WO2001007854A1 - Echangeur de chaleur et module d'echange s'y rapportant - Google Patents

Echangeur de chaleur et module d'echange s'y rapportant Download PDF

Info

Publication number
WO2001007854A1
WO2001007854A1 PCT/FR2000/002153 FR0002153W WO0107854A1 WO 2001007854 A1 WO2001007854 A1 WO 2001007854A1 FR 0002153 W FR0002153 W FR 0002153W WO 0107854 A1 WO0107854 A1 WO 0107854A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
modules
heat exchange
exchange module
connection
Prior art date
Application number
PCT/FR2000/002153
Other languages
English (en)
Inventor
Roland Guidat
Michel Claudel
Florent Noel
Original Assignee
Ziepack
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ziepack filed Critical Ziepack
Priority to DE60025372T priority Critical patent/DE60025372T2/de
Priority to US10/048,371 priority patent/US7044207B1/en
Priority to EP00958626A priority patent/EP1206672B1/fr
Publication of WO2001007854A1 publication Critical patent/WO2001007854A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • F28F3/14Elements constructed in the shape of a hollow panel, e.g. with channels by separating portions of a pair of joined sheets to form channels, e.g. by inflation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/005Other auxiliary members within casings, e.g. internal filling means or sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/10Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes made by hydroforming

Definitions

  • the present invention relates to a heat exchange module intended to form part of the thermally active bundle of a heat exchanger.
  • the present invention also relates to a heat exchanger equipped with such a module.
  • O-A-98/16 786 describes an exchanger whose bundle is constituted by a stack of bi-plate modules. Each module consists of two sheets defining between them a series of longitudinal and parallel channels leading a first exchange fluid from one end to the other of the modules.
  • the process for producing such modules consists in laser welding two flat sheets along longitudinal and parallel lines intended to form the partitions between the channels.
  • a peripheral weld closes the space between the two sheets with the exception of a nozzle for injecting pressurized water.
  • the module is formed by injecting pressurized water between the two plates so as to produce swelling of the two sheets between the weld beads.
  • the modules thus produced are stacked so that the exterior surfaces of the neighboring modules are pressed against each other along the ridges of the channels. It thus forms between the modules of other channels provided for the circulation of the second exchange fluid, in general against the current with respect to the first exchange fluid.
  • This known exchanger is very efficient because it provides for the two exchange fluids the advantages of circulation in quasi-tubular channels, in particular with a reduced pressure drop.
  • Such exchangers can be used in particular in applications where the flow rates are very high, in particular in petroleum refineries, in particular so that a petroleum fluid entering a treatment apparatus is previously heated with heat supplied by the fluid. coming from undergoing the treatment, so that the thermal cost of the treatment is limited to the supply of simple ur complement.
  • Such exchangers can be of considerable size, of the order of 15 to 20 meters in height, the circulation of the fluids taking place in the vertical direction to save floor space.
  • a construction of such a height involves high structural costs, for mechanical stability, thermal insulation from the outside, and fluid connections.
  • the object of the invention is to allow the production of much more compact heat exchangers while also being efficient.
  • the heat exchange module comprising two sheets welded along weld lines defining between them a group of channels arranged side by side substantially in a common plane, intended to be traversed by an exchange fluid by being fluidly in parallel with each other between two connection orifices of the module, is characterized in that the group of channels has a general U-shaped configuration, which connects said connection orifices separated laterally one to the other. on the other.
  • the module according to the invention is half as long and therefore makes it possible, for example in a vertical application, to produce an exchange tower approximately half as high. Compared to such a saving in height, the slightly increased space requirement is a negligible drawback. It can even be seen that the tower, being at the same time less tall and with a larger base surface, is consequently much more stocky and therefore naturally mechanically stable.
  • an exchanger according to the invention is particularly advantageous when the second fluid circulates between the modules transversely to the branches of the U. Thanks to the invention, each thread of one of the exchange fluids meets twice in succession, and no longer just once, the path followed by a thread of the other exchange fluid.
  • the invention is not limited to a single U configuration. It is conceivable that the channels are extended by a third longitudinal branch connecting to one of the previous two by a second 180 ° turn in the opposite direction to the first, And so on.
  • An important aspect of the present invention also consists in having improved the path of the first exchange fluid at each of its ends in the modules.
  • the difficulty is to distribute the first exchange fluid as equitably as possible without forming a zone at the end of the channels which would be mechanically unstable, for example not very resistant to pressure, or on the contrary mechanically too stable and which would prevent, for example, during hydroforming, the correct swelling of the channels near their ends.
  • the heat exchange module comprising two sheets welded along weld lines defining between them a group of channels arranged side by side substantially in a common plane, intended to be traversed by a fluid of exchange by being fluidly in parallel with each other between two connection orifices of the module, is characterized in that from a longitudinal region the channels have a converging region which curves towards a distribution chamber communicating a first end of the channels with the respective one of the two connection holes of the module with the exterior.
  • the channels converge towards the distribution chamber. This reduces the size of the room by distribution and thus reduce the mechanical problems it is likely to pose. At the same time, the aforementioned convergence contributes to the equity of distribution of the flows.
  • the distribution chamber is bordered by channel openings over a large part of its periphery, which contributes to its good forming and good stability of its shape.
  • one of the very significant innovative aspects of the present invention which is found both in the preferred embodiment of the U turn and in the preferred embodiment of the end zone of the channels, is the production of curvilinear welding seams, preferably circular, making it possible to produce channels which are themselves curvilinear and preferably circular, by hydroforming, having a substantially conserved section.
  • the heat exchanger is characterized in that it comprises: - a stack of heat exchange modules according to the first aspect, installed in a sheath so that the ends of the U-shaped configurations are led by the same side of the stack, these modules defining between them inside the sheath passages for a second exchange fluid;
  • connection means for connecting the connection orifices of the modules with a first external circuit and; second connection means for connecting said passages with a second external circuit.
  • FIG. 1 is a perspective view of a module according to the invention, with central cutaway, at an intermediate stage of manufacture;
  • FIG. 1 is a half plan view of part of the module of Figure 1;
  • - Figure 3 is a sectional view along III-III of Figure 2, during one hydroforming;
  • - Figure 4 is a sectional view along IV-IV of Figure 3;
  • Figure 5 is a partial exploded view illustrating the assembly of the modules to form the bundle;
  • Figure 6 is a partial view after said assembly;
  • FIG. 7 is a detailed perspective view, with parts broken away, illustrating the timing between the modules in the bundle;
  • FIG. 8 is a perspective view of several modules stacked in the bundle, with cutaway;
  • FIG. 11 is a longitudinal sectional view of one exchanger in a service position
  • - Figure 12 is an exploded perspective view, with parts broken away, showing the exchanger, in the inverted position for clarity;
  • FIG. 13 is a partial perspective view illustrating the suspension of the beam
  • FIG. 14 is a partial perspective view, with parts broken away, illustrating means for positioning the modules transversely to their own plane;
  • FIG. 15 is a sectional view along XV-XV of Figure 16;
  • FIG. 16 is a view similar to Figure 2 but relating to a second embodiment
  • FIG. 17 is a view similar to Figure 3 but taken along XVII-XVII of Figure 16;
  • FIG. 18 is a sectional view along XVIII-XVIII of FIG. 17,
  • FIG. 19 is a sectional view along XVII-XVII of Figure 16 after stacking of the modules;
  • FIG. 20 is a partial perspective view showing a third embodiment of a module in the vicinity of the connection orifice;
  • FIG. 21 is a partial perspective view of the means for connecting a bundle of modules according to Figure 20;
  • - Figure 22 is a block diagram of the heat exchanger equipped with such a bundle;
  • FIG. 23 is a perspective view illustrating a variant for the bars of Figure 21;
  • FIG. 24 is a general view for an alternative layout of the exchanger.
  • FIG. 25 is a perspective view illustrating a variant of FIG. 21.
  • a heat exchange module 1 ( Figure 1) is obtained by laser welding of two metal sheets 2 initially planar, cut along an identical contour.
  • the contour of the sheets 2 has a very generally rectangular shape whose length corresponds to the vertical direction of FIG. 1.
  • each angle of the contour of the sheets 2 has a chamfer 3.
  • the contour forms two domes 4 of generally semi-circular shape arranged side by side, each extended by a projection 6 in the general shape of a trapezoid, the apex 7 of which corresponds to the small base of the trapezoid.
  • the width of the sheets 2 can range, for example, from 100 to 1600 mm.
  • the length of the sheets is limited only by the size of the means available to limit the expansion in thickness during the hydroforming operation which will be described later. In practice, sheets of 10 meters and more are possible. However, thanks to the progress in compactness made possible by the invention as has been explained above, sheets with a length of, for example, 8 meters already allow considerable exchange performance, in terms of the calorific power transferred.
  • the thickness of the sheets can range from 0.2 to 1.5 mm. It is therefore very low for economic and thermal reasons.
  • the two sheets 2 are welded against each other so that their outline is in coincidence. Welding is carried out by laser. This known technique makes it possible to weld the sheets to each other at a distance from their edges by means of a beam passing through the sheets, causing their localized melting in the mass and the reciprocal interpenetration of the metal constituting the two sheets.
  • the two sheets are thus joined to each other by a peripheral weld bead 8 which generally follows the external contour of the two sheets at a distance of a few centimeters below said contour
  • the peripheral bead 8 thus forms a continuous outer U comprising two longitudinal sections 13a which are parallel to each other, each running along the respective one of the longitudinal edges 14 of the contour of the sheets, and a semicircular bead lia ⁇ ui longe the contour ⁇ e the rear end 9 of the module and joins the two longitudinal sections 13a.
  • the outline of the sheets forms a recess with a bottom 16 situated for example a little below a line 17 parallel to the width of the sheets 2 and passing through the geometric centers 18 of the domes 4.
  • the peripheral cord 8 moves away locally from the external contour of the sheets and more particularly forms a continuous internal U comprising two internal longitudinal cords 13g parallel to each other and to the external longitudinal cords 13a, and an internal semi-circular cord 11g.
  • the cord 11g has the same center 12 as the outer semi-circular cord 11a and connects the two inner longitudinal cords 13g.
  • each outer longitudinal cord 13a and the nearest inner longitudinal cord 13g are joined together by an arcade-shaped cord comprising two circular segments belonging to the same center circle on the center 18, one 21a extending the outer longitudinal cord 13a, the other 21g extending the inner longitudinal cord 13g.
  • the two segments 21a and 21g of each dome 4 are connected to one another by a connection cord 22 along approximately the contour of the boss 6.
  • one of the connection cords 22 is interrupted in the middle in a location where a tubular end piece 23 is inserted between the two sheets 2 to allow the injection of a hydroforming fluid from outside the module into the space between the two sheets and surrounded by the peripheral bead 8.
  • each outer longitudinal cord 13a and the nearest inner longitudinal cord 13g there is between each outer longitudinal cord 13a and the nearest inner longitudinal cord 13g a series of parallel and equidistant longitudinal cords each extending between the diametrical line 17 and the diametrical line 24 passing through the center 12 perpendicularly to the cords 13a and 13g.
  • the cords longitudinal are odd in number on each side of the central axis A.
  • a central longitudinal cord 13d extends along a secondary longitudinal axis B located at equal distance between the outer longitudinal cord 13a and the nearest inner longitudinal cord 13g.
  • External intermediate longitudinal cords 13b are located between the cord 13a and the axis B.
  • Internal intermediate longitudinal cords 13f are located between the axis B and the internal longitudinal cord 13g.
  • 13c and 13e denote the two intermediate longitudinal cords adjacent to the central cord 13d, and located on the side of the outer cord 13a and on the side of the inner cord 13g respectively.
  • each intermediate longitudinal cord 13b, 13c, 13e, 13f or central 13d is connected to the longitudinal cord symmetrical with respect to the central axis A of the module by a semi-circular cord 11b, lie, lie , llf or respectively lld concentric with the semicircular cords 11a interior and 11g exterior already described. It has therefore been formed between the outer U 13a, 11a, 13a and the inner U 13g, 11g, 13g already described, several continuous U-shaped cords defining between them a group of channels 25 having a U-shaped configuration.
  • the channels 25 have a width - or "no succession of channels" - which is the same for all the channels and which is constant along all the channels.
  • the intermediate longitudinal weld beads 13b and 13f are extended by beads in the form of circle segments 21b and 21f respectively which are centered at 18 and which terminate along a lateral edge of a distribution chamber 26 which is further delimited by the weld bead 22 already described.
  • the channels 25 defined between the weld beads have at each end of the U a region 21ac or 21cg converging towards a distribution chamber 26 with which they communicate.
  • the regions 21cg comprised between the cords 21c and 21g, curve towards the axis B from the other side thereof, and by deviating from the axis A.
  • the regions 21ac open perpendicularly through one side of the distribution channel 26 and the regions 21cg open perpendicularly through another side of the distribution chamber 26.
  • the channels 25 retain even in the converging region 21ac or 21cg a width - or "no succession of channels" - unchanged from the rest of the channels.
  • Each convergent region 21ac follows a trace substantially located in the curvilinear extension of the convergent region 21cg of another channel 25 located symmetrically with respect to the axis B in the group of channels.
  • each curved cord 21b is in the curvilinear extension of a cord 21f, the distribution chamber 26 forming an interruption between these two cords.
  • the two longitudinal weld seams 13c and 13e situated immediately on either side of the central bead 13d are connected to each other continuously by a semicircular bead 21c at center 18, and the bead central 13d is terminated in 18 by a point or "welding button" intended to increase the mechanical resistance of the end of the bead.
  • each bead in the form of a segment of a circle 21b or 21f ends with a "button" for welding 27 precedes by an interruption 28, see also FIG. 2.
  • Such a button can in practice be constituted by a circular or ovoid bead of small diameter.
  • the two still flat sheets 2 are placed between two dies 31 and 32 (FIG. 3) of generally planar shape with between them a free distance E corresponding to the desired external thickness for the modules in the region of the channels.
  • the inner face of the dies 31 and 32 has a boss 29 intended to reduce the free distance between them to a lower value "e" for the distribution chamber 26 than for the re ⁇ ion of the channels 25.
  • the hydroforming operation consists in injecting a liquid such as pressurized water between the two sheets 2 through the nozzle 23.
  • the water trapped between the two sheets inside the contour of the peripheral bead 8 produced swelling between the weld seams as well as in the area of the distribution chamber and this within the limit allowed by the dies 31 and 32.
  • the channels 25 described are thus formed on the one hand and on the other hand end of the U of the configuration of the group of channels, a distribution chamber 26.
  • the two chambers 26 communicate with each other by each of the U-shaped channels defined between two neighboring weld beads, which are thus fluidly in parallel between the distribution chambers 26
  • FIG. 4 shows in cross section of the channels how these form between the dies 31 and 32 and between the weld beads 11, 13 or 21.
  • Each distribution chamber 26 has a generally isosceles triangular shape, symmetrical with respect to the axis B.
  • the connection orifice 38 is formed through the base of this triangle.
  • the two ribs of triangle are each defined by the alignment of the ends of the converging regions 21ac or 2cg respectively of the channels 25 and together form on the axis B an angle C less than 60 °, preferably equal to about 45 °, opposite the orifice of connection 38.
  • Weld seams 22a, 22g (FIG.
  • the two sheets 2 are free of mutual connection, and in particular of welded connection.
  • a cut 36 along the main axis A from the bottom 16 of the interior of the interior flat area 33g located inside the interior U 11g, 13g is practiced. 1 recess between the two domes 4 and about to the center 12 of the bend of the U-shaped channels at the rear end 9 of the module.
  • FIGS. 5 and 6 illustrate the assembly of the modules to constitute a bundle.
  • the connection orifice 38 formed by the cutout 34 of the boss 6 is fitted into correspondingly shaped openings 39 provided in an end plate 41 common to all the modules of the beam to be produced.
  • the dimension 42 of the plate 41 is less than the width 43 of each arm of U of a module measured between one of the longitudinal edges 14 and the central axis A.
  • the connection orifices 38 are welded into the openings 39, so as to fix the modules in a relative stacking position.
  • the geometry of the stack is also defined by means bracing may include shims 44 ( Figure 7) welded against the outer and inner flat areas 33a, 33g of the modules, or against the flat arearoistermed.aire 33d These shims prevent the modules from moving relative to each other in particular transversely to their own plan. Triangular shims 46 are also used which are interposed between the neighboring distribution chambers 26 to prevent, in service, the swelling of the distribution chambers 26 under the effect of the pressure prevailing in service inside the modules, which is in most applications greater than that of the exchange fluid which will circulate between the modules.
  • FIG. 8 illustrates that for the example shown, two types of modules 101, 102 are used which alternate in the stack and which differ by an offset of the channels, the offset being of a half-step of succession of the channels.
  • the interior longitudinal cords 13g of the modules 101 are closer - by half a step of succession of the channels - to the axis A than the cords 13g of the modules 102, and the radius of the semi-circular cords 11g of the modules 101 is smaller - by half a step in succession of the channels - than the cords 11g of the modules 102.
  • the channels 25 have a generally staggered arrangement which is further illustrated in FIG.
  • FIG. 10 represents, along the section line III-III of FIG. 2, the stacking of two modules in the area of the distribution chambers 26 and of the start of certain channels 25.
  • the sheath 49 further comprises, according to one of the medians of its rectangular profile, a central partition 53 intended to be inserted as closely as possible into the notch 36 of the modules 1.
  • the sheath 49 is closed by a casing 54 having bevels 56 intended to be substantially in contact with the bevels 3 of the modules.
  • the beam is threaded through the rear of the sheath until the bottom of the notch 36 of the modules abuts against the rear edge of the central partition 53 of the sheath, then the sheath 49 is closed thanks to the casing 54.
  • the rear end 9 of the modules and the casing 54 of the sheath are placed in the high position.
  • connection means comprise two connection boxes 62 ( Figure 12) of general sem_-cyl ⁇ nd ⁇ que shape.
  • Each box 62 is welded in a sealed manner by its open rectangular periphery, with the periphery of a respective one of the plates 41 to make all the connection orifices 38 communicate situated on the same side of the axis A with a connection conduit 63 for the entry of the first fluid, and to make all the orifices 38 located on the other side of the axis A communicate with a connection conduit 64 for the outlet of the first fluid.
  • Each conduit 63, 64 opens into the respective connection box 62 and arrives outside via a sealed passage 66 of the enclosure 61 (FIG. 11) to form part of a first external circuit, for the first exchange fluid .
  • Each connection box 62 has a generally semi-cylindrical shape with respect to which the corresponding plate 41 extends substantially along an axial plane.
  • An external connection box 67 larger than the boxes 62, is mounted so as to enclose one of the boxes 62.
  • the box 67 is fixed to the upper edge of one of the two longitudinal compartments defined in the sheath 49 by the middle partition 53 and one of the halves of the rectangular profile of the peripheral wall 52.
  • the box 67 communicates this compartment in a sealed manner with a connection conduit 68 which opens into the box 67 for the arrival of the second fluid in this compartment of the sheath passing on either side of the connection box 62 which is surrounded by the box 67.
  • the duct 68 extends to the outside of the enclosure 61 by passing through a watertight crossing 69 and thus forms part of a second external circuit, for the second exchange fluid.
  • connection duct 63, 64, 68 is equipped with a respective expansion compensator 72 to absorb variations dimensions between the head 19 of the bundle and the corresponding waterproof crossing 66 or 69 of the enclosure.
  • the connection duct 64 passes tightly through the connection box 67 with the interposition of a expansion compensator 73 between the connection box 67 and a waterproof collar 74 fixed around the duct 64. All the expansion compensators are mounted to compensate for the dimensional variations along the longitudinal direction of the modules.
  • the two ends of the U-shaped configuration of the modules are made mechanically independent of each other for longitudinal movements because in service, the hot end or penetrates the fluid intended to transfer calories and from which the fluid having received calories should be able to expand much more than the cold end.
  • the first exchange fluid enters one of the distribution chambers 26 of each module, through one of the connection boxes 62, travels through the U-shaped channels arranged fluidly in parallel, collects in the other chamber distribution 26 and leaves the bundle through the other connection box 62.
  • the connection chambers 26 have a triangular shape so that their section decreases from the connection orifice 38 to the most central channels.
  • the second exchange fluid enters one of the compartments of the sheath passing through the connection box 67 on either side of the corresponding connection box 62 and is distributed throughout the interval between the neighboring modules, thanks to the continuity of said interval 48 (FIGS. 8 and 9).
  • the second exchange fluid must bypass the rear end of the partition 53, and must therefore travel, against the current with respect to the first fluid, the entire developed length of the channels of the modules.
  • the wedges 44 (FIG. 7) prevent the second exchange fluid preferentially choosing the thermally inefficient path.
  • a baffle such as, for example, sinusoidal springs 76 interposed with a certain constraint between the flat areas 33a, 33d and 33g of the modules (FIG. 7). or again combs 77 (FIG. 14) fixed against the interior faces of the sheath adjacent to the lateral edges of the modules.
  • Such combs advantageously comprise a sheet forming a fixing sole, in which are formed by cutting and stamping punctures 78 forming protrusions 79. Slots 81 defined between the protrusions 79 receive and guide the planar outer 33a or inner 33g parts of the modules.
  • the modules are all identical and, in the stack, the ridges 47 of the undulations of the external faces of the neighboring modules are in contact or almost mutual contact.
  • the path for the second exchange fluid is then also formed by channels almost completely separated from each other. So that the second exchange fluid can supply these channels 48, during the hydroforming, one ensures that a region 82 (FIG. 16) of the channels, adjacent to the distribution chamber 26 on either side of it ci, has a reduced thickness, for example equal to the thickness e of the distribution chamber 26. It suffices for this that the boss 29 of the dies 31 and 32 has a greater corresponding extent than in the previous embodiment. In this region, the flattened channels 83 shown in FIG. 18 are obtained. Thus, in region 82, the passages 48 are interconnected by interconnections 84 (FIG. 19) and form with them a distribution chamber for the second exchange fluid.
  • modules without a distribution chamber are produced simply by sectioning the blank 1 of FIG. 1 along the line 17.
  • the entire region of the domes 4 was used only for hydroforming before being eliminated. It is therefore the open ends of the longitudinal channels which form the connection orifice of the module at each end of the U-shaped configuration.
  • the modules are assembled by welding between their connection orifices form bars 86 which together constitute a base on which the connection box 62 will be welded. This is larger than in FIG. 12 and completely closes the compartment corresponding to the sheath 49.
  • the connection boxes 87 for the second exchange fluid are fixed so as to close off a rectangular notch 88 formed at the top of the sheath 49 in each of the two walls of the sheath parallel to the partition 53.
  • the ends 89 of bars 86 form with the edges of the modules interposed therebetween a continuous surface against which a corresponding edge 91 of the connection box 87 can be welded in a sealed manner.
  • two connection boxes 87 are shown, but one of them can be omitted if the enclosure 61 is used as a collector as has been described with reference to FIG. 12.
  • the FIG. 23 illustrates a variant for the bars
  • the bars 86 with a welding lip 93 along the edge of each adjacent sheet 2. Not shown, the bars 86 must also have at each end a transverse lip for sealing the edge of the connection box 62.
  • FIG. 24 illustrates an embodiment known as with cross currents, according to which the bundle of modules is mounted in a sheath 95 which is open over the entire surface adjacent to the external longitudinal edges 14 of the modules, on each side of the bundle.
  • there is no partition separating the two branches of the U and it is also not necessary to form the notch 36 between the of ⁇ x branches or U.
  • certain advantages of the counter-current are obtained even in this version if the direction of circulation 94 of the second fluid is such that it first passes between the branches of U situated downstream relative to the direction of flow of the first fluid, as shown.
  • This embodiment requires that the interval 48 reserved between the modules for the path of the second fluid is continuous, for example as shown in FIG. 9.
  • FIG. 25 will only be described for its differences from that of FIGS. 20 to 22.
  • the modules were given during their hydroforming a thickness reduced so as to form in this zone a distribution chamber 96 for the second exchange fluid.
  • the modules are all identical and the corrugations of the neighboring modules are in peak-to-peak contact except in the region of reduced thickness 97.
  • the profile of the bars 86 is adapted correspondingly.
  • the invention is not limited to the examples described and shown.
  • the exchanger could be designed to exchange heat between more than two fluids.
  • the U turn area could be configured differently. It is not necessary to have a flat area in the middle region of the channel group.
  • Figures 1 to 14 relate more particularly to the case where the first exchange fluid is essentially liquid while the second exchange fluid is at least partially gaseous, therefore requiring larger passage sections, but this does not is not a necessity.
  • the invention is applicable to exchangers where the two exchange fluids circulate in the same direction along their respective paths.
  • the head structure of these front modules .. has a section intended to make appear the two connection holes of each module, is only used for the implementation of hydroforming. It has no hydrodynamic function, and its requirements for resistance to temperature and pressure may be lower. It can be simplified accordingly, in particular to facilitate its manufacture and save sheet metal.
  • the channels 25 open out through the rectilinear sides of the distribution chambers 26.
  • these sides can also be curvilinear, concave or convex, for example but not limited to the shape of a segment of a circle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Le module est constitué de deux tôles (2) réunies par des cordons de soudure (11a à 11g, 13a à 13g, 21a à 21g) définissant entre eux des canaux s'étendant entre deux chambres de répartition (26). Le module est réalisé par hydroformage en injectant un liquide par un embout d'hydroformage (23). Pour passer de l'ébauche d'hydroformage (1) à un module opérationnel, on sectionne les extrémités du module pour ouvrir les chambres de répartition (26). Les canaux ont une configuration générale en U. Ils convergent vers chaque chambre de répartition (26) tout en conservant une largeur constante. Utilisation pour minimiser les pertes de charge et, optimiser l'encombrement de l'échangeur, la résistance mécanique dans la zone de la chambre de répartition, et la distribution du fluide dans les différents canaux.

Description

DESCRIPTION "Echangeur de chaleur et module d'échange s'y rapportant"
La présente invention concerne un moαule d'échange thermique destiné a faire partie du faisceau thermiquement actif d'un echangeur de chaleur.
La présente invention concerne encore un echangeur de chaleur équipé d'un tel module.
Le O-A-98/16 786 décrit un echangeur dont le faisceau est constitue par un empilement de modules bi-plaques. Chaque module est constitué de deux tôles définissant entre-elles une série de canaux longitudinaux et parallèles conduisant un premier fluide d'échange d'une extrémité a l'autre des modules.
Le procède de réalisation de tels modules consiste a souder au laser deux tôles planes selon des lignes longitudinales et parallèles destinées a former les séparations entre les canaux.
Une soudure périphérique ferme l'espace entre les deux tôles à l'exception d'un embout d'injection d'eau sous pression. On forme le module en injectant de l'eau sous pression entre les deux plaques de manière à produire un gonflement des deux tôles entre les cordons de soudure.
Les modules ainsi réalises sont empilés de manière que les surfaces extérieures des modules voisins soient appuyées les unes contre les autres le long des crêtes des canaux. Il se forme ainsi entre les modules d'autres canaux prévus pour la circulation du second fluide d'échange, en général à contre- courant par rapport au premier fluide d'échange.
Cet echangeur connu est très performant car il procure pour les deux fluides d'échange les avantages de la circulation dans des canaux quasi-tubulaires, en particulier avec une perte de charge réduite.
De tels échangeurs sont utilisables en particulier dans des applications où les débits sont très élevés, en particulier dans les raffineries de pétrole, en particulier pour qu'un fluide pétrolier entrant dans un appareil de traitement soit préalablement rechauffe avec de la chaleur fournie par le fluide venant de subir le traitement, de manière que le coût thermique du traitement se limite a l'apport d'ur simple complement . De tels echangeurs peuvent avoir une taille considérable, de l'ordre de 15 a 20 mètres de hauteur, la circulation des fluides s 'effectuant dans le sens vertical pour économiser de la surface au sol. Une construction d'une telle hauteur entraîne des coûts structurels élevés, pour la stabilité mécanique, l'isolation thermique vis a vis de l'extérieur, et les raccordements de fluide .
Le but de l'invention est de permettre la réalisation d'echangeurs de chaleur beaucoup plus compacts tout en étant aussi performants.
Suivant l'invention, le module d'échange thermique comprenant deux tôles soudées selon des lignes de soudure définissant entre-elles un groupe de canaux disposes côte a côte sensiblement dans un plan commun, destines a être parcourus par un fluide d'échange en étant fluidiquement en parallèle les uns avec les autres entre deux orifices de raccordement du module, est caractérise en ce que le groupe de canaux présente une configuration générale en U, qui relie l'un a l'autre lesdits orifices de raccordement écartes latéralement 1 ' un de 1 ' autre .
Pour une même longueur développée des canaux, le module suivant l'invention est deux fois moins long et permet donc, par exemple dans une application verticale, de réaliser une tour d'échange a peu près deux fois moins haute. Par rapport a une telle économie de hauteur, l'encombrement au sol un peu accru est un inconvénient négligeable. On constate même que la tour, étant a la fois moins haute et de plus grande surface de base, est par conséquent beaucoup plus trapue donc naturellement stable sur le plan mécanique.
Les avantages de l'invention ne sont pas limites aux echangeurs de type en tour. Par exemple, un echangeur selon l'invention est particulièrement avantageux lorsque le second fluide circule entre les modules transversalement aux branches du U . Grâce a l'invention, chaque filet de l'un des fluides d'échange rencontre deux fois de suite, et non plus une seule fois, le trajet suivi par un filet αe l'autre fluide d'échange. L'invention n'est pas limitée a une configuration en simple U. On peut concevoir que les canaux se prolongent par une troisième branche longitudinale se raccordant a l'une des deux précédentes par un deuxième virage a 180° en sens contraire du premier, et ainsi de suite.
Lorsque le nomore de branches est pair, et en particulier lorsqu'il est égal a deux, l'un des avantages importants qui est obtenu est que tous les raccordements fluidiques sont regroupes a l'une des extrémités de 1' echangeur. En particulier, dans la disposition en tour, tous les raccordements fluidiques peuvent être regroupes a la base de la tour. Ceci simplifie la réalisation de l' echangeur et en réduit le coût.
Un aspect important de la présente invention consiste également a avoir améliore le trajet du premier fluide d'échange a chacune de ses extrémités dans les modules. La difficulté est de distribuer aussi equitablement que possible le premier fluide d'échange sans former a l'extrémité des canaux une zone qui serait mécaniquement instable, par exemple peu résistante a la pression, ou au contraire mécaniquement trop stable et qui empêcherait par exemple, pendant 1 ' hydroformage, le gonflement correct des canaux au voisinage de leurs extrémités.
Suivant cet aspect de l'invention, le module d'échange thermique comprenant deux tôles soudées selon des lignes de soudure définissant entre-elles un groupe de canaux disposes côte a côte sensiblement dans un plan commun, destines a être parcourus par un fluide d'échange en étant fluidiquement en parallèle les uns avec les autres entre deux orifices de raccordement du module, est caractérise en ce qu'a partir d'une région longitudinale les canaux présentent une région convergente qui s'incurve vers une chambre de répartition faisant communiquer une première extrémité des canaux avec l'un respectif des deux orifices de raccordement du module avec 1 ' extérieur .
Ainsi, les canaux convergent vers la chambre de répartition. Ceci permet de réduire la taille de la chambre de répartition et de réduire ainsi les problèmes mécaniques qu'elle est susceptible de poser. En même temps, la convergence précitée contribue à l'équité de répartition des débit. La chambre de répartition est bordée par des ouvertures de canaux sur une grande partie de son pourtour, ce qui contribue à son bon formage et à une bonne stabilité de sa forme.
Il est particulièrement avantageux que les régions convergentes des canaux suivent un tracé en forme de segment de cercle, tous les segments de cercle ayant de préférence sensiblement même centre.
D'une manière générale, l'un des aspects innovants très significatif de la présente invention, que l'on retrouve aussi bien dans le mode de réalisation préféré du virage du U que dans le mode de réalisation préféré de la zone d'extrémité des canaux, est la réalisation de cordons de soudure curvilignes, préférentiellement circulaires, permettant de réaliser des canaux eux-mêmes curvilignes et préférentiellement circulaires, par hydroformage, ayant une section sensiblement conservée.
L'une des difficultés de 1 ' hydroformage est que, lors du gonflement, certaines zones constituent des raidisseurs empêchant la bonne déformation d'autres zones. De façon surprenante, les canaux circulaires n'ont pas fait apparaître un tel phénomène de manière désavantageuse. On a même relevé un avantage particulier : les canaux devant effectuer un virage selon un très petit rayon se gonflent moins bien que les canaux effectuant un virage plus grand, ce qui compense automatiquement le fait que le fluide parcourant les canaux de plus grand rayon a un trajet plus long à effectuer. L'effet est inverse pour les canaux réservés au second fluide d'échange circulant entre les modules, mais cela n'est pas gênant si la disposition relative des modules permet au second fluide de passer d'un canal à l'autre.
Suivant un second aspect de l'invention, 1 ' echangeur de chaleur est caractérisé en ce qu'il comprend : - un empilement de modules d'échange thermique selon le premier aspect, installés dans une gaine de façon que les extrémités des configurations en U soient dirigées d'un même côte de l'empilement, ces modules définissant entre eux a l'intérieur de la gaine des passages pour un αeuxieme fluide d' échange;
- des premiers moyens de raccordement pour raccorder les orifices de raccordement des modules avec un premier circuit extérieur et; des seconds moyens de raccordement pour raccorder lesdits passages avec un second circuit extérieur.
D'autres particularités et avantages αe l'invention ressortiront encore de la description ci-apres, relative a des exemples non-limitatifs .
Au dessins annexes :
- la figure 1 est une vue en perspective d'un module selon l'invention, avec arrachement central, a un stade intermédiaire de fabrication;
- la figure 2 est une demi-vue en plan d'une partie du module de la figure 1;
- la figure 3 est une vue en coupe suivant III-III de la figure 2, pendant 1 ' hydroformage; - la figure 4 est une vue en coupe suivant IV-IV de la figure 3;
- la figure 5 est une vue partielle éclatée illustrant l'assemblage des modules pour former le faisceau; la figure 6 est une vue partielle après ledit assemblage;
- la figure 7 est une vue de détail en perspective, avec arrachements, illustrant le calage entre les modules dans le faisceau;
- la figure 8 est une vue en perspective de plusieurs modules empiles dans le faisceau, avec arrachements;
- les figures 9 et 10 sont des vues en coupe suivant IX-IX et respectivement III-III de la figure 2, après empilement des modules;
- la figure 11 est une vue en coupe longitudinale de 1' echangeur dans une position de service; - la figure 12 est une vue en perspective éclatée, avec arrachements, montrant l 'echangeur, en position inversée pour plus de clarté;
- la figure 13 est une vue en perspective partielle illustrant la suspension du faisceau;
- la figure 14 est une vue partielle en perspective, avec arrachements, illustrant des moyens de positionnement des modules transversalement a leur propre plan;
- la figure 15 est une vue en coupe suivant XV-XV de la figure 16;
- la figure 16 est une vue analogue a la figure 2 mais relative a un second mode de réalisation;
- la figure 17 est une vue analogue a la figure 3 mais prise suivant XVII-XVII de la figure 16; - la figure 18 est une vue en coupe suivant XVIII-XVIII de la figure 17,
- la figure 19 est une vue en coupe suivant XVII-XVII de la figure 16 après empilement des modules;
- la figure 20 est une vue partielle en perspective montrant un troisième mode de réalisation d'un module au voisinage de l'orifice de raccordement;
- la figure 21 est une vue en perspective partielle des moyens de raccordement d'un faisceau équipe de modules selon la figure 20; - la figure 22 est un schéma gênerai de 1 ' echangeur équipe d'un tel faisceau;
- la figure 23 est une vue en perspective illustrant une variante pour les barrettes de la figure 21;
- la figure 24 est une vue générale pour une variante d'implantation de l' echangeur; et
- la figure 25 est une vue en perspective illustrant une variante de la figure 21.
Dans l'exemple représente aux figures 1 a 14, un module d'échange de chaleur 1 (figure 1) est obtenu par soudage laser de deux tôles métalliques 2 initialement planes, découpées suivant un contour identique. Le contour des tôles 2 a une forme très généralement rectangulaire dont la longueur correspond a la direction verticale de la figure 1. A une extrémité arrière 9 de cette longueur, chaque angle du contour des tôles 2 présente un chanfrein 3. A l'autre extrémité 19 de sa longueur, ou "tête de module", le contour forme deux dômes 4 de forme générale semi-circulaire disposes côte a côte, prolonges chacun par une saillie 6 en forme générale de trapèze, dont le sommet 7 correspond a la petite base du trapèze .
La largeur des tôles 2 peut aller par exemple de 100 a 1600 mm. La longueur des tôles n'est limitée que par la dimension des moyens disponibles pour limiter l'expansion en épaisseur pendant l'opération d'hydro ormage qui sera décrite plus loin. En pratique, des tôles de 10 mètres et plus sont possibles. Toutefois, grâce au progrès en compacité rendu possible par l'invention comme l a ete expose plus haut, des tôles d'une longueur de par exemple 8 mètres permettent déjà des performances d'échange considérables, en termes de puissance calorifique transférée.
L'épaisseur des tôles peut aller de 0,2 a 1,5 mm. Elle est donc très faible pour des raisons d'ordre économique ainsi que thermique.
Les deux tôles 2 sont soudées l'une contre l'autre de manière que leur contour soit en coïncidence. Le soudage est réalise au laser. Cette technique connue permet de souder les tôles l'une a l'autre a distance de leurs bords au moyen d'un faisceau traversant les tôles en provoquant leur fusion localisée dans la masse et l'interpénétration réciproque du métal constituant les deux tôles.
Les deux tôles sont ainsi reunies l'une a l'autre par un cordon de soudure périphérique 8 qui suit d'une manière générale le contour extérieur des deux tôles a une distance de quelques centimètres en-deça dudit contour Le cordon périphérique 8 forme ainsi un U extérieur continu comprenant deux tronçons longitudinaux 13a qui sont parallèles entre eux, longent chacun l'un respectif des bords longitudinaux 14 du contour αes tôles, et un cordon semi-circulaire lia σui longe le contour αe l'extrémité arrière 9 du module et réunit les deux tronçons longitudinaux 13a.
Entre les deux dômes 4, le contour des tôles forme un evidement avec un fond 16 situe par exemple un peu en-deça d'une ligne 17 parallèle a la largeur des tôles 2 et passant par les centres géométriques 18 des dômes 4. Dans cette zone, le cordon périphérique 8 s'éloigne localement du contour extérieur des tôles et forme plus particulièrement un U intérieur continu comprenant deux cordons longitudinaux intérieurs 13g parallèles entre eux et aux cordons longituninaux extérieurs 13a, et un cordon semi-circulaire intérieur 11g. Le cordon 11g a même centre 12 que le cordon semi-circulaire extérieur lia et raccorde les deux cordons longitudinaux intérieurs 13g. A la tête 19 du module, chaque cordon longitudinal extérieur 13a et le cordon longitudinal intérieur 13g le plus proche sont reunis l'un a l'autre par un cordon en forme d'arcade comprenant deux segments circulaires appartenant a un même cercle centre sur le centre 18, l'un 21a prolongeant le cordon longitudinal extérieur 13a, l'autre 21g prolongeant le cordon longitudinal intérieur 13g. Les deux segments 21a et 21g de chaque dôme 4 sont raccordes l'un a l'autre par un cordon de raccordement 22 suivant approximativement le contour du bossage 6. Toutefois, l'un des cordons de raccordement 22 est interrompu en son milieu en un emplacement ou un embout tubulaire 23 est insère entre les deux tôles 2 pour permettre l'injection d'un fluide d'hydroformage depuis l'extérieur du module jusque dans l'espace situe entre les deux tôles et entoure par le cordon périphérique 8. A part le passage constitue par l'embout 23, le cordon périphérique 8 ferme de manière etanche l'espace qu'il entoure entre les deux tôles 2.
Il y a entre chaque cordon longitudinal extérieur 13a et le cordon longitudinal intérieur 13g le plus proche une série de cordons longitudinaux parallèles et equidistants s 'étendant chacun entre la ligne diamétrale 17 et la ligne diamétrale 24 passant par le centre 12 perpendiculairement aux cordons 13a et 13g. Dans l'exemple représente, les cordons longitudinaux sont en nombre impair de chaque côté de l'axe central A. Un cordon longitudinal central 13d s'étend selon un axe longitudinal secondaire B situé à égale distance entre le cordon longitudinal extérieur 13a et le cordon longitudinal intérieur 13g le plus proche.
Des cordons longitudinaux intermédiaires extérieurs 13b sont situés entre le cordon 13a et l'axe B. Des cordons longitudinaux intermédiaires intérieurs 13f sont situés entre l'axe B et le cordon longitudinal intérieur 13g. On désigne par 13c et 13e les deux cordons longitudinaux intermédiaires adjacents au cordon central 13d, et situés du côté du cordon extérieur 13a et du côté du cordon intérieur 13g respectivement .
A l'extrémité arrière 9 du module, chaque cordon longitudinal intermédiaire 13b, 13c, 13e, 13f ou central 13d est relié au cordon longitudinal symétrique par rapport à l'axe central A du module par un cordon semi-circulaire 11b, lie, lie, llf ou respectivement lld concentriques avec les cordons semi-circulaires lia intérieurs et 11g extérieurs déjà décrits. II a donc été formé entre le U extérieur 13a, lia, 13a et le U intérieur 13g, 11g, 13g déjà décrits, plusieurs cordons continus en U définissant entre eux un groupe de canaux 25 ayant une configuration en U. Les canaux 25 ont une largeur - ou "pas de succession des canaux" - qui est la même pour tous les canaux et qui est constante le long de tous les canaux.
A la tête 19 du module, les cordons de soudure longitudinaux intermédiaires 13b et 13f sont prolongés par des cordons en forme de segments de cercle 21b et 21f respectivement qui sont centrés en 18 et qui se terminent le long d'un bord latéral d'une chambre de répartition 26 qui est d'autre part délimitée par le cordon de soudure 22 déjà décrit. Ainsi, les canaux 25 définis entre les cordons de soudure présentent à chaque extrémité du U une région 21ac ou 21cg convergeant vers une chambre de répartition 26 avec laquelle ils communiquent. Les régions 21ac, comprises entre le cordon extérieur 21a et le cordon intermédiaire 21c, s'incurvent vers l'axe central B de la branche du U et vers l'axe A du module. Les régions 21cg, comprises entre les cordons 21c et 21g, s'incurvent vers l'axe B en venant de l'autre côte de celui-ci, et en s 'écartant de l'axe A. Les régions 21ac débouchent perpendiculairement a travers un côte de _a cnambre de répartition 26 et les régions 21cg débouchent perpendiculairement a travers un autre côte de la chambre de répartition 26. Les canaux 25 conservent même dans la région convergente 21ac ou 21cg une largeur - ou "pas de succession des canaux" - inchangée par rapport au reste des canaux. Chaque région convergente 21ac suit un trace sensiblement situe dans le prolongement curviligne de la région convergente 21cg d'un autre canal 25 situe symétriquement par rapport a l'axe B dans le groupe de canaux. De même, chaque cordon curviligne 21b est dans le prolongement curviligne d'un cordon 21f, la chambre de répartition 26 formant une interruption entre ces deux cordons. Par contre, les deux cordons de soudure longitudinaux 13c et 13e situes immédiatement de part et d'autre du cordon central 13d sont relies l'un avec l'autre de manière continue par un cordon 21c semi-circulaire centre en 18, et le cordon central 13d est termine en 18 par un point ou "bouton de soudure" destine a accroître la résistance mécanique de l'extrémité du cordon. Toujours pour des raisons de résistance mécanique de soudure, chaque cordon en forme de segment de cercle 21b ou 21f se termine par un "bouton" de soudure 27 précède par une interruption 28, voir aussi figure 2. Un tel bouton peut en pratique être constitue par un cordon circulaire ou ovoïde de faible diamètre.
Pour 1 ' hydroformage, on place les deux tôles 2 encore planes entre deux matrices 31 et 32 (figure 3) de forme générale plane avec entres elles une distance libre E correspondant a l'épaisseur extérieure voulue pour les modules dans la région des canaux. Dans la région destinée a correspondre a la chambre de répartition 26 du module, la face intérieure des matrices 31 et 32 présente un bossage 29 destine a ramener la distance libre entre elles a une valeur "e" plus faible pour la chambre de répartition 26 que pour la reσion des canaux 25. L'opération d'hydroformage consiste a injecter un liquide tel que de l'eau sous pression entre les deux tôles 2 a travers l'embout 23. L'eau emprisonnée entre les deux tôles a l'intérieur du contour du cordon périphérique 8 produit un gonflement entre les cordons de soudure ainsi que dans la zone de la chambre de répartition et ceci dans la limite permise par les matrices 31 et 32. Il se forme ainsi d'une part les canaux 25 décrits et d'autre part, a chaque extrémité du U de la configuration du groupe de canaux, une chambre de répartition 26. Les deux chambres 26 communiquent entre elles par chacun des canaux en U définis entre deux cordons de soudure voisins, qui sont ainsi fluidiquement en parallèle entre les chambres de répartition 26. La figure 4 montre en coupe transversale des canaux comment ceux-ci se forment entre les matrices 31 et 32 et entre les cordons de soudure 11, 13 ou 21.
Les régions de tôle situées a l'extérieur du cordon périphérique 8 ainsi qu'entre les deux cordons longitudinaux 13c et 13e et entre les deux cordons semi-circulaires lie et lie correspondants ne sont pas soumises a la pression et ne subissent donc aucun gonflement. Elles restent donc planes et adjacentes l'une a l'autre. Ces zones extérieures 33a intermédiaire 33d et intérieure 33g constituent des raidisseurs qui se sont avères bénéfiques pour la bonne planeite du module après 1 ' hydroformage . Pour passer de l'ébauche représentée a la figure 1, résultant de 1 ' ydroformage a un module proprement dit prêt a l'assemblage pour constituer un faisceau d'échange, on découpe a la scie ou au et d'eau le sommet de chaque bossage 6 comme représente a la figure 2 selon une ligne 34 de manière a ouvrir chaque chambre de répartition 26 et a éliminer l'embout 23. Le module présente ainsi deux orifices de raccordement 38 (figures 5 et 6) situes tous les deux a la tête 19 du module en étant décales l'un par rapport a l'autre latéralement, c'est a dire parallèlement a la largeur du module. Chaque chambre de répartition 26 a une forme générale triangulaire isocèle, symétrique par rapport a l'axe B. L'orifice de raccordement 38 est forme a travers la base de ce triangle. Les deux côtes du triangle sont définis chacun par l'alignement des extrémités des régions convergentes 21ac ou 2cg respectivement des canaux 25 et forment ensemble sur l'axe B un angle C inférieur à 60°, de préférence égal à environ 45°, opposé à l'orifice de raccordement 38. Des cordons de soudure 22a, 22g (figure 5), qui subsistent du cordon 22 initial, s'étendent chacun autour d'une partie de la périphérie de la chambre de répartition 26 entre l'un respectif des cordons de soudure curviligne extrêmes 21a, 21g et une extrémité correspondante de l'orifice de raccordement 38, qui est de forme allongée. Le cordon de soudure 21c raccordant hermétiquement les deux cordons longitudinaux 13c et 13e ferme la chambre de répartition 26 à son sommet formant l'angle C. A l'intérieur du contour de chaque chambre 26, les deux tôles 2 sont exemptes de liaison mutuelle, et en particulier de liaison soudée.
Par ailleurs, comme illustré en traits mixtes à la figure 1, on pratique par découpe dans la zone plane intérieure 33g située à l'intérieur du U intérieur 11g, 13g, une entaille 36 suivant l'axe principal A à partir du fond 16 de 1 ' évidement entre les deux dômes 4 et environ jusqu'au centre 12 du virage des canaux en U à l'extrémité arrière 9 du module.
En outre, on pratique dans les bords longitudinaux 14 au voisinage des biseaux 3 deux encoches de forme générale rectangulaire 37 dans les tôles 2. Les figures 5 et 6 illustrent l'assemblage des modules pour constituer un faisceau. A chaque extrémité du U de la configuration des canaux de chaque module, l'orifice de raccordement 38 formé par la découpe 34 du bossage 6 est emboîté dans des ouvertures de forme correspondante 39 prévues dans une plaque d'extrémité 41 commune à tous les modules du faisceau à réaliser. Mesurée parallèlement à la largeur des modules, la dimension 42 de la plaque 41 est inférieure à la largeur 43 de chaque bras de U d'un module mesuré entre l'un des bords longitudinaux 14 et l'axe central A. Les orifices de raccordement 38 sont soudés dans les ouvertures 39, de manière à fixer les modules dans une position relative d'empilement. La géométrie de l'empilement est également définie par des moyens d' entretoisement pouvant comprendre des cales 44 (figure 7) soudées contre les zones planes extérieure et intérieure 33a, 33g des modules, ou encore contre la zone plane întermed.aire 33d Ces cales empêchent les modules de se déplacer les uns par rapport aux autres en particulier transversalement a leur propre plan. On utilise encore des cales triangulaires 46 qui sont interposées entre les chambres de répartition 26 voisines pour empêcher, en service, le gonflement des chambres de répartition 26 sous l'effet de la pression régnant en service a 1 ' intérieur des modules, qui est dans la plupart des applications supérieure a celle du fluide d'échange qui circulera entre les modules .
La figure 8 illustre que pour l'exemple représente, on utilise deux types de modules 101, 102 qui alternent dans l'empilement et qui différent par un décalage des canaux, le décalage étant d'un demi-pas de succession des canaux. Ainsi, notamment les cordons longitudinaux intérieurs 13g des modules 101 sont plus près - d'un demi-pas de succession des canaux - de l'axe A que les cordons 13g des modules 102, et le rayon des cordons semi-circulaires 11g des modules 101 est plus petit - d'un demi-pas de succession des canaux - que les cordons 11g des modules 102. Ainsi, plus généralement, les canaux 25 ont globalement une disposition en quinconce qui est encore illustrée a la figure 9, les crêtes d'ondulation 47 de la face extérieure d'un module étant en regard des creux d'ondulations correspondant aux cordons de soudure 11, 13 ou 21 d'un module adjacent. Avec cette configuration, le trajet 48 prévu pour le second fluide d'échange entre chaque paire de modules adjacents a la forme d'un intervalle continu ondule. L'entrée ou la sortie du deuxième fluide entre les modules se fait a chaque extrémité du U, respectivement, entre les zones 21ac et 21cg des canaux 25, de part et d'autre des cales triangulaires 46, et sans restriction de section grâce au décalage d'un demi-pas. La figure 10 représente selon la ligne de coupe III-III de la figure 2 l'empilement de deux modules dans la zone des chambres de répartition 26 et du début de certains canaux 25. Une fois l'empilement de modules constitue, celui-ci est insère dans une gaine 49 (figures 11 et 12), dont la direction longitudinale correspond a celle des modules 1. La paroi périphérique 52 de la gaine 49 possède un profil intérieur rectangulaire correpondant aussi étroitement que possible au profil extérieur transversal de l'empilement de modules 1 compte-tenu des tolérances de fabrication. La gaine 49 comprend en outre selon l'une des médianes de son profil rectangulaire une cloison médiane 53 destinée a s 'insérer aussi étroitement que possible dans l'entaille 36 des modules 1.
A l'extrémité arrière de la gaine 49, qui correspond a l'extrémité arrière 9 des modules, la gaine 49 est fermée par un carter 54 présentant des biseaux 56 destines a être sensiblement en contact avec les biseaux 3 des modules. D'une manière générale, pour placer le faisceau dans la gaine, on enfile le faisceau par l'arriére de la gaine jusqu'à ce que le fond de l'entaille 36 des modules bute contre le bord arrière de la cloison centrale 53 de la gaine, puis on ferme la gaine 49 grâce au carter 54. En service (figure 11) l'extrémité arrière 9 des modules et le carter 54 de la gaine sont places en position haute .
Au sommet de la paroi périphérique 52 sont fixées par soudage deux barrettes opposées 57 (voir aussi figure 13) qui font saillie vers l'intérieur de la gaine et sont engagées dans les encoches 37 des modules. Le faisceau est ainsi suspendu par appui des epaulements 58 formant le bord supérieur des encoches 37 contre la face supérieure des barrettes 57. Les barrettes 57 dépassent également a l'extérieur de la gaine 49 pour reposer sur des consoles 59 fixées contre la face intérieure d'une enceinte cylindrique 61 enfermant le faisceau, la gaine 49 et les moyens de raccordement du faisceau qui vont être décrits.
L'extrémité arrière 9 des modules étant placée en position haute, leurs têtes 19 et avec elles les moyens de raccordement restant a décrire sont regroupes en position basse dans l'extrémité inférieure de l'enceinte 61. Pour le premier fluide d'échange, destine a circuler a l'intérieur des modules, les moyens de raccordement comprennent deux boîtes de raccordement 62 (figure 12) de forme générale sem_-cylιndπque . Chaque boîte 62 est soudée de manière etanche par son pourtour rectangulaire ouvert, avec le pourtour de l'une respective des plaques 41 pour faire communiquer tous les orifices de raccordement 38 situes d'un même côte de l'axe A avec un conduit de raccordement 63 pour l'entrée du premier fluide, et pour faire communiquer tous les orifices 38 situes de l'autre côte de l'axe A avec un conduit de raccordement 64 pour la sortie du premier fluide. Chaque conduit 63, 64 débouche dans la boîte de raccordement 62 respective et parvient a l'extérieur par une traversée etanche 66 de l'enceinte 61 (figure 11) pour faire partie d'un premier circuit extérieur, pour le premier fluide d'échange. Chaque boîte de raccordement 62 a une forme générale semi-cylindrique par rapport a laquelle la plaque 41 correspondante s'étend sensiblement selon un plan axial.
Une boîte de raccordement extérieure 67, plus grande que les boîtes 62, est montée de manière a enfermer l'une des boîtes 62. La boîte 67 est fixée au bord supérieur de l'un des deux compartiments longitudinaux définis dans la gaine 49 par la cloison médiane 53 et l'une des moitiés du profil rectangulaire de la paroi périphérique 52. La boîte 67 fait communiquer ce compartiment de manière etanche avec un conduit de raccordement 68 qui débouche dans la boîte 67 pour l'arrivée du second fluide dans ce compartiment de la gaine en passant de part et d'autre de la boîte de raccordement 62 qui est entourée par la boîte 67. Le conduit 68 s'étend jusqu'à l'extérieur de l'enceinte 61 en passant par une traversée etanche 69 et fait ainsi partie d'un second circuit extérieur, pour le second fluide d'échange. L'autre compartiment défini dans la gaine 49 par la cloison 53 est librement ouvert dans l'enceinte 61 qui sert de collecteur de retour pour le second fluide. L'enceinte 61 est raccordée a cet effet avec l'extérieur par un raccord 71 faisant également partie du second circuit extérieur. Chaque conduit de raccordement 63, 64, 68 est équipe d'un compensateur de dilatation respectif 72 pour absorber les variations dimensionnelles entre la tête 19 du faisceau et la traversée etanche 66 ou 69 correspondante de l'enceinte. Le conduit de raccordement 64 traverse de manière etanche la boîte de raccordement 67 avec interposition d'un compensateur de dilatation 73 entre la boîte de raccordement 67 et un collier etanche 74 fixe autour du conduit 64. Tous les compensateurs de dilatation sont montes pour compenser les variations dimensionnelles selon la direction longitudinale des modules. Les deux extrémités de la configuration en U des modules sont rendues mécaniquement indépendantes l'une de l'autre pour les déplacements longitudinaux car en service, l'extrémité chaude ou pénètre le fluide destine a céder des calories et d'où sort le fluide ayant reçu les calories doit pouvoir se dilater beaucoup plus que l'extrémité froide. En fonctionnement, le premier fluide d'échange pénètre dans l'une des chambres de répartition 26 de chaque module, par l'une des boîtes de raccordement 62, parcourt les canaux en U disposes fluidiquement en parallèle, se rassemble dans l'autre chambre de répartition 26 et quitte le faisceau par l'autre boîte de raccordement 62. Les chambres de raccordement 26 ont une forme triangulaire de sorte que leur section décroît depuis l'orifice de raccordement 38 jusque vers les canaux les plus centraux. Ceci a pour effet que le fluide est distribue a peu près equitablement entre les canaux 25 et que la vitesse d'écoulement du fluide est a peu près partout la même le long d'un module, d'un orifice de raccordement a l'autre. Le second fluide d'échange pénètre dans l'un des compartiments de la gaine en passant par la boîte de raccordement 67 de part et d'autre de la boite de raccordement 62 correspondante et se repartit dans tous l'intervalle entre les modules voisins, grâce a la continuité dudit intervalle 48 (figure 8 et 9) . Le deuxième fluide d'échange doit contourner l'extrémité arrière de la cloison 53, et doit par conséquent parcourir, a contre- courant par rapport au premier fluide, toute la longueur développée des canaux des modules. Les cales 44 (figure 7) évitent que le second fluide d'echanσe choisisse preferentiellement le trajet ther iquement peu efficace s' étendant entre les zones plates 33a, 33d, 33g ces modules voisins. Cet effet de freinage d'écoulement le long des zones plates peut être accru par différents éléments formant chicane comme par exemple des ressorts en forme de sinusoïde 76 interposes avec une certaine contrainte entre les zones planes 33a, 33d et 33g des modules (figure 7) ou encore des peignes 77 (figure 14) fixes contre les faces intérieures de la gaine adjacentes aux bords latéraux des modules. De tels peignes comprennent avantageusement une tôle formant semelle de fixation, dans laquelle sont formes par découpe et emboutissage des crevés 78 formant des saillies 79. Des fentes 81 définies entre les saillies 79 reçoivent et guident les parties planes extérieures 33a ou intérieures 33g des modules. Ces ressorts 76 et peignes 77 servent en même temps a immobiliser les modules a l'égard des déplacements transversaux a leur propre plan.
L'exemple représente aux figures 15 a 19 ne sera décrit que pour ses différences par rapport au précèdent. Dans ce mode de réalisation, les modules sont tous identiques et, dans l'empilement, les crêtes 47 des ondulations des faces extérieures des modules voisins sont en contact ou quasi- contact mutuel. Le trajet pour le second fluide d'échange est alors lui aussi constitue par des canaux presque complètement sépares les uns des autres. Pour que le second fluide d'échange puisse alimenter ces canaux 48, on fait en sorte pendant 1 ' hydroformage qu'une région 82 (figure 16) des canaux, adjacente a la chambre de répartition 26 de part et d'autre de celle-ci, ait une épaisseur réduite, par exemple égale a l'épaisseur e de la chambre de répartition 26. Il suffit pour cela que le bossage 29 des matrices 31 et 32 ait une plus grande étendue correspondante que dans le mode de réalisation précèdent. On obtient dans cette région les canaux aplatis 83 représentes a la figure 18. Ainsi, dans la région 82, les passages 48 sont relies entre-eux par des intercommunications 84 (figure 19) et forment avec celles-ci, une chambre de répartition pour le deuxième fluide d'échange.
Dans l'exemple représente aux figures 20 a 22, qui ne sera décrit que pour ses différences avec celai des figures 1 a 14, on réalise des modules sans chambre αe répartition simplement en sectionnant l'ébauche 1 de la figure 1 selon la ligne 17. Toute la région des dômes 4 n'a servi qu'a 1 'hydroformage avant d'être éliminée. Ce sont donc les extrémités ouvertes des canaux longitudinaux qui forment l'orifice de raccordement du module a chaque extrémité de la configuration en U.
On assemble les modules en soudant entre leurs orifices de raccordement des barrettes de forme 86 qui constituent ensemble un fond sur lequel sera soudée la boîte de raccordement 62. Celle-ci est de plus grande dimension qu'a la figure 12 et ferme complètement le compartiment correspondant de la gaine 49. Les boîtes de raccordement 87 pour le second fluide d'échange sont fixées de manière a obturer une echancrure rectangulaire 88 formée au sommet de la gaine 49 dans chacune des deux parois de la gaine parallèles a la cloison 53. Les extrémités 89 des barrettes 86 forment avec les bords des modules interposes entre-elles une surface continue contre laquelle un bord correspondant 91 de la boîte de raccordement 87 peut-être soude de manière etanche. A la figure 22, on a représente deux boîtes de raccordement 87, mais l'une d'entre elles peut être omise si l'on utilise l'enceinte 61 comme collecteur comme il a ete décrit en référence a la figure 12. La figure 23 illustre une variante pour les barrettes
86 avec une lèvre de soudage 93 le long du bord de chaque tôle 2 adjacente. De manière non-representee, les barrettes 86 doivent également présenter a chaque extrémité une lèvre transversale pour le soudage etanche du bord de la boîte de raccordement 62.
La figure 24 illustre un mode de réalisation dit a courants croises, selon lequel le faisceau de modules est monte dans une gaine 95 qui est ouverte sur toute la surface adjacente aux bords longitudinaux extérieurs 14 αes modules, de chaque côte du faisceau. Dans ce cas il n'y a pas de cloison séparant les deux branches du U, et il n'est dcrc pas non plus nécessaire de former l'entaille 36 entre les de^x branches ou U. On obtient toutefois grâce a l'invention, même dans cette version certains avantages du contre-courant si le sens de circulation 94 du second fluide est tel que celui-ci passe d'abord entre les branches de U situées en aval relativement au sens de circulation du premier fluide, comme représente. Cette réalisation nécessite que l'intervalle 48 reserve entre les modules pour le trajet du second fluide soit continu, par exemple comme représente a la figure 9.
Le mode de réalisation de la figure 25 ne sera décrit que pour ses différences par rapport a celui des figures 20 a 22. Dans une certaine région 97 adjacente a leurs extrémités ouvertes formant orifice de raccordement, on a donne aux modules lors de leur hydroformage une épaisseur réduite de façon a former dans cette zone une chambre de répartition 96 pour le second fluide d'échange. Les modules sont tous identiques et les ondulations des modules voisins sont en contact crête a crête sauf dans la région d'épaisseur réduite 97. Le profil des barrettes 86 est adapte de manière correspondante . Bien-entendu, l'invention n'est pas limitée aux exemples décrits et représentes.
L' echangeur pourrait être conçu pour échanger de la chaleur entre plus de deux fluides. La zone du virage du U pourrait être configurée de manière différente. Il n'est pas nécessaire d'avoir une zone plane dans la région médiane du groupe de canaux.
Le mode de réalisation des figures 1 a 14 concerne plus particulièrement le cas ou le premier fluide d'échange est essentiellement liquide tandis que le second fluide d'échange est au moins partiellement gazeux, nécessitant donc des sections de passage plus importantes, mais cela n'est pas une nécessite .
L'invention est applicable aux echangeurs ou les deux fluides d'échange circulent dans le même sens le long de leurs trajets respectifs.
Dans la réalisation des figures 20 a 23 et 25, la structure de tête ces modules avant ..a coupe destinée a faire apparaître les deux orifices de raccordement de chaque module, ne sert qu'à la mise en œuvre de 1 ' hydroformage . Elle n'a pas de fonction hydrodynamique, et ses exigences de résistance à la température et à la pression peuvent être moindres. Elle peut être simplifiée en conséquence, en particulier pour faciliter sa fabrication et économiser de la tôle.
On pourrait donner aux canaux d'un même module, des largeurs différentes d'un canal à l'autre.
Dans les réalisations représentées, les canaux 25 débouchent à travers les côtés rectilignes des chambres de répartition 26. Mais ces côtés peuvent aussi être curvilignes, concaves ou convexes, par exemple mais non limitâtîvement en forme de segment de cercle.

Claims

REVENDICATIONS
1- Module d'échange thermique et comprenant deux tôles (2) soudées selon des lignes de soudure (11, 13, 21) définissant entre elles un groupe de canaux (25) disposés côte à côte sensiblement dans un plan commun, destinés à être parcourus par un fluide d'échange en étant fluidiquement en parallèle les uns avec les autres entre deux orifices de raccordement (38) du module, caractérisé en ce que le groupe de canaux présente une configuration générale en U, qui relie l'un à l'autre lesdits orifices de raccordement (38) écartés latéralement l'un de l'autre.
2- Module d'échange thermique selon la revendication 1, caractérisé en ce que les deux orifices de raccordement (38) sont disposés côte à côte à une même extrémité (19) du module (1).
3- Module d'échange thermique selon la revendication 1 ou 2, caractérisé en ce que les lignes de soudure sont des cordons (11, 13, 21) qui s'étendent selon un tracé continu en U. 4- Module d'échange thermique ' selon la revendication 3, caractérisé en ce que dans le virage du U les cordons de soudure forment des arcs de cercle concentriques (11 à 11g) .
5- Module d'échange thermique selon l'une des revendications 1 à 4, caractérisé en ce que les deux branches de la configuration en U du groupe de canaux sont séparées par une zone (33g) sans canaux.
6- Module d'échange thermique selon la revendication 5, caractérisé en ce que la zone sans canaux (33g) est au moins en partie constituée par des parties planes soudées des tôles. 7- Module d'échange thermique selon la revendication 5 ou 6, caractérisé en ce que la zone sans canaux (33g) comporte une entaille (36) formée dans les deux tôles (2) entre les deux branches de la configuration en U des canaux, à partir d'un bord (16) de chaque tôle (2) situé entre les deux extrémités du U.
8- Module d'échange thermique selon l'une des revendications 1 à 7, caractérisé en ce qu'il comprend entre certains canaux (25) , et/ou le long du pourtour extérieur de la configuration en U, une zone de raidissement (33a, 33d) constituée par des régions plates mutuellement adjacentes des deux tôles. 9- Module d'échange thermique selon l'une des revendications 1 à 8, caractérisé en ce que dans chaque branche de la configuration en U les canaux sont rectilignes et parallèles jusqu'à leurs extrémités qui constituent ensemble, à l'extrémité de chaque branche, l'un respectif des orifices de raccordement (figures 20 à 23 et 25) .
10- Module d'échange thermique selon l'une des revendications 1 à 8, comprenant au moins une chambre de répartition (26) faisant communiquer une première des deux extrémités des canaux avec l'un respectif des deux orifices de raccordement (38) du module (1) .
11- Module d'échange thermique selon la revendication
10, caractérisé en ce qu'à partir d'une région longitudinale les canaux présentent jusqu'à leur première extrémité respective une région convergente (21ac, 21cg) qui s'incurve vers la chambre de répartition (26) .
12- Module d'échange thermique selon la revendication
11, caractérisé en ce que la chambre de répartition (26) est sensiblement symétrique par rapport à un axe longitudinal (B) du groupe de canaux, axe de chaque côté duquel les régions convergentes des canaux s'incurvent dans une même direction respective .
13- Module d'échange thermique selon la revendication 11 ou 12, caractérisé en ce que les régions convergentes suivent un tracé en forme de segment de cercle, ayant de préférence sensiblement même centre (18) .
14- Module d'échange thermique selon l'une des revendications 11 à 13, caractérisé en ce que le pas de succession des canaux reste sensiblement constant le long des régions convergentes, et sensiblement égal au pas de succession des régions longitudinales des canaux (25) .
15- Module d'échange thermique selon l'une des revendications 10 à 14, caractérisé en ce que la région convergente (21ac, 21cg) de chaque canal (25) suit un tracé sensiblement situé dans le prolongement curviligne de la région convergente d'un canal disposé symétriquement dans le groupe de canaux . 16- Module d'échange thermique selon l'une des revendications 10 à 14, caractérisé en ce qu'aux extrémités des canaux, des cordons de soudure continus séparant les canaux adjacents sont suivis par un bouton de soudure (27) à faible distance (28) au-delà de chaque cordon (21). 17- Module d'échange thermique. selon l'une des revendications 10 à 16, caractérisé en ce qu'à l'intérieur de son contour la chambre de répartition (26) ne possède pas de liaison soudée entre les deux tôles.
18- Module d'échange thermique selon l'une des revendications 10 à 17, caractérisé en ce que la chambre de répartition (26) a une forme générale triangulaire avec sur l'axe longitudinal (B) du groupe de canaux, un sommet dont l'angle (C) est de préférence égal à environ 45°, opposé à l'orifice de raccordement (38) traversant la base de la chambre (26) .
19- Module d'échange thermique selon l'une des revendications 10 à 18, caractérisé en ce que les régions convergentes des canaux débouchent à travers deux côtés de la chambre de répartition (26) qui convergent l'un vers l'autre en allant de l'orifice de raccordement (38) vers une extrémité de la chambre opposée à l'orifice de raccordement (38).
20- Module d'échange thermique selon l'une des revendications 10 à 19, caractérisé en ce que les régions convergentes des canaux débouchent à peu près perpendiculairement à travers deux côtés de la chambre de répartition (26) .
21- Module d'échange thermique selon l'une des revendications 10 à 20, caractérisé en ce qu'il comprend deux cordons de soudure (22a, 22g) s 'étendant chacun autour d'une partie de la périphérie de la chambre de répartition (26) entre un cordon de soudure extrême respectif (21a, 21g) du groupe de canaux et une extrémité respective de l'orifice de raccordement (38) .
22- Module d'échange thermique selon l'une des revendications 10 à 21, caractérisé en ce qu'à son extrémité opposée à l'orifice de raccordement (38), la chambre de répartition (26) est fermée par un cordon de soudure (21c) raccordant l'un à l'autre deux cordons de soudure (13c, 13e) bordant un intervalle entre deux canaux centraux du groupe de canaux . 23- Module d'échange thermique selon l'une des revendication 10 à 22, caractérisé en ce que dans le sens de l'épaisseur du module, la chambre de répartition présente une dimension (e) plus petite que celle (E) des canaux.
24- Module d'échange thermique selon l'une des revendications 10 à 23, caractérisé en ce qu'il y a un orifice de raccordement (38), une chambre de répartition (26) et une région convergente (21ac, 21cg) des canaux (25) à chacune des deux extrémités du groupe de canaux.
25- Module d'échange thermique selon l'une des revendications 1 à 24, caractérisé en ce que dans le sens de l'épaisseur du module les canaux ont une dimension réduite dans une zone (82, 97) adjacente à l'extrémité des canaux.
26- Echangeur de chaleur, caractérisé en ce qu'il comprend : - un empilement de modules d'échange thermique (1) selon l'une des revendications 1 à 25, installés dans une gaine (49) de façon que les extrémités de configuration en U soient dirigées d'un même côté de l'empilement, les modules définissant entre eux à l'intérieur de la gaine des passages (48) pour un deuxième fluide d'échange;
- des premiers moyens de raccordement (62, 63, 64) pour raccorder les orifices de raccordement (38) des modules avec un premier circuit extérieur;
- des seconds moyens de raccordement (67, 68, 71) pour raccorder lesdits passages (48) avec un second circuit extérieur. 27- Echangeur de chaleur selon la revendication 26, caractérisé en ce que les crêtes (47) des ondulations des faces extérieures adjacentes des modules voisins sont mutuellement en regard. 28- Echangeur de chaleur selon la revendication 27, caractérisé en ce que pour chaque paire de faces extérieures adjacentes des modules voisins, les crêtes d'ondulation (47) de chaque face de la paire sont sensiblement en regard des creux d'ondulation de l'autre face de la paire. 29- Echangeur de chaleur selon la revendication 28, caractérisé en ce qu'il comprend deux types de module (101, 102) qui diffèrent par un décalage d'un demi-pas des régions longitudinales des canaux par rapport à l'axe central (A) du U, et en ce que les modules d'un type alternent avec les modules de l'autre type dans l'empilement de modules.
30- Echangeur de chaleur selon l'une des revendications 26 à 29, caractérisé en ce que la gaine (49) contient des moyens (44, 76, 77) de positionnement des modules à l'égard des déplacements perpendiculaires au plan des modules. 31- Echangeur de chaleur selon l'une des revendications
26 à 30, caractérisé en ce que les premiers moyens de raccordement comprennent une boîte de raccordement (62) comprenant :
- un fond (41) à travers lequel les orifices (38) des modules débouchent de manière etanche;
- un corps auquel se raccorde un conduit (63, 64) de liaison avec le premier circuit extérieur.
32- Echangeur de chaleur selon la revendication 31, caractérisé en ce que les seconds moyens de raccordement comprennent une seconde boite de raccordement (67) qui :
- se raccorde à la gaine (49) ; renferme la boîte (62) des premiers moyens de raccordement ,
- est traversée de manière etanche par le conduit de liaison (64) des premiers moyens de raccordement
- et à laquelle un second conduit de raccordement (68) est raccordé de manière etanche. 33- Echangeur de chaleur selon l'une des revendications 26 à 31, caractérisé en ce que les seconds moyens de raccordement font communiquer le second circuit extérieur avec des zones de répartition (84) s 'étendant au moins pour partie entre des zones à épaisseur réduite (82, 97) des canaux.
34- Echangeur de chaleur selon l'une des revendications 26 à 33, caractérisé en ce que les premiers et les seconds moyens de raccordement sont rassemblés à une extrémité de 1' echangeur correspondant aux deux extrémités du U. 35- Echangeur de chaleur selon l'une des revendications
26 à 33, caractérisé en ce que les premiers moyens de raccordement (62) sont disposés à une même extrémité de 1' echangeur, tout en étant mutuellement écartés d'une extrémité à l'autre du U, de façon à assurer un découplage thermique. 36- Echangeur de chaleur selon la revendication 34 ou 35, caractérisé en ce que ladite extrémité est une extrémité inférieure .
37- Echangeur de chaleur selon l'une des revendications 26 à 36, caractérisé par un évidement (36) séparant les deux branches longitudinales de la configuration en U des canaux des modules .
38- Echangeur de chaleur selon la revendication 37, caractérisé en ce que la gaine (49) comprend une cloison (53) s ' étendant à travers les évidements (36) des modules. 39- Echangeur de chaleur selon la revendication 37 ou 38, caractérisé en ce que les premiers moyens de raccordement son montés d'une manière mécaniquement découplée pour permettre une dilatation différente des deux branches du U dans le sens de la longueur desdites branches. 40- Echangeur de chaleur selon l'une des revendications
26 à 39, caractérisé en ce qu'à son extrémité opposée aux moyens de raccordement la gaine est fermée par un carter (56) coiffant le virage de la configuration en U des canaux des modules . 41- Echangeur de chaleur selon l'une des revendications
26 à 40, caractérisé en ce que dans la gaine les modules sont séparés par des moyens de calage (44, 76, 79) le long du pourtour extérieur et/ou du pourtour intérieur de la configuration en U du groupe de canaux de chaque module.
42- Echangeur de chaleur selon l'une des revendications 26 à 41, équipé de modules conformes à l'une des revendications 10 à 25, comprenant des moyens de soutien et de calage (46) entre les chambres de répartition (26) des modules successifs.
PCT/FR2000/002153 1999-07-27 2000-07-26 Echangeur de chaleur et module d'echange s'y rapportant WO2001007854A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60025372T DE60025372T2 (de) 1999-07-27 2000-07-26 Wärmetauscher und dazugehöriges wärmeaustauschmodul
US10/048,371 US7044207B1 (en) 1999-07-27 2000-07-26 Heat exchanger and related exchange module
EP00958626A EP1206672B1 (fr) 1999-07-27 2000-07-26 Echangeur de chaleur et module d'echange s'y rapportant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9909706A FR2797039B1 (fr) 1999-07-27 1999-07-27 Echangeur de chaleur en module d'echange s'y rapportant
FR99/09706 1999-07-27

Publications (1)

Publication Number Publication Date
WO2001007854A1 true WO2001007854A1 (fr) 2001-02-01

Family

ID=9548544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002153 WO2001007854A1 (fr) 1999-07-27 2000-07-26 Echangeur de chaleur et module d'echange s'y rapportant

Country Status (6)

Country Link
US (1) US7044207B1 (fr)
EP (1) EP1206672B1 (fr)
AT (1) ATE315210T1 (fr)
DE (1) DE60025372T2 (fr)
FR (1) FR2797039B1 (fr)
WO (1) WO2001007854A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865028A1 (fr) 2004-01-12 2005-07-15 Ziepack Echangeur thermique et module d'echange s'y rapportant
US20130020061A1 (en) * 2010-04-09 2013-01-24 Ingersoll-Rand Company Formed microchannel heat exchanger

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1279915A1 (fr) * 2001-07-24 2003-01-29 Methanol Casale S.A. Unité d'échange de chaleur, en particulier pour réacteurs isothermes
CN1308643C (zh) * 2002-01-17 2007-04-04 阿尔法·拉瓦尔股份公司 包括沉入式蒸发器的壳体
CA2520597A1 (fr) * 2003-05-16 2004-12-02 Battelle Memorial Institute Dispositifs et procedes de reformage de combustible pour demarrage rapide
DE10352221A1 (de) * 2003-11-08 2005-06-09 Daimlerchrysler Ag Wärmetauscher, insbesondere Abgaswärmetauscher
DE102005021464A1 (de) * 2005-05-10 2006-11-16 Modine Manufacturing Co., Racine Vorrichtung zur Zwischenkühlung
FR2896576B1 (fr) * 2006-01-20 2008-04-18 Alfa Laval Packinox Soc Par Ac Installation d'echange thermique a faisceaux de plaques
US8043417B2 (en) * 2008-06-30 2011-10-25 Uop Llc Column installed condenser
US20100116823A1 (en) * 2008-11-07 2010-05-13 Applied Materials, Inc. Hydroformed fluid channels
US20100170666A1 (en) * 2009-01-07 2010-07-08 Zess Inc. Heat Exchanger and Method of Making and Using the Same
JP5506428B2 (ja) * 2010-01-27 2014-05-28 住友精密工業株式会社 積層型熱交換器
CN103443953B (zh) 2011-03-18 2016-04-06 达纳加拿大公司 电池单元冷却器
EP2604962B1 (fr) * 2011-12-13 2014-10-15 Vahterus Oy Échangeur thermique à plaques et procédé de fabrication d'un échangeur thermique à plaques
US11892245B2 (en) 2014-10-07 2024-02-06 General Electric Company Heat exchanger including furcating unit cells
EP3204708B1 (fr) * 2014-10-07 2020-11-25 Unison Industries, LLC Échangeur de chaleur à courant se ramifiant dans plusieurs branches
US11002290B2 (en) * 2016-01-08 2021-05-11 General Electric Company Heat exchanger for embedded engine applications: curvilinear plate
US10126062B2 (en) * 2016-01-08 2018-11-13 General Electric Company Heat exchanger for embedded engine applications
US10184400B2 (en) * 2016-01-08 2019-01-22 General Electric Company Methods of cooling a fluid using an annular heat exchanger
EP3290822B1 (fr) * 2016-08-30 2019-11-20 Alfa Laval Corporate AB Échangeur de chaleur à plaques pour chauffage solaire
KR102463697B1 (ko) 2016-12-14 2022-11-07 현대자동차주식회사 차량용 열교환기
KR102452541B1 (ko) * 2016-12-14 2022-10-07 현대자동차주식회사 차량용 열교환기
KR20180068481A (ko) * 2016-12-14 2018-06-22 현대자동차주식회사 응축기 일체형 저장탱크
US10876794B2 (en) * 2017-06-12 2020-12-29 Ingersoll-Rand Industrial U.S., Inc. Gasketed plate and shell heat exchanger
US20210381730A1 (en) * 2020-06-09 2021-12-09 Mahle International Gmbh Heat exchanger
FR3138940A1 (fr) * 2022-08-19 2024-02-23 Safran Nacelles Echangeur de chaleur surfacique pour nacelle d’une turbomachine et nacelle de turbomachine équipée d’un tel échangeur de chaleur

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR589212A (fr) * 1924-01-25 1925-05-25 Perfectionnements apportés aux radiateurs de refroidissement
GB1286446A (en) * 1970-01-30 1972-08-23 Johannes Burmester & Co Plate heat exchanger
DE2450739A1 (de) * 1974-10-25 1976-04-29 Autokuehler Gmbh Waermeaustauscher, insbesondere oelkuehler
EP0289915A1 (fr) * 1987-05-05 1988-11-09 INDUSTRIE ZANUSSI S.p.A. Evaporateur à plaques cannelé pour appareils frigorifiques
DE4426097A1 (de) * 1994-07-22 1996-01-25 Kloeckner Stahl Gmbh Verfahren zur Herstellung von Hohlkörperstrukturen aus Blechen
WO1997021062A1 (fr) * 1995-12-04 1997-06-12 Eco Air Limited Echangeur thermique
DE19639115A1 (de) * 1996-09-24 1998-03-26 Behr Gmbh & Co Plattenförmiges Wärmeübertragerelement
FR2754595A1 (fr) * 1996-10-11 1998-04-17 Ziemann Secathen Echangeur de chaleur, et faisceau d'echange de chaleur, ainsi que procedes de soudage et de realisation s'y rapportant

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2877000A (en) * 1955-09-16 1959-03-10 Int Harvester Co Heat exchanger
DE1601216B2 (de) * 1967-11-03 1971-06-16 Linde Ag, 6200 Wiesbaden Blechtafel fuer platten waermetauscher mit einem stapel solcher blechtafeln
DE3106075C2 (de) * 1981-02-19 1984-10-04 Dieter Christian Steinegg-Appenzell Steeb Wärmetauscher
US5137082A (en) * 1989-10-31 1992-08-11 Nippondenso Co., Ltd. Plate-type refrigerant evaporator
US5143747A (en) 1991-02-12 1992-09-01 Hughes Aircraft Company Die improved tooling for metal working
US5111878A (en) * 1991-07-01 1992-05-12 General Motors Corporation U-flow heat exchanger tubing with improved fluid flow distribution
JPH0566073A (ja) * 1991-09-05 1993-03-19 Sanden Corp 積層型熱交換器
US5125453A (en) * 1991-12-23 1992-06-30 Ford Motor Company Heat exchanger structure
US5228515A (en) * 1992-07-31 1993-07-20 Tran Hai H Modular, compact heat exchanger
CN1109232C (zh) * 1993-12-28 2003-05-21 昭和电工株式会社 板式热交换器
DE19719252C2 (de) * 1997-05-07 2002-10-31 Valeo Klimatech Gmbh & Co Kg Zweiflutiger und in Luftrichtung einreihiger hartverlöteter Flachrohrverdampfer für eine Kraftfahrzeugklimaanlage

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR589212A (fr) * 1924-01-25 1925-05-25 Perfectionnements apportés aux radiateurs de refroidissement
GB1286446A (en) * 1970-01-30 1972-08-23 Johannes Burmester & Co Plate heat exchanger
DE2450739A1 (de) * 1974-10-25 1976-04-29 Autokuehler Gmbh Waermeaustauscher, insbesondere oelkuehler
EP0289915A1 (fr) * 1987-05-05 1988-11-09 INDUSTRIE ZANUSSI S.p.A. Evaporateur à plaques cannelé pour appareils frigorifiques
DE4426097A1 (de) * 1994-07-22 1996-01-25 Kloeckner Stahl Gmbh Verfahren zur Herstellung von Hohlkörperstrukturen aus Blechen
WO1997021062A1 (fr) * 1995-12-04 1997-06-12 Eco Air Limited Echangeur thermique
DE19639115A1 (de) * 1996-09-24 1998-03-26 Behr Gmbh & Co Plattenförmiges Wärmeübertragerelement
FR2754595A1 (fr) * 1996-10-11 1998-04-17 Ziemann Secathen Echangeur de chaleur, et faisceau d'echange de chaleur, ainsi que procedes de soudage et de realisation s'y rapportant
WO1998016786A1 (fr) * 1996-10-11 1998-04-23 Ziepack Echangeur de chaleur, et faisceau d'echange de chaleur, ainsi que procedes de soudage et de realisation s'y rapportant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865028A1 (fr) 2004-01-12 2005-07-15 Ziepack Echangeur thermique et module d'echange s'y rapportant
US20130020061A1 (en) * 2010-04-09 2013-01-24 Ingersoll-Rand Company Formed microchannel heat exchanger
US10001325B2 (en) * 2010-04-09 2018-06-19 Ingersoll-Rand Company Formed microchannel heat exchanger with multiple layers

Also Published As

Publication number Publication date
ATE315210T1 (de) 2006-02-15
DE60025372T2 (de) 2006-09-21
DE60025372D1 (de) 2006-03-30
EP1206672A1 (fr) 2002-05-22
FR2797039A1 (fr) 2001-02-02
EP1206672B1 (fr) 2006-01-04
US7044207B1 (en) 2006-05-16
FR2797039B1 (fr) 2001-10-12

Similar Documents

Publication Publication Date Title
WO2001007854A1 (fr) Echangeur de chaleur et module d'echange s'y rapportant
EP1012522B1 (fr) Echangeur de chaleur, et faisceau d'echange de chaleur, ainsi que procedes de soudage et de realisation s'y rapportant
EP1817534B1 (fr) Echangeur de chaleur avec accumulateur thermique
EP0165179B1 (fr) Echangeurs de chaleur à plaques et nouveau type de plaques permettant l'obtention de tels échangeurs
EP3175181B1 (fr) Echangeur enthalpique ameliore
EP3405723B1 (fr) Echangeur de chaleur à condensation muni d'un dispositif d'échanges thermiques
EP0186592A1 (fr) Echangeur à plaques
WO2010076477A1 (fr) Échangeur thermique a plaques soudées
EP1680292A2 (fr) Echangeur de chaleur utilisant un fluide d accumulation
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP2810011A1 (fr) Echangeur thermique, notamment pour vehicule comprenant un moteur thermique
WO2005116436A1 (fr) Echangeur de chaleur a plaques
FR2647198A1 (fr) Echangeur thermique a conduits a plaques
EP3055900A1 (fr) Dispositif de contrôle thermique pour module de batterie de véhicule automobile, à coût maîtrisé, et procédé de fabrication
FR3016958A1 (fr) Echangeur de chaleur pour vehicule automobile
FR2918166A1 (fr) Echangeur de chaleur a structure optimisee.
EP3001133B1 (fr) Échangeur de chaleur pour véhicule automobile
WO2003081159A1 (fr) Echangeur de chaleur, notamment pour un vehicule automobile, constitue d'elements tubulaires empiles
EP0553340B1 (fr) Echangeur a plaques
FR2749071A1 (fr) Accumulateur de chaleur, en particulier pour des vehicules automobiles
FR2709816A1 (fr) Echangeur de chaleur brasé utile notamment comme condenseur de climatisation pour véhicule.
FR2584169A1 (fr) Ensemble embouti pour la combustion pulsatoire
FR2866699A1 (fr) Echangeur thermique a plaques nervurees soudees
EP3455574A1 (fr) Batterie thermique a matériau a changement de phase encapsulé
WO2017109345A1 (fr) Échangeur thermique, notamment pour véhicule automobile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000958626

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10048371

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000958626

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2000958626

Country of ref document: EP