WO2001006104A1 - Procede de commande d'un moteur a combustion en vue de supprimer le cliquetis - Google Patents
Procede de commande d'un moteur a combustion en vue de supprimer le cliquetis Download PDFInfo
- Publication number
- WO2001006104A1 WO2001006104A1 PCT/FR2000/002020 FR0002020W WO0106104A1 WO 2001006104 A1 WO2001006104 A1 WO 2001006104A1 FR 0002020 W FR0002020 W FR 0002020W WO 0106104 A1 WO0106104 A1 WO 0106104A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- intake
- engine
- valves
- cylinder
- exhaust
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0203—Variable control of intake and exhaust valves
- F02D13/0215—Variable control of intake and exhaust valves changing the valve timing only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/20—Valve-gear or valve arrangements actuated non-mechanically by electric means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0223—Variable control of the intake valves only
- F02D13/0234—Variable control of the intake valves only changing the valve timing only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0257—Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0261—Controlling the valve overlap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/027—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/01—Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0253—Fully variable control of valve lift and timing using camless actuation systems such as hydraulic, pneumatic or electromagnetic actuators, e.g. solenoid valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/001—Controlling intake air for engines with variable valve actuation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to a combustion engine, in particular a heat engine of a motor vehicle.
- the invention relates more particularly to a method of controlling a four-stroke combustion engine in order to eliminate the cliq uetis.
- Knocking is a phenomenon of abnormal combustion detonation which appears' more or less random in certain operating conditions.
- a common method of eliminating rattling is to reduce the ignition advance so as to delay the start of ignition. This reduces the maximum temperature and pressure in the vicinity of the top dead center of the upward stroke of the piston, and eliminates the rattling which mainly depends on these temperature and pressure parameters.
- the reduction in the ignition advance has the disadvantage of degrading engine performance, in particular torque and fuel consumption, and increasing the temperature of the exhaust gases, which tends to deteriorate the exhaust line.
- the invention aims to propose a method for controlling a combustion engine with a view to eliminating rattling without the aforementioned drawbacks.
- the invention provides a method of controlling a four-stroke combustion engine with a view to eliminating rattling, of the type comprising an air intake or air / fuel mixture circuit and a circuit exhaust of burnt gases which communicate with a combustion chamber of at least one engine cylinder, of the type in which the communications of the intake and exhaust circuits with the chamber are each capable of being closed off by at at least one valve, respectively of intake and exhaust, of the type comprising a device for modifying the laws of opening of the valves, characterized in that when the appearance of rattling in the combustion chamber has been detected, in depending on the operating point of the engine, the laws of opening the intake valve and / or the exhaust valve are modified to modify the physico-chemical structure of the gases admitted into the combustion chamber and so as to eliminate the rattling phenomenon. Thanks to the implementation of such a method the risk of rattling is eliminated in a simple manner, without modifying the ignition advance.
- the quantity of burnt gas recirculated inside the combustion chamber of the cylinder is reduced by a predetermined value
- the intensity of the aerodynamic movement ordered by the fuel load inside the combustion chamber of the cylinder is increased by a predetermined value
- the intensity of the ordered aerodynamic movement of the fuel load is increased by means of turbulence generating means in the intake circuit; - the turbulence generating means are electronically controlled;
- the intensity of the aerodynamic movement ordered by the fuel load is increased by the control of the intake valves;
- Said control of the intake valves consists, if the engine comprises a single intake valve per cylinder, of delaying the instant of closing of the intake valve and, if the engine comprises several intake valves per cylinder , to create a phase difference between the instants of opening of the intake valves and / or between the instants of closing of the intake valves of the same cylinder;
- the difference between the instant of opening of the intake valves and the instant of closing of the exhaust valves is reduced if said instant of opening takes place before said instant closing, and / or one compares the instant of valve closure ⁇ exhaust top dead center of the ascending rse neck of the piston, and / or are moved towards the opening time of the intake valve from neutral top of upward stroke of the piston;
- the engine is of the type in which the valves are opening controlled by an actuator, in particular by an electromagnetic linear actuator, connected to an electronic control unit.
- - fig ure 1 is a partial schematic view in section of a part of an internal combustion engine with valves without camshaft and controlled according to a process in accordance with the teachings of the invention
- - Figure 2 is a distribution diagram of a four-stroke engine in normal operation
- FIG. 3 is a distribution diagram of a four-stroke engine with delay in closing the intake valve
- FIG. 4 is a distribution diagram of a four-stroke engine with phase shift of the closing and opening of the intake valves
- FIG. 5 is a distribution diagram of a four-stroke engine with a reduction in valve crossing
- FIG. 6 is a distribution diagram of a four-stroke engine with an approximation of the closing time of the exhaust valve from top dead center TDC;
- FIG. 7 is a distribution diagram of a four-stroke engine operating without valve crossing with an approximation of the closing time of the exhaust valve from top dead center TDC.
- FIG. 1 shows a cylinder 10 of a four-stroke internal combustion engine without a camshaft, also called a "camless" engine.
- the explanations on the operation of the engine and on the operation of the process according to the invention apply to all types of internal combustion engine equipped with a device for modifying the laws for opening the valves.
- the upper part of the cylinder 10 forms a combustion chamber 12 delimited by a movable piston 14 and by a cylinder head 15.
- the cylinder 10 comprises several intake valves and several exhaust valves. A single inlet valve 18 and a single exhaust valve 19 are shown.
- the cylinder re 1 0 is supplied with air / fuel mixture by an intake circuit 16 which opens into the combustion chamber 12 through intake valves whose movements are controlled by linear electromagnetic actuators 1 1 in order to whether or not to block communications between the intake circuit 16 and the combustion chamber 12.
- An exhaust circuit 17 is provided for evacuating the burnt gases from the combustion chamber 12 through exhaust valves also controlled by electromagnetic linear actuators 1 3.
- the control of the intake and exhaust valves is ensured by an electronic control unit (not shown) which controls the actuators 1 1, 13, and which also controls the injection of fuel, here indirect, by means of 'An injector 20, as well as the ignition by means of a spark plug (not shown).
- an electronic control unit (not shown) which controls the actuators 1 1, 13, and which also controls the injection of fuel, here indirect, by means of 'An injector 20, as well as the ignition by means of a spark plug (not shown).
- the " electronic control unit" includes in particular means for storing one or more engine operating maps, each of which determines the different parameters and states of the engine for a range of operating points.
- the electronic control unit receives signals representative of operating parameters such as engine speed, atmospheric pressure, pressure in each cylinder, flow of intake and / or exhaust gases, torque snapshot provided, etc.
- the piston 14 performs a downward stroke from top dead center TDC to the point low dead PM B, then performs an upward stroke from low dead center PMB to high dead center TDC.
- FIG 2 an example of a distribution diagram is shown.
- the opening OA of the mission valves is carried out in advance with respect to the top dead center TDC of the piston 14, at an angle le comprised for example between 0 ° and 45 °.
- the closure FA of the intake valves 1 8 occurs with a delay relative to the bottom dead center PMB of the piston 14, at an angle for example between 30 ° and 90 °.
- the intake and exhaust valves are closed and the piston 14 rises and compresses the mixture in the combustion chamber 12.
- the ignition is product at an instant, or ignition point, whose advance relative to TDC top dead center is between 0 ° and 40 °.
- the exhaust valves are open, the piston 14 rises and sweeps the cylinder 10.
- the closing FE of the exhaust valves occurs with delay relative to the top dead center TDC, at an angle understood for example between 0 ° and 30 °.
- TDC top dead center
- the OE opening of the exhaust valves often takes place before the bottom dead center PMB and it is intended to lower the internal pressure of the cylinder 10 before the piston 14 reaches the bottom dead center PMB, - so as to avoid back pressure which would slow the rise of the piston 14.
- the advance of the OE opening of the exhaust valves relative to the bottom dead center PMB is therefore all the greater as the engine is designed to operate at higher speed .
- a piezoelectric pressure sensor fixed to the motor is used. This sensor is designed to recognize a shock wave produced by the rattling phenomenon.
- I t is known to produce, inside the combustion chamber 12 of a cylinder 10, an ordered aerodynamic movement of the rotary type.
- the "swirl" is an ordered aerodynamic movement whose mean axis of rotation is substantially parallel to the axis of the piston 14 and the direction of rotation of which reverses with the reversal of the direction of movement of the piston 14 in the cylinder 10.
- the intensity of the "swirl” is preferably increased by modifying the control of the intake valves. If the cylinder 10 has only one inlet valve, the closing time FA of the inlet valve is delayed, as illustrated in FIG. 3. For example, this time is delayed by an angle of 5 ° to increase the "swirl" by 1. If the cylinder 10 has several intake valves, the instants of opening OA and / or closing FA of the intake valves are dephased with respect to each other. As a first approximation, the greater the phase shift, the more the "swirl” increases. By phase shift tests and measurements of the number of “swiris” obtained, we can determine the increase in “swirl” as a function of the phase shift.
- FIG. 4 illustrates an example of phase shift of the instants of opening and closing of the intake valves in the case of an engine with two intake valves per cylinder.
- the references OA1 and OA2 indicate, respectively, the instants of opening of a first and of a second inlet valve.
- the references FA1 and FA2 indicate, respectively, the times of closing of the first and of the second inlet valve.
- the opening OA2 takes place at the top dead center PMH while the closing FA2 takes place at the bottom dead center PMB.
- OA1, OA2 or that the times of closing FA1, FA2 of the intake valves. For example, we open the first intake valve before TDC top dead center, then the second intake valve at TDC top dead center, and we close both intake valves after bottom dead center.
- FIG. 5 represents a distribution diagram in which an attempt has been made to reduce the proportion of burned gases recirculated GBR by reducing the crossing of the valves.
- the opening instant OA of the intake valves has been brought closer to the closing instant FE of the exhaust valves.
- FIG. 6 represents a distribution diagram in which an attempt has been made to reduce the proportion of burnt gases recirculated GBR by increasing the emptying of the cylinder 10 into burnt gases.
- the closing instant FE of the exhaust valves was brought closer to the top dead center PM H.
- the approximation of the closing instant FE of the exhaust valves has reduced the crossing of the valves. But it is also possible to keep the same valve crossing by moving the instant of opening OA of the intake valves accordingly.
- FIG. 7 shows a distribution diagram of the cylinder 10 when it operates in a mode without valve crossing, ie the instant of closing FE of the exhaust valve 19 takes place before the opening time OA of the intake valve 18.
- the quantity of burnt gases recirculated GBR is determined by the quantity of burnt gases which remain enclosed in the combustion chamber 12 at the closing FE of the exhaust valve 19.
- the closing instant FE of the exhaust valve 19 is symmetrical to the opening instant OA of the intake valve 18 relative to the top dead center TDC.
- the closing instant FE of the exhaust valve t 19 is brought closer to the top dead center TDC in order to reduce the quantity of burnt gases trapped at l inside the combustion chamber 12. This has the effect of substantially reducing the proportion of burned gases recirculated GBR in the cylinder 10.
- the method according to the invention also applies to an engine which comprises a single intake valve and / or a single exhaust valve. It is noted that on the camshaft engines, the laws of opening the valves are modified by means of known devices of variable distribution.
- the elimination of knocking is carried out, in general, by a correction in fast loop and slow loop. As soon as the appearance of knocking on a cylinder is detected, depending on whether the engine is in a partial load phase or in a full load phase, the turbulence is increased by a high "swirl" value, or the quantity of GBR recirculated burnt gases is reduced by a significant amount. This is the so-called fast loop correction.
- the method according to the invention is applied with a correction in fast loop and slow loop on the offending cylinder, in order to remove the clicking. It is also possible to apply a similar correction of suitable amplitude to the other cylinders, in order to prevent the appearance of rattling. Indeed, if there has been a knock on a cylinder, there is a significant risk that the knocking will also appear on other cylinders.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
L'invention propose un procédé de commande d'un moteur à combustion à quatre temps en vue de supprimer le cliquetis, caractérisé en ce que lorsque l'on a détecté l'apparition du cliquetis dans la chambre de combustion (12), en fonction du point de fonctionnement du moteur, on modifie les lois d'ouverture de la soupape d'admission (18) et/ou de la soupape d'échappement (19) de façon à modifier la structure physico-chimique des gaz admis dans la chambre de combustion (12) et à supprimer le phénomène de cliquetis.
Description
"Procédé de commande d' u n moteu r à combustion en vue de supprimer le cliquetis"
La présente invention concerne un moteur à combustion, notamment u n moteur thermique de véhicule automobile. L'invention concerne plus particulièrement un procédé de commande d' un moteur à combustion à quatre temps en vue de supprimer le cliq uetis .
Le cliquetis est un phénomène de combustion anormale par détonation qui apparaît de 'façon plus ou moins aléatoire dans certaines conditions de fonctionnement.
En général, le cliquetis apparaît après l' allumage de la charge et il détruit la propagation normale de la combustion . Le cliquetis est très préjudiciable car il peut rapidement conduire à la destruction du moteur par augmentation de la température suite à l' augmentation locale des échanges thermiq ues.
U ne méthode courante pour supprimer le cliquetis consiste à réduire l' avance à l' allumage de façon à retarder le départ de l' allumage. Ceci réduit la température et la pression maximales au voisinage du point mort haut de la course ascendante du piston, et supprime le cliquetis qui dépend principalement de ces paramètres de température et de pression.
La réduction de l' avance à l' allumage à toutefois pour inconvénient de dégrader les performances du moteur, en particulier le couple et la consommation de carburant, et d' augmenter la température des gaz d'échappement, ce q ui tend à détériorer la ligne d' échappement.
L'invention vise à proposer un procédé de commande d' un moteur à combustion en vue de supprimer le cliquetis sans les inconvénients précités.
Dans ce but, l'invention propose u n procédé de commande d' un moteur à combustion à quatre temps en vue de supprimer le cliquetis , d u type comportant un circuit d'admission d' air ou de mélange air/carburant et un circuit
d'échappement de gaz brûlés qui communiquent avec une chambre de combustion d'au moins un cylindre du moteur, du type dans lequel les communications des circuits d'admission et d'échappement avec la chambre sont susceptibles d'être obturées chacune respectivement par au moins une soupape, respectivement d'admission et d'échappement, du type comportant un dispositif pour modifier les lois d'ouverture des soupapes, caractérisé en ce que lorsque l'on a détecté l'apparition du cliquetis dans la chambre de combustion, en fonction du point de fonctionnement du moteur, on modifie les lois d'ouverture de la soupape d'admission et/ou de la soupape d'échappement à modifier la structure physico-chimique des gaz admis dans la chambre de combustion et de façon à supprimer le phénomène de cliquetis. Grâce à la mise en œuvre d'un tel procédé le risque de cliquetis est supprimé de façon simple, sans modifier l'avance à l'allumage.
Selon d'autres caractéristiques de l'invention :
- si le moteur est dans une phase de charge partielle, on réduit la quantité de gaz brûlés recirculés à l'intérieur de la chambre de combustion du cylindre d'une valeur prédéterminée ;
- si le moteur est dans une phase de pleine charge, on augmente l'intensité du mouvement aérodynamique ordonné de la charge carburée à l'intérieur de la chambre de combustion du cylindre d'une valeur prédéterminée ;
- on augmente l'intensité du mouvement aérodynamique ordonné de la charge carburée à l'aide de moyens générateurs de turbulences dans le circuit d'admission ; - les moyens générateurs de turbulences sont pilotés électroniquement ;
- on augmente l'intensité du mouvement aérodynamique ordonné de la charge carburée par la commande des soupapes d'admission ;
- ladite commande des soupapes d'admission consiste, si le moteur comporte une seule soupape d' admission par cylindre, à retarder l' instant de fermeture de la soupape d' admission et, si le moteu r comporte plusieurs soupapes d' admission par cylindre, à créer un déphasage entre les instants d' ouvertu re des soupapes d' admission et/ou entre les instants de fermeture des soupapes d' admission d' un même cylindre ;
- le mouvement aérodynamique ordonné a son axe moyen de rotation sensiblement parallèle à l' axe du piston et son sens de rotation s' inverse avec l' inversion d u sens de déplacement du piston dans le cylind re ;
- pour réduire la q uantité de gaz brûlés recirculés, on réduit l' écart entre l' instant d' ouverture des soupapes d' admission et l' instant de fermeture des soupapes d' échappement si ledit instant d' ouverture a lieu avant ledit instant de fermeture, et/ou on rapproche l' instant de fermeture des soupapes~d' échappement du point mort haut de la cou rse ascendante du piston, et/ou on rapproche l' instant d'ouverture des soupapes d'admission du point mort haut de la course ascendante du piston ;
- le moteur est du type dans lequel les soupapes sont à ouverture commandée par un actionneur, notamment par un actionneu r linéaire électromag nétique, relié à une unité électronique de commande.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels : - la fig ure 1 est une vue schématiq ue partielle en coupe d' une partie d' un moteu r à combustion interne à soupapes sans arbre à cames et commandé selon un procédé conforme aux enseignements de l' invention ;
- la figure 2 est un diagramme de distribution d'un moteur à quatre temps en fonctionnement normal ;
- la figure 3 est un diagramme de distribution d'un moteur à quatre temps avec retardement de la fermeture de la soupape d'admission ;
- la figure 4 est un diagramme de distribution d'un moteur à quatre temps avec déphasage de la fermeture et de l'ouverture des soupapes d'admission ;
- la figure 5 est un diagramme de distribution d'un moteur à quatre temps avec une réduction du croisement des soupapes ;
- la figure 6 est un diagramme de distribution d'un moteur à quatre temps avec un rapprochement de l'instant de fermeture de la soupape d'échappement du point mort haut PMH ;
- la figure 7 est un diagramme de distribution d'un moteur à quatre temps fonctionnant sans croisement des soupapes avec un rapprochement de l'instant de fermeture de la soupape d'échappement du point mort haut PMH. On a représenté à la figure 1 un cylindre 10 d'un moteur à combustion interne à quatre temps sans arbre à cames, aussi appelé moteur « camless ». Mais les explications sur le fonctionnement du moteur et sur le fonctionnement du procédé selon l'invention s'appliquent à tous les types de moteur à combustion interne équipés d'un dispositif pour modifier les lois d'ouverture des soupapes.
La partie supérieure du cylindre 10 forme une chambre de combustion 12 délimitée par un piston mobile 14 et par une culasse 15. Le cylindre 10 comporte plusieurs soupapes d'admission et plusieurs soupapes d'échappement. On a représenté une seule soupape d'admission 18 et une seule soupape d'échappement 19.
Le cylind re 1 0 est alimenté en mélange air/carburant par un circuit d'admission 16 q u i débouche dans la chambre de combustion 12 au travers des soupapes d'admission dont les déplacements sont commandés par des actioπneurs électromagnétiq ues linéaires 1 1 afin d'obturer ou non les communications entre le circuit d'admission 16 et la chambre de combustion 12.
U n circuit d'échappement 17 est prévu pour l'évacuation des gaz brûlés hors de la chambre de combustion 12 au travers des soupapes d'échappement également commandées par des actionneurs linéaires électromag nétiques 1 3.
La commande des soupapes d'admission et d'échappement est assurée par une unité électroniq ue de commande (non représentée) qui pilote les actionneurs 1 1 , 13, et qui commande aussi l'injection de carburant, ici ind irecte, au moyen d'un injecteur 20 , de même que l'allumage au moyen d'une bougie (non représentée) .
L'unité "électronique de commande comporte notamment des moyens de mémorisation d'une ou plusieurs cartographies de fonctionnement du moteur dont chacune détermine les différents paramètres et états du moteur pour une gamme de points de fonctionnement.
L'un ité électronique de commande reçoit des signaux représentatifs de paramètres de fonctionnement tels q ue le rég ime du moteur, la pression atmosphérique, la pression dans chaque cylindre, le débit des gaz d'admission et/ou d'échappement, le couple instantané fourni, etc.
Selon le principe d u cycle à quatre temps d'un moteur à combustion , celui-ci s'effectue en deux rotations du vilebreq uin et en quatre courses du piston 14, les quatre temps du cycle étant l'admission , la compression , la combustion et l'échappement.
Lors d' une rotation du vilebrequin, le piston 14 effectue une course descendante du point mort haut PMH vers le point
mort bas PM B , puis il effectue une course ascendante du point mort bas PMB vers le point mort haut PMH .
En considérant la représentation simplifiée du cylindre
10 de la figure 1 , lors de l'admission , les soupapes d'admission sont ouvertes et le piston 14 descend . L'augmentation d u volume V du cylind re 10 crée une dépression qu i provoque l'aspiration du mélange air/carburant.
Su r la figure 2, on a représenté un exemple de diag ramme de distribution. Sur ce diag ramme on remarque que l' ouverture OA des soupapes d'ad mission s'effectue en avance par rapport au point mort haut PMH du piston 14, selon un ang le compris par exemple entre 0° et 45° .
La fermeture FA des soupapes d'ad mission 1 8 se produ it avec un retard par rapport au point mort bas PMB du piston 14, selon un angle compris par exemple entre 30° et 90°.
Lors de la compression , les soupapes d'admission et d'échappement sont fermées et le piston 14 monte et comprime le mélange dans la chambre de combustion 12. Quelques deg rés d' angle avant le point mort haut PM H , l'allumage se produit à un instant, ou point d'allumage, dont l'avance par rapport au point mort haut PMH est comprise entre 0° et 40° .
Lors de l'explosion , combustion puis détente, le piston
14 est poussé vers le bas de sa course sous l'action des gaz et, quelques degrés avant le point mort bas PMB , les soupapes d'échappement s'ouvrent provoquant une chute de la pression dans le cylindre 1 0. L' instant d'ouverture OE des soupapes d'échappement décrit un ang le avec le point mort bas PMB compris par exemple entre 1 0° et 90° .
Lors de l'échappement, les soupapes d'échappement sont ouvertes, le piston 14 monte et balaie le cylindre 10. La fermeture FE des soupapes d'échappement se produit avec retard par rapport au point mort haut PMH, selon un angle compris par exemple entre 0° et 30° .
Lors du passage d'un cycle déterminé au cycle suivant, il se produit un croisement des soupapes qui est illustré à la figure 2, c' est à dire une phase d urant laquelle les soupapes d' admission sont ouvertes alors que les soupapes d'échappement ne sont pas encore fermées.
L'ouverture OE des soupapes d'échappement a souvent lieu avant le point mort bas PMB et elle est destinée à abaisser la pression interne du cylind re 10 avant q ue le piston 14 atteigne le point mort bas PMB ,- de manière à éviter la contre- pression q ui ralentirait la montée d u piston 14. L' avance de l' ouverture OE des soupapes d'échappement par rapport au point mort bas PMB est donc d'autant plus grande que le moteur est conçu pour fonctionner à régime plus élevé.
De manière connue, on détecte l' apparition d' un phénomène de cliq uetis sur le cylind re 1 0 par des moyens spécifiques (non représentés).
Par exemple, on utilise un capteur de pression piézoélectrique fixé sur le moteur. Ce capteur est prévu pour reconnaître une onde de choc prod uite par le phénomène de cliquetis.
On expliquera maintenant la mise en œuvre du procédé selon l' invention lorsque l' on a détecté l' apparition d u cliquetis alors que le moteur est dans une phase de pleine charge, c'est à dire que le moteur est sollicité au maximum. Sitôt q ue l' apparition d u cliq uetis su r u n cylind re 1 0 est détectée, on augmente l'intensité d u mouvement aérodynamique ordonné de la charge carburée à l' intérieur de la chambre de combustion 12 d' une valeur prédéterminée.
I l est connu de produire, à l' intérieur de la chambre de combustion 12 d' un cylind re 10, un mouvement aérodynamique ordonné de type rotatif.
I l existe plusieurs types de mouvements aérodynamiques ordonnés. Par exemple, le « swirl » est un mouvement aérodynamique ordonné dont l'axe moyen de rotation est
sensiblement parallèle à l'axe du piston 14 et dont le sens de rotation s'inverse avec l'inversion du sens de déplacement du piston 14 dans le cylindre 10.
Un tel mouvement aérodynamique ordonné favorise la préparation du mélange air/carburant et optimise la vitesse de combustion.
Des procédés de mesure de l'intensité du « swirl » à l'intérieur de la chambre de combustion 12 permettent de définir cette intensité par un nombre de « swiris ». On augmente l'intensité du « swirl » par une modification appropriée des lois d'ouverture de la soupape d'admission et/ou de la soupape d'échappement.
A cette méthode on peut ajouter l'utilisation de moyens générateurs de turbulences dans le circuit d'admission tels que, par exemple, des jets d'air, des volets, des boisseaux ou des déflecteurs de soupapes, pilotés électroniquement.
Dans le cas d'un moteur du type sans arbre à cames, on augmente l'intensité du « swirl » de préférence en modifiant la commande des soupapes d'admission. Si le cylindre 10 comporte une seule soupape d'admission, on retarde l'instant de fermeture FA de la soupape d'admission, comme c'est illustré à la figure 3. Par exemple on retarde cet instant d'un angle de 5° pour augmenter le « swirl » de 1. Si le cylindre 10 comporte plusieurs soupapes d'admission, on déphase les instants d'ouverture OA et/ou de fermeture FA des soupapes d'admission les uns par rapport aux autres. En première approximation, plus le déphasage est important, plus le « swirl » augmente. Par des essais de déphasage et des mesures du nombre de « swiris » obtenu, on peut déterminer l'augmentation du « swirl » en fonction du déphasage.
La figure 4 illustre un exemple de déphasage des instants d'ouverture et de fermeture des soupapes d'admission
dans le cas d'un moteur à deux soupapes d'admission par cylindre.
Les références OA1 et OA2 indiquent, respectivement, les instants d'ouverture d'une première et d'une seconde soupape d'admission. Les références FA1 et FA2 indiquent, respectivement, les instants de fermeture de la première et de la seconde soupape d'admission.
On remarque que, pour la première soupape d'admission, on applique deux" séquences d'ouverture et de fermeture, l'une encadrant le point mort haut PMH et l'autre encadrant le point mort bas PMB.
Pour la seconde soupape d'admission, on applique une seule séquence d'ouverture et de fermeture. L'ouverture OA2 a lieu au point mort haut PMH tandis que la fermeture FA2 a lieu au point mort bas PMB.
On peut aussi ne déphaser que les instants d'ouverture
OA1, OA2 ou que les instants de fermeture FA1, FA2 des soupapes d'admission. Par exemple on ouvre la première soupape d'admission avant le point mort haut PMH, puis la seconde soupape d'admission au point mort haut PMH, et on ferme les deux soupapes d'admission après le point mort bas
PMB.
L'augmentation du « swirl » permet d'augmenter les vitesses de combustion dans le cylindre. Ceci avance le dégagement d'énergie par rapport au point mort haut PMH de plusieurs degrés. La température et la pression maximales au voisinage du point mort haut PMH sont réduites. Le risque de cliquetis est supprimé.
Il est à noter que les pertes de couple et la surconsommation dues à l'augmentation du « swirl » sont minimes proportionnellement à celles dues au retardement du point d'allumage, employé habituellement pour supprimer le cliquetis.
On expliquera maintenant la mise en œuvre d u procédé selon l' invention lorsque l' on a détecté l'apparition du cliquetis alors q ue le moteu r est dans une phase de charge partielle, c' est à dire q ue le moteur n'est pas sollicité à son maximum. Sitôt que l' apparition du cliquetis sur un cylindre 10 est détectée, on réduit la quantité de gaz brûlés recirculés GBR à l' intérieur de la chambre de combustion 12 du cylindre 10 d ' une valeur prédéterminée.
En effet, en phase de charge partielle, les fortes températures générant des risques de cliquetis sont liées en grande partie à l' existence d' une forte proportion de gaz brûlés recirculés GBR. Ceux-ci résu ltent soit d u croisement des soupapes d' échappement et d' admission , soit d' une vidange incomp lète, c'est à dire que la fermeture des soupapes d'échappement à lieu loin d u point mort haut PMH. Cette forte proportion de gaz brû lés recirculés GBR est voulue pour des questions de préparation de mélange ou de limitation des pertes par pompage.
La figure 5 représente un d iagramme de distribution dans lequel on a cherché à réd uire la proportion de gaz brûlés recirculés GBR en réd uisant le croisement des soupapes. Pour cela on a rapproché l' instant d' ouverture OA des soupapes d' admission de l' instant de fermeture FE des soupapes d'échappement. La figure 6 représente un diagramme de distribution dans lequel on a cherché à réduire la proportion de gaz brûlés recirculés GBR en augmentant la vidange du cylindre 10 en gaz brûlés. Pour cela on a rapproché l' instant de fermeture FE des soupapes d' échappement du point mort haut PM H . Dans l' exemple de la figure 6, le rapprochement de l' instant de fermeture FE des soupapes d'échappement a réduit le croisement des soupapes. Mais il est aussi possible de conserver le même croisement des soupapes en déplaçant
l'instant d'ouverture OA des soupapes d'admission en conséquence.
Sur la figure 7 on a représenté un diagramme de distribution du cylindre 10 lorsqu'il fonctionne selon un mode sans croisement des soupapes, c'est à dire que l'instant de fermeture FE de la soupape d'échappement 19 a lieu avant l'instant d'ouverture OA de la soupape d'admission 18.
Selon ce mode de distribution, la quantité de gaz brûlés recirculés GBR est déterminée p-ar la quantité de gaz brûlés qui restent enfermés dans la chambre de combustion 12 à la fermeture FE de la soupape d'échappement 19.
Habituellement, dans ce mode de distribution, l'instant de fermeture FE de la soupape d'échappement 19 est symétrique à l'instant d'ouverture OA de la soupape d'admission 18 par rapport au point mort haut PMH. Mais dans le procédé selon l'invention, comme on le voit sur la figure 7, on rapproche l'instant de fermeture FE de la soupape d'échappeme t 19 du point mort haut PMH afin de diminuer la quantité de gaz brûlés enfermés à l'intérieur de la chambre de combustion 12. Ceci a pour effet de réduire sensiblement la proportion de gaz brûlés recirculés GBR dans le cylindre 10.
Il est à noter que les pertes de couple et la surconsommation dues à la variation de la quantité de gaz brûlés recirculés GBR sont minimes proportionnellement à celles dues au retardement du point d'allumage, employé habituellement pour supprimer le cliquetis.
Le procédé selon l'invention s'applique aussi à un moteur qui comporte une seule soupape d'admission et/ou une seule soupape d'échappement. On note que sur les moteurs à arbres à cames, on modifie les lois d'ouverture des soupapes au moyen de dispositifs connus de distribution variable.
La suppression du cliquetis est effectuée, en général, par une correction en boucle rapide et boucle lente.
Dès que l' on détecte l' apparition du cliquetis sur un cylindre, selon que le moteur est dans une phase de charge partielle ou dans une phase de pleine charge, on augmente la turbulence d' une valeu r de « swirl » élevée, ou l' on diminue la q uantité de gaz brûlés recirculés GBR d' une valeur importante. C' est la correction dite en boucle rapide.
Ensuite, on contrôle à intervalles rég u liers que le cliquetis a disparu su r le cylind re 10 et on diminue prog ressivement la turbulence d' une faible valeur de « swirl » , ou l' on aug mente la quantité de gaz brûlés recirculés GBR d' une faible valeur, pour revenir à l' état de départ et aux paramètres de réglage moteur correspondants. C'est la correction dite en boucle lente.
Les principes mis en œuvre dans le cadre d u procédé selon l'invention s'appliq uent bien entendu à un moteur à plusieurs cylindres dont chacun comporte, le cas échéant, une ou plusieurs soupapes d'admission et une ou plusieurs soupapes d'échappement.
Dans le cas d' un moteur à plusieurs cylindres, lorsque l' on a détecté l' apparition du cliquetis sur un cylindre, on applique le procédé selon l' invention avec une correction en boucle rapide et boucle lente sur le cylindre incriminé, afin de supprimer le cliquetis. On peut aussi appliquer une correction similaire d' amplitude adaptée sur les autres cylindres, afin de prévenir l' apparition du cliquetis. En effet, s' il est apparu du cliq uetis sur un cylindre, il y a un risque important q ue le cliquetis apparaisse aussi su r les autres cylind res.
On revient à l'état de départ de façon régulée par une correction en boucle lente.
Claims
REVENDICATIONS 1. Procédé de commande d'un moteur à combustion à quatre temps en vue de supprimer le cliquetis, du type comportant un circuit d'admission d'air (16) ou de mélange air/carburant et un circuit d'échappement (17) de gaz brûlés qui communiquent avec une chambre de combustion (12) d'au moins un cylindre (10) du moteur, du type dans lequel les communications des circuits d'admission (16) et d'échappement (17) avec la chambre (12) sont susceptibles d'être obturées chacune respectivement par au moins une soupape, respectivement d'admission (18) et d'échappement (19), du type comportant un dispositif pour modifier les lois d'ouverture des soupapes, caractérisé en ce que, lorsque l'on a détecté l'apparition du cliquetis dans la chambre de combustion (12), on modifie les lois d'ouverture de la soupape d'admission (18) et/ou de la soupape d'échappement (19) de manière à réduire la quantité de gaz brûlés recirculés (GBR) à l'intérieur de la chambre de combustion (12) du cylindre (10) d'une valeur prédéterminée, si le moteur est dans une phase de charge partielle, et de manière à augmenter l'intensité du mouvement aérodynamique ordonné de la charge carburée à l'intérieur de la chambre de combustion (12) du cylindre (10) d'une valeur prédéterminée, si le moteur est dans une phase de pleine charge.
2. Procédé selon la revendication précédente, caractérisé en ce que l'on augmente l'intensité du mouvement aérodynamique ordonné de la charge carburée à l'aide de moyens générateurs de turbulences dans le circuit d'admission (16).
3. Procédé selon la revendication précédente, caractérisé en ce que les moyens générateurs de turbulences sont pilotés électroniquement.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on augmente l'intensité du mouvement aérodynamique ordonné de la charge carburée par la commande des soupapes d'admission (18).
5. Procédé selon la revendication précédente, caractérisé en ce que ladite commande des soupapes d'admission (18) consiste, si le moteur comporte une seule soupape d'admission (18) par cylindre (10), à retarder l'instant de fermeture (FA) de la soupape d'admission (18) et, si le moteur comporte plusieurs soupapes d'admission (18) par cylindre (10), à créer un déphasage entre les instants d'ouverture (OA) des soupapes d'admission (18) et/ou entre les instants de fermeture (FA) des soupapes d'admission (18) d'un même cylindre (10).
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le mouvement aérodynamique ordonné a son axe moyen de rotation sensiblement parallèle à l'axe du piston (14) et son sens de rotation s'inverse avec l'inversion du sens de déplacement du piston (14) dans le cylindre (10).
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, pour réduire la quantité de gaz brûlés recirculés (GBR), on réduit l'écart entre l'instant d'ouverture (OA) des soupapes d'admission (18) et l'instant de fermeture (FE) des soupapes d'échappement (19) si ledit instant d'ouverture (OA) a lieu avant ledit instant de fermeture (FE), et/ou on rapproche l'instant de fermeture (FE) des soupapes d'échappement (19) du point mort haut (PMH) de la course ascendante du piston (14), et/ou on rapproche l'instant d'ouverture (OA) des soupapes d'admission (19) du point mort haut (PMH) de la course ascendante du piston (14).
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le moteur est du type dans lequel les soupapes sont à ouverture commandée par un actionneur, notamment par un actionneur linéaire électromagnétique (11, 13), relié à une unité électronique de commande.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9909228A FR2796418B1 (fr) | 1999-07-16 | 1999-07-16 | Procede de commande d'un moteur a combustion en vue de supprimer le cliquetis |
FR99/09228 | 1999-07-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001006104A1 true WO2001006104A1 (fr) | 2001-01-25 |
Family
ID=9548171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2000/002020 WO2001006104A1 (fr) | 1999-07-16 | 2000-07-12 | Procede de commande d'un moteur a combustion en vue de supprimer le cliquetis |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2796418B1 (fr) |
WO (1) | WO2001006104A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10019744A1 (de) * | 2000-04-20 | 2001-10-25 | Fev Motorentech Gmbh | Verfahren zur Beeinflussung von Gemischbildung und Ladungsbewegung in einem Zylinder einer fremdgezündeten Kolbenbrennkraftmaschine |
US6390040B1 (en) * | 2000-07-07 | 2002-05-21 | Ford Global Tech., Inc. | Valve timing system for dynamically suppressing cylinder knock within a camless engine |
JP4517515B2 (ja) * | 2001-02-14 | 2010-08-04 | マツダ株式会社 | 自動車用4サイクルエンジン |
FR2830899B1 (fr) * | 2001-10-12 | 2004-06-11 | Renault | Procede de commande d'un moteur camless |
DE50208814D1 (de) * | 2002-02-21 | 2007-01-04 | Ford Global Tech Llc | Verfahren zur Steuerung eines Viertakt-Ottomotors und Reduzierung des Klopfens |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60230529A (ja) * | 1984-04-27 | 1985-11-16 | Mazda Motor Corp | 燃料噴射装置付エンジン |
EP0446065A2 (fr) * | 1990-03-08 | 1991-09-11 | Honda Giken Kogyo Kabushiki Kaisha | Méthode de commande d'un moteur à combustion interne |
US5115782A (en) * | 1989-12-09 | 1992-05-26 | Robert Bosch Gmbh | Method for controlling a spark-ignition engine without a throttle flap |
EP0854280A1 (fr) * | 1995-10-02 | 1998-07-22 | Hitachi, Ltd. | Dispositif de commande pour moteur a combustion interne |
US5845613A (en) * | 1992-10-16 | 1998-12-08 | Yamaha Hatsudoki Kabushiki Kaisha | Variable valve timing arrangement for internal combustion engine |
-
1999
- 1999-07-16 FR FR9909228A patent/FR2796418B1/fr not_active Expired - Fee Related
-
2000
- 2000-07-12 WO PCT/FR2000/002020 patent/WO2001006104A1/fr active Search and Examination
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60230529A (ja) * | 1984-04-27 | 1985-11-16 | Mazda Motor Corp | 燃料噴射装置付エンジン |
US5115782A (en) * | 1989-12-09 | 1992-05-26 | Robert Bosch Gmbh | Method for controlling a spark-ignition engine without a throttle flap |
EP0446065A2 (fr) * | 1990-03-08 | 1991-09-11 | Honda Giken Kogyo Kabushiki Kaisha | Méthode de commande d'un moteur à combustion interne |
US5845613A (en) * | 1992-10-16 | 1998-12-08 | Yamaha Hatsudoki Kabushiki Kaisha | Variable valve timing arrangement for internal combustion engine |
EP0854280A1 (fr) * | 1995-10-02 | 1998-07-22 | Hitachi, Ltd. | Dispositif de commande pour moteur a combustion interne |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 010, no. 092 (M - 468) 9 April 1986 (1986-04-09) * |
Also Published As
Publication number | Publication date |
---|---|
FR2796418B1 (fr) | 2001-10-19 |
FR2796418A1 (fr) | 2001-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2779476A1 (fr) | Moteur a combustion interne avec calage variable de l'arbre a cames et masquage de la soupape d'admission | |
FR2779477A1 (fr) | Moteur a combustion interne avec calage variable de certains elements et rapport air/carburant variable | |
EP0015791A1 (fr) | Procédé et dispositif pour améliorer le rendement d'un moteur à combustion interne, notamment suralimenté | |
EP1726805A1 (fr) | Procédé de contrôle du balayage des gaz brûlés d'un moteur à injection indirecte, notamment moteur suralimenté, et moteur utilisant un tel procédé | |
EP1740809A1 (fr) | Procede de commande de fonctionnement d'un groupe de cylindres d'un moteur a combustion interne | |
FR2872219A1 (fr) | Procede et dispositif de gestion d'un moteur a combustion interne | |
FR2885389A1 (fr) | Procede de reduction des emissions d'hydrocarbures d'un moteur froid et dispositif et moteur mettant en oeuvre ce procede | |
FR2688563A1 (fr) | Dispositif pour equilibrer un arbre d'entrainement de moteur a combustion interne. | |
WO2001006104A1 (fr) | Procede de commande d'un moteur a combustion en vue de supprimer le cliquetis | |
FR3044359A1 (fr) | Procede de commande d'un moteur a combustion interne. | |
EP1544434B1 (fr) | Procédé de commande d'un moteur à combustion interne suralimenté | |
EP1341993B1 (fr) | Dispositif de distribution variable pour moteurs alternatifs, moteurs le comportant et procede de distribution et de turbocompression | |
FR2781011A1 (fr) | Procede de controle du fonctionnement d'un moteur suralimente a injection directe d'essence | |
EP1163437B1 (fr) | Procede de regulation du regime de ralenti d'un moteur a combustion a soupapes sans arbres a cames | |
WO2001004465A1 (fr) | Procede de commande d'un moteur a combustion en vue de corriger la dispersion des cylindres en terme de couple gaz | |
FR2796421A1 (fr) | Procede de commande d'un moteur a combustion en vue de compenser la defaillance d'une soupape | |
EP1769148B1 (fr) | Procédé amélioré de commande d'un moteur à combustion interne, en vue de diminuer les émissions de polluants, moteur fonctionnant selon un tel procédé, et véhicule automobile équipé d'un tel moteur | |
FR2816988A1 (fr) | Procede de commande d'un moteur a combustion interne en vue de realiser une combustion homogene | |
JP3536519B2 (ja) | 内燃機関の吸気弁制御装置および制御方法 | |
FR2877044A1 (fr) | Dispositif d'admission pour moteur a combustion interne | |
FR2877054A1 (fr) | Moteur a combustion interne diesel ou essence a injection directe a taux de gaz brules augmente | |
FR2904051A1 (fr) | Procede de regeneration d'un filtre a particules | |
EP1934444A1 (fr) | Dispositif de variation du taux de compression d'un cylindre d'un moteur a combustion interne et moteur a combustion interne comprenant un tel dispositif | |
FR2798959A1 (fr) | Procede de commande d'un moteur a combustion a quatre temps | |
FR2795133A1 (fr) | Procede de commande d'un moteur a combustion en vue de l'obtention d'un effet de frein moteur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: JP |