JP4821260B2 - Liquid crystal plate glass heating apparatus, liquid crystal plate glass furnace, and liquid crystal plate glass manufacturing method - Google Patents

Liquid crystal plate glass heating apparatus, liquid crystal plate glass furnace, and liquid crystal plate glass manufacturing method Download PDF

Info

Publication number
JP4821260B2
JP4821260B2 JP2005306280A JP2005306280A JP4821260B2 JP 4821260 B2 JP4821260 B2 JP 4821260B2 JP 2005306280 A JP2005306280 A JP 2005306280A JP 2005306280 A JP2005306280 A JP 2005306280A JP 4821260 B2 JP4821260 B2 JP 4821260B2
Authority
JP
Japan
Prior art keywords
liquid crystal
glass
crystal plate
plate glass
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005306280A
Other languages
Japanese (ja)
Other versions
JP2007112665A (en
Inventor
英利 土田
幸司 西村
右近 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2005306280A priority Critical patent/JP4821260B2/en
Publication of JP2007112665A publication Critical patent/JP2007112665A/en
Application granted granted Critical
Publication of JP4821260B2 publication Critical patent/JP4821260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets

Description

本発明は、液晶板ガラス、すなわち液晶ディスプレイのパネルの製作に使用される板ガラスの成形時に、成形体を通じて流下する溶融ガラスに対して加熱処理を施すための加熱装置、及びその加熱装置が配設された炉、ならびにその加熱装置を用いた液晶板ガラスの製造方法に関する。   The present invention is provided with a heating device and a heating device for heating the molten glass flowing down through the molded body when the liquid crystal plate glass, that is, the plate glass used for manufacturing the panel of the liquid crystal display is formed. The present invention also relates to a manufacturing method of liquid crystal plate glass using the furnace and the heating device.

近年においては、各種フラットパネルディスプレイの普及、とりわけ液晶ディスプレイの普及に伴って、例えば肉厚が0.3〜1.2mm程度の薄肉の液晶板ガラスが多量に製造されるに至っている。この液晶板ガラスは、オーバーフローダウンドロー法やスロットダウンドロー法に代表される各種の方法で成形されているのが実情であるが、その成形により得られた板ガラスは、表面のうねりや粗さが小さく且つ表面品位に優れていることが要求される。   In recent years, with the widespread use of various flat panel displays, in particular, the spread of liquid crystal displays, for example, a large amount of thin liquid crystal plate glass having a thickness of about 0.3 to 1.2 mm has been produced. This liquid crystal plate glass is actually formed by various methods typified by the overflow down draw method and the slot down draw method, but the plate glass obtained by the forming has a small surface undulation and roughness. In addition, the surface quality is required to be excellent.

例えば、上記のオーバーフローダウンドロー法は、断面が略くさび形の成形体の上部に形成されたオーバーフロー槽に溶融ガラスを連続して供給し、この溶融ガラスをオーバーフロー槽から溢れさせて成形体の両側の側壁面に沿って流下させた後、成形体の下頂部で融合させて一枚の板状形態にし、この形態になった板状ガラス成形体が冷却ローラ(エッジローラ)により幅方向両端部を挟持されて固化した段階で、これを引張りローラが挟持しつつ下方に引き抜くことによって、最終的に製品となるべき液晶板ガラスを得る方法である(例えば特許文献1、2参照)。   For example, in the overflow downdraw method described above, molten glass is continuously supplied to an overflow tank formed on the upper part of a substantially wedge-shaped cross section, and the molten glass is allowed to overflow from the overflow tank so that both sides of the molded body After flowing down along the side wall surface of the sheet, it is fused at the lower top part of the molded body to form a single sheet, and the sheet-shaped glass molded body in this form is cooled by the cooling rollers (edge rollers). This is a method of obtaining a liquid crystal plate glass to be the final product by pulling it downward while being pinched by a pulling roller at the stage where it is pinched and solidified (see, for example, Patent Documents 1 and 2).

この種の成形方法によれば、成形体の近傍における溶融ガラスは未だ固化していない状態であるため、粘性流体としての性質を有しており、したがって溶融ガラスは成形体の近傍における温度の影響を受けやすい。特に、成形体の近傍において、幅方向(オーバーフロー溝の長手方向)の温度分布が均一でなければ、溶融ガラスの幅方向に粘性力の異なる箇所が発生し、幅方向の引張りに対する溶融ガラスの応答に差が生じる。その結果、幅方向において板ガラスの厚みに偏析(偏肉と称される)が生じると共に、この偏肉が大きい場合には、液晶ガラス基板とカラーフィルタ用ガラス基板とを張り合わせる際に、ガラス基板の寸法に不整合が生じ、これに起因して、アライメントマークの位置ずれ、ひいては液晶デバイスの歩留まりの低下を招く。具体例として、TFT液晶ディスプレイの製造工程では、3〜15μmのパターンずれを惹き起こし、輝度の低下による表示ムラが発生する。   According to this type of molding method, since the molten glass in the vicinity of the molded body is not yet solidified, it has properties as a viscous fluid, and therefore the molten glass is affected by the temperature in the vicinity of the molded body. It is easy to receive. In particular, if the temperature distribution in the width direction (longitudinal direction of the overflow groove) is not uniform in the vicinity of the molded body, a portion having a different viscous force occurs in the width direction of the molten glass, and the response of the molten glass to the tensile in the width direction. There will be a difference. As a result, segregation (referred to as uneven thickness) occurs in the thickness of the plate glass in the width direction, and when this uneven thickness is large, the glass substrate is bonded to the liquid crystal glass substrate and the color filter glass substrate. As a result, a misalignment occurs, resulting in a positional shift of the alignment mark and a decrease in the yield of the liquid crystal device. As a specific example, in a manufacturing process of a TFT liquid crystal display, a pattern shift of 3 to 15 μm is caused, and display unevenness due to a decrease in luminance occurs.

更に、このように成形体の近傍における幅方向の温度分布が均一でなければ、幅方向において板ガラスの応力(歪)偏析が生じ、この応力の偏析が大きい場合には、板ガラスに割れ等が発生しやすくなり、品位面において致命的な欠陥を招くおそれがある。また、このように応力偏析の大きな板ガラスは、液晶ディスプレイの組立工程で局所的に加熱や冷却を行った場合に、再び局所的に引き延ばされることになるため、表面の平坦度等の精度に悪影響を及ぼすばかりでなく、割れの発生をも惹き起こす虞がある。   Furthermore, if the temperature distribution in the width direction in the vicinity of the molded body is not uniform in this way, stress (strain) segregation of the sheet glass occurs in the width direction, and if this stress segregation is large, cracks or the like occur in the sheet glass. This may lead to fatal defects in quality. In addition, plate glass with large stress segregation is stretched locally again when heated or cooled locally in the assembly process of the liquid crystal display. In addition to adverse effects, there is a risk of causing cracks.

しかも、近年における液晶板ガラスの大板化に伴って、その幅方向寸法が長尺化(例えば2000mm程度に長尺化)していることから、溶融ガラスの幅方向寸法も長尺にせざるを得ず、このような状況の下では、従来に増して、幅方向における温度制御の重要度が高くなっているのが実情である。   In addition, with the recent increase in the size of liquid crystal plate glass, the width direction dimension has become longer (for example, about 2000 mm), so the width direction of the molten glass has to be longer. However, under such circumstances, the importance of temperature control in the width direction is higher than in the past.

一方、例えば上記のスロットダウンドロー法は、溶融ガラスが供給される溶融ガラス収納槽の底壁にスリット状の開口部が形成され、この開口部を通じて溶融ガラスを流下させることにより一枚の板状形態にし、この形態になった板状ガラス成形体を引張りローラが引き抜く方法である(例えば特許文献3参照)。このスロットダウンドロー法においても、上述のオーバーフローダウンドロー法と同様に、幅方向における温度制御の重要度が高くなっている。   On the other hand, for example, in the slot down draw method described above, a slit-like opening is formed in the bottom wall of the molten glass storage tank to which the molten glass is supplied, and the molten glass is caused to flow down through this opening to form a single plate. This is a method in which a pulling roller pulls out the plate-like glass molded body in this form (see, for example, Patent Document 3). Also in this slot down draw method, the importance of temperature control in the width direction is high as in the above-described overflow down draw method.

以上のような温度制御に関連した技術として、既述の特許文献1によれば、成形用と徐冷用とを含む炉の内部空間(炉室)を、隔壁により上下方向に複数の室に分離すると共に、その分離した各室毎に、室温制御装置により室温を制御する構成が開示されている。尚、この炉室には、オーバーフローダウンドロー法を実行すべく、溶融ガラスを溢れさせて流下させる成形体と、溶融ガラスの直下方に連なる板状ガラス成形体を引き抜く引張りローラとが配設され、上記の室温制御装置によって、成形時もしくは徐冷時におけるガラスのガラス転移点から歪点までの平均冷却速度を1.2℃/秒に調整するように構成されている。   As a technique related to temperature control as described above, according to the above-mentioned Patent Document 1, the internal space (furnace chamber) of the furnace including molding and slow cooling is divided into a plurality of chambers in the vertical direction by partition walls. A configuration is disclosed in which the room temperature is controlled by a room temperature control device for each separated room. In this furnace chamber, in order to execute the overflow down draw method, a molded body that causes the molten glass to overflow and flow down, and a tension roller that pulls out the plate-like glass molded body that is directly below the molten glass are disposed. The above room temperature control device is configured to adjust the average cooling rate from the glass transition point to the strain point of the glass during molding or slow cooling to 1.2 ° C./second.

また、既述の特許文献2によれば、成形用の炉の内部空間における溶融ガラスの近傍に、複数の加熱器を幅方向に隣接させて配置し、幅方向の所定区画毎に各加熱器により温度分布を調整する構成が開示されている。更に、既述の特許文献3によれば、徐冷用の炉の内部空間における溶融ガラスの直下方に連なる板状ガラス成形体の近傍に、幅方向のみならず、上下方向にも複数の加熱器を配置し、上下方向に対しても温度分布を調整することにより、適切な徐冷温度条件とすることが開示されている。   Further, according to the above-described Patent Document 2, a plurality of heaters are arranged adjacent to each other in the width direction in the vicinity of the molten glass in the internal space of the molding furnace, and each heater is provided for each predetermined section in the width direction. A configuration for adjusting the temperature distribution is disclosed. Furthermore, according to the above-mentioned Patent Document 3, a plurality of heating not only in the width direction but also in the up-down direction are provided in the vicinity of the plate-like glass formed in the interior space of the slow cooling furnace immediately below the molten glass. It is disclosed that an appropriate slow cooling temperature condition is obtained by arranging a vessel and adjusting the temperature distribution in the vertical direction.

特開平10−53426号公報Japanese Patent Laid-Open No. 10-53426 特開2001−31434号公報JP 2001-31434 A 特開2001−31435号公報JP 2001-31435 A

ところで、上記の特許文献1に開示された温度制御方法は、炉室を複数に分離してなる各室毎に雰囲気温度を調整できるに留まるため、つまり1つの室を1単位として温度を調整できるに留まるため、1つの室についてはその全域が実質的に同温度となり、したがって異なる室毎に段階的に温度が異なるという態様で温度制御がなされることになる。そのため、各室の容積が大きければ、炉室内の温度制御を緻密に行うことが極めて困難となるのに対して、各室の容積を小さくすれば、室の数が不当に多くなり、各室相互間の温度コントロールが複雑になると共に、炉内の施工時間の長期化や炉のコストの高騰を招き、更にはメンテナンスの困難化を余儀なくされる。尚、この温度制御方法は、炉室を隔壁で上下方向に分離したものであるため、幅方向の温度分布を調整できないのは当然の事であるが、仮に炉室を幅方向に分離したとしても、上記と同様の問題が生じる。   By the way, the temperature control method disclosed in the above-mentioned Patent Document 1 can only adjust the atmospheric temperature for each chamber formed by dividing the furnace chamber into a plurality of chambers, that is, the temperature can be adjusted with one chamber as one unit. Therefore, the temperature control is performed in such a manner that the entire temperature of one chamber is substantially the same, and therefore the temperature is different stepwise for different chambers. For this reason, if the volume of each chamber is large, it is extremely difficult to precisely control the temperature in the furnace chamber. On the other hand, if the volume of each chamber is reduced, the number of chambers increases unreasonably, The temperature control between them becomes complicated, and the construction time in the furnace becomes longer, the cost of the furnace rises, and the maintenance becomes difficult. In this temperature control method, since the furnace chamber is separated in the vertical direction by the partition wall, it is natural that the temperature distribution in the width direction cannot be adjusted, but it is assumed that the furnace chamber is separated in the width direction. However, the same problem as described above occurs.

一方、特許文献2、3に開示された温度制御方法は、複数の加熱器を幅方向に隣接して配置しているものの、近年における液晶板ガラスの大板化を勘案すれば、板ガラスの偏肉や応力偏析の問題解決には到底至らない。即ち、この種の用途に頻繁に使用されている例えば線状発熱体(発熱素線)を備えてなる加熱器を例に挙げて説明すると、図8に示すように、この加熱器17は、背面板17bに、発熱素線17aが一定のピッチPで複数列に配列される形態の波形状となるように曲折されて取り付けられている。換言すれば、発熱素線17aは、幅方向(同図左右方向)において一定の分布密度で配列されていることになる。尚、この種の加熱器17としては、幅方向の寸法が、150〜500mm程度、好ましくは300〜400mm程度のものを使用するのが通例である。   On the other hand, the temperature control methods disclosed in Patent Documents 2 and 3 have a plurality of heaters arranged adjacent to each other in the width direction. However, considering the recent increase in the size of the liquid crystal plate glass, And the problem of stress segregation cannot be solved. That is, for example, a heater provided with a linear heating element (heat generating element wire) that is frequently used for this type of application will be described. As shown in FIG. The heating element wires 17a are bent and attached to the back plate 17b so as to have a wave shape in which the heating wires 17a are arranged in a plurality of rows at a constant pitch P. In other words, the heating element wires 17a are arranged with a constant distribution density in the width direction (the left-right direction in the figure). In addition, as this kind of heater 17, it is usual to use the dimension of the width direction about 150-500 mm, Preferably about 300-400 mm.

このような状態で発熱素線17aが配列された加熱器17の温度分布は、図4に特性曲線Bで示すように、加熱器17の幅方向端部よりも中央部が必然的に高くなることから、この加熱器17を、上述のように幅方向に複数隣接させて配置した場合には、図9にその特性曲線BXを模式的に示すように、各加熱器17の幅方向中央部に高温の山部F1が形成され、且つ、各加熱器17の幅方向端部の相互間に低温の谷部H1が形成される。尚、これらの谷部H1は、施工上の理由から、各加熱器17を相互に一定間隔(3〜5mm程度)を空けて設置せざるを得ない事と相俟って、一層低温となる。   In this state, the temperature distribution of the heater 17 in which the heating element wires 17a are arranged is inevitably higher at the center than at the widthwise end of the heater 17, as shown by the characteristic curve B in FIG. Therefore, when a plurality of heaters 17 are arranged adjacent to each other in the width direction as described above, the center portion in the width direction of each heater 17 is schematically shown in FIG. 9 as its characteristic curve BX. A high temperature peak F1 is formed, and a low temperature valley H1 is formed between the end portions of the heaters 17 in the width direction. In addition, these trough parts H1 become still lower temperature for the reason on construction, when each heater 17 must be installed at fixed intervals (about 3-5 mm) mutually. .

このような特性を備えた単一の加熱器17を、その加熱器17の幅方向と溶融ガラスの幅方向とを一致させて成形体の近傍に配置すれば、溶融ガラスに対する加熱温度は、幅方向中央部と両端部とで不当に異なることから、液晶板ガラスの偏肉等の問題を確実に回避し得る程度までに溶融ガラスの幅方向における温度分布を均一にすることは不可能であると言わざるを得ない。また、液晶板ガラスの大板化に対処すべく、このような特性を備えた複数個の加熱器17を、幅方向に隣接させて配置したとしても、これらの加熱器17の集合によるトータルの温度分布は、上記の図9に示す特性曲線BXのように複数の山部F1と谷部H1との温度差が不当に大きくなることから、これによっても、当然の事ながら溶融ガラスの幅方向における温度分布の均一化を図ることが極めて困難となる。その結果、図10に示すように、液晶板ガラスGXの幅方向における各加熱器17相互間に対応する複数箇所に、致命的な欠陥となり得る偏肉部Z1が発生する。尚、上記の加熱器17を小型にしてその設置個数を多くしたならば、幅方向における溶融ガラスの温度分布をある程度均一化することは可能である。しかしながら、そのようにした場合には、多数の制御回路等が必要になるばかりでなく、各加熱器の温度コントロールの複雑化、炉内の施工時間の長期化、炉のコストの高騰、更にはメンテナンスの困難化等を招来し、実質的には、既述のように炉室を複数に分離した場合と同様の致命的な問題が生じる。   If the single heater 17 having such characteristics is arranged in the vicinity of the molded body with the width direction of the heater 17 and the width direction of the molten glass being matched, the heating temperature for the molten glass is It is impossible to make uniform the temperature distribution in the width direction of the molten glass to the extent that problems such as uneven thickness of the liquid crystal plate glass can be surely avoided because it is unfairly different between the central portion and both end portions. I must say. Further, even if a plurality of heaters 17 having such characteristics are arranged adjacent to each other in the width direction in order to cope with an increase in the size of the liquid crystal plate glass, the total temperature due to the assembly of these heaters 17 is reduced. Since the distribution is unreasonably large in temperature difference between the plurality of peak portions F1 and valley portions H1 as in the characteristic curve BX shown in FIG. 9 above, it is natural that this also in the width direction of the molten glass. It becomes extremely difficult to make the temperature distribution uniform. As a result, as shown in FIG. 10, uneven thickness portions Z1 that can be fatal defects are generated at a plurality of locations corresponding to each other between the heaters 17 in the width direction of the liquid crystal plate glass GX. If the heater 17 is reduced in size and the number of the heaters 17 is increased, the temperature distribution of the molten glass in the width direction can be made uniform to some extent. However, in such a case, not only a large number of control circuits are required, but the temperature control of each heater is complicated, the construction time in the furnace is prolonged, the cost of the furnace is increased, and further This causes a difficulty in maintenance and the like, and substantially the same fatal problem as when the furnace chamber is separated into a plurality of parts as described above occurs.

また、特許文献3に開示されているように、成形体から流下する溶融ガラスが板状ガラス成形体となった後に、徐冷炉内でその板状ガラス成形体に徐冷処理を施すべく、上記の加熱器17を複数個配置しても、一個の加熱器の加熱温度分布が既に述べたように適切でないことから、反りが少なく且つ残留歪の小さな液晶板ガラスを製造し得る徐冷条件(加熱条件)に正確に合致するような温度分布とすることは極めて困難である。   Further, as disclosed in Patent Document 3, after the molten glass flowing down from the molded body becomes a sheet glass molded body, the above-described sheet glass molded body is subjected to a slow cooling treatment in a slow cooling furnace. Even if a plurality of heaters 17 are arranged, the heating temperature distribution of one heater is not appropriate as described above, so that slow cooling conditions (heating conditions) that can produce liquid crystal plate glass with little warpage and small residual strain It is extremely difficult to obtain a temperature distribution that exactly matches (1).

本発明は、上記事情に鑑みてなされたものであり、単一の加熱器の加熱温度分布が好適となるように改良を加えることにより、溶融ガラスの幅方向における温度分布を効果的に均一化して液晶板ガラスの偏肉等の問題を回避することを課とする。 The present invention has been made in view of the above circumstances, and by making improvements so that the heating temperature distribution of a single heater is suitable, the temperature distribution in the width direction of the molten glass is effectively uniformized. possible to avoid problems such as uneven thickness of the liquid crystal plate glass Te shall be the challenge the.

上記課題を解決するためになされた本発明は、液晶板ガラスを成形するに際して、炉内の上方に存する成形体に導かれた溶融ガラスが流下して板状に成形されつつ炉の下方開口部を通じて引き抜かれるまでの過程で、溶融ガラスに加熱処理を施すために用いられる液晶板ガラス用加熱装置であって、前記溶融ガラスの少なくとも幅方向における加熱温度を調整することにより前記溶融ガラスの幅方向における温度分布が均一化されるように、単一の加熱器に設けられる線状発熱体を、並列に配列され且つその配列領域の上下方向全長に亘って連続して延びる複数の直線部が、両端で折り返されてなる波形状に曲折し、且つそれら複数の直線部の幅方向における配設密度に粗密を存在させると共にその加熱器を複数個備えてなることに特徴づけられる。ここで、溶融ガラスの幅方向と、加熱器の幅方向とは、同方向である(以下、同様)。 The present invention, which has been made to solve the above problems, is to form liquid crystal sheet glass through the lower opening of the furnace while the molten glass led to the molded body existing in the upper part of the furnace flows down and is formed into a plate shape. A heating apparatus for a liquid crystal plate glass used for subjecting a molten glass to a heat treatment in the process until being drawn, wherein the temperature in the width direction of the molten glass is adjusted by adjusting a heating temperature in at least the width direction of the molten glass. In order to make the distribution uniform, linear heating elements provided in a single heater are arranged in parallel, and a plurality of linear portions extending continuously over the entire vertical length of the arrangement region are formed at both ends. folded wave shape bent comprising and characterized Dzu in conjunction with the presence of density in arrangement density in the width direction of the plurality of linear portions, it is provided with a plurality of the heater It is. Here, the width direction of the molten glass and the width direction of the heater are the same direction (hereinafter the same).

このような構成によれば、成形体に供給された溶融ガラスが流下していく際に、単一の加熱器に設けられる線状発熱体(以下、単に発熱体ともいう)の幅方向における配設密度、詳しくは当該発熱体の複数の直線部の幅方向における配設密度が従来のように一定であるならば、溶融ガラスに対する加熱温度が幅方向で不当にばらつくような場合であっても、本発明によれば、単一の加熱器に設けられる発熱体の幅方向における配設密度に粗密が存在していることから、この発熱体の配設密度の粗密によって、つまり単一の加熱器自体が有している温度調整機能によって、上記の溶融ガラスに対する加熱温度のばらつきを吸収することが可能となる。その結果、溶融ガラスの幅方向における加熱温度を従来よりも均一にすることが可能となり、従来において上記の加熱温度が幅方向に不当なばらつきを生じていたことによる液晶板ガラスの偏肉や応力偏析が抑制され、高品位の液晶板ガラスを得ることができる。しかも、近年における液晶板ガラスの大板化に伴って、単一の加熱器も大型(幅方向寸法が300mm以上)になっている現状に照らせば、複数の加熱器が配置される場合における加熱器の個数の削減や個々の加熱器に対する温度コントロールの簡素化の観点から、単一の加熱器に設けられる発熱体の幅方向における配設密度に粗密を存在させることの意義は大きい。尚、この加熱器は、溶融ガラスに加熱処理を施すことが可能な位置、つまり成形体の近傍に設けることが好ましいが、その僅か下方のエッジローラの近傍に設けてもよい。
更に、この構成においては、前記複数の加熱器の相互間に対応する領域の温度変化が抑制されることにより前記溶融ガラスの幅方向における温度分布が均一化されるようにするという観点から、前記単一の加熱器に設けられる線状発熱体の複数の直線部の幅方向における配設密度に粗密を存在させると共にその加熱器を複数個備えるようにしてもよい。
According to such a configuration, when the molten glass supplied to the molded body flows down, a linear heating element (hereinafter also simply referred to as a heating element) provided in a single heater is arranged in the width direction. If the installation density , specifically, the arrangement density in the width direction of the plurality of linear portions of the heating element is constant as in the prior art, even if the heating temperature for the molten glass varies unreasonably in the width direction. According to the present invention, since the density in the width direction of the heating elements provided in the single heater exists, the density of the heating elements is determined according to the density of the heating elements. Due to the temperature adjustment function of the vessel itself, it is possible to absorb the variation in the heating temperature for the molten glass. As a result, it is possible to make the heating temperature in the width direction of the molten glass more uniform than in the past, and in the past, the above-mentioned heating temperature has caused unreasonable variation in the width direction, resulting in uneven thickness and stress segregation of the liquid crystal plate glass. Is suppressed, and a high-quality liquid crystal plate glass can be obtained. Moreover, in light of the current situation that a single heater has become large (the width direction dimension is 300 mm or more) with the increase in the size of liquid crystal plate glass in recent years, a heater in the case where a plurality of heaters are arranged. From the viewpoint of reducing the number of heaters and simplifying temperature control for individual heaters, it is significant to make the arrangement density in the width direction of the heating elements provided in a single heater dense. The heater is preferably provided at a position where the molten glass can be heated, that is, in the vicinity of the molded body, but may be provided in the vicinity of the edge roller slightly below.
Furthermore, in this configuration, from the viewpoint that the temperature distribution in the width direction of the molten glass is made uniform by suppressing the temperature change in the region corresponding to each other between the plurality of heaters. with the presence of density in arrangement density in the width direction of the plurality of linear portions of the linear heating element provided on a single heater may be provided with a plurality of the heater.

この場合、前記線状発熱体の複数の直線部の幅方向における配設密度は、前記加熱器の幅方向中央部で粗となり且つ幅方向端部で密となるように構成されていることが好ましい。このようにすれば、単一の加熱器に設けられる発熱体の幅方向における配設密度が従来のように一定であるならば、加熱器の幅方向中央部が高温となり且つ幅方向端部が低温となる場合であっても、その高温部及び低温部を均一化するように、発熱体の配列密度に粗密が存在していることなる。すなわち、単一の加熱器自体の適切な温度調整機能によって、溶融ガラスの幅方向における温度分布を均一化できることになる。したがって、液晶板ガラスの偏肉や応力偏析の抑制ひいては液晶板ガラスの品位向上がより確実化されると共に、液晶板ガラスの大板化に対してもより確実に対処可能となる。 In this case, arrangement density in the width direction of the plurality of linear portions of the linear heating element, that is configured to be dense in the heater in the width direction central portion in the rough and made and widthwise end portions preferable. In this way, if the arrangement density in the width direction of the heating elements provided in a single heater is constant as in the prior art, the central portion in the width direction of the heater will be hot and the end in the width direction will be even if the temperature becomes low, so that uniform the high temperature part and the low temperature portion, so that the density is present in the arrangement density of the heating element. That is, the temperature distribution in the width direction of the molten glass can be made uniform by an appropriate temperature adjustment function of the single heater itself. Therefore, the suppression of uneven thickness and stress segregation of the liquid crystal plate glass and the improvement of the quality of the liquid crystal plate glass are further ensured, and the liquid crystal plate glass can be dealt with more reliably.

更に、溶融ガラス及び板状ガラス成形体の温度分布のばらつきをより確実に抑制する上で、加熱器の加熱温度は、前記発熱体が密である部位の最高温度と、粗である部位の最低温度との差が、15℃未満であることが好ましく、より好ましくは10℃未満とされる。   Furthermore, in order to more reliably suppress variations in the temperature distribution of the molten glass and the sheet-like glass molded body, the heating temperature of the heater is set so that the heating element has a maximum temperature at a dense part and a minimum temperature at a rough part. The difference from the temperature is preferably less than 15 ° C, more preferably less than 10 ° C.

また、上記の構成において、前記板状ガラス成形体の少なくとも上下方向における加熱温度を調整することにより反りや残留歪が低減された板ガラスを得るための徐冷処理が施されるように、単一の第2の加熱器に設けられる発熱体の上下方向における配設密度に粗密を存在させると共にその加熱器を複数個備えてなることが好ましい。ここで、溶融ガラスの上下方向と、第2の加熱器の上下方向とは、同方向である(以下、同様)。 Also, as in the above-described structure, slow cooling process for obtaining warpage and residual strain is reduced plate glass by Rukoto adjusting the heating temperature in at least the vertical direction before Symbol sheet glass molded body is subjected, it is preferable that the provided several multiple heaters of the presence Rutotomoni its a density in arrangement density in the vertical direction of the heat generating member provided in a single second heater. Here, the up-down direction of the molten glass and the up-down direction of the second heater are the same direction (hereinafter the same).

このような構成によれば、成形体に供給された溶融ガラスが流下して板状ガラス成形体となって下方に移動していく際に、単一の第2の加熱器に設けられる発熱体の上下方向における配設密度が従来のように一定であるならば、板状ガラス成形体に徐冷処理を施すための加熱温度条件が上下方向で緻密に調整できない場合であっても、本発明によれば、単一の第2の加熱器に設けられる発熱体の上下方向における配設密度に粗密が存在していることから、この発熱体の配設密度の粗密によって、つまり単一の第2の加熱器自体が有している温度調整機能によって、上記の板状ガラス成形体に対する加熱温度条件の上下方向における緻密な調整をなし得ることになる。したがって、板状ガラス成形体の上下方向における徐冷条件を従来よりも緻密に調整することが可能となり、反りや残留歪が低減された液晶板ガラスを得る上で有利になるばかりでなく、複数の第2の加熱器が配置される場合には、個々の第2の加熱器に対する温度コントロールの簡素化等が図られる。尚、この第2の加熱器は、エッジローラから引張りローラに至るまでの部位に配置される。 According to such a structure, when the molten glass supplied to the molded body flows down to form a plate-like glass molded body and moves downward, the heating element provided in the single second heater If the arrangement density in the vertical direction is constant as in the prior art, even if the heating temperature conditions for performing the slow cooling treatment on the sheet glass molded body cannot be precisely adjusted in the vertical direction, the present invention According to the above, since there is a density in the arrangement density of the heating elements provided in the single second heater in the vertical direction, the density of the heating elements is determined by the density of the arrangement of the heating elements . By the temperature adjustment function of the heater 2 itself, precise adjustment in the vertical direction of the heating temperature condition for the plate-like glass molded body can be performed. Therefore, it is possible to adjust the slow cooling conditions in the vertical direction of the plate-like glass molded body more precisely than before, which is advantageous not only for obtaining a liquid crystal plate glass with reduced warpage and residual strain, but also for a plurality of When the second heater is arranged, simplification of temperature control for the individual second heaters and the like can be achieved. In addition, this 2nd heater is arrange | positioned in the site | part from an edge roller to a tension roller.

この場合においては、周辺の温度雰囲気等に応じて、発熱体の配設密度が、第2の加熱器の上部が密で下部が粗となるか、或いは上部が粗で下部が密となるように構成されていることが好ましい。このようにすれば、単一の第2の加熱器に設けられる発熱体の上下方向における配設密度が従来のように一定であるならば、板状ガラス成形体に徐冷処理を施すための加熱温度条件が上下方向で緻密に調整できない場合であっても、そのような不具合を回避し得るように、発熱体の配設密度に粗密が存在していることになる。すなわち、単一の第2の加熱器自体の適切な温度調整機能によって、上記の緻密な調整を行うことができるようになり、液晶板ガラスの反りや残留歪の低減がより確実化される。 In this case, depending on the ambient temperature atmosphere, etc., the arrangement density of the heating elements is such that the upper part of the second heater is dense and the lower part is rough, or the upper part is rough and the lower part is dense. It is preferable that it is comprised. In this way, if the arrangement density in the vertical direction of the heating elements provided in the single second heater is constant as in the prior art, the sheet glass molded body is subjected to a slow cooling treatment. Even when the heating temperature condition cannot be precisely adjusted in the vertical direction, the arrangement density of the heating elements exists so as to avoid such a problem. That is, the above-mentioned precise adjustment can be performed by an appropriate temperature adjustment function of the single second heater itself, and the reduction of the warp and residual strain of the liquid crystal plate glass is further ensured.

この場合、既述の利点をより一層確実に得るには、線状発熱体の材質は、カンタル合金、ニッケルクロム合金、モリブデンまたは炭化珪素であることが好ましい。 In this case, in order to obtain the above advantages more reliably, the material of the linear heating element, Kanthal alloy, nickel-chromium alloy, is preferably molybdenum or silicon carbide.

更に、液晶板ガラスの大板化に適切に対処するには、溶融ガラスまたは板状ガラス成形体の少なくとも幅方向に、以上の構成を備えた加熱器を複数個隣接させて配置することが好ましい。   Furthermore, in order to appropriately cope with an increase in the size of the liquid crystal plate glass, it is preferable that a plurality of heaters having the above-described configuration be arranged adjacent to each other in at least the width direction of the molten glass or the plate-like glass molded body.

尚、以上の構成において、加熱器は、熱による弊害を除去して効率よく加熱を行う上で、発熱体が耐熱性背面板に固定されていることが好ましい。   In the above configuration, it is preferable that the heating element is fixed to the heat-resistant back plate in order to efficiently heat the heater by removing harmful effects caused by heat.

そして、以上の構成を備えてなる液晶板ガラス用加熱装置を、炉壁の内側に配設することにより、液晶板ガラス用炉として提供することができる。   And the heating apparatus for liquid crystal plate glass provided with the above structure can be provided as a furnace for liquid crystal plate glass by arrange | positioning inside a furnace wall.

また、以上の構成を備えてなる液晶板ガラス用加熱装置を使用して、オーバーフローダウンドロー法により板ガラスを成形する液晶板ガラスの製造方法を提供することができる。尚、この場合においては、以上の構成を備えてなる液晶板ガラス用加熱装置を使用して、スロットダウンドロー法により板ガラスを成形することが排除されるわけではない。   Moreover, the manufacturing method of the liquid crystal plate glass which shape | molds plate glass by the overflow down draw method can be provided using the heating apparatus for liquid crystal plate glasses provided with the above structure. In this case, it is not excluded to form the plate glass by the slot down draw method using the heating apparatus for liquid crystal plate glass having the above-described configuration.

以上のように本発明によれば、単一の加熱器に設けられる線状発熱体の複数の直線部の幅方向における配設密度に粗密が存在していることから、この線状発熱体のそれら直線部の配設密度の粗密によって、つまり単一の加熱器自体の温度調整機能によって、溶融ガラスの幅方向における加熱温度のばらつきを吸収して均一化を図ることが可能となり、従来において上記の加熱温度が幅方向に不当なばらつきを生じていたことによる液晶板ガラスの偏肉や応力偏析が抑制され、高品位の液晶板ガラスを得ることができる。 According to the present invention as described above, since the density is present in the arrangement density in the width direction of the plurality of linear portions of the linear heating element provided in a single heater, the linear heating element It is possible to achieve uniformity by absorbing variations in the heating temperature in the width direction of the molten glass by adjusting the density of the linear portions , that is, by the temperature adjustment function of the single heater itself. As a result, the uneven thickness and stress segregation of the liquid crystal plate glass due to the unreasonable variation in the heating temperature in the width direction are suppressed, and a high-quality liquid crystal plate glass can be obtained.

以下、本発明の実施形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、本発明の実施形態に係る液晶板ガラス用加熱装置が配設された成形装置の内部状態を模式的に示す概略縦断側面図、図2は、その成形装置の内部状態を模式的に示す概略縦断正面図である。これらの各図に示すように、この成形装置1の基本的構成は、断面形状が略くさび状をなし且つ上部にオーバーフロー溝2aが形成された成形体2と、この成形体2の上部から溢れ出た溶融ガラスYを板状ガラス成形体Gとして引き抜く引張りローラ3と、成形体2の下頂部2bから引張りローラ3に至るガラス成形経路の途中に配置された冷却ローラ(エッジローラ)4とを備えている。これらの各構成要素2、3、4、Y、Gは、耐火煉瓦からなる炉5により取り囲まれている。   FIG. 1 is a schematic longitudinal side view schematically showing an internal state of a molding apparatus provided with a heating apparatus for liquid crystal plate glass according to an embodiment of the present invention, and FIG. 2 schematically shows the internal state of the molding apparatus. FIG. As shown in each of these drawings, the basic configuration of the molding apparatus 1 is that a molded body 2 having a substantially wedge-shaped cross section and having an overflow groove 2a formed on the upper portion, and overflowing from the upper portion of the molded body 2. A pulling roller 3 that pulls out the molten glass Y as a plate-like glass molded body G, and a cooling roller (edge roller) 4 arranged in the middle of the glass forming path from the lower top 2b of the molded body 2 to the pulling roller 3 I have. Each of these components 2, 3, 4, Y, and G is surrounded by a furnace 5 made of refractory bricks.

そして、炉5の内面における成形体2の近傍、即ち、炉5を構成している両側壁5aの上部内面にはそれぞれ、成形体2の両側壁面2c(溶融ガラスY)に対面するように、第1加熱装置6が配設されている。また、炉5の内面における冷却ローラ4と引張りローラ3との間、即ち、炉5を構成している両側壁5aの下部内面にはそれぞれ、板状ガラス成形体Gに対面するように、第2加熱装置8が配設されている。そして、第1加熱装置6は、各側壁5a毎に、幅方向に4個が隣接し且つ上下2段に隣接して配置された計8個の第1加熱器7を備えると共に、第2加熱装置8は、各側壁5a毎に、幅方向に隣接して配置された3個の第2加熱器9を備えている。   And in the vicinity of the molded body 2 on the inner surface of the furnace 5, that is, on the upper inner surfaces of the side walls 5 a constituting the furnace 5, so as to face both side wall surfaces 2 c (molten glass Y) of the molded body 2, respectively. A first heating device 6 is provided. Further, between the cooling roller 4 and the pulling roller 3 on the inner surface of the furnace 5, that is, on the lower inner surfaces of both side walls 5 a constituting the furnace 5, the second glass surfaces G are respectively faced. A two-heating device 8 is provided. The first heating device 6 includes a total of eight first heaters 7 arranged in the width direction and adjacent to the upper and lower two stages for each side wall 5a and the second heating. The apparatus 8 includes three second heaters 9 arranged adjacent to each other in the width direction for each side wall 5a.

したがって、この成形装置1によれば、成形体2に供給されてその上部から側壁面2cに沿って流下する溶融ガラスYは、第1加熱装置6により加熱されて粘度を調整されつつ、成形体2の下頂部2bで融合して一枚の板状となり、この板状ガラス成形体Gが第2加熱装置8により加熱されて徐冷されつつ、引張りローラ3により挟持されて下方に引き抜かれていく。   Therefore, according to this shaping | molding apparatus 1, the molten glass Y supplied to the shaping | molding body 2 and flows down along the side wall surface 2c from the upper part is heated by the 1st heating apparatus 6, and a shaping | molding body is adjusted. 2 is fused to form a single plate, and the glass sheet G is heated by the second heating device 8 and gradually cooled, and is sandwiched by the pulling roller 3 and pulled downward. Go.

この場合、第1加熱装置6の構成要素である第1加熱器7は、図3に示すように、線状発熱体(発熱素線)7aの配設密度が一様ではなく粗密が存在する状態、つまり幅方向中央部で粗となり且つ幅方向両端部で密となっている。詳述すると、この発熱素線7aは、並列に配列され且つその発熱素線7aの配列領域の上下方向全長に亘って連続して延びる複数の直線部7a1を両端で折り返してなる波形状に曲折された状態で、耐熱性背面板7bに数mm離隔して固定されると共に、発熱素線7aの直線部7a1の間隔(ピッチ)は、幅方向中央領域Cで広くなり且つ各端部領域Dで狭くなっている。更に、その間隔は、幅方向中央領域Cの両側部C2がその中央部C1よりも相対的に広くなっている。具体的には、発熱素線7aは、幅方向中央領域Cの中央部C1における直線部7a1の間隔が18mm、その両側部C2における直線部7a1の間隔が23mm、幅方向両端部領域Dにおける直線部7a1の間隔が16mmであって、それらの両端から耐熱性背面板7bの両端までの距離Eが14mmとされている。尚、発熱素線7aの中央領域Cは、その全領域の1/2〜1/3を占めている。 In this case, as shown in FIG. 3, in the first heater 7 which is a component of the first heating device 6, the arrangement density of the linear heating elements (heating element wires) 7a is not uniform but is dense and dense. The state is rough at the center in the width direction, and dense at both ends in the width direction. More specifically, the heating wire 7a is a plurality of linear portions 7a1 extending continuously over the vertically entire length of the sequence regions sequenced and the heating wire 7a in parallel, the wave shape formed by folding both ends In a bent state, it is fixed to the heat-resistant back plate 7b with a distance of several millimeters, and the interval (pitch) between the straight portions 7a1 of the heating element wire 7a is widened in the center region C in the width direction and each end region. N is narrower. Further, the distance between the side portions C2 of the central region C in the width direction is relatively wider than the central portion C1. Specifically, in the heating element wire 7a, the interval between the straight portions 7a1 in the central portion C1 of the widthwise central region C is 18 mm, the interval between the straight portions 7a1 in both side portions C2 is 23 mm, and the straight lines in the width direction both end regions D The interval between the portions 7a1 is 16 mm, and the distance E from the both ends to both ends of the heat-resistant back plate 7b is 14 mm. The central region C of the heating element wire 7a occupies 1/2 to 1/3 of the entire region.

この場合、発熱素線7aは、カンタル合金、ニッケルクロム合金、モリブデンまたは炭化珪素で形成され、発熱素線7aから発生する発塵等が溶融ガラスYに付着することを抑制するために、この発熱素線7aは、発塵性を有しないセラミック製耐火物で覆われている。また、耐熱性背面板7bは、溶融ガラスYの成形に適した温度(例えば1500℃、更には1600℃)に対して耐久性があり且つ熱線を反射する特性を有する材質で形成されていることが好ましく、その形状は矩形に限られず、三角形、多角形、円形、楕円形またはこれらの組み合わせであってもよい。   In this case, the heating element wire 7a is formed of Kanthal alloy, nickel chrome alloy, molybdenum, or silicon carbide, and this heat generation is performed in order to prevent dust generated from the heating element wire 7a from adhering to the molten glass Y. The strand 7a is covered with a ceramic refractory that does not generate dust. Further, the heat-resistant back plate 7b is formed of a material that is durable to a temperature suitable for molding the molten glass Y (for example, 1500 ° C., further 1600 ° C.) and has a property of reflecting heat rays. The shape is not limited to a rectangle, and may be a triangle, a polygon, a circle, an ellipse, or a combination thereof.

このような構成からなる単一の加熱器7による加熱温度分布は、図4に示す特性曲線Aから把握できるように、幅方向中央部からその両側周辺までの領域Fが略変化がなく平坦であるのに対して、幅方向両端部の領域Hが両側方に移行するに連れて僅かながら徐々に低温となっている。これを、従来の加熱器17(発熱素線17aの配列密度が幅方向に一定のもの)が示す特性曲線Bと比較すれば、高温の山部が消失して平坦部Fが長くなり且つ徐々に温度低下する領域Hが狭くなると共に、最高温度が低下し且つ最低温度が高くなっており、全体的に見れば温度高低変化量が1/2以下、或いは1/3以下となっている。しかも、この加熱器7の最高加熱温度と最低加熱温度との差は、この実施形態では8℃であり、因みに従来の加熱器17の場合には、その温度差が22℃であった。   As can be seen from the characteristic curve A shown in FIG. 4, the heating temperature distribution by the single heater 7 having such a configuration is flat with the region F from the center in the width direction to the periphery of both sides almost unchanged. On the other hand, as the region H at both ends in the width direction shifts to both sides, the temperature gradually decreases slightly. When this is compared with the characteristic curve B shown by the conventional heater 17 (the arrangement density of the heating element wires 17a is constant in the width direction), the high temperature peak portion disappears and the flat portion F becomes longer and gradually. In addition, the region H in which the temperature decreases is narrowed, the maximum temperature is decreased, and the minimum temperature is increased. As a whole, the amount of change in temperature is 1/2 or less, or 1/3 or less. In addition, the difference between the maximum heating temperature and the minimum heating temperature of the heater 7 is 8 ° C. in this embodiment, and in the case of the conventional heater 17, the temperature difference is 22 ° C.

そして、このような特性を示す加熱器7を計8個備え且つこれらを幅方向に4個ずつ上下2段に隣接配置してなる第1加熱装置6による加熱温度分布、つまり溶融ガラスYの幅方向全域に対する加熱温度分布は、図5に実線で示す特性曲線AXから把握できるように、各加熱器7の幅方向中央領域Cに対応する高温の山部が相対的に低温の平坦部Fとなり、且つ各加熱器7の相互間隙間に対応する低温の谷部Hの温度低下が緩やかとなる。尚、この加熱器7における発熱素線7aの配列状態を変更した場合、或いは変更しない場合であっても、加熱量の相違や周辺温度の相違等によって、図5に点線で示す特性曲線のように、上記の平坦部Fが全体的に低温となり且つ上記の谷部Hが山部となることもあり得る。以上のような特性であれば、この加熱装置6によって加熱される溶融ガラスYの幅方向における温度分布が均一化され、図6に示すように、最終的に得られる液晶板ガラスGXに、各加熱器7の相互間部位に対応する偏肉部Zが殆ど出現しなくなる(図6は、偏肉部Zを誇張して示している)。従って、従来において図9に示すように複数の加熱器の相互間に対応する領域に存在していた温度変化が抑制される。 And the heating temperature distribution by the 1st heating apparatus 6 provided with the heater 7 which shows such a characteristic in total, and arrange | positioning these 4 pieces by the upper and lower two steps | paragraphs at a width direction, ie, the width | variety of the molten glass Y As can be understood from the characteristic curve AX indicated by the solid line in FIG. 5, the high-temperature peak corresponding to the central region C in the width direction of each heater 7 becomes a relatively low-temperature flat portion F. And the temperature fall of the low-temperature valley part H corresponding between the mutual gap | intervals of each heater 7 becomes moderate. Even if the arrangement state of the heating element wires 7a in the heater 7 is changed or not changed, a characteristic curve shown by a dotted line in FIG. In addition, the flat part F may become a low temperature as a whole, and the valley part H may become a peak part. If it is the above characteristics, the temperature distribution in the width direction of the molten glass Y heated by this heating device 6 is made uniform, and each liquid crystal plate glass GX obtained as shown in FIG. The uneven thickness portion Z corresponding to the portion between the containers 7 hardly appears (FIG. 6 shows the uneven thickness portion Z exaggerated). Therefore, the temperature change which existed in the area | region corresponding between the some heaters conventionally as shown in FIG. 9 is suppressed.

一方、溶融ガラスYが流下して冷却ローラ4を通過した後に板状形態となった板状ガラス成形体Gは、第2熱装置8によって加熱されて徐冷処理を受ける。この第2加熱装置8の構成要素である第2加熱器9は、図7に示すように、線状発熱体(発熱素線)9aの配設密度が上下方向に粗密を有する状態、図例では上部が密であり且つ下部が粗になっている。詳述すると、この発熱素線9aは、並列に配列され且つ幅方向に延びる複数の直線部9a1を両端で折り返してなる波形状に曲折された状態で、耐熱性背面板9bに数mm離隔して固定されると共に、発熱素線9aの直線部9a1の間隔は、上部から下方に移行するに連れて徐々に広くなっている。尚、この第2加熱器9は、板状ガラス成形体Gが下方に移行する際の不当な温度低下を阻止することを重視すれば、上記とは逆に、線状発熱体(発熱素線)9aの配設密度を、上部が粗となり且つ下部が密となるようにしてもよい。この場合、発熱素線9a及び耐熱性背面板9bの材質或いは特性は、上述の第1加熱器7の場合と同様である。 On the other hand, the plate-like glass shaped material G became plate form after the molten glass Y is passed through the cooling roller 4 flows down is subjected to slow cooling process is heated by the second pressurizing heat device 8. As shown in FIG. 7, the second heater 9 which is a component of the second heating device 8 is in a state in which the arrangement density of the linear heating elements (heating element wires) 9a is dense in the vertical direction. The upper part is dense and the lower part is rough. More specifically, the heating element wires 9a are spaced apart from the heat-resistant back plate 9b by several millimeters in a state where a plurality of straight portions 9a1 arranged in parallel and extending in the width direction are bent at both ends. The distance between the straight portions 9a1 of the heating element wire 9a is gradually increased as it moves from the upper portion to the lower portion. Note that the second heater 9 has a linear heating element (heating element wire, contrary to the above, if the emphasis is on preventing an undue temperature drop when the sheet-like glass molded body G moves downward. The arrangement density of 9a may be such that the upper part is rough and the lower part is dense. In this case, the materials or characteristics of the heating element wire 9a and the heat-resistant back plate 9b are the same as those of the first heater 7 described above.

このような加熱器9を幅方向に3個隣接配置してなる第2加熱装置8による加熱温度分布、つまり板状ガラス成形体Gに対する加熱温度分布は、板状ガラス成形体Gが上方から下方に移行するに連れて徐々に温度条件が変化するようになっている。したがって、板状ガラス成形体Gに対しては、上下方向に緻密な温度調整をすることによりガラスの転移点から歪点付近の温度を調節しながら徐冷処理を施すことが可能となり、反りや残留歪が低減された高品位の液晶板ガラスを得ることができる。   The heating temperature distribution by the second heating device 8 in which three heaters 9 are arranged adjacent to each other in the width direction, that is, the heating temperature distribution with respect to the sheet glass molded body G is such that the sheet glass molded body G is from below to above. The temperature condition gradually changes with the shift to. Therefore, it is possible to subject the plate-like glass molded body G to a slow cooling process while adjusting the temperature near the strain point from the glass transition point by finely adjusting the temperature in the vertical direction. A high-quality liquid crystal plate glass with reduced residual strain can be obtained.

尚、上記実施形態では、第1加熱器7及び第2加熱器9の発熱体として線状発熱体を使用したが、既に述べた高温に耐え得る発熱体であれば、線状のものでなくてもよく、また線状発熱体である場合に、その配列状態は上記例示の状態である必要はなく、線状発熱体の配設密度の粗密の状態が同等であれば、他の配列状態であってもよい。   In the above embodiment, the linear heating elements are used as the heating elements of the first heater 7 and the second heater 9, but the heating elements that can withstand the high temperatures already described are not linear. In the case of a linear heating element, the arrangement state does not need to be the state illustrated above, and other arrangement states may be used as long as the arrangement density of the linear heating elements is equal. It may be.

更に、上記実施形態は、オーバーフローダウンドロー法で成形される液晶板ガラスに本発明を適用したが、これ以外に、例えばスロットダウンドロー法で成形される液晶板ガラスについても同様にして本発明を適用することができる。   Furthermore, although the said embodiment applied this invention to the liquid crystal plate glass shape | molded by the overflow downdraw method, in addition to this, this invention is applied similarly to the liquid crystal plate glass shape | molded, for example by the slot down draw method. be able to.

本発明の実施形態に係る液晶板ガラス用加熱装置が配設された成形装置を示す概略縦断側面図である。It is a schematic vertical side view which shows the shaping | molding apparatus by which the heating apparatus for liquid crystal plate glass which concerns on embodiment of this invention was arrange | positioned. 前記成形装置の概略縦断正面図である。It is a general | schematic longitudinal cross-sectional front view of the said shaping | molding apparatus. 前記液晶板ガラス用加熱装置の構成要素である第1加熱器を示す正面図である。It is a front view which shows the 1st heater which is a component of the said heating apparatus for liquid crystal plate glass. 前記第1加熱器の温度特性を示すグラフである。It is a graph which shows the temperature characteristic of a said 1st heater. 前記第1加熱器により構成された第1加熱装置の温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the 1st heating apparatus comprised by the said 1st heater. 前記第1加熱装置を使用して製造された液晶板ガラスを誇張して示す平面図である。It is a top view which exaggerates and shows the liquid crystal plate glass manufactured using the said 1st heating apparatus. 前記液晶板ガラス用加熱装置の構成要素である第2加熱器を示す正面図である。It is a front view which shows the 2nd heater which is a component of the said heating apparatus for liquid crystal plate glass. 従来の加熱器を示す正面図である。It is a front view which shows the conventional heater. 従来の加熱器により構成された加熱装置の温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the heating apparatus comprised with the conventional heater. 従来の加熱装置を使用して製造された液晶板ガラスを示す平面図である。It is a top view which shows the liquid crystal plate glass manufactured using the conventional heating apparatus.

符号の説明Explanation of symbols

1 成形装置
2 成形体
5 炉
5a 炉の側壁(炉壁)
6 第1加熱装置(液晶板ガラス用加熱装置)
7 第1加熱器
7a 発熱素線(線状発熱体)
7b 耐熱性背面板
8 第2加熱装置(液晶板ガラス用加熱装置)
9 第2加熱器
9a 発熱素線(線状発熱体)
9b 耐熱性背面板
Y 溶融ガラス
G 板状ガラス成形体
DESCRIPTION OF SYMBOLS 1 Molding apparatus 2 Molded body 5 Furnace 5a Side wall (furnace wall) of a furnace
6 1st heating device (heating device for liquid crystal plate glass)
7 First heater 7a Heating element wire (linear heating element)
7b Heat-resistant back plate 8 Second heating device (heating device for liquid crystal plate glass)
9 Second heater 9a Heating element wire (linear heating element)
9b Heat-resistant back plate Y Molten glass G Sheet glass molded body

Claims (9)

液晶板ガラスを成形するに際して、炉内の上方に存する成形体に導かれた溶融ガラスが流下して板状に成形されつつ炉の下方開口部を通じて引き抜かれるまでの過程で、溶融ガラスに加熱処理を施すために用いられる液晶板ガラス用加熱装置であって、
前記溶融ガラスの少なくとも幅方向における加熱温度を調整することにより前記溶融ガラスの幅方向における温度分布が均一化されるように、
単一の加熱器に設けられる線状発熱体を、並列に配列され且つその配列領域の上下方向全長に亘って連続して延びる複数の直線部が、両端で折り返されてなる波形状に曲折し、且つそれら複数の直線部の幅方向における配設密度に粗密を存在させると共にその加熱器を複数個備えてなることを特徴とする液晶板ガラス用加熱装置。
When the liquid crystal plate glass is formed, the molten glass led to the molded body existing in the upper part of the furnace flows down and is formed into a plate shape, and then the molten glass is subjected to heat treatment until it is pulled out through the lower opening of the furnace. A heating device for liquid crystal plate glass used for applying,
The temperature distribution in the width direction of the molten glass is made uniform by adjusting the heating temperature in at least the width direction of the molten glass,
A linear heating element provided in a single heater is bent into a wave shape in which a plurality of linear portions arranged in parallel and continuously extending over the entire vertical length of the arrangement region are folded at both ends. and with the presence of density in arrangement density in the width direction of the plurality of linear portions, the liquid crystal plate glass heating apparatus characterized in that it comprises a plurality of the heater.
前記複数の加熱器の相互間に対応する領域の温度変化が抑制されることにより前記溶融ガラスの幅方向における温度分布が均一化されるように、前記単一の加熱器に設けられる線状発熱体の複数の直線部の幅方向における配設密度に粗密が存在すると共にその加熱器が複数個備えられていることを特徴とする請求項1に記載の液晶板ガラス用加熱装置。 Linear heat generation provided in the single heater so that the temperature distribution in the width direction of the molten glass is made uniform by suppressing the temperature change in the corresponding region between the plurality of heaters. the arrangement density in the width direction of the plurality of linear portions of the body together with the density exists, the liquid crystal sheet glass heating apparatus according to claim 1, characterized in that the heater is provided plural. 前記線状発熱体の複数の直線部の幅方向における配設密度は、前記加熱器の幅方向中央部で粗となり且つ幅方向端部で密となるように構成されていることを特徴とする請求項1または2に記載の液晶板ガラス用加熱装置。 Arrangement density in the width direction of the plurality of linear portions of the wire-like heating element is characterized by being configured so as to be dense in the heater in the width direction central portion in the rough and made and widthwise end portions The heating apparatus for liquid crystal plate glass according to claim 1 or 2. 前記加熱器の加熱温度は、前記線状発熱体が密である部位の最高温度と、粗である部位の最低温度との差が、15℃未満であることを特徴とする請求項1〜3の何れかに記載の液晶板ガラス用加熱装置。 The heating temperature of the heater is such that a difference between a maximum temperature of a portion where the linear heating element is dense and a minimum temperature of a portion where the linear heating element is coarse is less than 15 ° C. A heating apparatus for liquid crystal plate glass according to any one of the above. 前記板状ガラス成形体の少なくとも上下方向における加熱温度を調整することにより反りや残留歪が低減された板ガラスを得るための徐冷処理が施されるように、単一の第2の加熱器に設けられる発熱体の上下方向における配設密度に粗密を存在させると共にその加熱器を複数個備えてなることを特徴とする請求項1〜4の何れかに記載の液晶板ガラス用加熱装置。   In a single second heater, a slow cooling process is performed to obtain a plate glass with reduced warpage and residual strain by adjusting the heating temperature in at least the vertical direction of the plate-like glass molded body. The heating apparatus for liquid crystal plate glass according to any one of claims 1 to 4, wherein the heating element provided is provided with a plurality of heaters while the arrangement density of the heating elements in the vertical direction is made dense. 前記線状発熱体の材質が、カンタル合金、ニッケルクロム合金、モリブデンまたは炭化珪素であることを特徴とする請求項1〜5の何れかに記載の液晶板ガラス用加熱装置。 The heating device for liquid crystal plate glass according to any one of claims 1 to 5, wherein a material of the linear heating element is Kanthal alloy, nickel chromium alloy, molybdenum or silicon carbide. 前記線状発熱体が耐熱性背面板に固定されていることを特徴とする請求項1〜の何れかに記載の液晶板ガラス用加熱装置。 The said linear heating element is being fixed to the heat resistant back plate, The heating apparatus for liquid crystal plate glass in any one of Claims 1-6 characterized by the above-mentioned. 請求項1〜の何れかに記載の液晶板ガラス用加熱装置を、炉壁の内側に配設したことを特徴とする液晶板ガラス用炉。 A furnace for liquid crystal plate glass, wherein the heating device for liquid crystal plate glass according to any one of claims 1 to 7 is disposed inside a furnace wall. 請求項1〜の何れかに記載の液晶板ガラス用加熱装置を使用して、オーバーフローダウンドロー法により板ガラスを成形することを特徴とする液晶板ガラスの製造方法。 Using a liquid crystal sheet glass heating apparatus according to any one of claims 1 to 7, a method of manufacturing a liquid crystal panel glass, which comprises forming a sheet glass by an overflow down-draw method.
JP2005306280A 2005-10-20 2005-10-20 Liquid crystal plate glass heating apparatus, liquid crystal plate glass furnace, and liquid crystal plate glass manufacturing method Active JP4821260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306280A JP4821260B2 (en) 2005-10-20 2005-10-20 Liquid crystal plate glass heating apparatus, liquid crystal plate glass furnace, and liquid crystal plate glass manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306280A JP4821260B2 (en) 2005-10-20 2005-10-20 Liquid crystal plate glass heating apparatus, liquid crystal plate glass furnace, and liquid crystal plate glass manufacturing method

Publications (2)

Publication Number Publication Date
JP2007112665A JP2007112665A (en) 2007-05-10
JP4821260B2 true JP4821260B2 (en) 2011-11-24

Family

ID=38095185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306280A Active JP4821260B2 (en) 2005-10-20 2005-10-20 Liquid crystal plate glass heating apparatus, liquid crystal plate glass furnace, and liquid crystal plate glass manufacturing method

Country Status (1)

Country Link
JP (1) JP4821260B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102574720A (en) * 2009-12-24 2012-07-11 安瀚视特股份有限公司 Glass plate manufacturing method and glass plate manufacturing apparatus
CN103359913A (en) * 2012-04-06 2013-10-23 安瀚视特控股株式会社 Making method of glass substrate

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177790B2 (en) * 2006-10-24 2013-04-10 日本電気硝子株式会社 Glass ribbon manufacturing apparatus and manufacturing method thereof
KR101420195B1 (en) * 2006-10-24 2014-07-17 니폰 덴키 가라스 가부시키가이샤 Glass ribbon producing apparatus and process for producing the same
JP2010527891A (en) 2007-05-18 2010-08-19 コーニング インコーポレイテッド Method and apparatus for minimizing inclusions in glass manufacturing processes
JP5005717B2 (en) * 2009-03-13 2012-08-22 AvanStrate株式会社 Glass plate manufacturing method and manufacturing apparatus
JP5611572B2 (en) * 2009-05-18 2014-10-22 コーニング インコーポレイテッド Stress control area
WO2011047008A1 (en) * 2009-10-14 2011-04-21 Corning Incorporated Method and apparatus for controlling sheet thickness
KR101846035B1 (en) * 2009-11-24 2018-04-05 코닝 인코포레이티드 Method and apparatus for making a glass sheet with controlled thickness
WO2012018072A1 (en) * 2010-08-04 2012-02-09 AvanStrate株式会社 Glass plate production device and glass plate cooling method
CN102811959B (en) * 2011-03-28 2015-04-29 安瀚视特股份有限公司 Production method for glass plate and glass plate production device
KR101253016B1 (en) 2011-03-31 2013-04-15 아반스트레이트 가부시키가이샤 Glass plate production method
US20120318020A1 (en) * 2011-06-17 2012-12-20 Robert Delia Apparatus and methods for producing a glass ribbon
CN104024169B (en) * 2012-01-13 2016-12-21 安瀚视特控股株式会社 The manufacture method of glass substrate and shaped device
CN103207467B (en) * 2012-09-26 2015-09-02 中国电子科技集团公司第五十五研究所 Improve method and the device of liquid crystal display zone of heating low-temperature heat temperature homogeneity
JP5994992B2 (en) * 2012-12-20 2016-09-21 日本電気硝子株式会社 Sheet glass manufacturing apparatus and sheet glass manufacturing method
US9914657B2 (en) * 2013-04-30 2018-03-13 Corning Incorporated Apparatus and method for thermal profile control in an isopipe
JP2017119617A (en) * 2015-12-28 2017-07-06 AvanStrate株式会社 Glass substrate manufacturing method, and glass substrate manufacturing apparatus
CN110255866B (en) * 2019-07-22 2023-09-12 山东柔光新材料有限公司 Glass forming pond with temperature regulating function and temperature regulating method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211884A (en) * 1988-02-19 1989-08-25 Matsushita Seiko Co Ltd Planar heater
JP2001031434A (en) * 1999-07-19 2001-02-06 Nippon Electric Glass Co Ltd Forming of plate glass and forming apparatus
JP3586142B2 (en) * 1999-07-22 2004-11-10 エヌエッチ・テクノグラス株式会社 Glass plate manufacturing method, glass plate manufacturing apparatus, and liquid crystal device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102574720A (en) * 2009-12-24 2012-07-11 安瀚视特股份有限公司 Glass plate manufacturing method and glass plate manufacturing apparatus
CN102574720B (en) * 2009-12-24 2014-11-26 安瀚视特股份有限公司 Glass plate manufacturing method and glass plate manufacturing apparatus
CN103359913A (en) * 2012-04-06 2013-10-23 安瀚视特控股株式会社 Making method of glass substrate
CN103359913B (en) * 2012-04-06 2016-06-15 安瀚视特控股株式会社 The manufacture method of glass substrate

Also Published As

Publication number Publication date
JP2007112665A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4821260B2 (en) Liquid crystal plate glass heating apparatus, liquid crystal plate glass furnace, and liquid crystal plate glass manufacturing method
JP5177790B2 (en) Glass ribbon manufacturing apparatus and manufacturing method thereof
JP5994992B2 (en) Sheet glass manufacturing apparatus and sheet glass manufacturing method
JP4865298B2 (en) Manufacturing method of glass strip
KR101420195B1 (en) Glass ribbon producing apparatus and process for producing the same
TWI481571B (en) Manufacture method and manufacturing apparatus for glass plate
KR101907227B1 (en) Method for manufacturing glass substrate
KR101326978B1 (en) Glass substrate production method
JP5611572B2 (en) Stress control area
JP5154700B2 (en) Glass plate manufacturing method, glass plate manufacturing apparatus, and glass plate cooling method
JPH05124826A (en) Device for producing glass plate
JP6189584B2 (en) Manufacturing method of glass plate
JP6048697B2 (en) Float tank and glass manufacturing apparatus including the same
JP5614171B2 (en) Manufacturing method of glass plate
JP4280977B2 (en) Sheet glass forming equipment
JP2015105206A (en) Manufacturing method of glass plate, and glass plate
KR101264479B1 (en) Process for producing float plate glass
JP5449281B2 (en) Manufacturing method of glass strip
JP6464788B2 (en) Glass ribbon manufacturing method and heating furnace
CN202785979U (en) Temperature control device for flowing down molten glass from formed body
JP4281107B2 (en) Sheet glass forming equipment
KR200407349Y1 (en) Apparatus for producing sheet glass using the downdraw method
CN217757244U (en) Glass article manufacturing apparatus
WO2022131205A1 (en) Glass article production apparatus
JPS5939377B2 (en) Manufacturing method of thin glass by float method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent or registration of utility model

Ref document number: 4821260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3