WO2001004607A1 - Analyse des donnees d'images d'objets - Google Patents

Analyse des donnees d'images d'objets Download PDF

Info

Publication number
WO2001004607A1
WO2001004607A1 PCT/AU2000/000830 AU0000830W WO0104607A1 WO 2001004607 A1 WO2001004607 A1 WO 2001004607A1 AU 0000830 W AU0000830 W AU 0000830W WO 0104607 A1 WO0104607 A1 WO 0104607A1
Authority
WO
WIPO (PCT)
Prior art keywords
carcase
meat
colour
yield
data
Prior art date
Application number
PCT/AU2000/000830
Other languages
English (en)
Inventor
Kurt Malmstrom
Original Assignee
Rms Research Management Systems Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPQ1544A external-priority patent/AUPQ154499A0/en
Priority claimed from AUPQ2828A external-priority patent/AUPQ282899A0/en
Application filed by Rms Research Management Systems Inc. filed Critical Rms Research Management Systems Inc.
Priority to CA002378741A priority Critical patent/CA2378741A1/fr
Priority to AU56644/00A priority patent/AU765189B2/en
Priority to EP00941800A priority patent/EP1196761A1/fr
Priority to NZ516814A priority patent/NZ516814A/en
Priority to BR0012349-8A priority patent/BR0012349A/pt
Publication of WO2001004607A1 publication Critical patent/WO2001004607A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/12Meat; Fish

Definitions

  • This invention relates to image data analysis for objects such as meat carcases and meat cuts although the invention may also be applicable to other agricultural, mineral or
  • colour data captured by a colour video camera has been utilised in the form of R, G, and B values (red, green and blue values) in yield equations derived from multiple field runs as described above. Particular care ought to be taken to ensure as far as
  • a method of analysing colour image data relating to a target object to derive or predict a property of the object of which colour is an indicator including the step of processing the colour data to derive ight intensity independent measures of colour values, followed by the step of calculating the property of the object utilising the light intensity independent colour measures in a predictive
  • the light intensity independent colour measures are variables and the property of the object is calculated from solving the predictive equation.
  • the light intensity independent measures of colour values are used in equations developed to predict a quantitative meat or carcase quality measure, e.g. "yield” in Australia, "conformation” or “fat score” in the
  • the method includes the step of processing the colour data for a carcase to derive light intensity independent measures of colour values for the carcase, followed by the step of calculating the meat yield of the carcase utilising the light intensity independent colour measures in a yield predictive equation.
  • the intensity normalised class CRiGil has been adapted from the prior CRGB class consisting of Red, Green and Blue values.
  • the class consists of the member variables Ri; Gi;
  • a digitiser offset is preferably subtracted (since the offset associated with a digitiser for digitising measured RGB values in a colour data capture system is obviously not affected by light
  • R, R + G + B - 3k
  • yield equations relating measured or calculated parameters of the carcases could be derived 5 by multiple regression analysis (or other statistical analysis techniques) to best fit the data and optimise the fitting or prediction of the actual saleable meat yield.
  • R ! is the intensity based red value for the same "area 1 "
  • G is the intensity based green value for the same "area 1 "
  • d is the distance from the tail to the hind leg bottom, when projected onto a
  • d 2 is the distance from the brisket to the tail.
  • f is the ratio w/L, where w is the distance from the point where the hook suspending
  • the beef carcass passes through the hind leg to the point at the end of the profile of the butt, when projected onto the longitudinal line, and
  • L is the length of the carcass
  • f is the ratio x/L, where x is the distance from the hook to the point of the armpit, when projected onto the longitudinal line, and L is the length of the carcass,
  • S ! is a measure of the degree of "plumpness" of the shape of the butt, e.g. derived by obtaining a measure of the extent of departure of the butt profile from the line from the point of the tail to the bottom of the hind leg,
  • G ⁇ is the intensity normalised green value for a predetermined "area 2" of the carcass
  • R l3 is the intensity normalised red value for a different "area 3" of the carcass
  • R l4 is the intensity normalised red value for a different "area 4" of the carcass
  • B 3 is the intensity based red value for "area 3".
  • the derived equations will be different depending on the use of selected ones of the numerous variables including dimensional variables, ratios of dimensions, other measures such as the measure of the shape of the butt.
  • the sizes and locations of the predetermined areas of the carcase where colour measurements are taken and used in the predictive equations will very substantially affect the final derived constants in the equations.
  • tissue colours of a real beef carcase was measured multiple times on a number of days during the period of the yield trials. Over a trial when the fake carcase was presented 37 times over a number of days, yield equations (1) and (3) exhibited only very small changes in the predicted yield - minimum -0.062% and maximum +0.102% deviation from a median predicted yield. On the other hand, yield equations (2) and (4) displayed a drift of minimum -0.39% and maximum +0.16% from the median.
  • intensity normalised yield equations (1) and (3) showed only very small change in predicted yield and small change in the RMS of the changes for this trial with the failed light bulb, whereas the intensity dependent yield predictive equations (2) and (4) showed very large changes in predicted yield and RMS value for this trial with the failed light bulb. By chance, this demonstrated that the use of intensity normalised equations are robust to such changes in illumination conditions.
  • each carcase was categorised into one of the six predetermined categories and the data
  • the BCS produces not only its prediction of saleable meat yield, but also a yield that
  • This component yield (CompWy) was added to a weighted CAS predicted yield representing the currently selected carcase type.
  • CAS refers to a "Chiller Assessment System” (available from Viascan Quality Assessment, of Beenleigh, Queensland, Australia) which provides measures relating to meat yield after further analyses later in the processing operation in a chiller. This weighted addition must be applied off-line at the end of the processing operations in the abattoir.
  • the formula that is implemented was
  • k' is defined according to which carcase type has been selected. The appropriate values are shown below in the table. Note that the CAS yield equations exist for only three carcase categories. These are: bull, cow, and table beef (where the "table beef category includes all beef from the four subcategories of the BCS).
  • yield is the primary measure used for carcase grading in Australia where the invention has been developed. However, in other countries or regions, there can be different parameters used to grade meat such as meat carcases.
  • EUROP scoring or grading system
  • the present invention is equally applicable to the process of calculating the conformation and fat scores in the EUROP system for a meat portion or carcase using light intensity independent colour measures in appropriate predictive equations. It will be appreciated that the capture of colour data for a carcase (together with other data such as dimensional data), can be used in an

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

L'invention se rapporte à un procédé d'analyse des données d'images couleur associées à un objet cible, et notamment à une carcasse d'animal, dans le but de dériver ou de prédire une propriété de cet objet dont la couleur est un indicateur, telle que le rendement en viande. Ledit procédé consiste à traiter les données de couleur de manière à dériver des mesures indépendantes de l'intensité lumineuse ou 'd'intensité normalisée' des valeurs de couleurs, puis à calculer la propriété de l'objet au moyen de ces mesures de couleurs indépendantes de l'intensité lumineuse dans une équation prédictive dans laquelle ces mesures sont des variables et à résoudre cette équation prédictive de manière à obtenir la propriété de l'objet. L'équation prédictive peut être développée à partir de données recueillies au cours d'une expérience de collecte de données utilisant les images saisies pour des objets cible réels. On corrèle ensuite les mesures de couleurs indépendantes de l'intensité lumineuse obtenues à partir de ces données avec la propriété mesurée réelle de chacun des vrais objets cibles de manière à dériver l'équation prédictive par des techniques d'analyse statistique permettant d'adapter au mieux les données. Dans le cas de l'analyse de carcasses d'animaux, la propriété prédite peut être le 'rendement', la 'conformation' ou la 'teneur en graisses' d'une carcasse dans un système normalisé de classification de carcasses ou peut être la 'classe de rendement ' ou 'la classe de qualité' de la viande d'une carcasse dans un système normalisé de classification de la viande.
PCT/AU2000/000830 1999-07-09 2000-07-10 Analyse des donnees d'images d'objets WO2001004607A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002378741A CA2378741A1 (fr) 1999-07-09 2000-07-10 Analyse des donnees d'images d'objets
AU56644/00A AU765189B2 (en) 1999-07-09 2000-07-10 Image data analysis of objects
EP00941800A EP1196761A1 (fr) 1999-07-09 2000-07-10 Analyse des donnees d'images d'objets
NZ516814A NZ516814A (en) 1999-07-09 2000-07-10 Image data analysis of objects
BR0012349-8A BR0012349A (pt) 1999-07-09 2000-07-10 Análise de dados da imagem de objetos

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AUPQ1544 1999-07-09
AUPQ1544A AUPQ154499A0 (en) 1999-07-09 1999-07-09 Image data analysis
AUPQ2828 1999-09-14
AUPQ2828A AUPQ282899A0 (en) 1999-09-14 1999-09-14 Image data analysis

Publications (1)

Publication Number Publication Date
WO2001004607A1 true WO2001004607A1 (fr) 2001-01-18

Family

ID=25646096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2000/000830 WO2001004607A1 (fr) 1999-07-09 2000-07-10 Analyse des donnees d'images d'objets

Country Status (8)

Country Link
EP (1) EP1196761A1 (fr)
AR (1) AR024689A1 (fr)
BR (1) BR0012349A (fr)
CA (1) CA2378741A1 (fr)
MX (1) MXPA02000286A (fr)
NZ (1) NZ516814A (fr)
UY (1) UY26237A1 (fr)
WO (1) WO2001004607A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034059A1 (fr) * 2001-10-18 2003-04-24 Machinery Developments Limited Appareil et procede d'analyse de morceaux de viande
CN100376888C (zh) * 2004-11-02 2008-03-26 江苏大学 牛肉胴体质量的计算机视觉检测分级方法及装置
US8147299B2 (en) 2005-02-08 2012-04-03 Cargill, Incorporated Meat sortation
JP7125802B1 (ja) 2021-06-15 2022-08-25 有限会社 ワーコム農業研究所 牛肉品質判定装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0221642A2 (fr) * 1985-09-04 1987-05-13 Westinghouse Canada Inc. Appareil pour la classification de la couleur de chair de poisson
EP0444675A2 (fr) * 1990-02-28 1991-09-04 Slagteriernes Forskningsinstitut Méthode et appareil pour déterminer les propriétés de qualité de pièces de viandes
DE4408604A1 (de) * 1994-03-08 1995-12-21 Horst Dipl Ing Eger Verfahren zur Bewertung von Schlachttierkörpern
US5793879A (en) * 1992-04-13 1998-08-11 Meat Research Corporation Image analysis for meat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0221642A2 (fr) * 1985-09-04 1987-05-13 Westinghouse Canada Inc. Appareil pour la classification de la couleur de chair de poisson
EP0444675A2 (fr) * 1990-02-28 1991-09-04 Slagteriernes Forskningsinstitut Méthode et appareil pour déterminer les propriétés de qualité de pièces de viandes
US5793879A (en) * 1992-04-13 1998-08-11 Meat Research Corporation Image analysis for meat
DE4408604A1 (de) * 1994-03-08 1995-12-21 Horst Dipl Ing Eger Verfahren zur Bewertung von Schlachttierkörpern

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034059A1 (fr) * 2001-10-18 2003-04-24 Machinery Developments Limited Appareil et procede d'analyse de morceaux de viande
CN100376888C (zh) * 2004-11-02 2008-03-26 江苏大学 牛肉胴体质量的计算机视觉检测分级方法及装置
US8147299B2 (en) 2005-02-08 2012-04-03 Cargill, Incorporated Meat sortation
US8721405B2 (en) 2005-02-08 2014-05-13 Cargill, Incorporated Meat sortation
US9386781B2 (en) 2005-02-08 2016-07-12 Cargill, Incorporated Meat sortation
JP7125802B1 (ja) 2021-06-15 2022-08-25 有限会社 ワーコム農業研究所 牛肉品質判定装置
JP2022190863A (ja) * 2021-06-15 2022-12-27 有限会社 ワーコム農業研究所 牛肉品質判定装置

Also Published As

Publication number Publication date
EP1196761A1 (fr) 2002-04-17
CA2378741A1 (fr) 2001-01-18
BR0012349A (pt) 2002-06-11
MXPA02000286A (es) 2004-09-30
NZ516814A (en) 2002-07-26
UY26237A1 (es) 2000-10-31
AR024689A1 (es) 2002-10-23

Similar Documents

Publication Publication Date Title
CA1328312C (fr) Methode et appareillage pour la determination des proprietes qualitatives de carcasses particulieres de betail
Gispert et al. Relationships between carcass quality parameters and genetic types
US7110572B1 (en) Animal carcase analysis
Blömke et al. Evaluation of an automated assessment system for ear and tail lesions as animal welfare indicators in pigs at slaughter
WO1992000523A1 (fr) Procede et appareil de classification automatique de carcasses
Lohumi et al. Nondestructive estimation of lean meat yield of South Korean pig carcasses using machine vision technique
US7929731B2 (en) Data acquisition for classifying slaughtered animal bodies and for their qualitative and quantitative determination
WO1991014180A1 (fr) Evaluation de carcasses par analyse d'images et definition d'objets
Jia et al. Prediction of lean and fat composition in swine carcasses from ham area measurements with image analysis
EP1196761A1 (fr) Analyse des donnees d'images d'objets
AU765189B2 (en) Image data analysis of objects
CN1239406A (zh) 用光学图象处理评估半边屠宰动物的方法
UA88458C2 (uk) Спосіб якісної та кількісної оцінки туші
Jansons et al. Development of new pig carcasses classification formulas and changes in the lean meat content in Latvian pig population
Lohumi et al. Erratum to: Nondestructive Estimation of Lean Meat Yield of South Korean Pig Carcasses Using Machine Vision Technique
Carnier et al. Computer image analysis for measuring lean and fatty areas in cross-sectioned dry-cured hams
Dasiewicz et al. Assessment of slaughter value of sheep on the basis of linear measurements made on carcass digital images
US20240284922A1 (en) Vision-based quality control and audit system and method of auditing, for carcass processing facility
Christensena et al. Prédiction des taux de persillé ou de lipides intramusculaires avec la caméra Q-FOM TM
AU767212B2 (en) Animal carcase analysis
Liu et al. Using machine vision technology to determine pork intramuscular fat percentage
Karnuah et al. Estimation of beef carcass composition from the cross section around the longissimus muscle area in Holstein steers by computer image analysis.
Pame et al. Machine-vision based quality evaluation of meat and meat products-a review.
Brown A note on the use of subjective methods for assessing pig meat quality on the slaughterline
PL240779B1 (pl) Urządzenie do pomiaru zawartości tłuszczu śródmięśniowego w mięsie, zwłaszcza wieprzowym lub wołowym

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK DK EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10030952

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2378741

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 516814

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2000941800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 56644/00

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2000941800

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 516814

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 516814

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 56644/00

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2000941800

Country of ref document: EP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)