconium dioxide continuous fibers are obtained at the top of the shaft. Short fibers are preferably produced in a centrifugal process, in which the solution is pressed through a rotating, cooled spinning head with spinnerets located on the circumference. The head is in an oven heated to 1200 to 1500 ° C. This process creates finished short zirconium dioxide fibers up to 2 mm long.
Beispielexample
1000 g basisches Zirkoniumcarbonat (berechneter Zirkoniumdioxidgehalt 44 Gew. -%) und 25 g Yttriumoxid wurden in einem offenen Kunststoffbehälter vorgelegt. Bei Raumtemperatur wurden 1000 g einer Mischung aus 561 g Ameisensäure und 439 g Wasser zugestzt, worauf eine heftige Kohlendioxidentwicklugn einsetzte. Die Mischung wurde 20 Stunden bei Raumtemperatur gehalten, dabei entstand eine klare Lösung. Diese Lösung wurde mittels eines Rotationsverdampfers soweit aufkonzentriert, daß sich mit einem Glas- Stab meterlange Fasern daraus ziehen ließen. Der Feststoffgehalt der so erhaltenen Spinnmasse betrg 44,2 Gew. -%, berechnet auf die Summe von Zirkoniumdioxid und Yttriumoxid.1000 g of basic zirconium carbonate (calculated zirconium dioxide content 44% by weight) and 25 g of yttrium oxide were placed in an open plastic container. At room temperature, 1000 g of a mixture of 561 g of formic acid and 439 g of water were added, whereupon violent evolution of carbon dioxide began. The mixture was kept at room temperature for 20 hours, resulting in a clear solution. This solution was concentrated using a rotary evaporator to such an extent that it was possible to pull meter-long fibers out of it with a glass rod. The solids content of the spinning mass thus obtained was 44.2% by weight, calculated on the sum of zirconium dioxide and yttrium oxide.
Die manuell bei Raumtemperatur an der Luft mit einem Glasstab ge- zogenen Fasern wurden in Luft in einem Ofen auf 1450 °C aufgeheizt, 10 Minuten bei dieser Temperatur belassen und anschließend abgekühlt. Es entstanden biegsame Zirkoniumdioxidfasern mit Durchmessern von 5 bis 10 Mikrometer. The fibers, drawn manually in air at room temperature with a glass rod, were heated in air in an oven to 1450 ° C, left at this temperature for 10 minutes and then cooled. Flexible zirconium dioxide fibers with diameters of 5 to 10 micrometers were created.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung yon_ Zirkoniumdioxidfasern durch Verspinnen einer Lösung einer Zirkoniumverbindung und anschließende Kalzination, dadurch gekennzeichnet, daß man eine Lösung einer Zirkoniumverbindung in einem Ameisensäure-Wasser-Gemisch verwendet.1. A process for the production of zirconium dioxide fibers by spinning a solution of a zirconium compound and subsequent calcination, characterized in that a solution of a zirconium compound in a formic acid / water mixture is used.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Lösungsmittel eine Mischung von Ameisensäure mit Wasser im Molverhältnis 1 : 1 bis 1 : 3 ist.2. The method according to claim 1, characterized in that the solvent is a mixture of formic acid with water in a molar ratio of 1: 1 to 1: 3.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Zirkoniumverbindung Zirkoniumoxidhydrat oder basisches Zirko- niumcarbonat ist.3. The method according to claim 2, characterized in that the zirconium compound is zirconium oxide hydrate or basic zirconium carbonate.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man dem Zirkoniumdioxid vor, während oder nach seiner Herstellung mindestens einen Zusatz und/oder mindestens einen Vorläufer eines Zusatzes zugibt, welcher die tetragonale Modifikation des Zirkoniumdioxids in der Faser gegen Umwandlung in die mo- nokline Modifikation stabilisiert.4. The method according to claim 1, characterized in that at least one additive and / or at least one precursor of an additive is added to the zirconium dioxide before, during or after its preparation, which tetragonal modification of the zirconium dioxide in the fiber against conversion into the monoclinic Modification stabilized.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß man als stabilisierenden Zusatz mindestens eine Yttriumverbindung verwendet.5. The method according to claim 4, characterized in that at least one yttrium compound is used as the stabilizing additive.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß man die Zirkoniumverbindung gemeinsam mit dem stabilisierenden6. The method according to claim 4, characterized in that the zirconium compound together with the stabilizing
Zusatz und/oder seiner Vorstufe in der Mischung aus Ameisensäure und Wassser löst.Additive and / or its precursor dissolves in the mixture of formic acid and water.
7. Verfahren nach den Ansprüchen 3 und 4, dadurch gekennzeich- net, daß die Konzentration an Zirkonium- und Yttriumverbindung in der Lösung vor der Verspinnung 40 bis 50 Gew.-%, berechnet als Oxide, beträgt. 7. Process according to claims 3 and 4, characterized in that the concentration of zirconium and yttrium compound in the solution before spinning is 40 to 50% by weight, calculated as oxides.
PCT/EP2000/007827 1999-08-24 2000-08-11 Method for the production of zirconium dioxide fibers WO2001014282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999140134 DE19940134A1 (en) 1999-08-24 1999-08-24 Process for the production of zirconia fibers
DE19940134.9 1999-08-24

Publications (1)

Publication Number Publication Date
WO2001014282A1 true WO2001014282A1 (en) 2001-03-01

Family

ID=7919446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/007827 WO2001014282A1 (en) 1999-08-24 2000-08-11 Method for the production of zirconium dioxide fibers

Country Status (3)

Country Link
DE (1) DE19940134A1 (en)
TW (1) TW495569B (en)
WO (1) WO2001014282A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106927835A (en) * 2015-12-30 2017-07-07 山东大学 The zirconium oxide fiber board of high intensity superhigh temperature resistant or the preparation method of profiled piece

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988870A (en) * 2022-06-20 2022-09-02 中国地质大学(北京) Preparation method of zirconium oxide cellucotton

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289130A (en) * 1985-06-13 1986-12-19 Toray Ind Inc Production of zirconia fiber having high strength and toughness
EP0807604A2 (en) * 1996-05-15 1997-11-19 BASF Aktiengesellschaft Process for the preparation of powdery zirconium oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289130A (en) * 1985-06-13 1986-12-19 Toray Ind Inc Production of zirconia fiber having high strength and toughness
EP0807604A2 (en) * 1996-05-15 1997-11-19 BASF Aktiengesellschaft Process for the preparation of powdery zirconium oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 159 (C - 423) 22 May 1987 (1987-05-22) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106927835A (en) * 2015-12-30 2017-07-07 山东大学 The zirconium oxide fiber board of high intensity superhigh temperature resistant or the preparation method of profiled piece

Also Published As

Publication number Publication date
TW495569B (en) 2002-07-21
DE19940134A1 (en) 2001-03-01

Similar Documents

Publication Publication Date Title
DE69400874T2 (en) METHOD FOR PRODUCING CERAMIC HOLLOW FIBER MEMBRANES FOR MICROFILTRATION, ULTRAFILTRATION AND GAS SEPARATION
DE2163678C2 (en) Alumina fibers and processes for their manufacture
DE2432434C3 (en) Refractory inorganic fiber made from Al2 O3 Cr2 O3 RO2 with at least one microcrystalline phase and process for its manufacture
DE4332831C1 (en) Shaped bodies based on PZT(Pb(Zr, Ti)O3, lead zirconate - lead titanate), process and intermediate for the production thereof
DE2323932A1 (en) ALKALINE-RESISTANT FIBERS
DE2041321C3 (en) Process for the production of SiO2 fibers, their use and carbonaceous SiO2 fibers
EP2168936B1 (en) Method for producing a fine powder material
DE3347450C2 (en)
DE2461672A1 (en) ENDLESS CERAMIC DRIVES AND METHOD OF MANUFACTURING THEREOF
EP2076476A2 (en) Polycrystalline corundum fibers and method for the production thereof
WO2001014282A1 (en) Method for the production of zirconium dioxide fibers
EP2519481B1 (en) METHOD FOR PRODUCING CERAMIC FIBERS OF A COMPOSITION IN THE SiC RANGE AND FOR PRODUCING SiC FIBERS
EP4164998B1 (en) Zro2-reinforced mullitefibers, process for manufacturing same, and use thereof
DE69402276T2 (en) Process for the production of silicon aluminum oxide fibers
WO1992001644A1 (en) Aluminium oxide fibres and process for producing them
DE2130315C3 (en) Process for the production of inorganic fibers
DE2054573B2 (en) Inorganic fibers and processes for their manufacture
EP0807604A2 (en) Process for the preparation of powdery zirconium oxide
DE3810523C2 (en) An aqueous solution containing a zirconium compound
DE3116883C2 (en) Process for the production of optical glass by sintering a silica gel
DE3230253C2 (en) Plastic fibre material for refractory applications and its use
DE4206800C2 (en) Thermal insulation material
DE19502385C2 (en) Process for reinforcing ceramic shaped bodies and reinforced ceramic shaped bodies
DE1494552A1 (en) Process for the production of high temperature resistant crystalline fibers
DE102004026260A1 (en) New spinnable mass, obtained by reacting aluminum triacylate with carbonic acid and mixing with silicon dioxide containing solution, useful for preparing green fibers and/or ceramic fibers based on aluminum oxide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP