WO2001007372A1 - Production method and device for sheet glass, and liquid crystal device - Google Patents

Production method and device for sheet glass, and liquid crystal device Download PDF

Info

Publication number
WO2001007372A1
WO2001007372A1 PCT/JP2000/004898 JP0004898W WO0107372A1 WO 2001007372 A1 WO2001007372 A1 WO 2001007372A1 JP 0004898 W JP0004898 W JP 0004898W WO 0107372 A1 WO0107372 A1 WO 0107372A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
sheet
sheet glass
heat treatment
distortion
Prior art date
Application number
PCT/JP2000/004898
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Kariya
Original Assignee
Nh Techno Glass Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nh Techno Glass Corporation filed Critical Nh Techno Glass Corporation
Priority to US09/763,200 priority Critical patent/US6758064B1/en
Publication of WO2001007372A1 publication Critical patent/WO2001007372A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/10Annealing glass products in a continuous way with vertical displacement of the glass products
    • C03B25/12Annealing glass products in a continuous way with vertical displacement of the glass products of glass sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for manufacturing a glass plate for manufacturing a thin glass plate (sheet glass) such as a glass substrate for liquid crystal, an apparatus for manufacturing a glass plate, and a liquid crystal device.
  • a float method, a down-drawing method, and the like are known.
  • production of a glass substrate for a liquid crystal does not require polishing after molding or the polishing amount.
  • the downdraft method which has a small number, is widely used.
  • a method described in Japanese Patent Application Laid-Open No. H10-291826 has been proposed.
  • molten glass is continuously supplied from a melting tank along a molding surface, and the glass on both sides is fused below a molding die, and then the peripheral portion of the glass is rolled.
  • the glass plate is manufactured by pulling downward.
  • the glass plate obtained by such a manufacturing method has excellent smoothness and flatness because both main surfaces are formed as free surfaces during molding, and the glass surface in contact with the mold is fused. It has the advantage that.
  • a glass substrate for liquid crystal a glass substrate for TFT And a glass substrate for a color filter.
  • a thin film transistor is formed on a glass substrate in a glass substrate for TFT, and a color filter is formed on a glass substrate in a glass substrate for color filter.
  • Liquid crystal devices are manufactured by sandwiching liquid crystal between these glass substrates with thin films.
  • the glass sheet manufactured by the conventional down-draw method has a problem that a large distortion is generated in a width direction of the sheet glass (a direction orthogonal to a tensile direction). The cause of this distortion is the thickness distribution peculiar to the downdraw method.
  • Sheet glass manufactured by the downdraw method has a greater thickness at the peripheral portion in the width direction than at the inner portion (hereinafter referred to as the surface portion).
  • the strain distribution When a sheet glass having such a strain distribution is cut into a size of a glass substrate for a display device, the strain distribution remains in a rearranged state, and causes slight deformation of the glass substrate.
  • TFTs thin film transistors
  • color filters color filters
  • the present invention has been conceived in view of the above problems, and has the following objects.
  • An object of the present invention is to suppress the occurrence of minute distortion or minute deformation in a downdraw method.
  • Another object of the present invention is to prevent a pattern formed by photolithography on the surface of a glass substrate for a display device from causing a positional shift.
  • Another object of the present invention is to prevent the occurrence of distortion when a sheet glass formed by a downdraw method is cut into a predetermined size.
  • Still another object of the present invention is to improve the yield in manufacturing a liquid crystal device. Disclosure of the invention
  • the present invention proposes a manufacturing method in which, in a down-draw method, in order to remove a distortion caused by a temperature difference in a width direction of the sheet glass, a distortion reduction process of the sheet glass is performed during the slow cooling of the sheet glass. is there.
  • (Structure 1) A method for manufacturing a glass sheet, wherein a molten glass is formed into a sheet by a down-draw method, and the obtained sheet glass is gradually cooled by a heat treatment means to manufacture a glass sheet.
  • a method for manufacturing a glass sheet comprising: performing a strain reduction process for reducing distortion of a sheet glass caused by a temperature difference between a peripheral portion and a surface portion in a width direction of the sheet glass at the time of slow cooling.
  • a glass material suitable for the downdraw method a material having a liquidus temperature of 1200 or less is preferable, and a material having a liquidus temperature of 110 Ot or less is more preferable from the viewpoint of devitrification.
  • the thickness of the sheet glass is preferably 0.5 to 1.0 mm.
  • (Structure 3) A structure characterized in that the sheet glass introduced by slow cooling has a temperature distribution in the width direction such that the temperature is lower at the surface than at the periphery. 3. The method for producing a glass plate according to 1 or 2.
  • the distortion solved by the present invention is micro-strain (deformation)
  • the amount of birefringence is measured by the optical heterodyne method that can measure micro-strain (micro-deformation) with high accuracy, and distortion reduction processing is performed based on the measurement result. Is preferred.
  • the optical heterodyne method By measuring the strain using the optical heterodyne method, the temperature distribution in the width direction of the formed sheet glass can be easily grasped.
  • the temperature range for gradually cooling the sheet glass is preferably in the range of 600 to 850 t.
  • the method of reducing the temperature difference in the width direction of the sheet glass is as follows.
  • the heat treatment is preferably performed by a heat treatment means having a temperature distribution that offsets the temperature distribution in the lath width direction.
  • the temperature distribution in the width direction of the sheet glass also changes with the slow cooling time. Therefore, it is preferable that the temperature distribution of the heat treatment means is also formed by changing the temperature distribution continuously or stepwise along the tensile direction according to the changing temperature distribution of the sheet glass.
  • the heat treatment is preferably performed in the range of the sheet glass forming temperature to the take-out temperature below the strain point, but it is effective to perform the heat treatment in the process of gradually cooling the sheet glass to the vicinity of the strain point from the forming temperature.
  • the heat treatment is performed in the process of gradually cooling the sheet glass from a temperature lower than its molding temperature by 400 to 500 ° C. to near the strain point.
  • the temperature in the width direction of the sheet glass is substantially equalized in the vicinity of the strain point and slow cooling is performed in the vicinity of the strain point, it is preferable to maintain the uniformed temperature state and further cool down. .
  • a preferred range near the strain point is within 5 O: of the strain point soil.
  • composition 7 The heat treatment is a process of setting a temperature distribution in the width direction of the sheet glass formed by the heat treatment means for heating the sheet glass so as to reduce a temperature difference in the width direction of the sheet glass. 7. The method for producing a glass sheet according to configuration 5 or 6, wherein
  • the temperature distribution near the strain point is used as a reference, and the temperature distribution that relaxes the temperature distribution near the strain point is formed as the strain point, rather than forming abruptly near the strain point. It is preferable to form stepwise or continuously during the slow cooling process between the temperature.
  • the distortion reduction processing is performed on the periphery of the sheet glass in the width direction.
  • the amount of extension of the periphery relative to the amount of extension of the surface is increased compared to the amount of extension of the surface, so that the distance from the surface to the periphery 4.
  • the distortion reduction process is preferably performed in the process of gradually cooling in a temperature range of 600 to 850.
  • the liquid crystal device is preferably, in a liquid crystal glass substrate, the expansion coefficient of 3 2 ⁇ 3 8 X 1 0 7 Z:, strain point 6 5 0 or more.
  • a distortion reducing means for reducing distortion caused by a temperature difference generated from a peripheral portion to a surface portion in a width direction of the sheet glass. Glass plate manufacturing equipment.
  • the strain reducing means is a heat treatment means for gradually cooling the formed sheet glass, and has a temperature distribution that reduces the temperature difference in the width direction of the formed sheet glass.
  • the heat treatment means is preferably disposed on one or both sides of the sheet glass. Further, it is preferable that the heat treatment means is disposed near the surface of the sheet glass.
  • the distortion reducing means comprises a heat treatment means for gradually cooling the formed sheet glass, and a temperature difference from the surface portion to the peripheral portion generated in the sheet glass gradually cooled by the heat treatment means.
  • means for controlling the amount of extension of the peripheral portion to be greater than the amount of extension of the surface portion is provided.
  • FIG. 1 is a schematic view of a glass sheet manufacturing apparatus according to one embodiment of the present invention for manufacturing sheet glass from molten glass.
  • FIG. 2 is a sectional view taken along line AA of FIG.
  • FIG. 3 is a side view of the pulling roller shown in FIG.
  • FIG. 4 is a strain distribution diagram of a glass sheet not subjected to a strain reduction process.
  • FIG. 5 is a table showing the temperatures of the heater and the glass in the distortion reduction process.
  • FIG. 6 is a graph of FIG.
  • FIG. 7 is a diagram showing a strain distribution of a glass plate subjected to a strain reduction process.
  • FIG. 8 is a diagram showing the relationship between the shift amount of the total pitch of the glass sheet after division and the distortion amount of the sheet glass before division.
  • FIG. 1 is a schematic view of an apparatus for manufacturing a glass sheet according to one embodiment of the present invention for manufacturing sheet glass from molten glass
  • FIG. 2 is a cross-sectional view taken along line AA of FIG. 1
  • FIG. Fig. 1 is a side view of the pulling roller
  • Fig. 4 is a strain distribution diagram of a glass plate that is not subjected to the strain reduction process
  • Fig. 5 is the temperature of the heat (heat treatment means) and the sheet glass in the strain reduction process.
  • Fig. 6 is a graph of Fig. 5
  • Fig. 7 is a graph showing the strain distribution of the glass plate that has been subjected to the strain reduction process;
  • Fig. 8 is the total of the glass plate after cutting.
  • FIG. 6 is a diagram showing the relationship between the pitch shift amount and the amount of distortion of the sheet glass before cutting.
  • FIG. 1 a manufacturing apparatus for carrying out the method for manufacturing a glass sheet according to one embodiment of the present invention will be described with reference to FIGS. 1, 2, and 3.
  • FIG. 1 a manufacturing apparatus for carrying out the method for manufacturing a glass sheet according to one embodiment of the present invention will be described with reference to FIGS. 1, 2, and 3.
  • FIG. 1 a manufacturing apparatus for carrying out the method for manufacturing a glass sheet according to one embodiment of the present invention will be described with reference to FIGS. 1, 2, and 3.
  • the apparatus for manufacturing a glass sheet according to one embodiment of the present invention is generally constituted by a molten glass storage tank 1 and a lehr 10.
  • the molten glass storage tank 1 has a storage section 1a having an opening, and stores the molten glass 2 obtained by melting the glass raw material at a predetermined temperature in the storage section 1a.
  • a molded part 3 is formed at the lower end of the storage part 1a.
  • the molding 3 has a slit-shaped opening 3 a extending in the width direction of the sheet glass 8.
  • the molded part 3 is made of a refractory brick whose surface is coated with platinum. Has been established.
  • the molten glass can be formed into a sheet-like glass 8 by flowing the molten glass 2 through the opening 3a.
  • the sheet glass 8 that has passed through the forming section 3 is gradually cooled by the heater 4 in order to prevent the peripheral portion from shrinking toward the surface portion due to rapid cooling.
  • the annealing furnace 10 is for gradually cooling the sheet-shaped glass 8, has a hollow inside, and heat-treats the sheet glass 8 while pulling the periphery of the sheet glass 8 downward with pulling rollers 5 to 7. Prevents rapid cooling of the sheet glass 8 and gradually cools it.
  • the pulling rollers 5 to 7 are arranged at a predetermined distance along the pulling direction of the sheet glass 8.
  • a heat treatment means 9 is arranged at a predetermined distance from and spaced from the main surface.
  • the pulling rollers 5 to 7 pull the sheet glass 8 downward across the peripheral portions 8 a and 8 b of the sheet glass 8. As shown in FIG. 2, the pulling rollers 5a, 6a, and 7a cooperate with the pulling rollers 5c, 6c, and 7c located on the back side of the sheet glass 8 to pull the sheet glass 8 together. It is pulling down. Although the right pulling rollers 5 b, 6 b, and 7 b shown in FIG. 1 are not shown, a pulling roller that pulls together is provided on the back side of the sheet glass 8.
  • the pulling rollers 5 to 7 arranged along the pulling direction of the sheet glass 8 are arranged such that adjacent rollers are offset by a predetermined amount in the thickness direction of the sheet glass 8. Thereby, the stroke of the peripheral portion is longer than that of the surface portion of the sheet glass 8.
  • the rollers (5a, 5c) (6a, 6c) (7a, 7c) located on the left side of FIG. 1 are rollers (6a, 6c) as shown in FIG. Are arranged so as to be deviated by ⁇ from the position of the rollers (5a, 5c) (7a, 7c). Roller shown in Fig. 1 5b, 6b and 7b are not shown, but have the same arrangement.
  • the heat treatment means 9 for slow cooling can form a predetermined temperature distribution in the width direction of the sheet glass 8 and in the pulling direction so as to suppress generation of distortion.
  • the heat treatment means 9 has a plurality of heaters arranged in the width direction (horizontal direction) and the pulling direction (vertical direction) of the sheet glass 8.
  • the figure shows a case where eight heaters are arranged in the width direction of the sheet glass 8 as a representative.
  • 10 heaters are arranged in the direction in which the sheet glass 8 is pulled. Each heater can control the temperature individually.
  • the reason why a plurality of heaters are arranged in the width direction of the sheet glass 8 is to form a predetermined temperature distribution in the same direction that can reduce distortion in the same direction.
  • the reason why a plurality of heaters are provided in the stretching direction of the sheet glass 8 is to form a predetermined temperature distribution in the same direction so that rapid cooling can be prevented and slow cooling can be performed.
  • the quenching is prevented in order to prevent the sheet glass 8 from being damaged during the pulling process.
  • a sudden temperature change is applied to the sheet glass 8 in a temperature range of 600 to 700 ° C., the sheet glass 8 is easily broken by buckling deformation.
  • a method of manufacturing a glass plate using the above-described apparatus will be described below with reference to an example of manufacturing a glass substrate for liquid crystal.
  • the amount of distortion of the sheet glass 8 produced without performing the distortion reduction treatment is measured by an optical heterodyne method.
  • the measurement sample is a glass plate cut out from the sheet glass 8 into a size of 65500 mm in width and 550 mm in depth.
  • Fig. 4 shows the measurement results.
  • the amount of distortion of the sheet glass 8 has a distribution that gradually increases from the center of the display portion to the peripheral portion.
  • the strain is such that the folding amount Re is 4.1 nm (strain: 0.12 kg / mm 2 ).
  • the scale in the figure indicates the length (mm).
  • the center of each circle on the glass plate is the measurement point, and the size of the circle represents the magnitude of the distortion.
  • f a s t a x i s which indicates the direction of the distortion, faces the center of the lower end of the glass plate.
  • the amount of deviation of the tension rollers 5 to 7 that can reduce the occurrence of distortion and the temperature distribution in the width direction of the sheet glass 8 set by the heat treatment unit 9 are determined.
  • the sheet glass 8 is manufactured from the molten glass.
  • a raw material for aluminosilicate glass is melted in a melting tank (not shown) at a melting temperature of 1550 to 16500C, and then clarified and homogenized to obtain a molten glass. Then, the molten glass is transferred from the melting tank to the storage section 1a.
  • the raw materials of the aluminosilicate glass used were prepared to have the following glass composition.
  • the sheet glass 8 thus formed is gradually cooled while suppressing generation of distortion by the distortion reducing means.
  • the amount of heat shrinkage between the surface portion and the peripheral portion is larger at the surface portion and smaller at the peripheral portion. Therefore, when the peripheral portion and the surface portion are pulled evenly, distortion occurs. Therefore, if the stroke of the peripheral part where the contraction is relatively small is made longer than that of the surface part, the stroke between the surface part and the peripheral part can be secured according to the difference in heat shrinkage. Can be suppressed.
  • the heat treatment means 9 of this embodiment has a plurality of heaters in the width direction and the pulling direction of the sheet glass 8 respectively.
  • the table shown in FIG. 5 shows the temperature (V) of each heater arranged in the width direction and the pulling direction of the sheet glass 8, and the temperature (in) of the sheet glass 8 corresponding to each heater. ing.
  • each heater for example, the temperature of the atmosphere at a position 20 mm away from the surface of the sheet glass 8 measured by a thermocouple is shown.
  • the temperature of the sheet glass 8 is a value obtained by measuring the temperature of the sheet glass 8 with a radiation thermometer.
  • the table shows the temperatures of the four heaters and the temperature of the sheet glass 8 corresponding to each of the heaters arranged sequentially from the forming section 3.
  • these four heaters will be referred to as first, second, third, and fourth heaters in order from the forming section 3.
  • ⁇ L '' in the column next to the table indicates the heater arranged at the left end of the sheet glass 8 in the width direction, and ⁇ C '' indicates the heater arranged near the center, “R” indicates a heater arranged at the right end.
  • FIG. 6 is a graph of the table of FIG.
  • the temperature of the heaters arranged in the width direction of the sheet glass 8 is higher than the temperature of the heater arranged around the sheet glass 8 at the surface. It is set so that the temperature of the heaters arranged in the room increases. Specifically, the temperature of the central heater C is set to be 13 to 45 higher than the temperature of the surrounding heaters (R, L). The temperature difference is set so as to gradually decrease from the first heat to the fourth heat.
  • the temperature of the sheet glass 8 The temperature at the center of the surface of the sheet glass 8 is set to be 28 higher than the temperature at the periphery.
  • the temperature difference between the central part and the peripheral part of the surface is set to 3 t :.
  • the temperature of the sheet glass 8 is controlled to 65 ° C. which is the temperature at the strain point. That is, it can be seen that the temperature of the sheet glass 8 is equalized in the width direction near the distortion point of the sheet glass 8.
  • the heater that plays an important role in this embodiment is the third heater that performs heat treatment near the strain point.
  • the first heater and the second heater are provided in order to avoid a rapid temperature change caused by rapidly cooling the sheet glass 8 from the forming temperature (1200 C) to the strain point.
  • the fourth heater is provided for gradually cooling the sheet glass 8 to a lower temperature while maintaining the temperature distribution equalized by the third heater.
  • the fifth to tenth heaters (not shown) that follow the fourth heat, while maintaining the temperature distribution equalized by the third heat, similar to the fourth heat,
  • the sheet glass 8 is taken out and gradually cooled to a temperature (150 to 18 or). That is, the heat is gradually applied to the sheet glass 8 so that these heaters are gradually cooled while preventing rapid cooling.
  • the sheet glass 8 sent to the takeout position is cut at predetermined intervals in the pulling direction and carried out.
  • the thickness of the sheet glass 8 after the completion of the forming is 4 to 6 mm at the peripheral portions on both the left and right sides (area of 120 to 130 mm inward from the end), and is 0 at the surface located inside. 7 mm.
  • the width is 106 mm and the depth is 110 mm. After this, the thickness is controlled
  • the glass plate having an effective width of 800 mm and a depth of 110 mm was manufactured by removing the peripheral portion that was not formed.
  • the effective width is the width of a region having a uniform thickness.
  • FIG. 7 shows the measurement results of the stress distribution in this example. As shown in the figure, not only the suppression of the maximum value of the distortion, but also the distribution of the distortion is almost equalized.
  • the uniformity of the distortion and the reduction of the amount of distortion are not significant. It turns out that the glass plate of an Example is excellent. Further, in the present example, the breakage of the sheet glass 8 caused by the distortion during the slow cooling process was prevented, so that the yield was improved by 10%.
  • a liquid crystal device was manufactured from the glass plate manufactured according to the above-described embodiment. Specifically, two glass plates of 42.times.275 mm were cut out of a full-size glass plate of 550.times.650 mm. The total 'pitch' shift amount of the cut glass plate was 0.40 / m. It is preferable that the total pitch shift is 1 m or less.
  • FIG. 8 is a graph showing the correlation between the two.
  • the vertical axis shows the total pitch generated in the glass plate obtained by the division.
  • the horizontal axis indicates the birefringence (nm) of the full-size glass plate before cutting.
  • a glass substrate for a color filter and a glass substrate for TFT were manufactured from the glass plate of this example in which the distortion was suppressed in this manner. Then, a liquid crystal device was manufactured by aligning the alignment marks on each glass substrate. In this case, since the glass plate with reduced distortion of this example was used, a liquid crystal device could be manufactured with a high yield.
  • the present invention can be applied to a down-draw method other than the down-draw method of the above-described embodiment.
  • the present invention can also be applied to the conventional downdraw method described in the section of Background Art.
  • a plurality of heaters are arranged in the width direction of the sheet glass 8 as the heat treatment means, and the temperature of each heater is individually controlled, so that a predetermined temperature distribution is obtained in the same direction.
  • the case where the heat treatment means for setting is used has been described.
  • the present invention has a single heater that uniformly generates heat as a whole. For example, by appropriately arranging a heat insulating material on the surface of the heater, a predetermined temperature distribution can be obtained in the width direction of the sheet glass 8.
  • a heat treatment means for setting the temperature may be used.
  • the present invention can also be applied to the manufacture of glass substrates used in display devices other than liquid crystal devices and glass substrates used in other electronic products (for example, glass substrates for information recording media). Industrial applicability
  • sheet glass in which distortion is suppressed is applied to a down draw method. Therefore, it can be manufactured.
  • distortion in the width direction of the sheet glass can be suppressed. For this reason, distortion of the glass plate cut out from the sheet glass can be suppressed.
  • the yield in manufacturing the display device can be improved.

Abstract

When producing a liquid crystal glass substrate by a down-load method, distortion caused by a cooling temperature difference for sheet glass is reduced, and fine distortion caused when sheet glass produced by a down-load method is segmented into small-size pieces is minimized. When sheet glass (8) is produced by a down-load method, a temperature distribution is formed in a width direction of the sheet glass (8) by a heat treating means (9) used in a slow-cooling process after forming. This temperature distribution can offset a sheet glass (8) temperature distribution caused when the sheet thickness of the formed sheet glass (8) is larger at its periphery than at its surface.

Description

明 細 書 ガラス板の製造方法、 ガラス板の製造装置、 及び液晶デバイス 技術分野  Description Glass plate manufacturing method, glass plate manufacturing apparatus, and liquid crystal device
本発明は、 液晶用ガラス基板のような薄いガラス板 (シートガラス) を製造するガラス板の製造方法、 及びガラス板の製造装置、 並びに液晶 デバイスに関する。 背景技術  The present invention relates to a method for manufacturing a glass plate for manufacturing a thin glass plate (sheet glass) such as a glass substrate for liquid crystal, an apparatus for manufacturing a glass plate, and a liquid crystal device. Background art
この種のシートガラスの製造方法としては、 フロート法、 ダウンドロ 一法等が知られているが、 特に、 コストの観点から液晶用ガラス基板の 製造には、 成形後に研磨を必要としない又は研磨量が少ないダウンドロ 一法が広く用いられている。  As a method for producing this kind of sheet glass, a float method, a down-drawing method, and the like are known. In particular, from the viewpoint of cost, production of a glass substrate for a liquid crystal does not require polishing after molding or the polishing amount. The downdraft method, which has a small number, is widely used.
ダウンドロー法の一例として、 例えば、 特開平 1 0— 2 9 1 8 2 6号 公報に記載されている方法が提案されている。 この公報に記載されてい る方法は、 溶解槽から溶解ガラスを連続的に、 成形面に沿って供給し、 成形型の下方で両側のガラスを融着させてから、 ガラスの周辺部をロー ラ等によって、 下方に引っ張ることによってガラス板を製造している。 このような製造方法によって得られたガラス板は、 成形時に両主表面 が自由表面として形成され、 他方、 成形型に接したガラス面は融着され ているので、 平滑性と平坦性とに優れるという利点を有している。  As an example of the down-draw method, for example, a method described in Japanese Patent Application Laid-Open No. H10-291826 has been proposed. In the method described in this publication, molten glass is continuously supplied from a melting tank along a molding surface, and the glass on both sides is fused below a molding die, and then the peripheral portion of the glass is rolled. The glass plate is manufactured by pulling downward. The glass plate obtained by such a manufacturing method has excellent smoothness and flatness because both main surfaces are formed as free surfaces during molding, and the glass surface in contact with the mold is fused. It has the advantage that.
一般的に、 このような製造方法によって得られた、 外形寸法が l m x l mで、 厚さが 0 . 7 mmのガラス板を、 5 5 0 X 6 5 0 mmあるいは 6 0 0 X 7 2 0 mm等の小サイズで切り出して、 液晶用ガラス基板とし て使用している。 この液晶用ガラス基板としては、 T F T用ガラス基板 と、 カラーフィルタ用ガラス基板とがある。 Generally, a glass plate having an outer dimension of lmxlm and a thickness of 0.7 mm obtained by such a manufacturing method, such as 550 x 650 mm or 600 x 720 mm, is used. It is cut out in a small size and used as a glass substrate for liquid crystal. As a glass substrate for liquid crystal, a glass substrate for TFT And a glass substrate for a color filter.
これらのガラス基板の内、 T F T用ガラス基板では、 ガラス基板上に 薄膜トランジスタ (T F T ) が形成され、 カラーフィルタ用ガラス基板 では、 ガラス基板上にカラーフィル夕が形成される。 そして、 これら薄 膜付きガラス基板で液晶を挟持して、 液晶デバイスを製作している。 しかしながら、従来のダウンドロー法によって製造したガラス板には、 シートガラスの幅方向 (引っ張り方向に対して直交する方向) に、 大き な歪みが発生するという問題点があった。 この歪みの原因となるのは、 ダウンドロー法特有の板厚分布である。 ダウンドロー法で製造したシー トガラスは、 幅方向の周辺部の板厚がその内側の部分 (以下、 表面部と 呼ぶ) に比べて厚くなつている。 このため、 シートガラスは、 成形後の 高温から徐冷する際、 周辺部に比べて表面部の冷却速度が速いので、 周 辺部には圧縮応力が発生し、 表面部には引っ張り応力が発生し、 この結 果、 幅方向に微小歪みが発生する。 又、 この歪みは周辺部が表面部に対 して相対的に大きくなるような分布を持つ傾向にある。  Among these glass substrates, a thin film transistor (TFT) is formed on a glass substrate in a glass substrate for TFT, and a color filter is formed on a glass substrate in a glass substrate for color filter. Liquid crystal devices are manufactured by sandwiching liquid crystal between these glass substrates with thin films. However, the glass sheet manufactured by the conventional down-draw method has a problem that a large distortion is generated in a width direction of the sheet glass (a direction orthogonal to a tensile direction). The cause of this distortion is the thickness distribution peculiar to the downdraw method. Sheet glass manufactured by the downdraw method has a greater thickness at the peripheral portion in the width direction than at the inner portion (hereinafter referred to as the surface portion). As a result, when the sheet glass is gradually cooled from a high temperature after molding, the surface portion cools faster than the peripheral portion, so that a compressive stress is generated in the peripheral portion and a tensile stress is generated in the surface portion. As a result, small distortion occurs in the width direction. Also, this distortion tends to have a distribution such that the peripheral portion is relatively large with respect to the surface portion.
このような歪み分布を有するシートガラスを、 表示装置用のガラス基 板のサイズに切り出すと、 歪み分布が再編成された状態で残存し、 ガラ ス基板に微小変形をもたらす。  When a sheet glass having such a strain distribution is cut into a size of a glass substrate for a display device, the strain distribution remains in a rearranged state, and causes slight deformation of the glass substrate.
このような微小変形が生じたガラス基板上に、 フォ トリソグラフィで 薄膜トランジスタ (T F T ) やカラーフィル夕の薄膜パターンを形成す ると、 フォ トリソグラフイエ程の露光が適正に行なわれず、 その結果、 薄膜パターン精度を低下させるという問題点が生じる。  If thin film patterns of thin film transistors (TFTs) and color filters are formed by photolithography on a glass substrate on which such minute deformation has occurred, the exposure will not be performed properly as much as photolithography, and as a result, There is a problem that the accuracy of the thin film pattern is reduced.
又、 T F T用ガラス基板とカラ一フィルタ用ガラス基板とを対にして 組み合わせる際、 ガラス基板の微小変形の発生によって、 ァライメント マークの位置ずれが発生し、 これにより、 液晶デバイスの歩留まりを低 下させるという問題点も発生する。 特に、 ガラス基板が大型化してくると、 ガラス基板の変形量も大きく なり、 パターンの位置ずれが大きな問題になってきた。 In addition, when a TFT glass substrate and a color filter glass substrate are combined in a pair, a small deformation of the glass substrate causes a misalignment of the alignment mark, thereby reducing the yield of the liquid crystal device. The problem described above also occurs. In particular, as the size of the glass substrate increases, the amount of deformation of the glass substrate also increases, and pattern displacement has become a serious problem.
本発明は、 上述の問題点に鑑みて考え出されたもので下記の目的を有 する。  The present invention has been conceived in view of the above problems, and has the following objects.
本発明の目的は、 ダウンドロー法において、 微小歪み又は微小変形の 発生を抑えることにある。  An object of the present invention is to suppress the occurrence of minute distortion or minute deformation in a downdraw method.
又、 本発明の他の目的は、 表示装置用のガラス基板の表面上に、 フォ トリソグラフィによって形成されるパターンが、 位置ずれを起すことを 防止することにある。  Another object of the present invention is to prevent a pattern formed by photolithography on the surface of a glass substrate for a display device from causing a positional shift.
又、 本発明の他の目的は、 ダウンドロー法によって形成したシートガ ラスを、 所定の大きさに切り出したときに、 歪みが発生することを防止 することにある。  Another object of the present invention is to prevent the occurrence of distortion when a sheet glass formed by a downdraw method is cut into a predetermined size.
更に、 本発明の他の目的は、 液晶デバイスの製造における歩留まりを 向上させることにある。 発明の開示  Still another object of the present invention is to improve the yield in manufacturing a liquid crystal device. Disclosure of the invention
そこで、 本発明は、 ダウンドロー法において、 シートガラスの幅方向 における温度差に起因する歪みを除去するために、 シートガラスの歪み 低減処理をシートガラスの徐冷中に実施する製造方法を提案するもので ある。  In view of the above, the present invention proposes a manufacturing method in which, in a down-draw method, in order to remove a distortion caused by a temperature difference in a width direction of the sheet glass, a distortion reduction process of the sheet glass is performed during the slow cooling of the sheet glass. is there.
(構成 1 ) ダウンドロー法によって、 溶解ガラスをシート状に成形 し、 得られたシートガラスを熱処理手段によって徐冷することによって ガラス板を製造するガラス板の製造方法において、  (Structure 1) A method for manufacturing a glass sheet, wherein a molten glass is formed into a sheet by a down-draw method, and the obtained sheet glass is gradually cooled by a heat treatment means to manufacture a glass sheet.
シ一トガラスの幅方向における、 周辺部と表面部との温度差によって 発生するシートガラスの歪みを低減する歪み低減処理を、 徐冷の際、 行 なうことを特徴とするガラス板の製造方法。 ダウンドロー法に適しているガラス材料としては、 失透の観点から、 液相温度が 1 2 0 0 以下の材料が好ましく、 1 1 0 O t以下の材料な ら更に好ましい。 シートガラスの厚さは、 0 . 5〜 1 . O mmの厚さが 好ましい。 A method for manufacturing a glass sheet, comprising: performing a strain reduction process for reducing distortion of a sheet glass caused by a temperature difference between a peripheral portion and a surface portion in a width direction of the sheet glass at the time of slow cooling. . As a glass material suitable for the downdraw method, a material having a liquidus temperature of 1200 or less is preferable, and a material having a liquidus temperature of 110 Ot or less is more preferable from the viewpoint of devitrification. The thickness of the sheet glass is preferably 0.5 to 1.0 mm.
又、 歪み低減処理は、 成形の直後に行なうのが好ましい。  Further, it is preferable to perform the distortion reduction treatment immediately after the molding.
(構成 2 ) 温度差は、 周辺部と表面部における中央部との間で発生 することを特徴とする構成 1記載のガラス板の製造方法。  (Structure 2) The method for manufacturing a glass sheet according to Structure 1, wherein the temperature difference occurs between a peripheral portion and a central portion of the surface portion.
(構成 3 ) 徐冷に導入されるシートガラスは、 その幅方向における 温度分布として、 周辺部より表面部の方が低温であるような温度分布を 示すようなガラスであることを特徴とする構成 1又は 2記載のガラス板 の製造方法。  (Structure 3) A structure characterized in that the sheet glass introduced by slow cooling has a temperature distribution in the width direction such that the temperature is lower at the surface than at the periphery. 3. The method for producing a glass plate according to 1 or 2.
(構成 4 ) 歪み低減処理は、 予め光へテロダイン法によって測定した 成形後のガラス板における歪み分布に基づいて実行されることを特徴と する構成 1〜 3の何れかに記載のガラス板の製造方法。  (Structure 4) The method of manufacturing a glass sheet according to any one of Structures 1 to 3, wherein the distortion reduction processing is performed based on a strain distribution in the formed glass sheet measured in advance by an optical heterodyne method. Method.
本発明が解決する歪みは微小歪み (変形) なので、 高精度に微小歪み (微小変形)が測定できる光へテロダイン法によって複屈折量を測定し、 この測定結果に基づいて歪み低減処理を行なうことが好ましい。 このよ うな、 光へテロダイン法を使用して歪みを測定するすることで、 成形後 のシートガラスの幅方向の温度分布を容易に把握することができる。  Since the distortion solved by the present invention is micro-strain (deformation), the amount of birefringence is measured by the optical heterodyne method that can measure micro-strain (micro-deformation) with high accuracy, and distortion reduction processing is performed based on the measurement result. Is preferred. By measuring the strain using the optical heterodyne method, the temperature distribution in the width direction of the formed sheet glass can be easily grasped.
(構成 5 ) 歪み低減処理は、 成形後のシートガラスを熱処理手段に よって徐冷する際、 成形後のシートガラスの幅方向における温度差が低 減するように、 シートガラスの幅方向に所定の温度分布を形成する熱処 理であることを特徴とする構成 1〜 4の何れかに記載のガラス板の製造 方法。  (Structure 5) The distortion reducing treatment is performed in a predetermined manner in the width direction of the sheet glass so that the temperature difference in the width direction of the formed sheet glass is reduced when the formed sheet glass is gradually cooled by the heat treatment means. 5. The method for producing a glass sheet according to any one of Configurations 1 to 4, wherein the method is a heat treatment for forming a temperature distribution.
シー卜ガラスを徐冷する温度範囲は 6 0 0〜 8 5 0 tの範囲が好まし い。 シートガラスの幅方向における温度差を低減する方法は、 シ一トガ ラスの幅方向の温度分布を相殺するような温度分布を有する熱処理手段 で熱処理することが好ましい。 The temperature range for gradually cooling the sheet glass is preferably in the range of 600 to 850 t. The method of reducing the temperature difference in the width direction of the sheet glass is as follows. The heat treatment is preferably performed by a heat treatment means having a temperature distribution that offsets the temperature distribution in the lath width direction.
又、 この熱処理は徐冷工程で行なうので、 シートガラスの幅方向の温 度分布も、 徐冷時間とともに変化する。 従って、 熱処理手段の温度分布 も、 変化するシートガラスの温度分布に応じて、 温度分布を連続的又は 段階的に引っ張り方向に沿って変化させて形成することが好ましい。  Further, since this heat treatment is performed in the slow cooling step, the temperature distribution in the width direction of the sheet glass also changes with the slow cooling time. Therefore, it is preferable that the temperature distribution of the heat treatment means is also formed by changing the temperature distribution continuously or stepwise along the tensile direction according to the changing temperature distribution of the sheet glass.
(構成 6 ) 熱処理は、 シートガラスを成形温度から歪み点の近傍に徐 冷する過程で少なくとも行われることを特徴とする構成 5記載のガラス 板の製造方法。  (Constitution 6) The method for producing a glass sheet according to constitution 5, wherein the heat treatment is performed at least in a process of gradually cooling the sheet glass from a forming temperature to a vicinity of a strain point.
熱処理は、 シートガラスの成形温度から歪み点以下の取り出し温度の 範囲で行なうのが好ましいが、 シ一トガラスの成形温度から歪み点の近 傍に徐冷する過程で行なうことが効果的である。 好ましくは、 シートガ ラスをその成形温度より 4 0 0〜 5 0 0 °C低い温度から歪み点近傍に徐 冷する過程で熱処理をするのが良い。 又、 歪み点近傍で実質的にシート ガラスの幅方向の温度を均等化し、歪み点近傍以下の徐冷を行う場合は、 均等化された温度状態を維持して、 更に徐冷するのが好ましい。  The heat treatment is preferably performed in the range of the sheet glass forming temperature to the take-out temperature below the strain point, but it is effective to perform the heat treatment in the process of gradually cooling the sheet glass to the vicinity of the strain point from the forming temperature. Preferably, the heat treatment is performed in the process of gradually cooling the sheet glass from a temperature lower than its molding temperature by 400 to 500 ° C. to near the strain point. When the temperature in the width direction of the sheet glass is substantially equalized in the vicinity of the strain point and slow cooling is performed in the vicinity of the strain point, it is preferable to maintain the uniformed temperature state and further cool down. .
又、 歪み点の近傍の好ましい範囲は歪み点土 5 O :以内である。  A preferred range near the strain point is within 5 O: of the strain point soil.
(構成 7 ) 熱処理は、 シートガラスを加熱する熱処理手段によって形 成されるシー卜ガラスの幅方向の温度分布として、 シートガラスの幅方 向の温度差を低減できるような温度分布を設定する処理であることを特 徵とする構成 5又は 6記載のガラス板の製造方法。  (Composition 7) The heat treatment is a process of setting a temperature distribution in the width direction of the sheet glass formed by the heat treatment means for heating the sheet glass so as to reduce a temperature difference in the width direction of the sheet glass. 7. The method for producing a glass sheet according to configuration 5 or 6, wherein
熱処理手段によって温度分布を形成する場合は、 歪み点近傍で急に形 成するより、 歪み点近傍の温度分布を基準にし、 この歪み点近傍の温度 分布を緩和した温度分布を、 歪み点と成形温度との間の徐冷過程で、 段 階的に又は連続して形成することが好ましい。  When the temperature distribution is formed by the heat treatment means, the temperature distribution near the strain point is used as a reference, and the temperature distribution that relaxes the temperature distribution near the strain point is formed as the strain point, rather than forming abruptly near the strain point. It is preferable to form stepwise or continuously during the slow cooling process between the temperature.
(構成 8 ) 歪み低減処理は、 シートガラスの幅方向における周辺部と 表面部との間に発生する熱収縮差に対応して、 表面部の伸ばし量に対す る周辺部の伸ばし量を、 表面部の伸ばし量に比べて増加させることによ り、 表面部から周辺部に亘つて発生する歪みを低減することを特徵とす る構成 1〜3の何れかに記載のガラス板の製造方法。 (Arrangement 8) The distortion reduction processing is performed on the periphery of the sheet glass in the width direction. In response to the difference in heat shrinkage generated between the surface and the surface, the amount of extension of the periphery relative to the amount of extension of the surface is increased compared to the amount of extension of the surface, so that the distance from the surface to the periphery 4. The method for producing a glass sheet according to any one of Configurations 1 to 3, which is characterized in that distortion generated over a portion is reduced.
歪み低減処理は、 6 0 0〜 8 5 0での温度範囲で徐冷している過程で 行なうのが好ましい。  The distortion reduction process is preferably performed in the process of gradually cooling in a temperature range of 600 to 850.
(構成 9) 製造されたシートガラスの最大歪みは、 0. 0 7KgZmm 2以下であることを特徴とする板ガラスの製造方法。 (Configuration 9) maximum strain of the manufactured sheet glass manufacturing method of the glass sheet, characterized in that 0.5 at 0 7KgZmm 2 below.
更に好ましい最大歪みは、 0. 04 k gZmm2以下である。 Further preferred maximum strain is 0. 04 k gZmm 2 below.
(構成 1 0) ガラス板は表示装置用ガラス基板であることを特徴とす る構成 1〜 9の何れかに記載のガラス板の製造方法。  (Structure 10) The method for producing a glass sheet according to any one of structures 1 to 9, wherein the glass plate is a glass substrate for a display device.
表示装置としては、 液晶デバイスが好ましく、 液晶用ガラス基板とし ては、 膨張係数が 3 2〜 3 8 X 1 0 7Z :、 歪み点が 6 5 0 以上が 好ましい。 As the display device, the liquid crystal device is preferably, in a liquid crystal glass substrate, the expansion coefficient of 3 2~ 3 8 X 1 0 7 Z:, strain point 6 5 0 or more.
組成で示すとモル%表示で、 3 1 02が6 0〜 7 0 %、 8203が7〜 1 2 %, 八し 23が9〜 1 3 %、 Mg Oが 1〜 8 %、 。 3〇が2〜 8 %、 5 1" 0が0. 5〜 5 %、 8 &〇が0. 5〜 5 %のガラスが好ましい。 又、 3 102が6 5〜7 5 %、 B23力 6〜:1%、 八 23が8〜 1 5 %、 MgOが 3〜 1 5 %、 C a Oが 0〜 8 %、 3 1"〇が0〜 1 %、 B a Oが 0〜 1 %のガラスが好ましい。 By mol% when shown with the composition, 3 1 0 2 6 0-7 0%, 8 2 0 3 7-1 2%, eight teeth 23. 9 to 1 3%, Mg O is 1-8 %,. 3_Rei is 2-8%, 5 1 "0 0.5 to 5%, 8 & 〇 is from 0.5 to 5% of the glass is preferred. Furthermore, 3 10 2 6 5 to 7 5% B 23 force 6 ~: 1%, 2 23 is 8 ~ 15%, MgO is 3 ~ 15%, CaO is 0 ~ 8%, 3 1''〇 is 0 ~ 1%, BaO Is preferably 0-1%.
(構成 1 1) 溶解ガラス収納櫓から連続的に供給される溶解ガラスを シート状に成形する成形部と、  (Configuration 11) A forming section for forming the molten glass continuously supplied from the molten glass storage tower into a sheet shape,
この成形部によって成形された軟化状態のシートガラスを下方に引つ 張る引っ張り手段と、  Pulling means for pulling down the softened sheet glass formed by the forming section,
シー卜ガラスの幅方向における周辺部から表面部に亘つて発生する温 度差に起因する歪みを低減する歪み低減手段とを備えたことを特徴とす るガラス板の製造装置。 And a distortion reducing means for reducing distortion caused by a temperature difference generated from a peripheral portion to a surface portion in a width direction of the sheet glass. Glass plate manufacturing equipment.
(構成 1 2 ) 歪み低減手段は、 成形後のシートガラスを徐冷する熱処 理手段であって、 成形後のシー卜ガラスにおける幅方向の温度差を低減 するような温度分布を、 シ一トガラスの幅方向に設定する熱処理手段で あることを特徴とする構成 1 1記載のガラス板の製造装置。  (Structure 12) The strain reducing means is a heat treatment means for gradually cooling the formed sheet glass, and has a temperature distribution that reduces the temperature difference in the width direction of the formed sheet glass. The apparatus for manufacturing a glass sheet according to configuration 11, wherein the apparatus is a heat treatment means that is set in a width direction of the glass sheet.
熱処理手段は、 シートガラスの片側又両側に配置するのが好ましい。 又、 熱処理手段がシートガラスの表面近傍に配置するのが好ましい。  The heat treatment means is preferably disposed on one or both sides of the sheet glass. Further, it is preferable that the heat treatment means is disposed near the surface of the sheet glass.
(構成 1 3 ) 歪み低減手段は、 成形後のシートガラスを徐冷する熱処 理手段と、 この熱処理手段によって徐冷されているシートガラスにおい て発生する表面部から周辺部に亘る温度差に対応して、 周辺部の伸ばし 量を表面部の伸ばし量よりも多くなるように制御する手段とを有するこ とを特徴とする構成 1 1記載のガラス板の製造装置。  (Structure 13) The distortion reducing means comprises a heat treatment means for gradually cooling the formed sheet glass, and a temperature difference from the surface portion to the peripheral portion generated in the sheet glass gradually cooled by the heat treatment means. Correspondingly, means for controlling the amount of extension of the peripheral portion to be greater than the amount of extension of the surface portion is provided.
(構成 1 4 ) 構成 1〜 1 0に何れかに記載のガラス板の製造方法によ つて形成された一対のガラス板によって液晶を挟持したことを特徴とす る液晶デバイス。 図面の簡単な説明  (Structure 14) A liquid crystal device comprising a pair of glass plates formed by the method for manufacturing a glass plate according to any one of Structures 1 to 10, wherein a liquid crystal is sandwiched between the pair of glass plates. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 溶解ガラスからシートガラスを製造する、 本発明の一実施 例のガラス板の製造装置の慨略図である。  FIG. 1 is a schematic view of a glass sheet manufacturing apparatus according to one embodiment of the present invention for manufacturing sheet glass from molten glass.
第 2図は、 第 1図の A— A線断面図である。  FIG. 2 is a sectional view taken along line AA of FIG.
第 3図は、 第 1図に示す引っ張りローラの側面図である。  FIG. 3 is a side view of the pulling roller shown in FIG.
第 4図は、 歪み低減処理を施さないガラス板の歪み分布図である。 第 5図は、 歪み低減処理工程のヒータとガラスとの温度を示す表図で ある。  FIG. 4 is a strain distribution diagram of a glass sheet not subjected to a strain reduction process. FIG. 5 is a table showing the temperatures of the heater and the glass in the distortion reduction process.
第 6図は、 第 5図をグラフ化した図である。  FIG. 6 is a graph of FIG.
第 7図は、歪み低減処理を施したガラス板の歪み分布を示す図である。 第 8図は、 分断後のガラス板のトータル'ピッチのシフ ト量と、 分断 前のシー卜ガラスの歪み量との関係を示す図である。 FIG. 7 is a diagram showing a strain distribution of a glass plate subjected to a strain reduction process. FIG. 8 is a diagram showing the relationship between the shift amount of the total pitch of the glass sheet after division and the distortion amount of the sheet glass before division.
1…溶解ガラス収納槽、 2…溶解ガラス、 3…成形部、 4…ヒー夕、 5…引っ張りローラ、 6…引っ張りローラ、 7…引っ張りローラ、 8〜 シートガラス、 9…熱処理手段、 1 0…徐冷炉。 発明を実施するための最良の形態  1 ... Molten glass storage tank, 2 ... Molten glass, 3 ... Molded part, 4 ... Head, 5 ... Tension roller, 6 ... Tension roller, 7 ... Tension roller, 8 ~ sheet glass, 9 ... Heat treatment means, 10 ... Annealing furnace. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施例を図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1図は、 溶解ガラスからシートガラスを製造する、 本発明の一実施 例のガラス板の製造装置の慨略図、 第 2図は、 第 1図の A— A線断面図、 第 3図は第 1 図の引っ張りローラの側面図、 第 4図は、 歪み低減処理 を施さないガラス板の歪み分布図、 第 5図は歪み低減処理工程のヒー夕 (熱処理手段) とシ一トガラスとの温度を示す表図、 第 6図は、 第 5図 をグラフ化した図、 第 7図は歪み低減処理を施したガラス板の歪み分布 を示す図、 第 8図は、 分断後のガラス板のトータル 'ピッチのシフ ト量 と、 分断前のシートガラスの歪み量との関係を示す図である。  FIG. 1 is a schematic view of an apparatus for manufacturing a glass sheet according to one embodiment of the present invention for manufacturing sheet glass from molten glass, FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, and FIG. Fig. 1 is a side view of the pulling roller, Fig. 4 is a strain distribution diagram of a glass plate that is not subjected to the strain reduction process, and Fig. 5 is the temperature of the heat (heat treatment means) and the sheet glass in the strain reduction process. Fig. 6 is a graph of Fig. 5; Fig. 7 is a graph showing the strain distribution of the glass plate that has been subjected to the strain reduction process; Fig. 8 is the total of the glass plate after cutting. FIG. 6 is a diagram showing the relationship between the pitch shift amount and the amount of distortion of the sheet glass before cutting.
(ガラス板の製造装置)  (Glass plate manufacturing equipment)
最初に、 本発明の一実施例のガラス板の製造方法を実施する製造装置 について、 第 1図、 第 2図、 及び第 3図を参照して説明する。  First, a manufacturing apparatus for carrying out the method for manufacturing a glass sheet according to one embodiment of the present invention will be described with reference to FIGS. 1, 2, and 3. FIG.
本発明の一実施例のガラス板の製造装置は、 第 1図に示す通り、 溶解 ガラス収納槽 1 と、 徐冷炉 1 0とから大略構成されている。  As shown in FIG. 1, the apparatus for manufacturing a glass sheet according to one embodiment of the present invention is generally constituted by a molten glass storage tank 1 and a lehr 10.
溶解ガラス収納槽 1は、 開口部を有する収納部 1 aを備え、 所定温度 でガラス原料を溶解して得た溶解ガラス 2をこの収納部 1 aで貯えてい る。 この収納部 1 aの下端部には成形部 3が形成されている。 この成形 部 3は、 シートガラス 8の幅方向に延在するスリッ ト状の開口部 3 aが 形成されている。 又、 成形部 3は、 表面に白金を被覆した耐火煉瓦で構 成されている。 The molten glass storage tank 1 has a storage section 1a having an opening, and stores the molten glass 2 obtained by melting the glass raw material at a predetermined temperature in the storage section 1a. A molded part 3 is formed at the lower end of the storage part 1a. The molding 3 has a slit-shaped opening 3 a extending in the width direction of the sheet glass 8. The molded part 3 is made of a refractory brick whose surface is coated with platinum. Has been established.
そして、 この開口部 3 aに溶解ガラス 2を流下させることにより、 溶 解ガラスをシート状のガラス 8に成形することができる。 成形部 3を通 過したシートガラス 8は、 急冷によって周辺部が表面部に向って収縮す ることを抑制するために、 ヒー夕 4によって徐冷される。  Then, the molten glass can be formed into a sheet-like glass 8 by flowing the molten glass 2 through the opening 3a. The sheet glass 8 that has passed through the forming section 3 is gradually cooled by the heater 4 in order to prevent the peripheral portion from shrinking toward the surface portion due to rapid cooling.
徐冷炉 1 0は、 シート状に成形されたガラス 8を徐冷するもので、 内 部が空洞になっており、 シートガラス 8の周辺部を引っ張りローラ 5〜 7で下方に引っ張りながら、 熱処理手段 9でシートガラス 8の急冷を防 止して徐冷する。  The annealing furnace 10 is for gradually cooling the sheet-shaped glass 8, has a hollow inside, and heat-treats the sheet glass 8 while pulling the periphery of the sheet glass 8 downward with pulling rollers 5 to 7. Prevents rapid cooling of the sheet glass 8 and gradually cools it.
引っ張りローラ 5〜 7は、 シ一卜ガラス 8の引っ張り方向に沿って、 所定の距離を置いて配置されている。 又、 シートガラス 8の主表面の近 傍には所定距離、 離間して熱処理手段 9が配置されている。  The pulling rollers 5 to 7 are arranged at a predetermined distance along the pulling direction of the sheet glass 8. In the vicinity of the main surface of the sheet glass 8, a heat treatment means 9 is arranged at a predetermined distance from and spaced from the main surface.
引っ張りローラ 5〜 7は、 シートガラス 8の周辺部 8 a、 8 bを挟ん で、 シートガラス 8を下方に引っ張つている。 引っ張りローラ 5 a、 6 a、 7 aは、 第 2図に示すように、 シートガラス 8の裏側に位置する引 つ張りローラ、 5 c、 6 c、 7 c と協働してシートガラス 8を下方に引 つ張っている。 第 1図に示す右側の引っ張りローラ 5 b , 6 b、 7 bも 図示していないが、 シートガラス 8の裏側に、 協働して引っ張る引っ張 りローラを備えている。  The pulling rollers 5 to 7 pull the sheet glass 8 downward across the peripheral portions 8 a and 8 b of the sheet glass 8. As shown in FIG. 2, the pulling rollers 5a, 6a, and 7a cooperate with the pulling rollers 5c, 6c, and 7c located on the back side of the sheet glass 8 to pull the sheet glass 8 together. It is pulling down. Although the right pulling rollers 5 b, 6 b, and 7 b shown in FIG. 1 are not shown, a pulling roller that pulls together is provided on the back side of the sheet glass 8.
又、 シートガラス 8の引っ張り方向に沿って配置されている引っ張り ローラ 5〜 7は、 互いに隣り合うローラがシートガラス 8の厚さ方向に 所定量、 偏位するように配設されている。 これにより、 シートガラス 8 の表面部に比べて周辺部の行程が長くなる。 例えば、 第 1図の左側に位 置するローラ ( 5 a、 5 c ) ( 6 a , 6 c ) ( 7 a, 7 c ) は、 第 3図に 示す通り、 ローラ ( 6 a、 6 c ) がローラ ( 5 a, 5 c ) ( 7 a、 7 c ) の位置から αだけ偏位するように配設されている。 第 1図に示すローラ 5 b、 6 b、 7 bも図示していないが、 同様の配置になっている。 徐冷用の熱処理手段 9は、 歪みの発生を抑制できるように、 シートガ ラス 8の幅方向と、 引っ張り方向とに所定の温度分布を形成することが できる。 そのために、 この熱処理手段 9は、 シートガラス 8の幅方向 (横 方向) と引っ張り方向 (縦方向) に配列された複数のヒー夕を有する。 図には、 シートガラス 8の幅方向に 8個のヒー夕を配設する場合を代表 として示す。 なお、 図には示さないが、 シートガラス 8の引っ張り方向 には、 例えば、 1 0個のヒータが配設されている。 各ヒータは、 個別に 温度を制御可能とされている。 シートガラス 8の幅方向に複数のヒー夕 を配設しているのは、 同方向の歪みを低減することができるような所定 の温度分布を同方向に形成するためである。 又、 シートガラス 8の引つ 張り方向に複数のヒータを配設しているのは、 急冷を防止して徐冷する ことができるような所定の温度分布を同方向に形成するためである。 急 冷を防止するのは、 引っ張り工程でシートガラス 8が破損することを防 止するためである。 特に、 6 0 0〜 7 0 0 °Cの温度範囲で、 シートガラ ス 8に急激な温度変化を与えると、 シートガラス 8が座屈変形によって 破損し易い。 The pulling rollers 5 to 7 arranged along the pulling direction of the sheet glass 8 are arranged such that adjacent rollers are offset by a predetermined amount in the thickness direction of the sheet glass 8. Thereby, the stroke of the peripheral portion is longer than that of the surface portion of the sheet glass 8. For example, the rollers (5a, 5c) (6a, 6c) (7a, 7c) located on the left side of FIG. 1 are rollers (6a, 6c) as shown in FIG. Are arranged so as to be deviated by α from the position of the rollers (5a, 5c) (7a, 7c). Roller shown in Fig. 1 5b, 6b and 7b are not shown, but have the same arrangement. The heat treatment means 9 for slow cooling can form a predetermined temperature distribution in the width direction of the sheet glass 8 and in the pulling direction so as to suppress generation of distortion. For this purpose, the heat treatment means 9 has a plurality of heaters arranged in the width direction (horizontal direction) and the pulling direction (vertical direction) of the sheet glass 8. The figure shows a case where eight heaters are arranged in the width direction of the sheet glass 8 as a representative. Although not shown in the drawing, for example, 10 heaters are arranged in the direction in which the sheet glass 8 is pulled. Each heater can control the temperature individually. The reason why a plurality of heaters are arranged in the width direction of the sheet glass 8 is to form a predetermined temperature distribution in the same direction that can reduce distortion in the same direction. The reason why a plurality of heaters are provided in the stretching direction of the sheet glass 8 is to form a predetermined temperature distribution in the same direction so that rapid cooling can be prevented and slow cooling can be performed. The quenching is prevented in order to prevent the sheet glass 8 from being damaged during the pulling process. In particular, if a sudden temperature change is applied to the sheet glass 8 in a temperature range of 600 to 700 ° C., the sheet glass 8 is easily broken by buckling deformation.
(ガラス板の製造方法)  (Glass plate manufacturing method)
上述の装置を使用してガラス板を製造する方法を、 液晶用ガラス基板 を製造する場合を例に以下に説明する。  A method of manufacturing a glass plate using the above-described apparatus will be described below with reference to an example of manufacturing a glass substrate for liquid crystal.
最初に歪み低減処理のための準備を行う。 先ず、 歪み低減処理を施さ ない状態で作製したシートガラス 8の歪み量を光へテロダイン法で測定 する。 測定サンプルは、 シートガラス 8から、 幅 6 5 0 mm、 奥行き 5 5 0 m mの大きさに切り出したガラス板である。 測定結果を第 4図に示 す。 図示の通り、 シートガラス 8 の歪み量は、 表示部の中央部から周 辺部に向かって徐々に大きくなる分布を有しており、 最大歪みは、 複屈 折量 R eが 4. 1 n m (歪み : 0. 1 2 k g/mm2) となるような歪 となっている。 First, preparations for distortion reduction processing are performed. First, the amount of distortion of the sheet glass 8 produced without performing the distortion reduction treatment is measured by an optical heterodyne method. The measurement sample is a glass plate cut out from the sheet glass 8 into a size of 65500 mm in width and 550 mm in depth. Fig. 4 shows the measurement results. As shown in the figure, the amount of distortion of the sheet glass 8 has a distribution that gradually increases from the center of the display portion to the peripheral portion. The strain is such that the folding amount Re is 4.1 nm (strain: 0.12 kg / mm 2 ).
図のスケールは、 長さ (mm) を示すものである。 又、 ガラス板上の 個々の円の中心が測定点であり、 円の大きさは、 歪みの大きさを表して いる。 図示しないが、 歪みの方向を示す f a s t a x i sはガラス板 の下端部中央に向いている。  The scale in the figure indicates the length (mm). The center of each circle on the glass plate is the measurement point, and the size of the circle represents the magnitude of the distortion. Although not shown, f a s t a x i s, which indicates the direction of the distortion, faces the center of the lower end of the glass plate.
次に、 このように測定した歪み分布と引っ張りローラ 5〜 7の位置調 整量との相関関係を示すデータ、 及び、 歪み分布と熱処理手段 9の幅方 向における温度分布との相関関係を示すデータを夫々採取する。  Next, data showing the correlation between the strain distribution measured in this way and the position adjustment amounts of the tension rollers 5 to 7 and the correlation between the strain distribution and the temperature distribution in the width direction of the heat treatment means 9 are shown. Collect data individually.
そして、 このデータに基づいて、 歪みの発生を低減できるような引つ 張りローラ 5〜 7の偏位量と、 熱処理手段 9によって設定されるシート ガラス 8の幅方向の温度分布とを決定する。  Based on this data, the amount of deviation of the tension rollers 5 to 7 that can reduce the occurrence of distortion and the temperature distribution in the width direction of the sheet glass 8 set by the heat treatment unit 9 are determined.
このような準備をしておいて、 溶解ガラスからシートガラス 8を製造 する。  With such preparation, the sheet glass 8 is manufactured from the molten glass.
先ず、 図示しない溶解槽でアルミノシリケートガラス用原料を、 1 5 5 0〜 1 6 5 0 °Cの溶解温度で溶解し、 その後、 清澄、 均質化して溶解 ガラスを得る。 そして、 その溶解ガラスを溶解槽から収納部 1 aに移送 する。  First, a raw material for aluminosilicate glass is melted in a melting tank (not shown) at a melting temperature of 1550 to 16500C, and then clarified and homogenized to obtain a molten glass. Then, the molten glass is transferred from the melting tank to the storage section 1a.
尚、 使用したアルミノシリゲートガラスの原料は、 下記のガラス組成 になるように調合した。  The raw materials of the aluminosilicate glass used were prepared to have the following glass composition.
S i 〇26 5 %、 B231 1 %、 AL 2031 2 %, Mg 01 2 %、S i 〇 2 6 5%, B 2 3 1 1%, AL 2 0 3 1 2%, Mg 01 2%,
C a〇 5 %、 S r O 2. 4 %、 B a O 1. 6 % C a〇 5%, S r O 2.4%, B a O 1.6%
又、 このガラスの諸特性は下記の通りである。  The properties of this glass are as follows.
歪み点 : 6 5 0 t: 光弾性定数 : 3 3 nmノ c m/kgf/ c m2 次に、 収納部 1 aに収納された溶解ガラス 2は、 成形部 3の開口部 3 aによってシ一卜ガラス 8に成形される。 この時の成形温度は 1 1 5 0 〜 1 2 5 0 に設定されている。 Strain point: 650 t: Photoelastic constant: 33 nm cm / kgf / cm 2 Next, the molten glass 2 stored in the storage section 1 a is cut by the opening 3 a of the forming section 3. Formed into glass 8. The molding temperature at this time is 1 1 5 0 It is set to ~ 1250.
そして、 このように成形されたシートガラス 8は、 歪み低減手段によ つて歪みの発生を抑制されながら、 徐冷される。  Then, the sheet glass 8 thus formed is gradually cooled while suppressing generation of distortion by the distortion reducing means.
以下にこれらの歪み低減処理について説明する。  Hereinafter, these distortion reduction processes will be described.
歪み低減方法として、 熱収縮差によるシートガラス 8の伸び量を制御 する方法 (方法 1 ) と、 徐冷工程で温度分布を形成して熱処理する方法 (方法 2 ) の 2種類を併用した。  Two methods were used to reduce the strain: a method of controlling the amount of elongation of the sheet glass 8 due to the difference in heat shrinkage (method 1), and a method of forming a temperature distribution in the annealing step and heat-treating (method 2).
(方法 1 : 引っ張りローラ 5〜 7を偏位させる方法)  (Method 1: Deflection of pulling rollers 5-7)
シートガラス 8が引っ張りローラ 5〜 7によって下方に引っ張られる 際、 隣接するローラの一方 (ローラ 6 ) が αだけ偏位させられているこ とから、 シートガラス 8の周辺部は、 表面部よりも大きく引っ張られる。 これにより、 周辺部と表面部の肉厚差に起因する歪みの一部を解消する ことができる。 これは以下の作用による。  When the sheet glass 8 is pulled downward by the pulling rollers 5 to 7, one of the adjacent rollers (the roller 6) is displaced by α, so that the peripheral portion of the sheet glass 8 is higher than the surface portion. It is greatly pulled. Thereby, a part of the distortion caused by the difference in thickness between the peripheral portion and the surface portion can be eliminated. This is due to the following effects.
シートガラス 8の送り方向の所定間隔において、 表面部と周辺部との 熱収縮量は、 表面部の方が大きく、 周辺部の方が小さくなる。 従って、 周辺部と表面部とを均等に引っ張ると歪みが発生することになる。 そこ で、 相対的に収縮が小さい周辺部の行程が、 表面部に比べて長くなるよ うに引っ張れば、 熱収縮差に応じた表面部と周辺部との行程を確保する ことができるので、 歪みの発生を抑制することができる。  At a predetermined interval in the feeding direction of the sheet glass 8, the amount of heat shrinkage between the surface portion and the peripheral portion is larger at the surface portion and smaller at the peripheral portion. Therefore, when the peripheral portion and the surface portion are pulled evenly, distortion occurs. Therefore, if the stroke of the peripheral part where the contraction is relatively small is made longer than that of the surface part, the stroke between the surface part and the peripheral part can be secured according to the difference in heat shrinkage. Can be suppressed.
(方法 2 : 徐冷工程で温度分布を形成して熱処理する方法)  (Method 2: Heat treatment by forming temperature distribution in slow cooling step)
本実施例の熱処理手段 9は、 上述の通り、 シートガラス 8の幅方向と 引っ張り方向に、 それぞれ、 複数のヒータを有する。 第 5図に示す表は、 シートガラス 8の幅方向と引っ張り方向に配設された各ヒータの温度 ( V ) と、 各ヒー夕に対応する部分のシートガラス 8の温度 (で) とを 示している。  As described above, the heat treatment means 9 of this embodiment has a plurality of heaters in the width direction and the pulling direction of the sheet glass 8 respectively. The table shown in FIG. 5 shows the temperature (V) of each heater arranged in the width direction and the pulling direction of the sheet glass 8, and the temperature (in) of the sheet glass 8 corresponding to each heater. ing.
表の縦の欄には、 シ一トガラス 8の引っ張り方向に順次配設された複 数のヒー夕の温度と、 各ヒータに対応する部分のシー卜ガラス 8の温度 を示す。 ここで、 「雰囲気」 は、 各ヒ一夕の温度を示し、 「硝子」 は、 シ ートガラス 8の温度を示す。 In the vertical column of the table, there are duplicates sequentially arranged in the pulling direction of the sheet glass 8. The temperature of the heater and the temperature of the sheet glass 8 corresponding to each heater are shown. Here, “atmosphere” indicates the temperature of each day, and “glass” indicates the temperature of the sheet glass 8.
各ヒー夕の温度としては、 例えば、 シートガラス 8の表面から 2 0 m m離れた位置の雰囲気の温度を熱電対によって測定されたものを示す。 また、 シートガラス 8の温度としては、 シートガラス 8の温度を放射温 度計によって測定したものを示す。  As the temperature of each heater, for example, the temperature of the atmosphere at a position 20 mm away from the surface of the sheet glass 8 measured by a thermocouple is shown. The temperature of the sheet glass 8 is a value obtained by measuring the temperature of the sheet glass 8 with a radiation thermometer.
なお、 表には、 成形部 3の方から順次配設された 4つのヒー夕の温度 と、 各ヒー夕に対応する部分のシートガラス 8の温度を示す。 以下、 こ の 4つのヒータを成形部 3の方から順次第 1 , 第 2, 第 3 , 第 4のヒー 夕という。  The table shows the temperatures of the four heaters and the temperature of the sheet glass 8 corresponding to each of the heaters arranged sequentially from the forming section 3. Hereinafter, these four heaters will be referred to as first, second, third, and fourth heaters in order from the forming section 3.
ここで、 「 1雰囲気」 〜 「4雰囲気」 は、 それぞれ第 1〜第 4のヒー 夕の温度を示す。 同様に、 「 1硝子」 〜 「4硝子」 はそれぞれ第 1〜第 4のヒー夕に対応する部分のシートガラス 8の温度を示す。  Here, “1 atmosphere” to “4 atmospheres” indicate the temperatures of the first to fourth heaters, respectively. Similarly, “1 glass” to “4 glass” indicate the temperatures of the sheet glass 8 at the portions corresponding to the first to fourth heaters, respectively.
表の横の欄に記載している 「L」 は、 シートガラス 8の幅方向の左端 に配設されたヒー夕を示し、 「C」 は中央近辺に配設されたヒー夕を示 し、 「R」 は右端に配設されたヒータを示している。  `` L '' in the column next to the table indicates the heater arranged at the left end of the sheet glass 8 in the width direction, and `` C '' indicates the heater arranged near the center, “R” indicates a heater arranged at the right end.
そして、 第 6図は、 第 5図の表をグラフ化したものである。  FIG. 6 is a graph of the table of FIG.
この第 5図と第 6図とから判るように、 シートガラス 8の幅方向に配 列された複数のヒー夕の温度は、 シートガラス 8の周辺部に配設された ヒータの温度より表面部に配設されたヒータの温度が高くなるように設 定されている。 具体的には、 中央のヒー夕 Cの温度が、 周辺のヒー夕 (R、 L ) の温度に比べて 1 3〜 4 5 高くなるように設定されている。 又、 この温度差は、 第 1のヒー夕から第 4のヒ一夕に向かって徐々に小さく なるように設定されている。  As can be seen from FIGS. 5 and 6, the temperature of the heaters arranged in the width direction of the sheet glass 8 is higher than the temperature of the heater arranged around the sheet glass 8 at the surface. It is set so that the temperature of the heaters arranged in the room increases. Specifically, the temperature of the central heater C is set to be 13 to 45 higher than the temperature of the surrounding heaters (R, L). The temperature difference is set so as to gradually decrease from the first heat to the fourth heat.
一方、 シートガラス 8の温度は、 第 1のヒー夕に対応する部分では、 シートガラス 8の表面部の中央部の温度が周辺部の温度より 2 8 高く なるように設定されている。 これに対し、 第 3のヒー夕に対応する部分 では、 表面部の中央部と周辺部との温度差が 3 t:に抑制されるように設 定されている。 これにより、 この部分では、 シートガラス 8の幅方向に 温度が均等化されている。 又、 この第 3のヒー夕に対応する部分では、 シートガラス 8の温度が、 歪み点の温度である 6 5 0 °Cに制御されてい る。 つまり、 シートガラス 8の歪み点近傍で、 シートガラス 8の温度は、 その幅方向に均等化されていることが判る。 On the other hand, the temperature of the sheet glass 8 The temperature at the center of the surface of the sheet glass 8 is set to be 28 higher than the temperature at the periphery. On the other hand, in the part corresponding to the third heat sink, the temperature difference between the central part and the peripheral part of the surface is set to 3 t :. Thus, in this portion, the temperature is equalized in the width direction of the sheet glass 8. Further, in the portion corresponding to the third heat, the temperature of the sheet glass 8 is controlled to 65 ° C. which is the temperature at the strain point. That is, it can be seen that the temperature of the sheet glass 8 is equalized in the width direction near the distortion point of the sheet glass 8.
本実施例で重要な役割を果たしているヒータは、 歪み点近傍で熱処理 を施している第 3のヒー夕である。 第 1のヒータと第 2のヒータとは、 シートガラス 8を成形温度(1 2 0 0 C)から急激に歪み点まで冷却する ことによる急激な温度変化を回避するために設けられている。 又、 第 4 のヒー夕は、 第 3のヒー夕によって均等化された温度分布を維持しなが ら、シートガラス 8を更に低い温度まで徐冷するために設けられている。 第 4のヒ一夕に後続する第 5〜第 1 0のヒータ (図示せず) は、 第 4の ヒー夕と同様に、 第 3のヒー夕によって均等された温度分布を維持しな がら、 シートガラス 8を取り出し温度 ( 1 5 0〜 1 8 o r ) まで徐々に 徐冷するために設けられている。 すなわち、 これらのヒー夕は、 急冷を 防止しながら徐冷するように、 シートガラス 8に段階的に熱処理を施し ている。  The heater that plays an important role in this embodiment is the third heater that performs heat treatment near the strain point. The first heater and the second heater are provided in order to avoid a rapid temperature change caused by rapidly cooling the sheet glass 8 from the forming temperature (1200 C) to the strain point. The fourth heater is provided for gradually cooling the sheet glass 8 to a lower temperature while maintaining the temperature distribution equalized by the third heater. The fifth to tenth heaters (not shown) that follow the fourth heat, while maintaining the temperature distribution equalized by the third heat, similar to the fourth heat, The sheet glass 8 is taken out and gradually cooled to a temperature (150 to 18 or). That is, the heat is gradually applied to the sheet glass 8 so that these heaters are gradually cooled while preventing rapid cooling.
そして、 取り出し位置まで送出されたシートガラス 8は、 引っ張り方 向に所定間隔ごとに切断されて搬出される。  Then, the sheet glass 8 sent to the takeout position is cut at predetermined intervals in the pulling direction and carried out.
この成形が完了したシートガラス 8の板厚は、 左右両側の周辺部 (端 から内側に 1 2 0〜 1 3 0 mmの領域) で 4〜 6 m m、 その内側に位置 する表面部で 0 . 7 mmとなっている。 そして、 外形については、 幅が 1 0 6 0 mm、 奥行きが 1 1 0 mmとなっている。 この後、 板厚が管理 されていない周辺部を除去して、 有効幅が 8 0 0 m m , 奥行きが 1 1 0 mmのガラス板を作製した。 ここで、 有効幅とは、 板厚が均一な領域の 幅である。 The thickness of the sheet glass 8 after the completion of the forming is 4 to 6 mm at the peripheral portions on both the left and right sides (area of 120 to 130 mm inward from the end), and is 0 at the surface located inside. 7 mm. As for the outer shape, the width is 106 mm and the depth is 110 mm. After this, the thickness is controlled The glass plate having an effective width of 800 mm and a depth of 110 mm was manufactured by removing the peripheral portion that was not formed. Here, the effective width is the width of a region having a uniform thickness.
その後、 ガラス板に対して端面研磨と、 洗浄とを順次行なって最終製 品を完成させた。 このようにして製造したガラス板の歪みを光へテロダ イン法によって測定した。 その結果、 最大複屈折量 R eは 0 . 7 7 (最 大歪み : 0 . 0 4 k g / mm 2 ) であった。 本実施例の応力分布の測定 結果を第 7図に示す。図に示すように歪みの最大値の抑制だけではなく、 歪みの分布もほぼ均等化されていることが分かる。 Thereafter, the glass plate was sequentially polished and washed to complete the final product. The distortion of the glass plate thus manufactured was measured by the optical heterodyne method. As a result, the maximum birefringence amount Re was 0.77 (maximum strain: 0.04 kg / mm 2 ). FIG. 7 shows the measurement results of the stress distribution in this example. As shown in the figure, not only the suppression of the maximum value of the distortion, but also the distribution of the distortion is almost equalized.
又、 本実施例のガラス板と、 第 4図に示した、 歪み低減処理を施さな いで製造した、 従来のガラス板とを比較すると、 歪みの均一性と、 歪み 量の低減化において、 本実施例のガラス板が優れていることが判る。 又、 本実施例においては、 徐冷の過程で、 歪みが原因で発生するシー 卜ガラス 8の破断を防止できたので、 歩留まりが 1 0 %向上した。  In addition, comparing the glass plate of this example with the conventional glass plate manufactured without performing the distortion reduction processing shown in FIG. 4, the uniformity of the distortion and the reduction of the amount of distortion are not significant. It turns out that the glass plate of an Example is excellent. Further, in the present example, the breakage of the sheet glass 8 caused by the distortion during the slow cooling process was prevented, so that the yield was improved by 10%.
(液晶デバイスの製造)  (Manufacture of liquid crystal devices)
上述の実施例によって製造したガラス板から液晶デバイスを製造した。 具体的には、 5 5 0 X 6 5 0 mmのフルサイズのガラス板から、 4 2 3 X 2 7 5 m mのガラス板を 2枚切り出した。 この切り出したガラス板の トータル ' ピッチのシフ ト量は、 0 . 4 0 / mであった。 尚、 このトー タル · ピツチのシフト量は 1 m以下にするのが好ましい。  A liquid crystal device was manufactured from the glass plate manufactured according to the above-described embodiment. Specifically, two glass plates of 42.times.275 mm were cut out of a full-size glass plate of 550.times.650 mm. The total 'pitch' shift amount of the cut glass plate was 0.40 / m. It is preferable that the total pitch shift is 1 m or less.
又、 このようなトータル · ピッチのシフ ト量と、 フルサイズ (切り出 す前のガラス板のサイズ) のガラス板の歪みとの関係を予め求めておけ ば、 フルサイズのガラス板の歪み量を管理することで、 実際の表示装置 に使用するガラス板のトータル ·ピッチのシフ ト量を管理することがで きる。 第 8図に、 この両者の相関関係を表すグラフを示す。 図において、 縦軸は、 分断によって得られたガラス板に発生する トータルピッチのシ フ ト量 (^ m ) を示し、 横軸は、 分断する前のフルサイズのガラス板の 複屈折量 (n m ) を示す。 If the relationship between the total pitch shift amount and the distortion of the full-size (the size of the glass plate before cutting) glass plate is determined in advance, the distortion amount of the full-size glass plate can be calculated. By controlling the shift, it is possible to manage the shift amount of the total pitch of the glass plate used for the actual display device. FIG. 8 is a graph showing the correlation between the two. In the figure, the vertical axis shows the total pitch generated in the glass plate obtained by the division. The horizontal axis indicates the birefringence (nm) of the full-size glass plate before cutting.
このように歪みが抑制された本実施例のガラス板から、 カラーフィル 夕用ガラス基板と、 T F T用ガラス基板とを製造した。 そして、 各ガラ ス基板のァライメントマークをあわせて液晶デバイスを製造した。 この 場合、 本実施例の歪みを低減したガラス板を使用したので、 高い歩留ま りで液晶デバイスを製造することができた。  A glass substrate for a color filter and a glass substrate for TFT were manufactured from the glass plate of this example in which the distortion was suppressed in this manner. Then, a liquid crystal device was manufactured by aligning the alignment marks on each glass substrate. In this case, since the glass plate with reduced distortion of this example was used, a liquid crystal device could be manufactured with a high yield.
尚、 本発明は、 上述した実施例のダウンドロー法以外のダウンドロー 法にも適用することができる。 例えば、 本発明は、 背景技術の説明の欄 で説明した従来のダウンドロー法にも適用することができる。  The present invention can be applied to a down-draw method other than the down-draw method of the above-described embodiment. For example, the present invention can also be applied to the conventional downdraw method described in the section of Background Art.
又、 上述の実施例では、 歪み低減処理として、 2種類の歪み低減処理 を用いる場合を説明したが、 本発明では、 何れか一方の歪み低減処理だ けを用いるようにしても良い。  Further, in the above-described embodiment, a case has been described in which two types of distortion reduction processing are used as the distortion reduction processing. However, in the present invention, only one of the distortion reduction processings may be used.
又、 上述の実施例では、 熱処理手段として、 シートガラス 8の幅方向 に複数のヒー夕を配設し、各ヒ一夕の温度を個別に制御することにより、 同方向に所定の温度分布を設定する熱処理手段を用いる場合を説明した。 しかし、 本発明では、 全体的に均一に発熱する単一のヒー夕を有し、 例 えば、 このヒータの表面に適宜断熱材を配置することにより、 シートガ ラス 8の幅方向に所定の温度分布を設定するような熱処理手段を用いる ようにしても良い。  Further, in the above-described embodiment, a plurality of heaters are arranged in the width direction of the sheet glass 8 as the heat treatment means, and the temperature of each heater is individually controlled, so that a predetermined temperature distribution is obtained in the same direction. The case where the heat treatment means for setting is used has been described. However, the present invention has a single heater that uniformly generates heat as a whole. For example, by appropriately arranging a heat insulating material on the surface of the heater, a predetermined temperature distribution can be obtained in the width direction of the sheet glass 8. A heat treatment means for setting the temperature may be used.
又、 本発明は、 液晶デバイス以外の表示装置で用いられるガラス基板 や、 他の電子製品で用いられるガラス基板 (例えば、 情報記録媒体用の ガラス基板) の製造にも適用することができる。 産業上の利用可能性  The present invention can also be applied to the manufacture of glass substrates used in display devices other than liquid crystal devices and glass substrates used in other electronic products (for example, glass substrates for information recording media). Industrial applicability
本発明によれば、 歪みを抑制したシートガラスを、 ダウンドロ一法に よって製造することができる。 特に、 シートガラスの幅方向の歪みを抑 えることができる。 このため、 シートガラスから切り出したガラス板の 歪みを抑えることができる。 According to the present invention, sheet glass in which distortion is suppressed is applied to a down draw method. Therefore, it can be manufactured. In particular, distortion in the width direction of the sheet glass can be suppressed. For this reason, distortion of the glass plate cut out from the sheet glass can be suppressed.
従って、 本発明によって製造したガラス板上にフォ トリソグラフィ法 等によって、 微細パターンを形成する際、 パターンの位置ズレを抑える ことができる。  Therefore, when a fine pattern is formed on a glass plate manufactured by the present invention by a photolithography method or the like, a positional shift of the pattern can be suppressed.
又、 本発明によれば、 ダウンドロー法によってシートガラスを製造す る場合、 熱歪みの発生が抑えられているので、 シート状のガラスを引つ 張りながら徐冷する際、シート状のガラスが破損することを防止できる。 このため、 生産の歩留りを向上させることができる。  Further, according to the present invention, when sheet glass is produced by the down-draw method, since the occurrence of thermal distortion is suppressed, when the sheet-shaped glass is gradually cooled while being pulled, the sheet-shaped glass is Damage can be prevented. For this reason, the production yield can be improved.
又、 本発明によって製造された表示用ガラス基板によれば、 表示装置 の製造における歩留りも向上させることができる。  Further, according to the glass substrate for display manufactured by the present invention, the yield in manufacturing the display device can be improved.

Claims

請 求 の 範 囲 The scope of the claims
1 . ダウンドロー法によって、 溶解ガラスをシート状に成形し、 得ら れたシ一トガラスを熱処理手段によって徐冷することによりガラス板を 製造するガラス板の製造方法において、 1. In a glass sheet manufacturing method, a molten glass is formed into a sheet shape by a down draw method, and the obtained sheet glass is gradually cooled by a heat treatment means to manufacture a glass sheet.
前記シートガラスの幅方向における、 周辺部と表面部との温度差によ つて発生するシー卜ガラスの歪みを低減する歪み低減処理を、徐冷の際、 行なうことを特徴とするガラス板の製造方法。  Manufacturing a glass sheet, characterized in that a distortion reduction treatment for reducing distortion of the sheet glass caused by a temperature difference between a peripheral portion and a surface portion in the width direction of the sheet glass is performed at the time of slow cooling. Method.
2 . 前記温度差は、 前記周辺部と前記表面部における中央部との間で 発生することを特徴とする請求の範囲第 1項記載のガラス板の製造方法: 2. The method for producing a glass sheet according to claim 1, wherein the temperature difference occurs between the peripheral portion and a central portion of the surface portion.
3 . 徐冷に導入される前記シートガラスは、 その幅方向における温度 分布として、 周辺部より表面部の方が低温であるような温度分布を示す ようなガラスであることを特徴とする請求の範囲第 1項又は第 2項記載 のガラス板の製造方法。 3. The sheet glass introduced slowly is a glass having a temperature distribution in a width direction thereof such that a surface portion has a lower temperature than a peripheral portion. 3. The method for producing a glass sheet according to claim 1 or 2.
4 . 前記歪み低減処理は、 予め光へテロダイン法によって測定した成 形後の前記ガラス板における歪み分布に基づいて実行されることを特徴 とする請求の範囲第 1項〜第 3項の何れかに記載のガラス板の製造方法。4. The method according to claim 1, wherein the distortion reduction processing is performed based on a distortion distribution in the glass plate after forming, which is measured in advance by an optical heterodyne method. 3. The method for producing a glass plate according to 1.
5 . 前記歪み低減処理は、 成形後の前記シートガラスを前記熱処理手 段によって徐冷する際、 成形後の前記シートガラスの幅方向における温 度差が低減するように、 前記シートガラスの幅方向に所定の温度分布を 形成する熱処理であることを特徴とする請求の範囲第 1項〜第 4項の何 れかに記載のガラス板の製造方法。 5. The distortion reducing treatment is performed so that, when the formed sheet glass is gradually cooled by the heat treatment means, a temperature difference in the width direction of the formed sheet glass is reduced. The method for producing a glass sheet according to any one of claims 1 to 4, wherein the heat treatment is a heat treatment for forming a predetermined temperature distribution.
6 . 前記熱処理は、 前記シートガラスをその成形温度から歪み点の近 傍に徐冷する過程で少なくとも行われることを特徴とする請求の範囲第 5項記載のガラス板の製造方法。  6. The method for manufacturing a glass sheet according to claim 5, wherein the heat treatment is performed at least in a process of gradually cooling the sheet glass from a forming temperature to a vicinity of a strain point.
7 . 前記熱処理は、 前記シートガラスを加熱する熱処理手段によって 形成される前記シー卜ガラスの幅方向の温度分布として、 前記シ一トガ ラスの幅方向の温度差を低減できるような温度分布を設定する処理であ ることを特徴とする請求の範囲第 5項又は第 6項記載のガラス板の製造 方法。 7. The heat treatment is performed by a heat treatment means for heating the sheet glass. 9. A process for setting a temperature distribution in a width direction of the sheet glass to be formed so as to reduce a temperature difference in a width direction of the sheet glass. Item 7. The method for producing a glass sheet according to Item 6 or 6.
δ 8 . 前記歪み低減処理は、 前記シートガラスの幅方向における前記周 辺部と前記表面部との間に発生する熱収縮差に対応して、 前記表面部に 対する前記周辺部の伸ばし量を、 前記表面部の伸ばし量に比べて増加さ せることにより、 前記表面部から前記周辺部に亘つて発生する歪みを低 減することを特徴とする請求の範囲第 1項〜第 3項の何れかに記載のガ0 ラス板の製造方法。 δ 8. The distortion reduction processing includes: elongating the peripheral portion with respect to the surface portion in accordance with a heat shrinkage difference generated between the peripheral portion and the surface portion in the width direction of the sheet glass. 4. The method according to claim 1, wherein the strain generated from the surface portion to the peripheral portion is reduced by increasing the extension amount of the surface portion. A method for producing a glass plate according to any one of the above.
9 . 製造された前記シートガラスの最大歪みは、 0 . 0 7 Kg/ mm 2 以下であることを特徴とする請求の範囲第 1項〜第 8項の何れかに記載 のガラス板の製造方法。 9. The method for manufacturing a glass sheet according to any one of claims 1 to 8, wherein a maximum distortion of the manufactured sheet glass is 0.07 Kg / mm 2 or less. .
1 0 . 前記ガラス板は表示装置用ガラス基板であることを特徴とする5 請求の範囲第 1項〜第 9項の何れかに記載のガラス板の製造方法。  10. The method for manufacturing a glass plate according to any one of claims 1 to 9, wherein the glass plate is a glass substrate for a display device.
1 1 . 溶解ガラス収納櫓から連続的に供給される溶解ガラスをシート 状に成形する成形部と、  1 1. A forming part for forming the molten glass continuously supplied from the molten glass storage tower into a sheet,
この成形部によって成形された軟化状態のシートガラスを下方に引つ 張る引っ張り手段と、 Pulling means for pulling the softened sheet glass formed by the forming section downward,
0 前記シートガラスの幅方向における周辺部から表面部に亘つて発生す る温度差に起因する前記シートガラスの歪みを低減する歪み低減手段と を備えたことを特徴とするガラス板の製造装置。 A glass sheet manufacturing apparatus, comprising: a distortion reducing unit configured to reduce distortion of the sheet glass caused by a temperature difference generated from a peripheral portion to a surface portion in a width direction of the sheet glass.
1 2 . 前記歪み低減手段は、 成形後の前記シートガラスを徐冷する熱 処理手段であって、 成形後の前記シー卜ガラスにおける幅方向の温度差5 を低減するような温度分布を、 前記シートガラスの幅方向に設定する熱 処理手段であることを特徴とする請求の範囲第 1 1項記載のガラス板の 12. The strain reducing means is a heat treatment means for gradually cooling the formed sheet glass, and has a temperature distribution that reduces a widthwise temperature difference 5 in the formed sheet glass. The heat treatment means set in the width direction of the sheet glass, wherein the heat treatment means
1 3 . 前記歪み低減手段は、 1 3. The distortion reducing means is:
成形後の前記シートガラスを徐冷する熱処理手段と、  Heat treatment means for gradually cooling the formed sheet glass,
この熱処理手段によって徐冷されている前記シートガラスにおいて 発生する前記表面部から前記周辺部に亘る温度差に対応して、 前記周辺 部の伸ばし量を前記表面部の伸ばし量よりも多くなるように制御する手 段と  In accordance with a temperature difference between the surface portion and the peripheral portion generated in the sheet glass which is gradually cooled by the heat treatment means, the extension amount of the peripheral portion is set to be larger than the extension amount of the surface portion. The means to control
を有することを特徴とする請求の範囲第 1 1項記載のガラス板の製造 1 4 . 請求の範囲第 1項〜第 1 0項の何れかに記載のガラス板の製 造方法によって形成された一対のガラス板によって液晶を挟持したこと を特徴とする液晶デバイス。  14. The method for producing a glass sheet according to claim 11, wherein the glass sheet is formed by the method for producing a glass sheet according to any one of claims 1 to 10. A liquid crystal device characterized by sandwiching liquid crystal between a pair of glass plates.
PCT/JP2000/004898 1999-07-22 2000-07-21 Production method and device for sheet glass, and liquid crystal device WO2001007372A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/763,200 US6758064B1 (en) 1999-07-22 2000-07-21 Production method and device for sheet glass, and liquid crystal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/208171 1999-07-22
JP20817199A JP3586142B2 (en) 1999-07-22 1999-07-22 Glass plate manufacturing method, glass plate manufacturing apparatus, and liquid crystal device

Publications (1)

Publication Number Publication Date
WO2001007372A1 true WO2001007372A1 (en) 2001-02-01

Family

ID=16551845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004898 WO2001007372A1 (en) 1999-07-22 2000-07-21 Production method and device for sheet glass, and liquid crystal device

Country Status (5)

Country Link
US (1) US6758064B1 (en)
JP (1) JP3586142B2 (en)
KR (1) KR100468542B1 (en)
TW (1) TWI230144B (en)
WO (1) WO2001007372A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359913A (en) * 2012-04-06 2013-10-23 安瀚视特控股株式会社 Making method of glass substrate
CN105705465A (en) * 2014-04-30 2016-06-22 安瀚视特控股株式会社 Method for manufacturing glass plate, and device for manufacturing glass plate

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100524842B1 (en) * 2002-09-25 2005-10-28 삼성코닝정밀유리 주식회사 Method for the preparation of a plate glass having a low residual stress
US20060137828A1 (en) * 2004-05-31 2006-06-29 Kabushiki Kaisha Shinkawa Die pickup apparatus
US7231786B2 (en) * 2004-07-29 2007-06-19 Corning Incorporated Process and device for manufacturing glass sheet
US20060280920A1 (en) * 2005-06-10 2006-12-14 Abbott John S Iii Selective contact with a continuously moving ribbon of brittle material to dampen or reduce propagation or migration of vibrations along the ribbon
EP1746076A1 (en) * 2005-07-21 2007-01-24 Corning Incorporated Method of making a glass sheet using rapid cooling
US20070062219A1 (en) * 2005-09-22 2007-03-22 Blevins John D Methods of fabricating flat glass with low levels of warp
JP4821260B2 (en) * 2005-10-20 2011-11-24 日本電気硝子株式会社 Liquid crystal plate glass heating apparatus, liquid crystal plate glass furnace, and liquid crystal plate glass manufacturing method
US20070095108A1 (en) * 2005-10-31 2007-05-03 Kirby Thomas E Methods and apparatus for reducing stress variations in glass sheets produced from a glass ribbon
JP4752725B2 (en) * 2005-11-17 2011-08-17 株式会社ニコン Glass substrate and manufacturing method thereof
WO2007069739A1 (en) 2005-12-16 2007-06-21 Nippon Electric Glass Co., Ltd. Non-alkali glass substrate and method for producing same
JP5071880B2 (en) * 2005-12-16 2012-11-14 日本電気硝子株式会社 Method for producing alkali-free glass substrate
US20070140311A1 (en) * 2005-12-20 2007-06-21 House Keith L Method and apparatus for characterizing a glass ribbon
KR101282952B1 (en) * 2006-01-12 2013-07-08 니폰 덴키 가라스 가부시키가이샤 Alkali-free glass substrate
JP5083707B2 (en) * 2006-01-12 2012-11-28 日本電気硝子株式会社 Method for producing alkali-free glass substrate
US7685840B2 (en) * 2006-03-24 2010-03-30 Corning Incorporated Method of minimizing distortion in a sheet of glass
CN101479202B (en) * 2006-06-30 2012-08-15 康宁股份有限公司 Methods and apparatus for reducing stress variations in glass sheets produced from a glass ribbon
JP5330245B2 (en) * 2006-09-20 2013-10-30 コーニング インコーポレイテッド Shape-induced in-plane stress temperature compensation of glass substrates
US8017220B2 (en) * 2006-10-04 2011-09-13 Corning Incorporated Electronic device and method of making
WO2008050605A1 (en) 2006-10-24 2008-05-02 Nippon Electric Glass Co., Ltd. Glass ribbon producing apparatus and process for producing the same
JP5076443B2 (en) * 2006-10-24 2012-11-21 日本電気硝子株式会社 Glass ribbon manufacturing apparatus and manufacturing method thereof
JP4621996B2 (en) 2007-04-24 2011-02-02 日本電気硝子株式会社 Glass plate manufacturing method and glass plate manufacturing equipment
CN100449371C (en) * 2007-09-30 2009-01-07 彩虹集团电子股份有限公司 Platinum gold channel electric-heating design method
US8627684B2 (en) * 2007-10-29 2014-01-14 Corning Incorporated Pull roll apparatus and method for controlling glass sheet tension
CN101910782B (en) * 2007-11-30 2013-03-20 康宁股份有限公司 Method of and apparatus for detecting change in shape of a moving substrate
JP5428288B2 (en) 2007-12-25 2014-02-26 日本電気硝子株式会社 Glass plate manufacturing method and manufacturing equipment
JP5428287B2 (en) 2007-12-25 2014-02-26 日本電気硝子株式会社 Glass plate manufacturing method and manufacturing equipment
US8354616B2 (en) * 2008-03-31 2013-01-15 Corning Incorporated Heater apparatus, system, and method for stabilizing a sheet material
JP5582515B2 (en) * 2008-05-12 2014-09-03 AvanStrate株式会社 Glass plate manufacturing method and glass plate strain measuring apparatus
US20100126227A1 (en) * 2008-11-24 2010-05-27 Curtis Robert Fekety Electrostatically depositing conductive films during glass draw
WO2010065368A1 (en) * 2008-11-25 2010-06-10 Corning Incorporated Progressive pressing to form a glass article
EP2226299B1 (en) 2009-02-23 2018-01-24 Corning Incorporated Glass manufacturing system and method for forming a high quality thin glass sheet
US8037716B2 (en) 2009-02-27 2011-10-18 Corning Incorporated Thermal control of the bead portion of a glass ribbon
JP5611572B2 (en) * 2009-05-18 2014-10-22 コーニング インコーポレイテッド Stress control area
US8196431B2 (en) * 2009-05-20 2012-06-12 Corning Incorporated Methods for controlling glass sheet thickness
EP2258664A1 (en) * 2009-06-04 2010-12-08 Corning Incorporated Vertical rolling apparatus and method for producing a textured glass sheet
EP2258665A1 (en) * 2009-06-04 2010-12-08 Corning Incorporated In line glass patterning during fusion draw process
WO2011047008A1 (en) * 2009-10-14 2011-04-21 Corning Incorporated Method and apparatus for controlling sheet thickness
US8146388B2 (en) * 2009-10-29 2012-04-03 Corning Incorporated Low friction edge roll to minimize force cycling
US8528364B2 (en) * 2010-01-08 2013-09-10 Corning Incorporated Active edge roll control in a glass drawings process
EP2468691B1 (en) * 2010-02-18 2015-10-21 Nippon Electric Glass Co., Ltd. Manufacturing method for glass film and manufacturing device therefor
JP5669006B2 (en) 2010-10-19 2015-02-12 日本電気硝子株式会社 Strip glass film manufacturing method and strip glass film manufacturing apparatus
US8210001B2 (en) * 2010-11-10 2012-07-03 Corning Incorporated Method of producing uniform light transmission fusion drawn glass
JP5743182B2 (en) * 2010-11-19 2015-07-01 日本電気硝子株式会社 Manufacturing method of glass film
KR101300909B1 (en) * 2011-03-30 2013-08-27 아반스트레이트코리아 주식회사 Method and apparatus for making glass sheet
CN102869622B (en) * 2011-03-30 2015-07-29 安瀚视特控股株式会社 The manufacture method of sheet glass and device for producing glass sheet
TWI469936B (en) 2011-03-31 2015-01-21 Avanstrate Inc Manufacture of glass plates
KR101907227B1 (en) * 2011-03-31 2018-10-11 아반스트레이트 가부시키가이샤 Method for manufacturing glass substrate
CN102822104B (en) * 2011-03-31 2015-08-26 安瀚视特控股株式会社 The manufacture method of sheet glass
KR101651318B1 (en) * 2011-03-31 2016-08-25 아반스트레이트 가부시키가이샤 Glass substrate production method
US20120318020A1 (en) * 2011-06-17 2012-12-20 Robert Delia Apparatus and methods for producing a glass ribbon
JP5190531B2 (en) * 2011-08-17 2013-04-24 AvanStrate株式会社 Glass plate manufacturing method and manufacturing apparatus
US8794036B2 (en) * 2011-08-23 2014-08-05 Corning Incorporated Apparatus and method for separating a glass sheet from a moving ribbon of glass
TWI600622B (en) * 2011-09-21 2017-10-01 Avanstrate Inc Method of manufacturing glass plate and glass plate manufacturing apparatus
US8459062B2 (en) * 2011-09-27 2013-06-11 Corning Incorporated Apparatus and methods for producing a glass ribbon
KR101476520B1 (en) * 2011-09-30 2014-12-24 아반스트레이트 가부시키가이샤 Method for manufacturing glass substrate for flat panel display
US9315409B2 (en) * 2011-11-29 2016-04-19 Corning Incorporated Glass manufacturing apparatus and methods
CN104024169B (en) * 2012-01-13 2016-12-21 安瀚视特控股株式会社 The manufacture method of glass substrate and shaped device
TWI561481B (en) 2012-02-29 2016-12-11 Corning Inc Glass manufacturing apparatus and methods
US9315408B2 (en) * 2012-11-16 2016-04-19 Corning Incorporated Methods and apparatuses for fabricating continuous glass ribbons
TWI570075B (en) * 2012-05-31 2017-02-11 康寧公司 Glass manufacturing apparatus and methods for manufacturing a glass ribbon
US9010148B2 (en) * 2012-05-31 2015-04-21 Corning Incorporated Method of reducing distortion in a sheet of glass
JP5746380B2 (en) * 2012-09-28 2015-07-08 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
US9145323B2 (en) 2013-01-21 2015-09-29 Corning Incorporated Molds for shaping glass and methods for making the same
US9290403B2 (en) * 2013-02-25 2016-03-22 Corning Incorporated Repositionable heater assemblies for glass production lines and methods of managing temperature of glass in production lines
JP5768082B2 (en) * 2013-03-27 2015-08-26 AvanStrate株式会社 Glass plate manufacturing method and glass plate manufacturing apparatus
US9593033B2 (en) 2013-10-04 2017-03-14 Corning Incorporated Glass manufacturing apparatus and method for manufacturing glass sheet
US10246365B2 (en) 2013-10-09 2019-04-02 Corning Incorporated Apparatus and method for forming thin glass articles
JP6007277B2 (en) * 2014-03-31 2016-10-12 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP6388210B2 (en) * 2014-12-22 2018-09-12 日本電気硝子株式会社 Glass ribbon manufacturing apparatus and glass ribbon manufacturing method
TWI687375B (en) 2015-03-20 2020-03-11 美商康寧公司 Molds for shaping glass-based materials and methods for making the same
US10351459B2 (en) 2015-08-14 2019-07-16 Corning Incorporated Molds and methods to control mold surface quality
DE102016116259A1 (en) 2015-09-11 2017-03-16 Schott Ag Apparatus and method for stabilizing disks of a brittle-hard material
US10343944B2 (en) * 2015-09-21 2019-07-09 Apple Inc. Glass structure having 3D shape and uniform thickness
WO2017087204A1 (en) 2015-11-18 2017-05-26 Corning Incorporated Powder, process of making the powder, and articles made therefrom
KR102499831B1 (en) * 2016-05-23 2023-02-14 코닝 인코포레이티드 Method of predicting gravity-free shape of glass sheet and method of managing quality of a glass sheet based on gravity-free shape
CN112566874A (en) * 2018-08-13 2021-03-26 Agc株式会社 Glass plate manufacturing device and molding member used in glass plate manufacturing device
CN109020161B (en) * 2018-09-07 2021-09-28 彩虹(合肥)液晶玻璃有限公司 Regulating and controlling device, substrate glass production line and regulating and controlling method
CN112919787B (en) * 2021-01-29 2023-05-16 彩虹显示器件股份有限公司 Glass substrate warping judgment and adjustment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3682609A (en) * 1969-10-06 1972-08-08 Corning Glass Works Controlling thickness of newly drawn glass sheet
JPH02225326A (en) * 1988-11-30 1990-09-07 Hoya Corp Apparatus for producing glass plate
JPH1053426A (en) * 1996-08-02 1998-02-24 Hoya Corp Production of glass plate and device for producing the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1402145A (en) * 1922-01-03 Sheet glass drawing mechanism
US1519259A (en) * 1922-12-12 1924-12-16 Hitchcock Experiment Company Process and apparatus for making sheet glass
US3338696A (en) * 1964-05-06 1967-08-29 Corning Glass Works Sheet forming apparatus
FR1447205A (en) * 1965-04-12 1966-07-29 Saint Gobain Improvements in the manufacture of sheets of thermoplastic materials, such as glass, by drawing
US3723082A (en) * 1971-01-06 1973-03-27 Corning Glass Works Sheet glass thickness control
DE2508369A1 (en) * 1975-02-26 1976-09-02 Siemens Ag PROCESS FOR MANUFACTURING DISC-SHAPED SILICON BODIES, IN PARTICULAR FOR SOLAR CELLS
JPS5852618A (en) * 1981-09-24 1983-03-28 Ricoh Co Ltd Liquid crystal display device
US4525194A (en) * 1983-06-06 1985-06-25 Rudoi Boris L Apparatus for simultaneous production of double glass panels
US4612030A (en) * 1985-06-11 1986-09-16 Smids Ronald E Method and apparatus for making variegated, cathedral, antique or flashed glass in a continuous sheet
JPH0642448B2 (en) * 1987-09-30 1994-06-01 株式会社東芝 Alignment method
US5385786A (en) * 1993-02-09 1995-01-31 Glasstech, Inc. Apparatus and method for controlling stresses in laminated automotive glass
JP3335291B2 (en) 1997-04-16 2002-10-15 ホーヤ株式会社 Method and apparatus for manufacturing glass plate
DE19918936A1 (en) * 1999-04-27 2000-11-02 Schott Glas Method and device for producing single glass panes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3682609A (en) * 1969-10-06 1972-08-08 Corning Glass Works Controlling thickness of newly drawn glass sheet
JPH02225326A (en) * 1988-11-30 1990-09-07 Hoya Corp Apparatus for producing glass plate
JPH1053426A (en) * 1996-08-02 1998-02-24 Hoya Corp Production of glass plate and device for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359913A (en) * 2012-04-06 2013-10-23 安瀚视特控股株式会社 Making method of glass substrate
CN103359913B (en) * 2012-04-06 2016-06-15 安瀚视特控股株式会社 The manufacture method of glass substrate
CN105705465A (en) * 2014-04-30 2016-06-22 安瀚视特控股株式会社 Method for manufacturing glass plate, and device for manufacturing glass plate
CN105705465B (en) * 2014-04-30 2018-09-11 安瀚视特控股株式会社 The manufacturing method of glass plate and the manufacturing device of glass plate

Also Published As

Publication number Publication date
JP2001031435A (en) 2001-02-06
JP3586142B2 (en) 2004-11-10
US6758064B1 (en) 2004-07-06
TWI230144B (en) 2005-04-01
KR20020021671A (en) 2002-03-21
KR100468542B1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
WO2001007372A1 (en) Production method and device for sheet glass, and liquid crystal device
EP2551245B1 (en) Glass substrate manufacturing method
TWI427044B (en) Glass substrate manufacturing method and glass substrate
TWI545091B (en) Method for manufacturing glass substrates
TWI428296B (en) Glass plate manufacturing method and glass plate manufacturing apparatus
KR101497251B1 (en) Method and apparatus for making glass sheet
WO2007052708A1 (en) Process for producing glass bar
KR20170107390A (en) Non-alkali glass substrate and method for production of non-alkali glass substrate
TWI515172B (en) A method for manufacturing a glass substrate, and a manufacturing apparatus for a glass substrate
JP3572631B2 (en) Manufacturing method of float plate glass
JP3856754B2 (en) Method for producing flat glass having low residual stress
TW202222712A (en) Glass sheet manufacturing method
CN112919787A (en) Method for judging and adjusting warping of glass substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR SG US

WWE Wipo information: entry into national phase

Ref document number: 09763200

Country of ref document: US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020027000837

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027000837

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020027000837

Country of ref document: KR