WO2001004281A2 - Dna kodierend für beta-tubulin und deren verwendung - Google Patents

Dna kodierend für beta-tubulin und deren verwendung Download PDF

Info

Publication number
WO2001004281A2
WO2001004281A2 PCT/EP2000/006104 EP0006104W WO0104281A2 WO 2001004281 A2 WO2001004281 A2 WO 2001004281A2 EP 0006104 W EP0006104 W EP 0006104W WO 0104281 A2 WO0104281 A2 WO 0104281A2
Authority
WO
WIPO (PCT)
Prior art keywords
dna
seq
tubulin
amino acid
polynucleotide
Prior art date
Application number
PCT/EP2000/006104
Other languages
English (en)
French (fr)
Other versions
WO2001004281A3 (de
Inventor
Georg Von Samson-Himmelstjerna
Achim Harder
Thomas Schnieder
Michaela Pape
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to AU68215/00A priority Critical patent/AU6821500A/en
Priority to EP00956159A priority patent/EP1208199A2/de
Priority to JP2001509485A priority patent/JP2003504051A/ja
Priority to CA002378407A priority patent/CA2378407A1/en
Priority to BR0012274-2A priority patent/BR0012274A/pt
Publication of WO2001004281A2 publication Critical patent/WO2001004281A2/de
Publication of WO2001004281A3 publication Critical patent/WO2001004281A3/de
Priority to HK03102122.4A priority patent/HK1050026A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43536Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from worms
    • C07K14/4354Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from worms from nematodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/10Anthelmintics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the invention relates to DNA coding for ß-tubulin from nematodes of the Strongylidae family, the polypeptide encoded by this DNA, the use of DNA for the diagnosis of anthelmintic resistance of these nematodes and for the identification of the species of these nematodes, the use of ß-tubulin as part of a vaccine and a method for identifying new anthelmintic or antibiotic compounds.
  • helminths Parasitic helminths (worms) pose a health problem for humans and animals and cause significant economic damage.
  • the most important anthelmintics that are currently used can be divided into three groups according to their mechanism of action:
  • the cyclic amidines pyrantel and morantel act together with the imidazothiazoles tetramisole and levamisole as cholinergic compounds for the parasitic nervous system.
  • the benzimidazoles are inhibitors of the polymerization of microtubules and lead to the degradation of tubulin, followed by the loss of several cell functions such as transport within cells and cell division.
  • the macrocyclic lactones bind and open glutaminergic chloride
  • Microtubules are made up of tubulin subunits.
  • Tubulin is a dimeric protein that consists of ⁇ - and ß-tubulin and is in a dynamic equilibrium between tubulin and microtubules. This balance can go through exogenous substances are influenced, which are called microtubule inhibitors.
  • Some of these inhibitors, such as the benzimidazoles act by binding to tubulin, preventing self-association of these subunits with growing microtubules, while at the opposite end, microtubule dissociation continues. This leads to malfunctions in vital processes within the cell and ultimately to the death of the cell and the entire organism (Lacey, E. (1990) Mode of action of benzimidazoles. Parasitology Today 6, 112-115).
  • Such microtubule inhibitors include various classes of compounds that are synthetically produced or produced by different organisms.
  • the binding of microtubule inhibitors to tubulin from different organisms shows great differences in the affinity of the binding.
  • the anthelmintics oxfendazole and thiabendazole show a high affinity for tubulin from Ascaridia galli and a low affinity for tubulin from mammals like that
  • LDA Low-density bacterium senor fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal senor fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fungal fung
  • EHA egg hatch assay
  • Codon 200 of the ß-tubulin isotype 1 gene (Elard et al. (1999) PCR diagnosis of benz- imidazole - susceptibility or - resistance in natural populations of the small ruminant parasite, Teladorsagia circumcincta, Veterinary Parasitology 80, 231-237).
  • the point mutations in codon 200 result in an amino acid exchange from phenylalanine to tyrosine and correlate with a benzimidazole resistance of the mutated protein (Kwa et al. (1995) ß-tubulin genes from parasitic nematode
  • Haemonchus contortus modulate drug resistance in Caenorhabditis elegans, Journal of Molecular Biology 246, 500-510).
  • Benzimidazoles have been described in various countries, including also in Germany (Burger, H.-J. and Bauer, C. (1987) Efficacy of four anthelmintics against benzimidazole - resistant cyathostomes of horses, Veterinary Record 120, 293-296).
  • the nucleic acid sequencing of ⁇ -tubulin cDNAs from the species of small strongyles according to the invention had an identity of over 95%.
  • identity with the known ß-tubulin sequences of sheep parasites mentioned above is only 75.4-82.6%.
  • the deduced amino acid sequences are very similar within the sequences according to the invention. This also applies to the derived ß-tubulin amino acid sequences of the sheep parasites. The identity is between 95 and 99.8%. There are very few positions at which an amino acid exchange occurs. Of particular note here is codon 200, in which a change from phenylalanine to
  • Tyrosine results results.
  • the previously published non-coding ß-tubulin sequences from different helminth species do not show any significant identity. It is therefore surprising that not only the coding sequences, but also parts of the non-coding sequences of the different species of small strongyles of the present application have a high identity. These regions are therefore also suitable for differentiating different species of small strongyles and other nematode species. PCR primers derived from these intron regions can make the specific detection smaller
  • ⁇ -tubulin from nematodes or parts thereof are known to have a protective, immunological potential (Bughio et al. (1993) Characterization and biological activities of an ⁇ -Brugia pahangi tubulin monoclonal antibodies, International Journal for Parasitology, 7, 913-924 ).
  • the ß-tubulin of the small strongyles encoded by the above-mentioned DNA can be used as a vaccine as well as monoclonal antibodies against the ß-tubulin.
  • Inhibitors of the interaction of tubulin or its subunits are important lead structures of a number of therapeutic agents which are directed against human, animal or plant diseases.
  • the importance of tubulin as a target for these compounds is far-reaching and underscores its potential for the search for new active substances to combat these diseases.
  • the invention relates to that for the ß-tubulin from nematodes of the family of
  • the ß-tubulin DNA can be genomic DNA or cDNA.
  • the DNA sequences which are the subject of this invention can be used as new members of the tubulin gene family of parasitic nematodes of the order Strongyhda, especially the subfamily of the Cyathostominae, are loaded.
  • the invention relates particularly to the DNA sequences which code for ⁇ -tubulin from parasitic nematodes of the genera Cyathostomum and Cylicocycle.
  • the invention also relates to DNA sequences which form one for one of the amino acid sequences according to SEQ LD NO. 2, 4, 6, 8 or 10 coding polynucleotide have an identity of more than 85%.
  • the invention likewise preferably relates to DNA sequences which form one for one of the amino acid sequences according to SEQ LD NO. 2, 4, 6, 8 or 10 coding polynucleotide have an identity of more than 95%.
  • the invention relates in particular to DNA coding for ⁇ -tubulin.
  • Sequences that come from parasitic nematodes of the genera Cylicocycle and Cyathostomum very particularly those sequences that come from parasitic nematodes of the species Cylicocyclus nassatus, preferably DNA according to SEQ ID NO. 3, 5, 7, 9 or 11 or from Cyathosto um coronatum, preferably DNA according to SEQ JD NO. 1.
  • the invention also relates to DNA sequences as described above which, in contrast to these sequences in codon 200, have at least one point mutation or one nucleotide exchange. These point mutations result in a change in the amino acid sequence encoded by this DNA, e.g. B. one
  • the invention also relates to DNA sequences which are complementary to the DNA or fragments of this DNA described above, and fragments of these DNA sequences.
  • DNA sequences or fragments Oligonucleotides derived from one of the abovementioned or under SEQ ID NO. 1, 3, 5, 7, 9 or 11 described DNA sequences are derived or are derived from 85% identical, preferably 95% identical sequences and complementary strands and can hybridize to them.
  • the invention preferably relates to oligonucleotides consisting of or comprising one of the sequences according to SEQ LD NO. 12 to SEQ ID NO. 51, which hybridize to the above-mentioned DNA sequences, preferably in the region of non-coding sequence segments of the ⁇ -tubulin genes.
  • the invention also preferably relates to oligonucleotides consisting of or comprising one of the sequences according to SEQ ID NO. 12 to SEQ ID NO. 51 that hybridize to coding regions of the above sequences.
  • the invention also relates to RNA sequences which are complementary to the DNA or fragments of this DNA described above, and fragments of these RNA sequences.
  • These RNA sequences or these fragments comprise ribooligonucleotides which correspond to a region of one of the abovementioned or under SEQ ID NO. 1, 3, 5, 7, 9 or 11 described DNA sequences, complementary sequences or 85%, preferably 95% identical DNA sequences and can hybridize to these.
  • the invention also relates to an expression construct, which comprises one of the DNA sequences described above, and a DNA sequence linked to it, which enables the expression of the DNA.
  • These include, for example, at least one promoter for constitutive or inducible expression or enhancers.
  • Suitable promoters for expression in E. coli are natural hybrid or bacteriophage promoters, preferably promoters from the group of ⁇ phages, hsp, omp or synthetic promoters such as, for example, in WO 98/5625, DE 3 430 683 or EP 0 173 149 called.
  • the invention also relates to vectors which comprise one of the DNA sequences described above and which allow expression of the ⁇ -tubulin according to the invention or fragments thereof in a host cell.
  • the invention also relates to host cells which contain the abovementioned DNA, an expression construct as mentioned above, or a vector and the expression of the ⁇ -tubulin or fragments thereof.
  • the invention also relates to polypeptides which are encoded by one of the above-mentioned DNA sequences or fragments of these DNA sequences, and fragments of these polypeptides.
  • the invention preferably relates to polypeptides which are derived from a DNA sequence comprising SEQ ID NO. 1, 3, 5, 7, 9 or 11 are encoded, of DNA sequences which have an identity of 85%, preferably 95%, of these sequences, or of fragments of this DNA.
  • This invention also relates to polypeptides which are encoded by a DNA sequence described above and which contain at least one point mutation in codon 200 as described above and show resistance to benzimidazoles, and fragments of these polypeptides.
  • the invention very particularly preferably relates to polypeptides comprising one of those in SEQ ID NO. 2, 4, 6, 8 or 10 described amino acid sequences or fragments thereof.
  • the invention relates to polypeptides, in particular to purified polypeptides or recombinantly produced polypeptides.
  • the invention relates to full length polypeptides and also to corresponding ones
  • Fragments of these polypeptides for example certain motifs or domains.
  • This question elements can be of different lengths and include, for example, 5, 10, 25, 50, 100, 150, 200, 250 or 300 amino acids.
  • This invention also relates to fusion proteins comprising a polypeptide as described above.
  • the fusion protein can contain a further polypeptide portion which is not related to the ⁇ -tubulin (eg LexA, B42, glutathione-S-transferase, a His-Tag, a polypeptide with enzymatic activity like the alkaline phosphatase or an epitope day).
  • ⁇ -tubulin eg LexA, B42, glutathione-S-transferase, a His-Tag, a polypeptide with enzymatic activity like the alkaline phosphatase or an epitope day.
  • the invention also relates to a method for producing a polypeptide as described above in suitable prokaryotic or eukaryotic expression systems.
  • the expression can be permanent or transient in a respective cell line or host cell as described above.
  • Suitable prokaryotic expression systems are known host-vector systems such as bacteria (e.g. Streptomyces spp., Bacillus subtilis, Salmonella typhimurium, Serratia marcescens and especially Escherichia col ⁇ ).
  • Expression in a eukaryotic system is preferably carried out in the baculovirus system, particularly in a system which allows the introduction of post-translational modifications.
  • This invention also relates to the use of DNA as mentioned above for the detection of DNA from nematodes of the Strongylidae family, preferably the subfamily Cyathostominae, particularly preferably the genera Cyathostomum and Cylicocycle, very particularly preferably the species Cyathostomum coronatum and Cylicocyclus nassatus.
  • the invention relates to oligonucleotides as mentioned above which are complementary to DNA coding for ⁇ -tubulin or strands complementary thereto and can hybridize to this DNA. Preferably these oligonucleotides hybridize to the intron regions, i.e. the non-coding DNA sequences.
  • the invention relates to the use of these
  • Oligonucleotides or parts thereof as a) samples in Northern or Southern blot assays
  • PCR primer in a diagnostic method for the detection of the above-mentioned nematodes, the DNA of the relevant nematodes being specifically identified and amplified with the aid of the primer and the PCR technique.
  • the invention preferably relates to oligonucleotides consisting of or comprising one of the sequences according to SEQ ID NO. 12 to SEQ ID NO. 51st
  • the invention also relates to the use of DNA as mentioned above for the detection of DNA from nematodes of the Sfrongylidae family, preferably the subfamily of Cyathostominae, particularly preferably of the genera Cylicocycle, and Cyathostomum, very particularly preferably of the species Cylicocycle nassatus and
  • Cyathostomum coronatum which codes for ⁇ -tubulin or fragments thereof, which are resistant to benzimidazoles.
  • the invention relates to oligonucleotides as mentioned above which are complementary to DNAs which code for ⁇ -tubulin with a resistance to benzimidazoles or to the complementary strands of this DNA and which can hybridize specifically to this DNA.
  • the invention also relates to the use of these oligonucleotides or parts thereof as
  • PCR primer in a diagnostic method for the detection of the above-mentioned nematodes with a resistance to benzimidazoles, the DNA of the relevant nematodes being specifically identified and amplified with the aid of the primer and the PCR technique.
  • the invention preferably relates to oligonucleotides consisting of or comprising one of the sequences according to SEQ ID NO. 12 to SEQ LD NO. 51st
  • the invention also relates to a method for the detection of nematodes of the Strongylidae family, preferably the subfamily of Cyathostominae, particularly preferably of the genera Cylicocycle and Cyathostomum, very particularly preferably of the species Cylicocycle nassatus and Cyathostomum coronatum, oligonucleotides as described above on DNA sequences hybridize specifically, which originate from the organisms mentioned, and which can be amplified using the PCR technique.
  • the hybridization is preferably carried out in the non-coding regions of the ⁇ -tubulin gene (introns).
  • the detection of organisms as mentioned above can e.g. be done by
  • a) provides an oligonucleotide sample or primer which can hybridize to the abovementioned DNA coding for ⁇ -tubulin or to strands complementary thereto or to the 5 'or 3' flanking regions thereof,
  • the hybridization of the oligonucleotide or primer is detected (e.g. using the polymerase chain reaction),
  • the invention also relates to a method for the detection of nematodes of the Strongylidae family, preferably the subfamily of Cyathostominae, particularly preferably of the genera Cylicocycle and Cyathostomum, very particularly preferably of the species Cylicocycle nassatus and Cyathostomum coronatum, which are resistant to benzimidazoles, oligonucleotides such as described above
  • the hybridization is preferably carried out in the non-coding regions of the ⁇ -tubulin gene (infrons).
  • the detection of organisms as mentioned above can e.g. be done by
  • a) provides an oligonucleotide sample or primer which can hybridize to the abovementioned DNA coding for ⁇ -tubulin or to strands complementary thereto or to the 5'- or 3'-flanking regions thereof,
  • the hybridization of the oligonucleotide or primer is detected (e.g. using the polymerase chain reaction),
  • the invention also relates to a diagnostic test kit for the detection and identification of nematodes of the Sfrongylidae family, preferably the subfamily of Cyathostominae, particularly preferably of the genera Cylicocycle and Cyathostomum, very particularly preferably of the species Cylicocycle nassatus and Cyathostomum coronatum, which include oligonucleotides as above provides described, which can be used in methods for the detection of said species.
  • the present invention also provides oligonucleotides that are specific to sequences according to SEQ ID NO. 1, 3, 5, 7, 9 or 11, sequences complementary thereto, sequences with at least one point mutation in codon 200, or fragments of these sequences hybridize.
  • Oligonucleotides consisting of or comprising sequences according to SEQ LD NO are particularly preferred. 12 to SEQ ID NO. 51st
  • the invention also relates to a diagnostic test kit for the detection of nematodes of the Sfrongylidae family, preferably the subfamily of
  • Cyathostominae particularly preferably of the genera Cylicocycle and
  • Cyathostomum very particularly preferred of the species Cylicocyclus nassatus and
  • Cyathostomum coronatum with a resistance to benzimidazoles, which among other things provides oligonucleotides as described above, which can be used in methods for the detection of the species mentioned.
  • the present invention also provides oligonucleotides that are specific to sequences according to SEQ ID NO. 1, 3, 5, 7, 9 or 11, complementary to it
  • Oligonucleotides consisting of or comprising sequences according to SEQ ID NO are particularly preferred. 12 to SEQ ID NO. 51st
  • the invention also relates to a diagnostic test kit as described above, the oligonucleotides provided in this kit being provided with a detectable marker.
  • detectable markers can include enzymes, enzyme substrates, coenzymes, enzyme inhibitors, fluorescent markers, chromophores, luminescent markers and radioisotopes.
  • This invention also relates to antibodies which are specific to an epitope of a ⁇ -tubulin from nematodes of the Sfrongylidae family, preferably the
  • Cyathostominae particularly preferably of the genera Cylicocycle and Cyathostomum, very particularly preferably of the species Cylicocyclus nassatus and Cyathostomum coronatum react.
  • This invention also relates in particular to monoclonal antibodies which are specific to an epitope of a ⁇ -tubulin from nematodes of the Strongylidae family, preferably the Cyathostominae subfamily, particularly preferably the Cylicocycle and Cyathostomum genera, very particularly preferably the Cylicocyclus nassatus and Cyathostomum coronatum species, react.
  • This invention also relates to the use of the abovementioned antibodies as nematicides.
  • This invention also relates to the use of the abovementioned ⁇ -tubulin polypeptides or fragments thereof from nematodes of the family of
  • Strongylidae preferably the subfamily of Cyathostominae, particularly preferably of the genera Cylicocycle and Cyathostomum, very particularly preferably of the species Cylicocyclus nassatus and Cyathostomum coronatum, for the production of vaccines which contain at least one of the ⁇ -tubulin polypeptides or fragments thereof.
  • the vaccine is able to elicit an immune response that is specific for a ⁇ -tubulin described above.
  • the vaccine contains an antigenic determinant, for example a single determinant of a polypeptide with an amino acid sequence according to SEQ ID NO. 2, 4, 6, 8 or 10 or a polypeptide encoded by one of the aforementioned DNA or fragments thereof.
  • the invention also relates to a method for producing an immunogenic composition for immunizing mammals, consisting of at least one of the abovementioned ⁇ -tubulin polypeptides according to the invention or fragments thereof or of at least one of the abovementioned antibodies.
  • the invention also relates to the use of the expression vectors described above containing a nucleic acid coding for a ⁇ -tubulin according to the invention, preferably a sequence according to SEQ ID NO. 1, 3, 5, 7, 9 or 11, fragments thereof or sequences homologous thereto for the preparation of an immunogenic composition for administration into a host for activating a protective immune response in this host which is directed to ⁇ -tubulin from parasitic nematodes.
  • the invention also relates to an immunogenic composition
  • a vector comprising a nucleic acid coding for the ⁇ -tubulin according to the invention, preferably a sequence according to SEQ ID NO. 1, 3, 5, 7, 9 or 11, fragments thereof or sequences homologous thereto, and a promoter sequence which is functionally linked to said nucleotide sequence and which
  • ß-tubulin which triggers an immune response
  • carrier substance suitable for pharmaceutical purposes.
  • This invention also relates to a method for identifying substances which modulate the interaction of tubulin or the interaction of subunits of tubulin.
  • the method is based on the use of tubulin, preferably on tubulin from parasitic nematodes, particularly preferably on ß-tubulin from parastic nematodes of the order Strongylida, very particularly preferably on ß-tubulin from parasitic nematodes of the Sfrongylidae family, most preferably on ß- Tubulin from parastic nematodes of the subfamily of
  • Cyathostominae A particularly preferred group of in this process ß-tubulin used is ß-tubulin from parasitic nematodes of the genera Cylicocycle and Cyathostomum.
  • the invention relates to the identification of substances, e.g. small organic molecules that are able to modulate the interaction of tubulin protein molecules or their subunits with each other.
  • the invention preferably relates to the identification of compounds which inhibit the interaction.
  • the invention also relates to a method as described above, which is based on the fact that
  • the binding is detected by determining the ability of the tubulin protein molecules to interact with one another and
  • Presence of a test substance compared to the ability to interact with each other in the absence of a test substance.
  • the invention also relates to a method for identifying substances which modulate the ability of tubulin molecules to interact with one another.
  • the invention particularly preferably relates to a method which uses one of the above-described polypeptides which are encoded by the above-described DNAs or fragments thereof, in particular DNAs consisting of or comprising sequences according to SEQ ID NO. 1, 3, 5, 7, 9 or 11 and of sequences that have an identity of 85%, preferably Have 95% and code for ⁇ -tubulin, which has an amino acid sequence according to SEQ 2, 4, 6, 8 or 10.
  • the invention also relates to a method for identifying substances which modulate the ability of tubulin to interact with one another as described above, the method used being based on modulating the tubulin interaction in the presence of a test substance using a cell-based test system detect.
  • a preferred embodiment of such a test system is the so-called “two hybrid system” (US Pat. No. 5,283,317, Zervos et al. (1993) Cell 72, 223-232; WO 94/10300). This system is suitable for documenting or describing the interaction of two proteins in that the interaction leads to a detectable signal. Such a system can also be adapted to test systems with high throughput numbers.
  • the invention also relates to a method for identifying substances which modulate the ability of tubulin to interact with one another, the method used being based on detecting a modulation of the tubulin interaction in the presence of a test substance using a cell-free test system.
  • a particularly preferred embodiment of such a test system is the so-called "Scintillation Proximity Assay" (SPA)
  • microspheres a receptor bound to microspheres
  • beads e.g. B. a tubulin molecule with a ligand, the microspheres or beads being provided with a scintillating molecule.
  • a signal is detected when the receptor-ligand complex disintegrates.
  • the invention also relates to substances not yet described, which are identified with the aid of the methods described above and are suitable for modulating, preferably inhibiting, the interaction of tubulin molecules.
  • the invention also relates to the use of substances which have not yet been described and which have been identified using one of the methods described above, for the preparation of an agent which is used for the prophylactic or therapeutic treatment of animals or humans which may or may be infected by nematodes ,
  • the agents according to the invention contain at least one of the substances identified by one of the methods described above and can be administered nasally, dermally, parenterally or enterally.
  • fragments in relation to proteins and DNA describes parts of the SEQ LD NO. 1 to 11 described nucleic acids or amino acid sequences, complementary sequences or 85%, preferably 95% identical sequences.
  • the fragments of the DNA and polypeptide sequences comprise at least 5 nucleotides or amino acids, but can also contain up to 447 amino acids or up to 1343 nucleotides, or up to 2565 nucleotides in the case of the sequence according to SEQ ID NO. 11 include.
  • homology refers to sequence similarities between two peptides or between two nucleic acid molecules. Homology can be determined by comparing one position in each sequence. Is a position in the compared sequence of the same
  • a "non-homologous" sequence has an identity of less than 40%, but preferably less than 25% identity.
  • the term "homology” means in particular that DNA segments of at least 15 base pairs in length or complementary to the DNA in at least 85%, preferably 95% of the nucleotides match the corresponding DNA. Homology can be determined, inter alia, with the aid of computer programs such as the GCG program (Devereux et al. (1983), Nucleic Acids Res. 12, 387-395).
  • a "homology” also exists if a DNA segment can hybridize to the releasing DNA strand or its complementary strand.
  • hybridize or “hybridization” describes the process in which a single-stranded nucleic acid molecule with a complementary DNA strand forms a base pair, the ability of a single-stranded nucleic acid molecule depending on the stringency of the hybridization conditions.
  • stringency refers to the hybridization conditions. "High stringency” is given when a base pairing is difficult. “Low stringency” is given when a base pairing is facilitated.
  • Pyrimidine nucleotides to form base pairs with one another via hydrogen bonds.
  • Complementary base pairs include Guanine and cytosine, adenine and thymine and adenine and uracil.
  • the person skilled in the art is aware that, owing to the degenerate genetic code (ie 64 codons coding for 20 amino acids), numerous "silent" substitutions of nucleotide base pairs can be introduced into the sequence set out for this purpose without changing the identity of the protein products encoded by them. All such substitutions are intended to be included within the scope of the invention.
  • the term "specifically hybridize” refers to the ability of a nucleic acid molecule of the present invention to have at least about 6, 12, 20, 30, 50, 100, 150, 200, 300, 350, 400 or 440 consecutive nucleotides of one of the hybridize ⁇ -tubulin genes described above, preferably to one of the sequences according to SEQ LD NO.
  • Plasmid refers to an extrachromosomal genetic element.
  • the original plasmids used for the present invention are either commercially available, freely accessible or can be derived from such plasmids by known methods.
  • vector describes a DNA element that is used to introduce exogenous DNA into host cells.
  • a vector contains a nucleotide sequence that encodes one or more polypeptides.
  • Vectors that are capable of directing the expression of the genes that contain them are referred to as "expression vectors”.
  • the term “gene” refers to a nucleic acid containing an open reading frame which codes for one of the ⁇ -tubulin polypeptides described above. Both exon and possibly infron sequences are included.
  • the term “interact” or “interaction” describes detectable interactions between molecules.
  • the term “bond” is included.
  • modulate refers to both stimulation and suppression or inhibition of a biochemical process. In the context of the present invention, “modulation” means an inhibition or suppression of the interaction between tubulin polypeptides or fragments or subunits thereof, or a stimulation of this interaction, which can manifest itself, for example, in an irreversible binding of tubulin polypeptides to one another.
  • nucleic acid refers to polynucleotides such as deoxyribonucleic acids (DNA) or, if appropriate, to ribonucleic acids (RNA).
  • DNA deoxyribonucleic acids
  • RNA ribonucleic acids
  • the term also includes, in an equivalent manner, analogs of RNA or DNA derived from
  • Nucleotide analogs are produced, as well as single-stranded (“sense” or “antisense”) and double-stranded polynucleotides if applicable.
  • promoter refers to DNA sequences that regulate the expression of a particular DNA that are operably linked to the promoter.
  • tissue-specific promoters i.e. Promoters that control the expression of the specific DNA only in certain cells (e.g. cells of a certain tissue). Also included are “tissue-unspecific” promoters and promoters that lead to constitutive expression or are inducible.
  • protein protein
  • polypeptide peptide
  • a “fusion protein” is a fusion of a first amino acid sequence coding for one of the ⁇ -tubulin polypeptides described above with a second amino acid sequence which has no commonality or basic homology to the tubulin sequence.
  • the second amino acid sequence can originate from the same organism as the first, or alternatively originate from another organism (intergenic).
  • a fusion protein can use the formula
  • X-tubulin-Y are reproduced, "tubulin” for any of the above polypeptides described, and X and Y stand for a polypeptide that is not related to a tubulin amino acid sequence. X or Y can each be absent independently.
  • cell or "host cell” can be used in the context of the present
  • Registration can be used in the same sense. It is understood that these terms refer not only to a single cell, but also to the descendants of such a cell. Due to certain modifications in the course of subsequent generations (e.g. mutations), such offspring may not be identical to the stem cell, but are included in the present invention.
  • genomic describes such sequences of the described, preferably genomic, DNA, which are transcribed, but then removed from the transcript by so-called “splicing”, the adjacent sequences (exons) being linked.
  • one aspect of the invention relates to nucleic acids from nematodes of the Sfrongylidae family, particularly the subfamily of Cyathostominae, very particularly to the genera Cyathostomum and Cylicocycle, especially the species Cylicocyclus nassatus and Cyathostomum coronatum, which are suitable for ⁇ -tubulin Encoding polypeptides, or fragments thereof or nucleic acids homologous thereto, which contain the in SEQ ID NO. 1, 3, 5, 7, 9 and 11 are 85%, preferably 95% homologous and for a ⁇ -tubulin according to one of the sequences according to SEQ ID NO. Encode 2, 4, 6, 8 or 10 or fragments thereof.
  • SEQ ID NO. 3 shows the degenerate sequence of the nucleic acid from ⁇ -tubulin from Cylicocycle nassatus, where "r” stands for a purine (guanine or adenine), "y” for a pyrimidine (thymine or uracil or cytosine) and "w” for an adenine or a thymine or an uracil.
  • SEQ ID NO. 3 thus comprises a series of sequences that can be present in organisms of the species Cylicocyclus nassatus.
  • the sequences according to SEQ ED NO. 5, 7 and 11 show three defined sequences coding for ⁇ -tubulin, the exemplary and preferred embodiments of DNA according to SEQ ID NO. 3 are.
  • oligonucleotides which optionally code for ⁇ -tubulin polypentides which have a length of at least 2, 5, 10, 25, 50, 100, 150, 200, 250, 300, 350 or 400 amino acids.
  • Such oligonucleotides can serve as primers or antisense molecules (ie as non-coding nucleic acids) and comprise at least about 6, 12, 24, 30, 60, 100, 120, 150 or 210 base pairs, while coding nucleic acids about 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200 or 1300 base pairs.
  • the invention also describes those oligonucleotides that hybridize specifically under stringent conditions to nucleic acids derived from one of the
  • Sequences according to SEQ ID NO. 1, 3, 5, 7, 9 or 11 can be played.
  • stringent conditions are e.g. 6 x sodium chloride / sodium citrate (SSC) at about 45 ° C, followed by a washing step with 2 x SSC at 50 ° C, and are familiar to the person skilled in the art (see, for example, Current protocols in Molecular Biology, John Wiley & Sons, NY (1989) , 6.3.1-6.3.6). So the salt concentrations in
  • Wash step selected so that the stringency is lower (2 x SSC, 50 ° C) or higher (0.2 x SSC, 50 ° C).
  • the temperature during the washing step can also be varied, from conditions for low stringency (e.g. approx. 22 ° C) to conditions for high stringency (e.g. approx. 65 ° C). Both salt concentration and temperature can be varied and coordinated.
  • oligonucleotides used as primers or for hybridization to identify and characterize one, e.g. genomic, DNA are in SEQ ID NO. 12-51.
  • the infrons are the sequences located between the coding exons.
  • the described primers or hybridization probes contain a labeled group which enables the detection of the oligonucleotides, e.g. Radioisotopes, fluorescent groups,
  • oligonucleotides can be used in diagnostic test kits to determine the origin (i.e. the organism) of an existing DNA.
  • the oligonucleotides are characterized by their specific hybridization with the
  • SEQ ID NO. 1, 3, 5, 7, 9 and 11 called DNAs their fragments, homologous sequences and complementary sequences suitable for recognizing defined sequences. They thus also enable the recognition and identification of sequences coding for ⁇ -tubulin which, owing to one or more point mutations in codon 200, lead to the expression of benzimidazole-resistant ⁇ -tubulin.
  • Embodiments 12 to 51 described are thus suitable for identifying the frequently occurring nematode species of the subfamily of the Cyathostominae, as well as for recognizing existing resistance to benzimidazoles.
  • the oligonucleotides according to the present invention can be produced using standard methods which are known to the person skilled in the art, for example by de novo DNA synthesis.
  • the nucleic acids mentioned here can be present in complete cells, in cell lysates, in partially purified or biologically pure form, ie when other cell components or chemical precursors and by-products have been separated in the case of chemical synthesis of the DNA.
  • Nucleic acids encoding ⁇ -tubulin can be obtained starting from mRNA which is present in a number of eukaryotic cells. It is also possible to obtain the DNA according to the invention starting from genomic DNA from the relieving nematode cells (see also the following examples).
  • a gene coding for ⁇ -tubulin can e.g. can be obtained from a cDNA or a genomic DNA library.
  • cDNA can be obtained by looking at the total mRNA of a cell, e.g. a nematode cell, isolated. Based on the mRNA, double-ended cDNA can then be produced and inserted into a suitable plasmid or a suitable vector.
  • the DNA according to the invention can also be obtained by amplification with
  • the present invention also encompasses expression vectors which contain one of the nucleic acid sequences according to the invention, which are functionally linked to a frictional regulatory sequence.
  • “Functionally linked” means that the nucleic acid sequence is linked to the regulatory sequence in such a way that the expression of the protein encoded by the nucleic acid sequence can be controlled.
  • "Transcription regulatory sequences” include e.g. B. promoters, enhancers and other control elements.
  • the expression vectors contain e.g. B. encoding a gene for an inventive ⁇ -tubulin or fragments thereof. These vectors can be used to be introduced into cells, where the corresponding polypeptides or fusion proteins are then formed. Matching pro Motors for expression of the protein according to the invention in E.
  • coli include natural hybrid or bacteriophage promoters. These are preferably promoters from the group of phage ⁇ promoters, omp or synthetic promoters (see also WO 98/15625, DE 3 430 683, EP 0 173 149). Suitable vectors are commercially available, for example the expression vectors of the pET series
  • the expression vectors can then be transformed, for example, into DE3-lysogenic E. coli strains, for example BL21 (DE3), HM S 174 (DE3) or AD494 (DE3).
  • the present invention also encompasses cells that contain the nucleic acid sequences of the invention (e.g., inserted into a vector or into the genome). These host cells can be prokaryotic or eukaryotic.
  • Suitable prokaryotic expression systems are e.g. bacterial systems such as Streptomyces spp., Bacillus subtilis, Salmonella typhimurium, Serratia marcescens and preferably E. coli.
  • a preferred eukaryotic expression system is the baculovirus system, particularly preferably that which allows post-translational modifications.
  • eukaryotic expression systems e.g. yeast, insect cells
  • yeast e.g. yeast, insect cells
  • the present invention also comprises ⁇ -tubulin polypeptides which are derived from the DNAs according to the invention, preferably the DNA sequences according to SEQ ID NO. 1,
  • polypeptides are encoded, from fragments of the same or from homologous DNA sequences as described above.
  • Preferred embodiments of these ⁇ -tubulin polypeptides are in the sequences according to SEQ LD NO. 2, 4, 6, 8 and 10.
  • the described polypeptides are purified polypeptides which are free from contaminating proteins of those cells in which the polypeptides according to the invention were produced.
  • polypeptides described are full-length proteins or fragments, motifs or domains thereof that have lengths of at least 5, 10, 25,
  • Polypeptide fragments can be obtained and selected by testing polypeptides derived from nucleic acid fragments from the sequences according to SEQ ID NO. 1, 3, 5, 7, 9 and 11 can be encoded.
  • Polypeptide fragments can also be chemically synthesized in a known manner.
  • the invention also encompasses polypeptides derived from the degenerate sequence according to SEQ ID NO. 3 can be encoded.
  • the different possible bases at defined positions in the DNA sequence result in different polypeptides with the amino acid encoded by the respective codon.
  • the DNA according to SEQ ID NO. 3 encoded polypeptides are in SEQ LD NO. 4, the variable amino acids being identified by "Xaa”.
  • polypeptides are in SEQ ID NO. 2, 4, 6, 8 and
  • the present invention also includes methods for producing the polypeptides of the invention.
  • polypeptides of the present invention can be obtained in various ways, e.g. through chemical methods like the solid phase method. The use of recombinant methods is recommended to obtain larger amounts of protein.
  • the expression vectors can be transformed into ⁇ DE3-lysogenic E. co / z ' strains, for example BL21 (DE3), HM S174 (DE3) or AD494 (DE3). After the cells have grown under standard conditions familiar to the person skilled in the art, expression is induced with IPTG. After induction of the cells for 3 to 24
  • Homologs or fragments of the polypeptides according to the invention can be generated by mutagenesis, e.g. by directed (point) mutagenesis, or by deletions.
  • polypeptides according to the invention can also be chemically modified, for example with glycosyl groups, lipids, phosphates, acetyl groups or the like Groups.
  • Covalent derivatives can be obtained by linking the modifying group to functional groups of the amino acid side chains or the N-terminus or C-terminus of the polypeptide.
  • polypeptides according to the invention can also be present as part of a fusion protein. Such fusion proteins are fully encompassed by the present invention. Fusion proteins can be useful under conditions where it is desirable to obtain an immunogenic fragment of ⁇ -tubulin (see, e.g., EP 0259 149; Schlienger et al. (1992) J. Virol. 66, 2). Fusion proteins facilitate expression of a polypeptide in certain circumstances.
  • the polypeptides according to the invention can be produced as glutathione-S-transferase (GST) fusion proteins.
  • GST fusion proteins enable the polypeptide to be easily purified (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al.
  • Fusion proteins can contain, for example, a "leader" sequence which the Purification serves, for example, a poly-His sequence at the N-terminus (but also at the C-terminus) of the protein allows its purification by means of chromatography on a Ni 2+ -NTA column (see, for example, Hachuli et al. (1987) J. Chromatography 411, 177).
  • Another aspect of the present invention relates to antibodies which react specifically with the ⁇ -tubulin polypeptides according to the invention.
  • anti-protein or anti-peptide antisera or monoclonal antibodies can be produced according to standard protocols (see, for example, Antibodies: A. Laboratory Manual ed. By Harlow and Lane (Cold Spring Harbor Press, 1988)).
  • Mammals such as mice, hamsters or rabbits can be immunized with an immunogenic form or an immunogenic portion of the polypeptide according to the invention, ie with a polypeptide which is able to elicit an antibody response (see also "fusion proteins" above).
  • an immunogenic portion of the ⁇ -tubulin can be administered in the presence of an adjuvant.
  • the course of the immunization can be monitored by checking the antibody titer in plasma or serum, e.g. by common ELISA or other immunoassays.
  • the antibodies according to the invention are immunospecific for an antigenic determinant of a ⁇ -tubulin polypeptide according to the invention, e.g. a polypeptide according to SEQ LD NO. 2, 4, 6, 8 or 10 or such polypeptides derived from DNAs according to SEQ ID NO. 1, 3, 5, 7, 9 or 11 or thus 85% identical sequences, preferably 95% identical sequences.
  • a polypeptide according to SEQ LD NO. 2, 4, 6, 8 or 10 or such polypeptides derived from DNAs according to SEQ ID NO. 1, 3, 5, 7, 9 or 11 or thus 85% identical sequences, preferably 95% identical sequences.
  • polyclonal anti-ß-tubulin antibodies can be isolated from the serum.
  • antibody-producing cells lymphocytes
  • Animal can be obtained and according to known methods with immortal cells such as Myeloma cells are fused to obtain hybridoma cells (see e.g. Koehler and Milstein (1975) Nature 256, 495-497; Kozbar et al. (1983) Immunology Today 4, 72; Cole et al. (1985) Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. pp. 77-96).
  • immortal cells such as Myeloma cells are fused to obtain hybridoma cells (see e.g. Koehler and Milstein (1975) Nature 256, 495-497; Kozbar et al. (1983) Immunology Today 4, 72; Cole et al. (1985) Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. pp. 77-96).
  • antibodies are also intended to include fragments of antibodies which react specifically with ⁇ -tubulin according to the invention. Antibodies can be fragmented using conventional techniques and the fragments checked.
  • a preferred embodiment relates to antibodies as described above which carry a detectable marker (e.g. radioisotopes, fluorescent groups, enzymes or enzyme cofactors).
  • a detectable marker e.g. radioisotopes, fluorescent groups, enzymes or enzyme cofactors.
  • Antibodies that bind specifically to ⁇ -tubulin polypeptides according to the invention can also be used for immunohistochemical staining of tissue samples in order to detect the expression of a specific ⁇ -tubulin.
  • the anti-ß tubulin antibodies can also be used for diagnostic purposes, e.g. be used for immunoprecipitation or for immuno-blotting.
  • the present invention also provides nucleic acid molecules that can be used for diagnostic purposes.
  • nucleic acid molecules as described above, the fragments of the under SEQ ID NO. 1, 3, 5, 7, 9 or 11 described or complementary DNA sequences.
  • Oligonucleotides according to SEQ ID NO. Provided 12 to 51, which are able to hybridize to Sens or antisense sequences coding for ß-tubulin, and to infrared sequence sections, which are exemplified in SEQ ID NO. 11 are described.
  • the nucleic acid of a cell is made accessible for hybridization, the DNA sample is brought into contact with the oligonucleotides, and the hybridization of the sample with the oligonucleotide is detected.
  • a method is made available which makes it possible, by specific hybridization of the oligonucleotides according to the invention to a DNA sample, preferably with the aid of those oligonucleotides which hybridize to the infrared regions of the DNA coding for ⁇ -tubulin, between different species to distinguish between small strongyles and / or other nematode species.
  • the oligonucleotides according to the invention allow the identification of resistance in small (Cyathostaminae), e.g. in horses, especially resistance of the species Cylicocyclus nassatus, Cyathostomum coronatum and Cyathostomum catinatum.
  • small Cyathostaminae
  • Ask point mutation in the DNA coding for it according to the invention which can be detected by PCR, such as. B. described in an analogous manner in Elard et al. (1998) PCR diagnosis of benzimidazole-susceptibility or -resistance in natural populations of the small ruminant parasite, Teladorsagia circumcincta. Veterinary Parasitology 80, 231-237.
  • the described method is particularly helpful for assessing possible treatment strategies in humans and animals infected with nematodes, e.g. Horses, sheep, pigs, goats, camels, buffaloes, donkeys, rabbits, roe deer, fur animals, birds (e.g. chickens, turkeys, ducks), fresh and saltwater fish (e.g.
  • nematodes e.g. Horses, sheep, pigs, goats, camels, buffaloes, donkeys, rabbits, roe deer, fur animals, birds (e.g. chickens, turkeys, ducks), fresh and saltwater fish (e.g.
  • Trout carp. It enables the identification and differentiation of the parasitic nematodes and the detection of resistant populations thereof, and prevents treatment with ineffective nematicides.
  • Test kits are made available that include at least one of the above Contain nucleic acid molecules or an antibody as described above, which is prepared ready for use.
  • the invention relates to a method in which novel, specific anthelmintic substances can be identified with the help of tubulin or fragments thereof.
  • ⁇ -tubulin polypeptides according to the present invention are used for this.
  • the method can also be carried out with tubulin from other species than those mentioned here. Methods that use ß-tubulin polypeptides other than the invention are fully encompassed by the present invention.
  • ⁇ -Tubulin polypeptides according to SEQ ID NO. are particularly preferred for the method mentioned. 2, 4, 6, 8 or 10 used.
  • recombinant ⁇ -tubulin polypeptides from frequently occurring parasitic nematodes are thus additionally made available. These can be used in various test systems to identify new inhibitors of the tubulin interaction or the interaction of the tubulin subunits.
  • test systems aimed at testing compounds and natural extracts are designed for high throughput numbers in order to maximize the number of substances tested in a given period of time.
  • Test systems that are based on cell-free work require purified or semi-purified protein. They are suitable for a "first" test, which primarily aims to detect a possible influence of a substance on the target protein. Effects such as cell toxicity are usually ignored in these in vitro systems.
  • the test systems check both inhibitory or suppressive effects of the substances as well as stimulatory effects. The effectiveness of a substance can be checked using concentration-dependent test series. Confusion approaches without test substances can be used to evaluate the effects.
  • SPA Scintillation Proximity Assay
  • Photon emits The test conditions are optimized so that only those particles originating from the ligand lead to a signal which originate from a ligand bound to the receptor or the tubulin.
  • tubulin is bound to the beads, either together or without interacting or binding test substances.
  • ⁇ - or ⁇ -tubulin subunits could be used.
  • a radiolabelled ligand could e.g. B. be a labeled benzimidazole or another labeled ß-tubulin molecule. If the ligand binds to the immobilized tubulin, this ligand would have to inhibit or abolish an existing interaction between immobilized and free tubulin in order to bind itself in the area of the contact area. Successful binding to the immobilized tubulin can then be detected using a flash of light. Accordingly, an existing complex between an immobilized and a free, labeled tubulin is destroyed by the binding of a test substance, which leads to a drop in the detected Light flash intensity leads.
  • the test system then corresponds to a complementary inhibition system.
  • the ⁇ -tubulin available through the present invention enables the development of test systems based on cells for the identification of substances which inhibit the tubulin interaction.
  • test system An example of such a test system is the so-called "two hybrid system".
  • reaction trap It is a genetic selection of interacting proteins in yeast (see e.g. Gyuris et al. (1993) Cdi 1, a human Gl and S phase protein phosphatase that associates with Cdk 2. Cell 75, 791-803).
  • the test system is designed to detect and describe the interaction of two proteins in that an interaction that has taken place leads to a detectable signal.
  • test system can also be adapted to the testing of large numbers of test substances in a given period.
  • the system is based on the construction of two vectors, the "bait" and the "prey” vector.
  • a gene coding for tubulin preferably a gene coding for a ⁇ -tubulin according to the invention, is cloned into the bait vector and then expressed as a fusion protein with the LexA protein, a DNA-binding protein.
  • a second gene, coding for tubulin, preferably for a ⁇ -tubulin according to the invention, is cloned into the Prey vector, where it is expressed as a fusion protein with the B42-Prey protein.
  • Both vectors are in a Saccharomyces cerevisiae-Wi ⁇ t, which contains copies of LexA-binding DNA on the 5 'side of a lacZ or HIS 3 reporter gene. If there is an interaction between the two tubulin (fusion) proteins, the transcription of the is activated
  • Reporter gene The presence of a test substance leads to inhibition or Disruption of the tubulin interaction, the two tubulin (fusion) proteins can no longer interact, the product of the reporter gene is no longer produced.
  • tubulin especially the ß-tubulin according to the invention or fragments thereof, and the methods described above, it is possible to identify new and specific antiparasitic compounds.
  • the compounds are active against all developmental stages of normal, sensitive strains and also resistant strains. Treatment with agents containing one or more of these compounds can prevent or treat both economic losses in farm animals and diseases in humans and animals.
  • the following parasites are of particular interest as targets of the active compounds found:
  • Enoplida e.g. Trichuris spp., Capilla ⁇ a spp., Trichomosoides spp., Trichinella spp.
  • Rhabditia e.g. Micronema spp., Strongyloides spp.
  • Strongylida e.g. Strongylus spp., Triodontophorus spp., Oesophagodontus spp., Trichonema spp., Gyalocephalus spp., Cylindropharynx spp., Poteriostomum spp., Cyclococercus spp., Cylicostephanus spp., Oesophagostomurus spp.,.
  • Ancylostoma spp. Uncinaria spp., Bunostomum spp., Globocephalus spp., Syngamus spp., Cyathostomum spp., Cylicocyclus spp., Neostrongylus spp., Cystocaulus spp., Pneumostrongylus spp., Spicocaulus spp., Spicocaulus spp.
  • Par elaphostrongylus spp. Crenosoma spp., Paracrenosoma spp., Angiostrongylus spp., Aelurostrongylus spp., Filaroides spp., Parafilaroides spp., Tricho-strongylus spp., Haemonchus spp., Ostertagia spp., Marshall Cooperia spp., Nematodirus spp., Hyostrongylus spp., Obeliscoides spp., Amidostomum spp.,
  • Oxyurida e.g. Oxyuris spp., Enterobius spp., Passalurus spp., Syphacia spp., Spz-culuris spp., Heterakis spp. Ascaridia, e.g. Ascaris spp., Toxascaris spp., Toxocara spp., Parascaris spp., Anisaki spp., Ascaridia spp.
  • Spirurida e.g. Gnathostoma spp., Physaloptera spp., Thelazia spp., Gongylonema spp., Habronema spp., Parabronema spp., Draschia spp., Dracunculus spp.
  • Filariida e.g. Stephanoßlaria spp., Parafilaria spp., Setaria spp., Zo ⁇ spp., Diroßlaria spp., Litomosoides spp., Brugia spp., Wuchereria spp., Onchocerca spp.
  • Gigantorhynchida e.g. Filicollis spp., Moniliformis spp., Macracanthorhynchus spp., Prosthenorchis spp.
  • Trypanosomatidae e.g. Trypanosoma b. brucei, T. b. gambiense, T b. rhodesiense, r. congolense, T. cruzi, T. evansi, T. equinum, T. lewisi, T. percae, T. simiae, T. vivax, Leishmania brasiliensis, L. donovani, L. tropica
  • Trichomonadidae e.g. Giardia lambilia, G. canis.
  • Hartmanellidae e.g. Acanthamoeba sp., Hartmanella spp. Apicomplexa (Sporozoa), e.g. Bucket ia acervulina, E. adenoides, E. alabahmensis,
  • Plasmodiidae e.g. Plasmodium berghei, P. falciparum, P. malariae, P. ovale, P. vivax, P. spec.
  • Piroplasmea e.g. Babesia argentina, B. bovis, B. canis, B. spec, Theileria parva, T. spec.
  • Myxospora and Microspora e.g. Glugea spec. and Nosema spec, as well as Pneumocystis carinii, Ciliophora (Ciliata), e.g. Balantidium coli, Ichthiophthirius spec., Trichondina spec. or Epistylis spec.
  • the compounds and agents found are also effective against protozoa of insects, such as those of the Microsporidia strain, especially those of the order Nosema, especially those of the species Nosema apis, which are parasites of the honeybee.
  • mRNA was obtained using the Quick Prep® Micro mRNA Kit (Pharmacia Biotech, Freiburg, Germany) from C. nassatus-Wü ⁇ mem and from C. coronatum and Cc ⁇ t ⁇ tam worms with the Dynal® mRNA Direct Kit (Dynal, Hamburg, Germany) won.
  • the worms were isolated from the colon of horses and differentiated microscopically according to the characteristic structure of the head and tail (see RS Lichtenfeld (1975), Helminths of domestic equids. Proceedings of the Helminthological Society, Washington, 42 (Special issue), 1-92 ).
  • the cDNA was synthesized using the "reverse transcription system"
  • Genomic DNA was obtained from 4 to 40 adult worms using the QIA Amp-Tissue Kit (Qiagen, Hilden, Germany). The worms were digested with Proteinase K for 2 hours at 55 ° C and the genomic DNA extracted with "Spin Columns".
  • amplification of full-length ⁇ -tubulin sequences or fragments can e.g. with AmpliTaq Gold TM polymerase (Perkin Elmer, Foster City, California, USA).
  • An amplification of the ⁇ -tubulin sequences according to SEQ ID NO. 1, 3, 5, 7, 9 or 11 or fragments thereof can be prepared using the primers according to SEQ LD NO. 12 - 51.
  • the sequences according to SEQ ID NO. are particularly suitable for the amplification of the C. catinatum cDNA. 40 and 42.
  • the amplification of the C. nassatus cDNA and the genomic DNA of all species according to the present invention was carried out in a total volume of 50 ⁇ l, containing 5 ⁇ l 10 ⁇ buffer, 2.5 ⁇ l MgCl 2 (25 mM), 2 ⁇ l dNTP mix (2mM per NTP), 1 ⁇ l of each specific primer (SEQ ID NO. 12 - 47) (50 p mol / ⁇ l), 0.5 ⁇ l (2.5 U)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Die Erfindung betrifft DNA, die für beta -Tubulin aus Nematoden der Familie der Strongylidae kodiert, das von dieser DNA kodierte Polypeptid, die Verwendung der DNA zur Diagnose von anthelmintischer Resistenz bei den betreffenden Nematoden und zur Identifizierung der Spezies parasitärer Nematoden, die Verwendung des beta -Tubulins als Bestandteil eines Impfstoffs sowie ein Verfahren zur Identifizierung von neuen anthelmintischen oder antibiotischen Verbindungen.

Description

DNA kodierend für ß-Tubulin und deren Verwendung
Die Erfindung betrifft DNA, die für ß-Tubulin aus Nematoden der Familie der Strongylidae kodiert, das von dieser DNA kodierte Polypeptid, die Verwendung der DNA zur Diagnose von anthelmintischer Resistenz dieser Nematoden und zur Identifizierung der Spezies dieser Nematoden, die Verwendung des ß-Tubulins als Bestandteil eines Impfstoffs sowie ein Verfahren zur Identifizierung von neuen anthelmintischen oder antibiotischen Verbindungen.
Parasitische Helminthen (Würmer) stellen für Menschen und Tiere ein Gesundheitsproblem dar und verursachen bedeutende wirtschaftliche Schäden. Die Ausgaben für Anthelmintika betrugen im Jahr 1996 weltweit mehr als 2 Milliarden US-Dollar. Die wichtigsten Anthelmintika, die derzeit Anwendung finden, können nach ihrem Wirk- mechanismus in drei Gruppen aufgeteilt werden:
1. Die zyklischen Amidine Pyrantel und Morantel wirken zusammen mit den Imidazothiazolen Tetramisol und Levamisol als cholinerge Verbindungen für das parasitäre Nervensystem.
2. Die Benzimidazole sind Inhibitoren der Polymerisation von Mikrotubuli und führen zur Degradation von Tubulin, gefolgt vom Verlust mehrerer Zellfunktionen wie dem Transport innerhalb von Zellen und der Zellteilung.
3. Die makrozyklischen Lactone binden und öffnen glutaminergische Chlorid-
Kanäle und wirken so als Inhibitoren des Nervensystems von Nematoden und Arthropoden.
Mikrotubuli sind aus Tubulin-Untereinheiten aufgebaut. Tubulin ist ein dimeres Protein, das aus α- und ß-Tubulin besteht und in einem dynamischen Gleichgewicht zwischen Tubulin und Mikrotubuli vorliegt. Dieses Gleichgewicht kann durch exogene Substanzen beeinflußt werden, die man als Mikrotubuli-Inhibitoren bezeichnet. Einige dieser Inhibitoren, wie z.B. die Benzimidazole, wirken durch ihre Bindung an Tubulin, wodurch sie die Selbstassoziation dieser Untereinheiten an wachsende Mikrotubuli verhindern, während am entgegengesetzten Ende die Dissoziation der Mikrotubuli fortgesetzt wird. Dadurch kommt es zu Fehlfunktionen bei lebenswichtigen Prozessen innerhalb der Zelle und schließlich zum Absterben der Zelle und des gesamten Organismus (Lacey, E. (1990) Mode of action of benzimida- zoles. Parasitology Today 6, 112-115). Zu solchen Mikrotubuli-Inhibitoren gehören verschiedene Verbindungsklassen, die synthetisch hergestellt oder von verschiedenen Organismen produziert werden.
Die Bindung von Mikrotubuli-Inhibitoren an Tubulin aus verschiedenen Organismen zeigt große Unterschiede hinsichtlich der Affinität der Bindung. So zeigen die Anthelmintika Oxfendazol und Thiabendazol eine hohe Affinität an Tubulin aus Ascaridia galli und eine nur geringe Affinität zu Tubulin aus Säugetieren wie dem
Schaf (Dawson et al. (1983) Purification and characterisation of tubulin from the parasitic nematode, Ascaridia galli, Molecular and Biochemical Parasitology 7, 267-277). Die selektive Toxizität von Benzimidazolen kann anhand dieser selektiven Affinität erklärt werden (Lacey, E. (1988) The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles,
International Journal for Parasitology 18, 885-936).
Der verbreitete Gebrauch dieser Anthelmintika hat zu erheblichen Resistenzproblemen gegen alle drei Klassen vor allem in Nutzvieh geführt (Bauer et al. (1994) Anthelmintic resistance in nematodes of farm animals. A seminar organised for the
European Commission, Brüssel, Belgien, 8. bis 9. November 1993, S. 17-24). Die verbreiteste Klasse der Anthelmintika sind die Benzimidazole. Resistenz gegen Benzimidazole wurde weltweit bei Parasiten von Schafen, Rindern, Schweinen und Pferden beschrieben. Benzimidazole sind Breitspektrum-Anthelmintika mit Wirkung gegen Nematoden, Cestoden und Trematoden. Untersuchungen in deutschen Pferdegestüten ergab eine Resistenz von kleinen Strongyliden gegen Benzimidazole in mehr als 80 % der Fälle (Ullrich et al. (1988) Benzimidazole resistance in small strongylids (Cyathostominae): distribution in horse stock in Northrhine-Westphalia, Berliner Münchner Tierärztliche Wochenschrift 101, 406-408).
Für eine effektive Behandlung mit Anthelmintika ist es deshalb von großer Bedeutung, Informationen über mögliche Resistenzen von Würmern eines Pferdes oder innerhalb einer Pferdeherde zu erhalten. Um die mögliche Resistenz einer Wurmpopulation kleiner Strongyliden zu überprüfen, wurden bereits diagnostische Verfahren entwickelt, die auf der Wirksamkeit von Anthelmintika in den Entwick- lungsstadien der Parasiten (Eier, Larven) beruhen (Coles et al. (1992) World
Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) Methods for the detection of anthelmintic resistance in nematodes of veterinary importance, Veterinary Parasitology, 44, 35-44). Der "Larval development assay" (LDA) beschreibt den inhibitorischen Effekt von Anthelmintika im nicht-parasitären ersten Larvenstadium in Abhängigkeit von der eingesetzten Anthelmintika-Konzentration.
In ähnlicher Weise nutzt der zweite Ansatz, der "egg hatch assay" (EHA) die inhibitorische Wirkung der Anthelmintika auf das Schlüpfen der Larven in Abhängigkeit von der eingesetzten Anthelmintika-Konzentration. Ein Nachteil beider Ansätze liegt in der geringen Reproduzierbarkeit der Ergebnisse. Zudem sind beide Ansätze zeit- aufwendig und arbeitsintensiv.
Die Sensitivität beider Ansätze ist zudem gering. Eine bestehende Resistenz wird nur dann detektiert, wenn mehr als 25 % der Population resistent sind (Roos et al. (1995) New genetic and practical implications of selection for anthelmintic resistance in parasitic nematodes, Parasitology Today 11, 148-150).
Es besteht deshalb ein dringender Bedarf an diagnostischen Verfahren, die empfindlich, schnell und reproduzierbar sind. Für die Parasiten des Schafes, Haemonchus contortus und Teladorsagia circumcincta wurde ein auf der PCR-Technik beruhen- des Verfahren beschrieben. Dieses beruht auf mindestens einer Punktmutation in
Kodon 200 des ß-Tubulin-Isotyp 1-Gens (Elard et al. (1999) PCR diagnosis of benz- imidazole - susceptibility or - resistance in natural populations of the small ruminant parasite, Teladorsagia circumcincta, Veterinary Parasitology 80, 231-237). Die Punktmutationen in Kodon 200 resultieren in einem Aminosäureaustausch von Phenylalanin zu Tyrosin und korreliert mit einer Benzimidazol-Resistenz des mutierten Proteins (Kwa et al. (1995) ß-tubulin genes from parasitic nematode
Haemonchus contortus modulate drug resistance in Caenorhabditis elegans, Journal of Molecular Biology 246, 500-510).
Aus Studien an Haemonchus contortus ist bekannt, daß die für Tubulin kodierenden Sequenzen von Nematoden spezies-spezifisch sind (WO 92/03549).
Die verschiedenen Spezies der kleinen Strongyliden des Pferdes unterscheiden sich in ihrer epidemiologischen Häufigkeit. Zu den weltweit wichtigsten und am häufigsten gefundenen Spezies gehören Cylicocyclus nassatus, Cyathostomum coronatum und Cyathostomum catinatum. Resistenzen dieser Spezies gegen
Benzimidazole wurden in verschiedenen Ländern beschrieben, u.a. auch in Deutschland (Burger, H.-J. und Bauer, C. (1987) Efficacy of four anthelmintics against benzimidazole - resistant cyathostomes of horses, Veterinary Record 120, 293-296).
Die Nukleinsäure-Sequenzierung von ß-Tubulin-cDNAs aus den erfindungsgemäßen Spezies kleiner Strongyliden wiesen eine Identität von über 95 % auf. Die Identität mit den bekannten, oben genannten ß-Tubulin-Sequenzen von Schaf-Parasiten beträgt dagegen nur 75,4-82,6 %.
Die abgeleiteten Aminosäuresequenzen sind innerhalb der erfindungsgemäßen Sequenzen sehr ähnlich. Das gilt auch für die abgeleiteten ß-Tubulin-Aminosäure- sequenzen der Schaf-Parasiten. Die Identität liegt dabei zwischen 95 und 99,8 %. Es ergeben sich nur sehr wenige Positionen, an denen ein Aminosäureaustausch auftritt. Hervorzuheben ist hier das Kodon 200, in dem ein Wechsel von Phenylalanin zu
Tyrosin resultiert. Allerdings zeigen die bisher veröffentlichten nichtkodierenden ß-Tubulin-Sequenzen aus verschiedenen Helminthen-Spezies keine signifikante Identität. Es ist demnach überraschend, daß nicht nur die kodierenden Sequenzen, sondern auch Teile der nichtkodierenden Sequenzen der verschiedenen Spezies kleiner Strongyliden der hier vorliegenden Anmeldung eine hohe Identität aufweisen. Diese Regionen sind deshalb auch geeignet, um verschiedene Spezies kleiner Strongyliden und andere Nemato- den-Spezies voneinander unterscheiden zu können. PCR-Primer, die aus diesen Intron-Regionen abgeleitet sind, können der spezifischen Detektion kleiner
Strongyliden innerhalb einer Probe dienen, die auch genetisches Material aus anderen helmintischen Organismen enthält.
ß-Tubulin aus Nematoden oder Teile davon sind dafür bekannt, ein protektives, immunologisches Potential zu besitzen (Bughio et al. (1993) Characterisation and biological activities of anύ-Brugia pahangi tubulin monoclonal antibodies, International Journal for Parasitology, 7, 913-924). Das von der oben genannten DNA kodierte ß-Tubulin der kleinen Strongyliden kann als Vakzine ebenso verwendet werden wie monoklonale Antikörper gegen das ß-Tubulin.
Inhibitoren der Interaktion des Tubulins bzw. seiner Untereinheiten, wie Benzimidazole, Colchizine und Taxol sind wichtige Leitstrukturen einer Reihe von Thera- peutika, die gegen menschliche, tierische oder pflanzliche Krankheiten gerichtet sind. Die Bedeutung des Tubulins als Ziel dieser Verbindungen ist weitreichend und unter- streicht dessen Potential für die Suche nach neuen Wirkstoffen zur Bekämpfung dieser Krankheiten.
Gegenstand der Erfindung ist die für das ß-Tubulin aus Nematoden der Familie der
Strongylidae, besonders der Subfamilie der Cyathostominae kodierende DNA oder Fragmente dieser DNA. Die ß-Tubulin-DNA kann dabei genomische DNA oder cDNA sein. Die DNA-Sequenzen, die Gegenstand dieser Erfindung sind, können als neue Mitglieder der Tubulin-Genfamilie parasitischer Nematoden der Ordnung Strongyhda, besonders der Subfamilie der Cyathostominae befrachtet werden. Die Erfindung bezieht sich ganz besonders auf die DNA-Sequenzen, die für ß-Tubulin aus parasitischen Nematoden der Gattungen Cyathostomum und Cylicocyclus kodieren.
Gegenstand der Erfindung sind ebenfalls DNA-Sequenzen, die zu einem für eine der Aminosäuresequenzen gemäß SEQ LD NO. 2, 4, 6, 8 oder 10 kodierenden Polynuk- leotid eine Identität von mehr als 85 % aufweisen.
Gegenstand der Erfindung sind ebenfalls bevorzugt DNA-Sequenzen, die zu einem für eine der Aminosäuresequenzen gemäß SEQ LD NO. 2, 4, 6, 8 oder 10 kodierenden Polynukleotid eine Identität von mehr als 95 % aufweisen.
Gegenstand der Erfindung sind im besonderen für ß-Tubulin kodierende DNA-
Sequenzen, die aus parasitischen Nematoden der Gattungen Cylicocyclus und Cyathostomum stammen, ganz besonders solche Sequenzen, die aus parasitischen Nematoden der Art Cylicocyclus nassatus stammen, bevorzugt DNA gemäß SEQ ID NO. 3, 5, 7, 9 oder 11 oder aus Cyathosto um coronatum, bevorzugt DNA gemäß SEQ JD NO. 1.
Gegenstand der Erfindung sind ebenfalls DNA-Sequenzen wie oben beschrieben, die im Unterschied zu diesen Sequenzen in Kodon 200 mindestens eine Punktmutation bzw. einen Nukleotidaustausch aufweisen. Diese Punktmutationen resultieren in einer Änderung der von dieser DNA kodierten Aminosäuresequenz, z. B. einem
Austausch der Aminosäure Phenylalanin gegen Tyrosin und korrelieren mit der Resistenz von Tubulin mit entsprechenden Mutationen gegen Benzimidazole.
Gegenstand der Erfindung sind ebenfalls DNA-Sequenzen, die komplementär zur oben beschriebenen DNA oder Fragmenten dieser DNA sind, sowie Fragmente, dieser DNA-Sequenzen. Diese DNA-Sequenzen bzw. diese Fragmente umfassen Oligonukleotide, die von einer der oben genannten oder unter SEQ ID NO. 1, 3, 5, 7, 9 oder 11 beschriebenen DNA-Sequenzen abgeleitet sind oder von dazu zu 85% identischen, bevorzugt zu 95% identischen Sequenzen sowie von dazu komplementären Strängen abgeleitet sind und an diese hybridisieren können.
Gegenstand der Erfindung sind dabei bevorzugt Oligonukleotide bestehend aus oder umfassend eine der Sequenzen gemäß SEQ LD NO. 12 bis SEQ ID NO. 51, die an oben genannte DNA-Sequenzen hybridisieren, bevorzugt im Bereich nicht kodierender Sequenzabschnitte der ß-Tubulin-Gene.
Gegenstand der Erfindung sind ebenfalls bevorzugt Oligonukleotide bestehend aus oder umfassend eine der Sequenzen gemäß SEQ ID NO. 12 bis SEQ ID NO. 51, die an kodierende Bereiche der oben genannten Sequenzen hybridisieren.
Gegenstand der Erfindung sind ebenfalls RNA-Sequenzen, die komplementär zur oben beschriebenen DNA oder Fragmenten dieser DNA sind, sowie Fragmente dieser RNA-Sequenzen. Diese RNA-Sequenzen bzw. diese Fragmente umfassen Ribooligonukleotide, die einer Region einer der oben genannten oder unter SEQ ID NO. 1, 3, 5, 7, 9 oder 11 beschriebenen DNA-Sequenzen, dazu komplementärer Sequenzen oder dazu zu 85 %, bevorzugt zu 95% identischer DNA-Sequenzen entsprechen und an diese hybridisieren können.
Gegenstand der Erfindung ist ebenfalls ein Expressionskonstrukt, welches eine der oben beschriebenen DNA-Sequenzen umfaßt, sowie eine damit verknüpfte DNA- Sequenz, die die Expression der DNA ermöglicht. Dazu gehören beispielsweise mindestens ein Promotor zur konstitutiven oder induzierbaren Expression oder auch Enhancer. Passende Promotoren für eine Expression in E. coli sind natürliche Hybrid- oder Bakteriophagen-Promotoren, bevorzugt Promotoren der Gruppe der λ-Phagen, hsp, omp oder synthetische Promotoren wie z.B. in WO 98/5625, DE 3 430 683 oder EP 0 173 149 genannt. Gegenstand der Erfindung sind ebenfalls Vektoren, die eine der oben beschriebenen DNA-Sequenzen umfassen und die Expression des erfindungsgemäßen ß-Tubulins oder Fragmenten davon in einer Wirtszelle ermöglichen.
Gegenstand der Erfindung sind ebenfalls Wirtszellen, die die oben genannte DNA enthalten, ein Expressionskonstrukt wie obengenannt, oder einen Vektor und die Expression des ß-Tubulins oder Fragmente davon gestatten.
Gegenstand der Erfindung sind ebenfalls Polypeptide, die von einer der oben genannten DNA-Sequenzen oder Fragmenten dieser DNA-Sequenzen kodiert werden, sowie Fragmente dieser Polypeptide.
Gegenstand der Erfindung sind dabei bevorzugt Polypeptide, die von einer DNA- Sequenz umfassend SEQ ID NO. 1, 3, 5, 7, 9 oder 11 kodiert werden, von DNA- Sequenzen, die zu diesen Sequenzen eine Identität von 85 %, bevorzugt von 95 % aufweisen, oder von Fragmenten dieser DNA.
Gegenstand dieser Erfindung sind auch Polypeptide, die von einer oben beschriebenen DNA-Sequenz kodiert werden, die mindestens eine Punktmutation in Kodon 200 wie oben beschrieben enthalten und Resistenz gegenüber Benzimidazolen zeigen, sowie Fragmente dieser Polypeptide.
Gegenstand der Erfindung sind dabei ganz besonders bevorzugt Polypeptide umfassend eine der in SEQ ID NO. 2, 4, 6, 8 oder 10 beschriebenen Aminosäure- Sequenzen oder Fragmente davon.
Die Erfindung bezieht sich dabei auf Polypeptide, besonders auf aufgereinigte Polypeptide oder rekombinant hergestellte Polypeptide.
Die Erfindung bezieht sich auf Polypeptide voller Länge und auch auf entsprechende
Fragmente dieser Polypeptide, z.B. bestimmte Motive oder Domänen. Diese Frag- mente können von unterschiedlicher Länge sein und z.B. 5, 10, 25, 50, 100, 150, 200, 250 oder 300 Aminosäuren umfassen.
Diese Erfindung bezieht sich ebenfalls auf Fusionsproteine, die ein Polypeptid wie oben beschrieben umfassen. Das Fusionsprotein kann dabei einen weiteren Poly- peptidanteil enthalten, das nicht in Zusammenhang mit dem ß-Tubulin steht (z.B. LexA, B42, Glutathione-S-Transferase, einen His-Tag, ein Polypeptid mit enzyma- tischer Aktivität wie die alkalische Phosphatase oder einen Epitop-Tag).
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung eines Polypeptids wie oben beschrieben in passenden prokaryontischen oder eukaryontischen Expressionssystemen. Die Expression kann dabei permanent oder transient in einer jeweils entsprechenden Zellinie bzw. entsprechenden Wirtszellen wie oben beschrieben erfolgen. Passende prokaryontische Expressionssysteme sind bekannte Wirts- Vektor- Systeme wie Bakterien (z.B. Streptomyces spp., Bacillus subtilis, Salmonella typhimurium, Serratia marcescens und besonders Escherichia colϊ).
Die Expression in einem eukaryontischen System erfolgt bevorzugt im Baculovirus- System, besonders in einem System, das das Einführen posttranslationaler Modi- fikationen gestattet.
Gegenstand dieser Erfindung ist ebenfalls die Verwendung von DNA wie obengenannt zur Detektion von DNA aus Nematoden der Familie Strongylidae, bevorzugt der Subfamilie Cyathostominae, besonders bevorzugt der Gattungen Cyathostomum und Cylicocyclus, ganz besonders bevorzugt der Arten Cyathostomum coronatum und Cylicocyclus nassatus. Die Erfindung bezieht sich dabei auf Oligonukleotide wie obengenannt, die komplementär zu für ß-Tubulin kodierender DNA oder dazu komplementären Stränge sind und an diese DNA hybridisieren können. Bevorzugt hybridisieren diese Oligonukleotide an die Intron-Regionen, d.h. die nicht kodierenden DNA-Sequenzen. Die Erfindung bezieht sich auf die Verwendung dieser
Oligonukleotide oder Teilen davon als a) Proben in Northern- oder Southern-Blot-Assays,
b) PCR-Primer in einem diagnostischen Verfahren zur Detektion der oben genannten Nematoden, wobei die DNA der betreffenden Nematoden spezifisch mit Hilfe der Primer und der PCR-Technik identifiziert und amplifiziert wird.
Gegenstand der Erfindung sind dabei bevorzugt Oligonukleotide bestehend aus oder umfassend eine der Sequenzen gemäß SEQ ID NO. 12 bis SEQ ID NO. 51.
Gegenstand der Erfindung ist ebenfalls die Verwendung von DNA wie obengenannt zur Detektion von DNA aus Nematoden der Familie der Sfrongylidae, bevorzugt der Subfamilie der Cyathostominae, besonders bevorzugt der Gattungen Cylicocyclus, und Cyathostomum, ganz besonders bevorzugt der Arten Cylicocyclus nassatus und
Cyathostomum coronatum, die für ß-Tubulin oder Fragmente davon kodiert, die resistent sind gegen Benzimidazole. Die Erfindung bezieht sich dabei auf Oligonukleotide wie oben genannt, die komplementär zu DNAs sind, die für ß-Tubulin mit einer Resistenz gegen Benzimidazole kodieren bzw. zu den komplementären Strängen dieser DNA und die an diese DNA spezifisch hybridisieren können.
Die Erfindung bezieht sich auch auf die Verwendung dieser Oligonukleotide oder Teilen davon als
a) Proben in Northern- oder Southern-Blot-Assays,
b) PCR-Primer in einem diagnostischen Verfahren zur Detektion der oben genannten Nematoden mit einer Resistenz gegenüber Benzimidazolen, wobei die DNA der betreffenden Nematoden spezifisch mit Hilfe der Primer und der PCR-Technik identifiziert und amplifiziert wird. Gegenstand der Erfindung sind dabei bevorzugt Oligonukleotide bestehend aus oder umfassend eine der Sequenzen gemäß SEQ ID NO. 12 bis SEQ LD NO. 51.
Gegenstand der Erfindung ist auch ein Verfahren zur Detektion von Nematoden der Familie der Strongylidae, bevorzugt der Subfamilie der Cyathostominae, besonders bevorzugt der Gattungen Cylicocyclus und Cyathostomum, ganz besonders bevorzugt der Arten Cylicocyclus nassatus und Cyathostomum coronatum, wobei Oligonukleotide wie oben beschrieben an DNA-Sequenzen spezifisch hybridisieren, die aus den genannten Organismen stammen, und die mit Hilfe der PCR-Technik amplifiziert werden können. Die Hybridisierung erfolgt vorzugsweise in den nicht kodierenden Regionen des ß-Tubulin-Gens (Introns).
Die Detektion von Organismen wie obengenannt kann z.B. erfolgen, indem man
a) eine Oligonukleotidprobe bzw. Primer zur Verfügung stellt, die an die oben genannte für ß-Tubulin kodierende DNA oder dazu komplementäre Stränge oder an die 5'- oder 3'-flankierenden Regionen derselben hybridisieren können,
b) die Oligonukleotidprobe bzw. die Primer mit einer entsprechend aufbereiteten, DNA enthaltenden Probe in Kontakt bringt,
c) die Hybridisierung des Oligonukleotids bzw. Primers detektiert (z.B. mit Hilfe der Polymerase-Kettenreaktion),
d) die detektierte Sequenz des ß-Tubulin-Gens sequenziert, und
e) die Sequenz mit den erfindungsgemäßen DNA-Sequenzen vergleicht, die oben beschrieben wurden, bevorzugt mit DNA-Sequenzen gemäß SEQ ID NO. 1, 3, 5, 7, 9 oder 11. Gegenstand der Erfindung ist auch ein Verfahren zur Detektion von Nematoden der Familie der Strongylidae, bevorzugt der Subfamilie der Cyathostominae, besonders bevorzugt der Gattungen Cylicocyclus und Cyathostomum, ganz besonders bevorzugt der Arten Cylicocyclus nassatus und Cyathostomum coronatum, die resistent gegen Benzimidazole sind, wobei Oligonukleotide wie oben beschrieben an
DNA-Sequenzen spezifisch hybridisieren, die aus den genannten Organismen stammen, und die mit Hilfe der PCR-Technik amplifiziert werden können. Die Hybridisierung erfolgt vorzugsweise in den nicht kodierenden Regionen des ß- Tubulin-Gens (Infrons).
Die Detektion von Organismen wie obengenannt kann z.B. erfolgen, indem man
a) eine Oligonukleotidprobe bzw. Primer zur Verfügung stellt, die an die oben genannte für ß-Tubulin kodierende DNA oder dazu komplementäre Stränge oder an die 5'- oder 3 '-flankierenden Regionen derselben hybridisieren können,
b) die Oligonukleotidprobe bzw. die Primer mit einer entsprechend aufbereiteten, DNA enthaltenden Probe in Kontakt bringt,
c) die Hybridisierung des Oligonukleotids bzw. Primers detektiert (z.B. mit Hilfe der Polymerase-Kettenreaktion),
d) die detektierte Sequenz des ß-Tubulin-Gens sequenziert, und
e) die Sequenz mit den erfindungsgemäßen DNA-Sequenzen vergleicht, die oben beschrieben wurden, bevorzugt mit DNA-Sequenzen gemäß SEQ ID
NO. 1, 3, 5, 7, 9 oder 11, die mindestens eine Punktmutation in Kodon 200 aufweisen, die zu einer Resistenz des von diesen Sequenzen kodierten ß-Tubulins gegen Benzimidazole führt. Gegenstand der Erfindung ist ebenfalls ein diagnostischer Testkit zur Detektion und Identifizierung von Nematoden der Familie der Sfrongylidae, bevorzugt der Subfamilie der Cyathostominae, besonders bevorzugt der Gattungen Cylicocyclus und Cyathostomum, ganz besonders bevorzugt der Arten Cylicocyclus nassatus und Cyathostomum coronatum, der unter anderem Oligonukleotide wie oben beschrieben zur Verfügung stellt, die in Verfahren zur Detektion der genannten Spezies verwendet werden können. Die vorliegende Erfindung stellt ebenfalls Oligonukleotide zur Verfügung, die spezifisch an Sequenzen gemäß SEQ ID NO. 1, 3, 5, 7, 9 oder 11, dazu komplementäre Sequenzen, Sequenzen mit mindestens einer Punktmutation in Kodon 200, oder Fragmente dieser Sequenzen hybridisieren.
Besonders bevorzugt sind dabei Oligonukleotide bestehend aus oder umfassend Sequenzen gemäß SEQ LD NO. 12 bis SEQ ID NO. 51.
Gegenstand der Erfindung ist ebenfalls ein diagnostischer Testkit zur Detektion von Nematoden der Familie der Sfrongylidae, bevorzugt der Subfamilie der
Cyathostominae, besonders bevorzugt der Gattungen Cylicocyclus und
Cyathostomum, ganz besonders bevorzugt der Arten Cylicocyclus nassatus und
Cyathostomum coronatum, mit einer Resistenz gegen Benzimidazole, der unter anderem Oligonukleotide wie oben beschrieben zur Verfügung stellt, die in Verfahren zur Detektion der genannten Spezies verwendet werden können. Die vorliegende Erfindung stellt ebenfalls Oligonukleotide zur Verfügung, die spezifisch an Sequenzen gemäß SEQ ID NO. 1, 3, 5, 7, 9 oder 11, dazu komplementäre
Sequenzen, Sequenzen mit mindestens einer Punktmutation in Kodon 200, oder
Fragmente dieser Sequenzen hybridisieren. Besonders bevorzugt sind dabei Oligonukleotide bestehend aus oder umfassend Sequenzen gemäß SEQ ID NO. 12 bis SEQ ID NO. 51.
Gegenstand der Erfindung ist ebenfalls ein diagnostischer Testkit wie vorstehend beschrieben, wobei die in diesem Kit zur Verfügung gestellten Oligonukleotide mit einem detektierbaren Marker versehen sind. Solche detektierbaren Marker können u.a. Enzyme beinhalten, Enzym-Substrate, Coenzyme, Enzyminhibitoren, Fluoreszenzmarker, Chromophore, lumineszente Marker und Radioisotope.
Gegenstand dieser Erfindung sind ebenfalls Antikörper, die spezifisch mit einem Epitop eines ß-Tubulins aus Nematoden der Familie der Sfrongylidae, bevorzugt der
Subfamilie der Cyathostominae, besonders bevorzugt der Gattungen Cylicocyclus und Cyathostomum, ganz besonders bevorzugt der Arten Cylicocyclus nassatus und Cyathostomum coronatum reagieren.
Gegenstand dieser Erfindung sind ebenfalls besonders monoklonale Antikörper, die spezifisch mit einem Epitop eines ß-Tubulins aus Nematoden der Familie der Strongylidae, bevorzugt der Subfamilie der Cyathostominae, besonders bevorzugt der Gattungen Cylicocyclus und Cyathostomum, ganz besonders bevorzugt der Arten Cylicocyclus nassatus und Cyathostomum coronatum, reagieren.
Gegenstand dieser Erfindung ist ebenfalls die Verwendung der vorstehend genannten Antikörper als Nematizide.
Gegenstand dieser Erfindung ist auch die Verwendung der vorstehend genannten ß-Tubulin-Polypeptide oder Fragmente davon aus Nematoden der Familie der
Strongylidae, bevorzugt der Subfamilie der Cyathostominae, besonders bevorzugt der Gattungen Cylicocyclus und Cyathostomum, ganz besonders bevorzugt der Arten Cylicocyclus nassatus und Cyathostomum coronatum, zur Herstellung von Vakzinen, die mindestens eines der genannten ß-Tubulin-Polypeptide oder Fragmente davon enthalten. Das Vakzin ist dabei in der Lage, eine Immunantwort hervorzurufen, die spezifisch ist für ein vorstehend beschriebenes ß-Tubulin.
In einer bevorzugten Ausführungsform enthält das Vakzin eine antigene Determinante, z.B. eine einzelne Determinante eines Polypeptids mit einer Amino- säuresequenz gemäß SEQ ID NO. 2, 4, 6, 8 oder 10 oder eines Polypeptids, das von einer der vorstehend genannten DNA oder Fragmenten davon kodiert wird. Gegenstand der Erfindung ist ebenfalls ein Verfahren zur Herstellung einer immunogenen Zusammensetzung zur Immunisierung von Säugern, bestehend aus mindestens einem der vorstehend genannten erfindungsgemäßen ß-Tubulin- Polypeptide oder Fragmenten davon oder aus mindestens einem der vorstehend genannten Antikörper.
Gegenstand der Erfindung ist ebenfalls die Verwendung der vorstehend beschriebenen Expressionsvektoren enthaltend eine Nukleinsäure kodierend für ein erfindungsgemäßes ß-Tubulin, bevorzugt eine Sequenz gemäß SEQ ID NO. 1,3,5,7,9 oder 11, Fragmente davon oder dazu homologe Sequenzen zur Herstellung einer immunogene Zusammensetzung zur Verabreichung in einen Wirt zur Aktivierung einer protektiven Immunantwort in diesem Wirt, die auf ß-Tubulin aus parasitären Nematoden gerichtet ist.
Gegenstand der Erfindung ist ebenfalls eine immunogene Zusammensetzung umfassend einen Vektor (umfassend eine für das erfindungsgemäße ß-Tubulin kodierende Nukleinsäure, vorzugsweise eine Sequenz gemäß SEQ ID NO. 1, 3, 5, 7, 9 oder 11, Fragmente davon oder dazu homologe Sequenzen sowie eine Promotor- Sequenz, die funktionell mit besagter Nukleotidsequenz verknüpft ist und die die
Expression des eine Immunantwort hervorrufenden erfindungsgemäßen ß-Tubulins steuert) und eine für pharmazeutische Zwecke geeignete Trägersubstanz.
Gegenstand dieser Erfindung ist ebenfalls ein Verfahren zum Identifizieren von Substanzen, die die Interaktion von Tubulin bzw. die Interaktion von Untereinheiten des Tubulins modulieren. Das Verfahren beruht auf der Verwendung von Tubulin, bevorzugt auf Tubulin aus parasitischen Nematoden, besonders bevorzugt auf ß-Tubulin aus parastischen Nematoden der Ordnung Strongylida, ganz besonders bevorzugt auf ß-Tubulin aus parasitischen Nematoden der Familie der Sfrongylidae, am meisten bevorzugt auf ß-Tubulin aus parastischen Nematoden der Subfamilie der
Cyathostominae. Eine besonders bevorzugte Gruppe des in diesem Verfahren verwendeten ß-Tubulins ist ß-Tubulin aus parasitischen Nematoden der Gattungen Cylicocyclus und Cyathostomum.
Die Erfindung bezieht sich auf das Identifizieren von Substanzen, z.B. kleinen orga- nischen Molekülen, die in der Lage sind, die Interaktion von Tubulin-Protein- molekülen bzw. dessen Untereinheiten miteinander zu modulieren. Bevorzugt bezieht sich die Erfindung auf das Identifizieren von Verbindungen, die die Interaktion inhibieren.
Gegenstand der Erfindung ist ebenfalls ein Verfahren wie vorstehend beschrieben, das darauf beruht, daß man
a) die zu testende Substanz mit dem Tubulin in Kontakt bringt, wobei die gewählten Bedingungen die Interaktion der Tubulinmoleküle miteinander und die Bindung der Testsubstanz an Tubulin gestatten,
b) die erfolgte Bindung detektiert, indem man die Fähigkeit der Tubulin-Protein- moleküle zur Interaktion miteinander bestimmt und
c) die Fähigkeit der Tubulin-Proteinmoleküle zur Interaktion miteinander bei
Anwesenheit einer Testsubstanz zur Fähigkeit der Interaktion miteinander bei Abwesenheit einer Testsubstanz vergleicht.
Gegenstand der Erfindung ist ebenfalls ein Verfahren zum Identifizieren von Sub- stanzen, die die Fähigkeit von Tubulin-Molekülen zur Interaktion miteinander modulieren. Besonders bevorzugt bezieht sich die Erfindung dabei auf ein Verfahren, das eines der vorstehend beschriebenen Polypeptide verwendet, die von den vorstehend beschriebenen DNAs oder Fragmenten davon kodiert werden, besonders von DNAs bestehend aus oder umfassend Sequenzen gemäß SEQ ID NO. 1, 3, 5, 7, 9 oder 11 sowie von Sequenzen, die dazu eine Identität von 85 %, vorzugsweise 95 % aufweisen und für ß-Tubulin kodieren, das eine Aminosäuresequenz gemäß SEQ 2, 4, 6, 8 oder 10 besitzt.
Gegenstand der Erfindung ist ebenfalls ein Verfahren zum Identifizieren von Sub- stanzen, die die Fähigkeit von Tubulin zur Interaktion miteinander modulieren wie vorstehend beschrieben, wobei das verwendete Verfahren darauf beruht, eine Modulation der Tubulininteraktion bei Anwesenheit einer Testsubstanz mit Hilfe eines auf Zellen basierenden Testsystems zu detektieren. Eine bevorzugte Ausführungsform eines solchen Testsystems ist das sogenannte "Two Hybrid System" (US 5 283 317, Zervos et al. (1993) Cell 72, 223-232; WO 94/10300). Dieses System ist geeignet, die Interaktion zweier Proteine zu dokumentieren oder zu beschreiben, indem die Interaktion zu einem detektierbaren Signal führt. Ein solches System kann auch an Testsysteme mit hohen Durchsatzzahlen angepaßt werden.
Gegenstand der Erfindung ist ebenfalls ein Verfahren zum Identifizieren von Substanzen, die die Fähigkeit von Tubulin zur Interaktion miteinander modulieren, wobei das verwendete Verfahren darauf beruht, eine Modulation der Tubulininteraktion bei Anwesenheit einer Testsubstanz mit Hilfe eines zellfreien Testsystems zu detektieren. Eine besonders bevorzugte Ausführungsform eines solchen Testsystems ist der sogenannte "Scintillation Proximity Assay" (SPA)
(EP 015 473). Dieses Testsystem beruht auf dem Nachweis einer Interaktion eines an Mikrokügelchen ("Microspheres") oder Perlen ("Beads") gebundenen Rezeptors, z. B. eines Tubulin-Moleküls, mit einem Liganden, wobei die Microspheres oder Beads mit einem szintillierenden Molekül versehen sind. Ein Signal wird dann detektiert, wenn der Rezeptor-Ligand-Komplex zerfällt.
Gegenstand der Erfindung sind ebenfalls bislang noch nicht beschriebene Substanzen, die mit Hilfe der vorstehend beschriebenen Verfahren identifiziert werden und geeignet sind, die Interaktion von Tubulinmolekülen zu modulieren, vorzugs- weise zu inhibieren. Gegenstand der Erfindung ist ebenfalls die Verwendung von bislang noch nicht beschriebenen Substanzen, die mit einem der vorstehend beschriebenen Verfahren identifiziert wurden, zur Herstellung eines Mittels, das der prophylaktischen oder therapeutischen Behandlung von Tieren oder Menschen dienen, die von Nematoden befallen werden können oder befallen wurden. Die erfindungsgemäßen Mittel enthalten mindestens eine der mit einem der vorstehend beschriebenen Verfahren identifizierten Substanzen und können nasal, dermal, parenteral oder enteral verabreicht werden.
Zum besseren Veständnis soll die Bedeutung bestimmter Wörter und Begriffe, die in der Beschreibung, den Beispielen und angefügten Ansprüchen verwendet werden, im Folgenden näher erläutert werden.
Der Begriff "Fragmente" in Bezug auf Proteine und DNA beschreibt Teile der unter den SEQ LD NO. 1 bis 11 beschriebenen Nukleinsäuren bzw. Aminosäuresequenzen, dazu komplementärer Sequenzen oder dazu zu 85 %, vorzusweise zu 95 % identischer Sequenzen. Die Fragmente der DNA- und Polypeptidsequenzen umfassen mindestens 5 Nukleotide oder Aminosäuren, können aber ebenso bis zu 447 Aminosäuren oder bis zu 1343 Nukleotide, bzw. bis zu 2565 Nukleotide im Falle der Sequenz gemäß SEQ ID NO. 11 umfassen.
Die Begriffe "Homologie", "Identität" oder "Ähnlichkeit" beziehen sich auf Sequenzähnlichkeiten zwischen zwei Peptiden oder zwischen zwei Nukleinsäuremolekülen. Homologie kann bestimmt werden, indem man jeweils eine Position in jeder Sequenz miteinander vergleicht. Ist eine Position in der verglichenen Sequenz von derselben
Base oder Aminosäure besetzt, sind die beiden Moleküle an dieser Position homolog. Das Maß für Homologie zwischen Sequenzen ist eine Funktion der Anzahl der übereinstimmenden oder homologen Positionen, die die Sequenzen miteinander teilen. Eine "nicht homologe" Sequenz weist eine Identität von weniger als 40 % auf, vorzugsweise allerdings weniger als 25 % Identität. Der Begriff "Homologie" bedeutet im besonderen, daß DNA-Segmente von mindestens 15 Basenpaaren Länge oder zur DNA komplementäre Sfränge in mindestens 85 %, vorzugsweise 95 % der Nukleotide mit der entsprechenden DNA übereinstimmen. Eine Homologie kann u.a. mit Hilfe von Computerprogrammen wie dem GCG-Programm (Devereux et al. (1983), Nucleic Acids Res. 12, 387-395) festgestellt werden.
Eine "Homologie" besteht auch, wenn ein DNA-Segment an den befreffenden DNA Strang oder dessen komplementären Strang hybridisieren kann.
Der Begriff "hybridisieren" oder "Hybridisierung" beschreibt den Vorgang, bei dem ein einzelsfrängiges Nukleinsäuremolekül mit einem komplementären DNA-Strang eine Basenpaarung eingeht, wobei die Fähigkeit eines einzelsträngigen Nukleinsäure- moleküls von der Stringenz der Hybridisierungsbedingungen abhängt.
Der Begriff "Stringenz" bezieht sich auf die Hybridisierungsbedingungen. "Hohe Stringenz" ist dann gegeben, wenn eine Basenpaarung erschwert wird. "Niedrige Stringenz" ist dann gegeben, wenn eine Basenpaarung erleichtert wird.
Der Begriff "komplementär" bezieht sich auf die Fähigkeit von Purin- und
Pyrimidinnukleotiden über Wasserstoffbrückenbindungen miteinander Basenpaare zu bilden. Komplementäre Basenpaare sind u.a. Guanin und Cytosin, Adenin und Thymin sowie Adenin und Uracil.
Der Fachmann ist sich darüber im Klaren, daß aufgrund des degenerierten genetischen Kodes (d.h. 64 Kodons kodieren für 20 Aminosäuren) zahlreiche "stille" Substitutionen von Nukleotidbasenpaaren in die hierfür aufgeführte Sequenz eingeführt werden können, ohne die Identität der davon kodierten Proteinprodukte zu verändern. Alle solche Substitutionen sollen im Umfang der Erfindung enthalten sein. Der Begriff "spezifisch hybridisieren" bezieht sich auf die Fähigkeit eines Nuklein- säuremoleküls der vorliegenden Erfindung, an mindestens etwa 6, 12, 20, 30, 50, 100, 150, 200, 300, 350, 400 oder 440 aufeinander folgende Nukleotide eines der vorstehend beschriebenen ß-Tubulin-Gene zu hybridisieren, bevorzugt an eine der Sequenzen gemäß SEQ LD NO. 1, 3, 5, 7, 9 oder 11 oder dazu homologe oder komplementäre Sequenzen, und zwar derart, daß lOfach mehr Moleküle hybridisieren, bevorzugt lOOfach mehr Moleküle hybridisieren, und besonders bevorzugt mehr als lOOfach mehr Moleküle hybridisieren als an eine zelluläre Nukleinsäure (z.B. mRNA oder genomische DNA), die für ein anderes Protein als das vorstehend beschriebene ß-Tubulin kodiert.
Der Begriff "Plasmid" bezieht sich auf ein extrachromosomales genetisches Element. Die für die vorliegende Erfindung verwendeten Ursprungsplasmide sind entweder kommerziell erhältlich, frei zugänglich oder können von solchen Plasmiden nach bekannten Verfahren abgeleitet werden.
Der Begriff "Vektor" beschreibt ein DNA-Element, das zum Einbringen exogener DNA in Wirtszellen verwendet wird. Ein Vektor enthält eine Nukleotidsequenz, die für ein oder mehrere Polypeptide kodiert. Vektoren, die in der Lage sind, die Expression der Gene zu steuern, die sie enthalten, werden als "Expressionsvektoren" bezeichnet.
Der Begriff "Gen" bezieht sich im Rahmen der vorliegenden Erfindung auf eine Nukleinsäure enthaltend ein offenes Leseraster, das für eines der vorstehend be- schriebenen ß-Tubulin-Polypeptide kodiert. Dabei werden sowohl Exon- als auch evtl. Infron-Sequenzen mit eingeschlossen.
Der Begriff "interagieren" oder "Interaktion" beschreibt detektierbare Wechselwirkungen zwischen Molekülen. Der Begriff "Bindung" wird dabei mit umfaßt. Der Begriff "modulieren" bezieht sich sowohl auf eine Stimulation als auch auf eine Suppression oder Inhibition eines biochemischen Vorgangs. Im Rahmen der vorliegenden Erfindung bedeutet "Modulation" eine Inhibition oder Suppression der Interaktion zwischen Tubulin-Polypeptiden oder Fragmenten oder Untereinheiten davon, oder eine Stimulation dieser Interaktion, die sich z.B. in einer irreversiblen Bindung von Tubulin-Polypeptiden aneinander zeigen kann.
Der Begriff "Nukleinsäure" bezieht sich auf Polynukleotide wie Desoxyribonukleinsäuren (DNA) oder, falls angebracht, auf Ribonukleinsäuren (RNA). Der Begriff umfaßt auch in äquivalenter Weise Analoga von RNA oder DNA, die aus
Nukleotidanaloga hergestellt werden, sowie im zutreffenden Fall einzelsträngige ("Sense" oder "Antisense") und doppelsfrängige Polynukleotide.
Der Begriff "Promotor" bezieht sich auf DNA-Sequenzen, die die Expression einer bestimmten DNA regulieren, die fünktionell mit dem Promotor verknüpft sind. Der
Begriff umfaßt auch "gewebsspezifische" Promotoren, d.h. Promotoren, die die Expression der spezifischen DNA nur in bestimmten Zellen (z.B. Zellen eines bestimmten Gewebes) steuern. Ebenso umfaßt sind "gewebsunspezifische" Promotoren und Promotoren, die zu einer konstitutiven Expression führen oder induzierbar sind.
Die Begriffe "Protein", "Polypeptid" und "Peptid" sind in ihrer Verwendung im Rahmen der vorliegenden Anmeldung austauschbar, wenn sie sich auf ein Genprodukt beziehen.
Ein "Fusionsprotein" ist eine Fusion einer ersten Aminosäuresequenz kodierend für eines der vorstehend beschriebenen ß-Tubulin-Polypeptide mit einer zweiten Aminosäuresequenz, die keine Gemeinsamkeit oder grundlegende Homologie zur Tubulin-Sequenz hat. Die zweite Aminosäuresequenz kann dabei aus demselben Organismus stammen wie die erste, oder alternativ aus einem anderen Organismus stammen (intergenisch). Im allgemeinen kann ein Fusionsprotein anhand der Formel
X-Tubulin-Y wiedergegeben werden, wobei "Tubulin" für eines der vorstehend beschriebenen Polypeptide steht, und X und Y für ein Polypeptid stehen, das nicht in Zusammenhang mit einer Tubulin-Aminosäuresequenz steht. X oder Y können jeweils unabhängig voneinander abwesend sein.
Die Begriffe "Zelle" oder "Wirtszelle" können im Rahmen der hier vorliegenden
Anmeldung im gleichen Sinne verwendet werden. Es versteht sich, daß diese Begriffe sich nicht nur auf eine einzelne Zelle, sondern auch auf die Nachkommen einer solchen Zelle beziehen. Aufgrund bestimmter Modifikationen im Verlauf folgender Generationen (z.B. Mutationen), sind solche Nachkommen möglicherweise nicht mit der Stammzelle identisch, sind allerdings von der vorliegenden Erfindung mit umfaßt.
Der Begriff "Intron" beschreibt solche Sequenzen der beschriebenen, vorzugsweise genomischen DNA, die transkribiert, dann aber aus dem Transkript durch soge- nanntes "Splicing" entfernt werden, wobei die angrenzenden Sequenzen (Exons) verknüpft werden.
Nukleinsäuren
Wie bereits beschrieben, bezieht sich ein Aspekt der Erfindung auf Nukleinsäuren aus Nematoden der Familie der Sfrongylidae, besonders der Subfamilie der Cyathostominae, ganz besondere auf die Gattungen Cyathostomum und Cylicocyclus, vor allem der Arten Cylicocyclus nassatus und Cyathostomum coronatum, die für ß-Tubulin-Polypeptide kodieren, oder Fragmente davon oder dazu homologe Nukleinsäuren, die den in SEQ ID NO. 1, 3, 5, 7, 9 und 11 zu 85 %, vorzugsweise zu 95 % homolog sind und für ein ß-Tubulin gemäß einer der Sequenzen gemäß SEQ ID NO. 2, 4, 6, 8 oder 10 oder Fragmente davon kodieren. SEQ LD NO. 3 gibt die degenerierte Sequenz der für ß-Tubulin kodierenden Nukleinsäure aus Cylicocyclus nassatus wieder, wobei "r" für ein Purin (Guanin oder Adenin) steht, "y" für ein Pyrimidin (Thymin bzw. Uracil oder Cytosin) und "w" für ein Adenin oder ein Thymin bzw. ein Uracil. SEQ ID NO. 3 umfaßt damit eine Reihe von Sequenzen, die in Organismen der Spezies Cylicocyclus nassatus vorliegen können. Die Sequenzen gemäß SEQ ED NO. 5, 7 und 11 zeigen drei definierte, für ß- Tubulin kodierende Sequenzen, die beispielhafte und bevorzugte Ausführungsformen von DNA gemäß SEQ ID NO. 3 sind.
Teil der Erfindung sind ebenfalls Oligonukleotide, die gegebenenfalls für ß-Tubulin- Polypentide kodieren, die eine Länge von mindestens 2, 5, 10, 25, 50, 100, 150, 200, 250, 300, 350 oder 400 Aminosäuren umfassen. Solche Oligonukleotide können als Primer oder Antisens-Moleküle (d.h. also als nicht-kodierende Nukleinsäuren) dienen und mindestens etwa 6, 12, 24, 30, 60, 100, 120, 150 oder 210 Basenpaare umfassen, während kodierende Nukleinsäuren etwa 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200 oder 1300 Basenpaare umfassen.
Die Erfindung beschreibt auch solche Oligonukleotide, die spezifisch unter stringenten Bedingungen an Nukleinsäuren hybridisieren, die von einer der
Sequenzen gemäß SEQ ID NO. 1, 3, 5, 7, 9 oder 11 wiedergegeben werden. Entsprechend stringente Bedingungen sind z.B. 6 x Natriumchlorid/Natriumcitrat (SSC) bei etwa 45°C, gefolgt von einem Waschschritt mit 2 x SSC bei 50°C, und sind dem Fachmann geläufig (siehe z.B. Current protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6). So können die Salzkonzenfrationen im
Waschschritt so gewählt werden, daß die Stringenz geringer ist (2 x SSC, 50°C) oder höher ist (0,2 x SSC, 50°C). Weiterhin kann die Temperatur beim Waschschritt variiert werden, von Bedingungen für eine geringe Stringenz (z.B. ca. 22°C), bis hin zu Bedingungen hoher Stringenz (z. B. ca. 65°C). Sowohl Salzkonzenfration als auch Temperatur können variiert und aufeinander abgestimmt werden.
Besonders bevorzugte Oligonukleotide, die als Primer oder für eine Hybridisierung zur Identifizierung und Charakterisierung einer vorliegenden, z.B. genomischen, DNA verwendet werden können, sind in SEQ ID NO. 12-51 beschrieben. Es können jedoch auch andere Oligonukleotide aus den Sequenzen gemäß SEQ ID NO. 1, 3, 5,
7, 9 oder 11 abgeleitet werden, die dann als Primer bzw. zur Hybridisierung ver- wendet werden können. Besonders bevorzugt zur Identifizierung der Spezies oder Gattung, der eine vorliegende DNA zugeordnet werden kann, sind solche Oligonukleotide, die im Bereich des Infrons einer vorliegenden (genomischen) DNA hybridisieren. Die Infrons einer für ß-Tubulin kodierenden genomischen DNA, die aus den vorstehend genannten Nematoden isoliert werden kann, sind am Beispiel von
Cylicocyclus nassatus in SEQ ID NO. 11 beschrieben. Die Infrons sind also jene Sequenzen, die zwischen den kodierenden Exons lokalisiert sind. In einer bevorzugten Ausführungsform enthalten die beschriebenen Primer oder Hybridisierungssonden eine markierte Gruppierung, die die Detektion der Oligonukleotide ermöglicht, so z.B. Radioisotope, fluoreszierende Gruppierungen,
Enzyme oder Enzym-Cofaktoren.
Solche Oligonukleotide können in diagnostischen Test-Kits eingesetzt werden, um die Herkunft (d.h. den Organismus) einer vorliegenden DNA zu bestimmen. Die Oligonukleotide sind durch ihre spezifische Hybridisierung mit den unter
SEQ ID NO. 1, 3, 5, 7, 9 und 11 genannten DNAs deren Fragmenten, dazu homologen Sequenzen und dazu komplemtären Sequenzen geeignet, definierte Sequenzen zu erkennen. Sie ermöglichen so auch die Erkennung und Identifizierung von solchen für ß-Tubulin kodierenden Sequenzen, die aufgrund einer oder mehrerer Punktmutationen in Kodon 200 zur Expression von benzimidazolresistentem ß-Tubulin führen. Diese von den Sequenzen SEQ ID NO. 1, 3, 5, 7, 9 und 11 abgeleiteten Oligonukleotide, bevorzugt die unter SEQ ID NO. 12 bis 51 beschriebenen Ausführungsformen sind damit geeignet zur Identifizierung der häufig auftretenden Nematoden-Spezies der Subfamilie der Cyathostominae, sowie zur Erkennung bestehender Resistenzen gegen Benzimidazole.
Die Oligonukleotide gemäß der vorliegenden Erfindung können mit Standardmethoden, die dem Fachmann geläufig sind, hergestellt werden, z.B. durch de novo DNA-Synthese. Die hier genannten Nukleinsäuren können in vollständigen Zellen, in Zell-Lysaten, in teilweise gereinigter oder biologisch reiner Form vorliegen, d.h. wenn andere Zellkomponenten bzw. chemische Vorläufer und Nebenprodukte im Falle einer chemischen Synthese der DNA abgetrennt wurden.
Für ß-Tubulin kodierende Nukleinsäuren, wie vorstehend beschrieben, können ausgehend von mRNA gewonnen werden, die in einer Reihe eukaryontischer Zellen vorliegt. Es ist auch möglich, die erfindungsgemäße DNA ausgehend von genomischer DNA aus den befreffenden Nematodenzellen zu erhalten (siehe auch folgende Beispiele). Ein für ß-Tubulin kodierendes Gen kann z.B. aus einer cDNA- oder einer genomischen DNA-Bibliothek gewonnen werden. cDNA kann erhalten werden, indem man die gesamte mRNA einer Zelle, z.B. einer Nematodenzelle, isoliert. Ausgehend von der mRNA kann dann doppelsfrängige cDNA hergestellt werden und in ein passendes Plasmid oder einen passenden Vektor insertiert werden. Die erfindungsgemäße DNA kann auch erhalten werden durch Amplifikation mit
Hilfe der bekannten Polymerase-Kettenreaktion (PCR) oder auch durch de novo-DNA-Synthese (siehe auch J. Sambrook et al. (1989) Molecular Cloning, 2. Auflage, Kap. 14).
Vektoren und Plasmide
Die vorliegende Erfindung umfaßt auch Expressionsvektoren, die eine der erfindungsgemäßen Nukleinsäuresequenzen enthalten, die funktioneil mit einer franskrip- tionsregulatorischen Seqzenz verknüpft sind. "Funktioneil verknüpft" bedeutet, daß die Nukleinsäuresequenz in einer Weise mit der regulatorischen Sequenz verknüpft ist, daß die Expression des von der Nukleinsäuresequenz kodierten Proteins gesteuert werden kann. "Transkriptionsregulatorische Sequenzen" umfassen z. B. Promotoren, Enhancer und andere Kontrollelemente. Die Expressionsvektoren enthalten z. B. ein Gen kodierend für ein erfindungsgemäßes ß-Tubulin oder Fragmente davon. Diese Vektoren können verwendet werden, um in Zellen eingebracht zu werden, wo dann die entsprechenden Polypeptide oder auch Fusionsproteine entstehen. Passende Pro- motoren zur Expression des erfindungsgemäßen Proteins in E.coli umfassen natürliche Hybrid- oder Bakteriophagenpromotoren. Bevorzugt handelt es sich um Promotoren aus der Gruppe der Phage λ-Promotoren, um omp- oder synthetische Promotoren (siehe auch WO 98/15625, DE 3 430 683, EP 0 173 149). Geeignete Vektoren sind kommerziell erhältlich, z.B. die Expressionsvektoren der pET-Serie
(z.B. pET3a, pET23a, pET28a und His-Tag oder pET32a mit His-Tag) oder pGEX mit Glutathionsynthetase-Fusion. Die Expressionsvektoren können dann z.B. in DE3-lysogene E.coli-Stämme, z.B. BL21(DE3), HM S 174(DE3) oder AD494(DE3) transformiert werden.
Expression der ß-Tubulin-Polypeptide
Die vorliegende Erfindung umfaßt auch Zellen, die die erfindungsgemäßen Nuklein- säuresequenzen enthalten (z.B. in einem Vektor oder in das Genom insertiert). Diese Wirtszellen können prokaryontisch oder eukaryontisch sein.
Passende prokaryontische Expressionssysteme sind z.B. bakterielle Systeme wie Streptomyces spp., Bacillus subtilis, Salmonella typhimurium, Serratia marcescens und bevorzugt E.coli.
Ein bevorzugtes eukaryontisches Expressionssystem ist das Baculovirussystem, besonders bevorzugt jenes, das postfranslationale Modifikationen gestattet.
Andere eukaryontische Expressionssysteme (z.B. Hefe, Insektenzellen) können eben- falls benutzt werden.
Polypeptide
Die vorliegende Erfindung umfaßt ebenfalls ß-Tubulin-Polypeptide, die von den er- fmdungsgemäßen DNAs, vorzugsweise den DNA-Sequenzen gemäß SEQ ID NO. 1,
3, 5, 7, 9 und 11 kodiert werden, von Fragmenten derselben oder von homologen DNA-Sequenzen wie vorstehend beschrieben. Bevorzugte Ausführungsformen dieser ß-Tubulin-Polypeptide sind in den Sequenzen gemäß SEQ LD NO. 2, 4, 6, 8 und 10 beschrieben. In einer bevorzugten Ausführungsform handelt es sich bei den beschrie- benen Polypeptiden um aufgereinigte Polypeptide, die frei sind von kontaminierenden Proteinen jener Zellen, in denen die erfindungsgemäßen Polypeptide produziert wurden.
Bei den beschriebenen Polypeptiden handelt es sich um Proteine voller Länge oder um Fragmente, Motive oder Domänen davon, die Längen von mindestens 5, 10, 25,
50, 75, 100, 125, 150, 200, 250, 300, 350 oder 400 Aminosäuren umfassen. Polypeptidfragmente können erhalten und ausgewählt werden durch das Testen von Polypeptiden, die von Nuklemsäurefragmenten abgeleitet aus den Sequenzen gemäß SEQ ID NO. 1, 3, 5, 7, 9 und 11 kodiert werden.
Polypeptidfragmente können auch auf bekannte Weise chemisch synthetisiert werden.
Die Erfindung umfaßt auch Polypeptide, die von der degenerierten Sequenz gemäß SEQ ID NO. 3 kodiert werden. Durch die verschiedenen möglichen Basen an definierten Positionen der DNA-Sequenz ergeben sich verschiedene Polypeptide mit vom jeweils sich ergebenden Kodon kodierten Aminosäure. Die von DNA gemäß SEQ ID NO. 3 kodierten Polypeptide sind in SEQ LD NO. 4 beschrieben, wobei die variablen Aminosäuren durch "Xaa" gekennzeichnet sind.
Bevorzugte Ausführungsformen der Polypeptide sind in SEQ ID NO. 2, 4, 6, 8 und
10 beschrieben.
Die vorliegende Erfindung umfaßt auch Verfahren zur Herstellung der erfindungsgemäßen Polypeptide.
Dem Fachmann ist bekannt, daß die Polypeptide der vorliegenden Erfindung auf verschiedenem Wege gewonnen werden können, z.B. durch chemische Methoden wie der Festphasenmethode. Zur Gewinnung größerer Proteinmengen empfiehlt sich die Verwendung rekombinanter Methoden.
Die grundlegenden Schritte zur Herstellung des rekombinanten ß-Tubulins sind:
1. Gewinnung einer natürlichen, synthetischen oder semi-synthetischen DNA, die für das erfindungsgemäße ß-Tubulin kodiert. 2. Einbringen dieser DNA in einem Expressionsvektor, der geeignet ist, das erfindungsgemäße ß-Tubulin zu exprimieren, entweder alleine oder als Fusionsprotein.
3. Transformation einer passenden, vorzugsweise prokaryontischen Wirtszelle mit diesem Expressionsvektor.
4. Anzucht dieser transformierten Wirtszelle in einer Weise, die geeignet ist, das erfindungsgemäße ß-Tubulin zu exprimieren.
5. Ernte der Zellen und Aufreinigung des ß-Tubulins durch geeignete, bekannte Methoden.
Zum Beispiel können die Expressionsvektoren in λDE3-lysogene E. co/z'-Stämme, z.B. BL21(DE3), HM S174(DE3) oder AD494(DE3) transformiert werden. Nach dem Anwachsen der Zellen unter dem Fachmann geläufigen Standardbedingungen wird die Expression mit IPTG induziert. Nach Induktion der Zellen wird für 3 bis 24
Stunden bei Temperaturen von 18 bis 37°C inkubiert. Die Zellen werden aufgeschlossen, das exprimierte Protein über chromatographische Methoden gereinigt, im Fall von mit His-Tag exprimiertem Protein durch FPLC an einer Ni-
NTA-Säule, sowie durch Ionenaustauschchromatographie,
Gelfilfrationschromatographie, Ulfrafilfration, Elektrophorese oder auch
Immunoaffinitäts-Aufreinigung, die für die erfindungsgemäßen Polypeptide spezifisch sind.
Homologe oder Fragmente der erfindungsgemäßen Polypeptide können durch Mutagenese generiert werden, wie z.B. durch gerichtete (Punkt-)Mutagenese, oder durch Deletionen.
Die erfindungsgemäßen Polypeptide können auch chemisch modifiziert werden, z.B. mit Glycosyl-Gruppen, Lipiden, Phosphaten, Acetylgruppen oder ähnlichen Gruppen. Kovalente Derivate können durch die Verknüpfung der modifizierenden Gruppe mit funktioneilen Gruppen der Aminosäureseitenketten oder dem N-Terminus oder C-Terminus des Polypeptids erhalten werden.
Bei der Expression der Polypeptide gemäß der vorliegenden Erfindung kann es von
Vorteil sein, bestimmte Kodons zu verändern, um eine optimale Expression zu ermöglichen. Dies gilt dann, wenn die Verwendung betimmter Kodons ("Codon usage") im heterologen Expressionssystem anders ist als in einem der erfindungsgemäßen Organismen. Weiterhin ist die Deletion der 5'- oder 3'-unfranslatierten Region möglich, z.B. wenn mehrere destabilisierende Sequenzmotive (z.B. ATTTA) in der
3 '-Region der cDNA vorliegen.
Fusionsproteine
Die erfindungsgemäßen Polypeptide können auch als Teil eines Fusionsproteins vorliegen. Solche Fusionsproteine werden von der vorliegenden Erfindung voll umfaßt. Fusionsproteine können nützlich sein unter Bedingungen, wo es wünschenswert ist, ein immunogenes Fragment des ß-Tubulins zu erhalten (siehe z.B. EP 0259 149; Schlienger et al. (1992) J. Virol. 66, 2). Fusionsproteine erleichtern unter bestimmten Umständen die Expression eines Polypeptids. Zum Beispiel können die erfindungsgemäßen Polypeptide als Glutathione-S-Transferase (GST-) Fusions-Proteine hergestellt werden. Solche GST-Fusions-Proteine ermöglichen eine leichte Aufreinigung des Polypeptids (siehe z.B. Current Protocols in Molecular Biology, eds. Ausubel et al. (John Wiley & Sons, N.Y. 1991). Fusionsproteine können z.B. eine "Leader"- Sequenz enthalten, die der Aufreinigung dient, z.B. erlaubt eine Poly-His-Sequenz am N-Terminus (aber auch am C-Terminus) des Proteins dessen Aufreinigung mittels Chromatographie an einer Ni2+-NTA-Säule (siehe z.B. Hachuli et al. (1987) J. Chromatography 411, 177).
Techniken zum Herstellen solcher Fusionsproteine sind dem Fachmann geläufig. Antikörper
Ein anderer Aspekt der vorliegenden Erfindung bezieht sich auf Antikörper, die spezifisch mit dem erfindungsgemäßen ß-Tubulin-Polypeptiden reagieren.
Zum Beispiel können durch die Nutzung von Immunogenen, die von erfindungsgemäßen ß-Tubulin-Polypeptiden abgeleitet wurden, Anti-Protein- bzw. Anti-Peptid- Antiseren oder monoklonale Antikörper nach Standardprotokollen hergestellt werden (siehe z.B. Antibodies: A. Laboratory Manual ed. by Harlow and Lane (Cold Spring Harbor Press, 1988)).
Säuger wie Mäuse, Hamster oder Kaninchen können mit einer immunogenen Form oder einem immunogenen Anteil des erfindungsgemäßen Polypeptids immunisiert werden, also mit einem Polypeptid, das in der Lage ist, eine Antikörper-Antwort her- vorzurufen (siehe auch "Fusionsproteine" oben). Die entsprechenden Techniken sind dem Fachmann geläufig. So kann ein immunogener Anteil des ß-Tubulins in der Gegenwart eines Adjuvants verabreicht werden. Der Verlauf der Immunisierung kann durch Kontrolle des Antikörper-Titers in Plasma oder Serum beobachtet werden, z.B. durch gängige ELISA- oder andere Immuno- Assays.
In einer bevorzugten Ausführungsform sind die erfindungsgemäßen Antikörper immunspezifisch für eine antigene Determinante eines erfindungsgemäßen ß-Tubulin-Polypeptids, z.B. eines Polypeptids gemäß SEQ LD NO. 2, 4, 6, 8 oder 10 oder solcher Polypeptide, die von DNAs gemäß SEQ ID NO. 1, 3, 5, 7, 9 oder 11 oder damit zu 85 % identischer Sequenzen, bevorzugt zu 95 % identischer Sequenzen kodiert werden.
Nach der Immunisierung eines Säugers können polyklonale Anti-ß-Tubulin-Anti- körper aus dem Serum isoliert werden. Zur Herstellung monoklonaler Antikörper können Antikörper-produzierende Zellen (Lymphocyten) von einem immunisierten
Tier gewonnen werden und gemäß bekannten Methoden mit immortalen Zellen wie Myeloma-Zellen fusioniert werden, um Hybridoma-Zellen zu erhalten (siehe z.B. Köhler und Milstein (1975) Nature 256, 495-497; Kozbar et al. (1983) Immunology Today 4, 72; Cole et al. (1985) Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. pp. 77-96).
Die hier genannten "Antikörper" sollen auch Fragmente von Antikörpern umfassen, die spezifisch mit erfindungsgemäßem ß-Tubulin reagieren. Antikörper können mit konventionellen Techniken fragmentiert werden und die Fragmente überprüft werden.
Eine bevorzugte Ausführungsform bezieht sich auf Antikörper wie vorstehend beschrieben, die einen detektierbaren Marker tragen (z.B. Radioisotope, fluoreszierende Gruppen, Enzyme oder Enzym-Cofaktoren).
Antikörper, die spezifisch an erfindungsgemäße ß-Tubulin-Polypeptide binden, können auch zur immunhistochemischen Färbung von Gewebeproben verwendet werden, um die Expression eines bestimmten ß-Tubulins zu detektieren. Die Anti-ß- Tubulin- Antikörper können ebenso für diagnostische Zwecke, z.B. zur Immuno- präzipitation oder zum Immuno-Blotting verwendet werden.
Diagnostische Testverfahren
Die vorliegende Erfindung stellt ebenfalls Nukleinsäuremoleküle zur Verfügung, die zu diagnostischen Zwecken verwendet werden können.
Dazu gehören Nuleinsäuremoleküle wie vorstehend beschrieben, die Fragmente der unter SEQ ID NO. 1, 3, 5, 7, 9 oder 11 beschriebenen oder dazu komplementäre DNA-Sequenzen. Beispielhaft werden Oligonukleotide gemäß SEQ ID NO. 12 bis 51 zur Verfügung gestellt, die in der Lage sind, an Sens- oder Antisens-Sequenzen kodierend für ß-Tubulin zu hybridisieren, sowie an infronische Sequenzabschnitte, die beispielhaft in SEQ ID NO. 11 beschrieben sind. Dabei wird die Nukleinsäure einer Zelle zugänglich für die Hybridisierung gemacht, die DNA-Probe mit den Oligonukleotiden in Kontakt gebracht, und die Hybridisierung der Probe mit dem Oligonukleotid detektiert.
Auf diese Weise wird eine Methode zur Verfügung gestellt, die es ermöglicht, durch die spezifische Hybridisierung der erfindungsgemäßen Oligonukleotide an eine DNA-Probe, vorzugsweise mit Hilfe solcher Oligonukleotide, die an die infronischen Bereiche der für ß-Tubulin kodierenden DNA hybridisieren, zwischen verschiedenen Spezies kleiner Strongyliden und/oder anderen Nematoden-Spezies zu unterscheiden.
In einer besonders bevorzugten Ausführungsform gestatten die erfindungsgemäßen Oligonukleotide die Identifizierung von Resistenzen bei kleinen (Cyathostaminae), z.B. bei Pferden, vor allem Resistenzen der Spezies Cylicocyclus nassatus, Cyathostomum coronatum und Cyathostomum catinatum. Dabei kann der Umstand genutzt werden, daß resistente Formen des ß-Tubulins mindestens eine
Punktmutation in der dafür kodierenden erfindungsgemäßen DNA fragen, die mittels PCR detektiert werden kann, wie z. B. in analoger Weise beschrieben bei Elard et al. (1998) PCR diagnosis of benzimidazole-susceptibility or -resistance in natural populations of the small ruminant parasite, Teladorsagia circumcincta. Veterinary Parasitology 80, 231-237.
Die beschriebene Methode ist besonders hilfreich zur Beurteilung möglicher Behandlungsstrategien bei mit Nematoden befallenen Menschen und Tieren wie z.B. Pferden, Schafen, Schweinen, Ziegen, Kamelen, Büffeln, Eseln, Hasen, Rehwild, Pelztieren, Vögeln (z.B. Hühnern, Puten, Enten), Süß- und Salzwasserfischen (z.B.
Forellen, Karpfen). Sie ermöglicht die Identifizierung und Unterscheidung der parasitären Nematoden sowie die Erkennung resistenter Populationen derselben, und vermeiden eine Behandlung mit unwirksamen Nematiziden.
Die hier beschriebenen Methoden können z.B. in Form vorgefertigter Diagnose-
Testkits zur Verfügung gestellt werden, die zumindest eines der oben genannten Nukleinsäuremoleküle oder einen Antikörper wie vorstehend beschrieben enthalten, der gebrauchsfertig vorbereitet ist.
Verfahren zum Auffinden von nematiziden Substanzen
Die Erfindung bezieht sich auf ein Verfahren, bei dem mit Hilfe von Tubulin oder Fragmenten davon neuartige, spezifische anthelmintische Substanzen identifiziert werden können.
In einer bevorzugten Ausführungsform werden dazu ß-Tubulin-Polypeptide gemäß der vorliegenden Erfindung verwendet. Das Verfahren kann jedoch auch mit Tubulin aus anderen als den hier genannten Spezies durchgeführt werden. Verfahren, die andere als die erfindungsgemäßen ß-Tubulin-Polypeptide verwenden, sind von der vorliegenden Erfindung voll umfasst. Besonders bevorzugt werden für das genannte Verfahren ß-Tubulin-Polypeptide gemäß SEQ ID NO. 2, 4, 6, 8 oder 10 verwendet.
In der vorliegenden Erfindung werden also zusätzlich rekombinante ß-Tubulin-Polypeptide aus häufig auftretenden parasitären Nematoden zur Verfügung gestellt. Diese können in verschiedenen Testsystemen zum Identifizieren neuer Inhibitoren der Tubulin-Interaktion, bzw. der Interaktion der Tubulin- Untereinheiten genutzt werden.
Zellfreie Testsysteme
Viele Testsysteme, die die Prüfung von Verbindungen und natürlichen Extrakten zum Ziel haben, sind auf hohe Durchsatzzahlen ausgerichtet, um die Zahl der untersuchten Substanzen in einem gegebenen Zeitraum zu maximieren. Testsysteme, die auf zellfreiem Arbeiten beruhen, brauchen gereinigtes oder semi-gereinigtes Protein. Sie sind geeignet für eine "erste" Prüfung, die in erster Linie darauf abzielt, einen möglichen Einfluß einer Substanz auf das Zielprotein zu detektieren. Effekte wie Zelltoxizität werden in diesen in vitro Systemen in der Regel ignoriert. Die Testsysteme überprüfen dabei sowohl inhibierende bzw. suppressive Effekte der Substanzen, als auch stimulatorische Effekte. Die Effektivität einer Substanz kann durch konzentrationsabhängige Tesfreihen überprüft werden. KonfroUansätze ohne Testsubstanzen können zur Bewertung der Effekte herangezogen werden.
Eine Möglichkeit zur Identifizierung von Substanzen, die die Interaktion von Tubulin bzw. dessen Untereinheiten modulieren, ist der sogenannten "Scintillation Proximity Assay" (SPA), siehe EP 015 473. Dieses Testsystem nutzt die Interaktion eines Rezeptors (z.B. Tubulin) mit einem radiomarkierten Liganden (z.B. ein kleines organisches Molekül oder ein zweites, radioaktiv markiertes Proteinmolekül). Der Rezeptor ist dabei an kleine Kügelchen ("Microspheres") oder Perlen ("Beads") gebunden, die mit szintillierenden Molekülen versehen sind. Im Verlauf des Abfalls der Radioaktivität wird die szintillierende Substanz im Kügelchen durch die subatomaren Partikel des radioaktiven Markers angeregt und ein detektierbares
Photon emittiert. Die Testbedingungen werden so optimiert, daß nur jene vom Liganden ausgehenden Partikel zu einem Signal führen, die von einem an den Rezeptor bzw. das Tubulin gebundenen Liganden ausgehen.
In einer möglichen Ausführungsform ist Tubulin an die Beads gebunden, entweder zusammen oder ohne interagierende bzw. bindende Testsubstanzen. Verwendet werden könnten dabei α- oder ß-Tubulin-Untereinheiten. Ein radioaktiv markierter Ligand könnte z. B. ein markiertes Benzimidazol oder ein weiteres, markiertes ß- Tubulin-Molekül sein. Bei einer Bindung des Liganden an das immobilisierte Tubulin, müßte dieser Ligand eine bestehende Interaktion zwischen immobilisiertem und freiem Tubulin inhibieren oder aufheben, um selbst im Bereich der Kontaktfläche zu binden. Eine erfolgte Bindung an das immobilisierte Tubulin kann dann anhand eines Lichtblitzes detektiert werden. Entsprechend wird ein bestehender Komplex zwischen einem immobilisierten und einem freien, markierten Tubulin durch die Bindung einer Testsubstanz zerstört, was zu einem Abfall der detektierten Lichtblitzintensität führt. Das Testsystem entspricht dann einem komplementären Inhibitions-System.
Auf Zellen basierendes Testsystem
Das durch die vorliegende Erfindung verfügbare ß-Tubulin, aber auch Tubulin aus anderen Spezies, ermöglicht die Entwicklung von Testsystemen, die auf Zellen basieren, zur Identifizierung von Substanzen, die die Tubulin-Interaktion inhibieren.
Ein Beispiel für ein solches Testsystem ist das sogenannte "Two Hybrid System".
Ein spezifisches Beispiel dafür ist die sogenannte "Interaction Trap", die Interaktions-Falle. Es handelt sich dabei um eine genetische Selektion von interagierenden Proteinen in Hefe (siehe z.B. Gyuris et al. (1993) Cdi 1, a human Gl and S phase protein phosphatase that associates with Cdk 2. Cell 75, 791-803). Das Testsystem ist darauf ausgelegt, die Interaktion zweier Proteine zu detektieren und zu beschreiben, indem eine erfolgte Interaktion zu einem detektierbaren Signal führt.
Ein solches Testsystem kann auch an die Prüfung großer Zahlen von Testsubstanzen in einem gegebenen Zeitraum angepaßt werden.
Das System beruht auf der Konstruktion zweier Vektoren, dem "Bait"- und dem "Prey" -Vektor. Ein für Tubulin, bevorzugt ein für ein erfindungsgemäßes ß-Tubulin kodierendes Gen wird in den Bait- Vektor kloniert und dann als Fusionsprotein mit dem LexA-Protein, einem DNA-bindenden Protein, exprimiert. Ein zweites Gen, kodierend für Tubulin, vorzugsweise für ein erfindungsgemäßes ß-Tubulin, wird in den Prey-Vektor kloniert, wo es als Fusionsprotein mit dem B42-Prey-Protein exprimiert wird. Beide Vektoren liegen in einem Saccharomyces cerevisiae-Wiτt vor, der Kopien von LexA-bindender DNA auf der 5'-Seite eines lacZ- oder HIS 3 -Reportergens enthält. Findet eine Interaktion zwischen den beiden Tubulin-(Fusions-)Proteinen statt, kommt es zur Aktivierung der Transkription des
Reportergens. Führt die Anwesenheit einer Testsubstanz zur Inhibition oder zur Störung der Tubulin-Interaktion, können die beiden Tubulin-(Fusions-)Proteine nicht mehr interagieren, das Produkt des Reportergens wird nicht mehr hergestellt.
Mit Hilfe von Tubulin, besonders des erfindungsgemäßen ß-Tubulins oder Frag- menten davon, und der vorstehend beschriebenen Verfahren, ist es möglich, neue und spezifische antiparasitische Verbindungen zu identifizieren.
Verbindungen, die mit Hilfe der beschriebenen Verfahren und Polypeptide gefunden werden, sind wertvoll zur Behandlung von Tieren und Menschen, die mit pathogenen Endoparasiten des Menschen oder von Nutztieren, Hobbytieren, Zootieren sowie
Labor- und Versuchstieren infiziert sind.
Die Verbindungen sind wirksam gegen alle Entwicklungsstadien normaler, sensitiver Stämme und auch resistenter Stämme. Durch die Behandlung mit Mitteln, die eine oder mehrere dieser Verbindungen enthalten, können sowohl wirtschaftliche Verluste bei Nutztieren und Krankheiten bei Menschen und Tieren vermieden oder behandelt werden. Die folgenden Parasiten sind dabei von besonderem Interesse als Ziele der gefundenen Wirkstoffe:
Enoplida, z.B. Trichuris spp., Capillaήa spp., Trichomosoides spp., Trichinella spp.
Rhabditia, z.B. Micronema spp., Strongyloides spp.
Strongylida, z.B. Strongylus spp., Triodontophorus spp., Oesophagodontus spp., Trichonema spp., Gyalocephalus spp., Cylindropharynx spp., Poteriostomum spp., Cyclococercus spp., Cylicostephanus spp., Oesophagostomum spp., Chabertia spp., Stephanurus spp., Ancylostoma spp., Uncinaria spp., Bunostomum spp., Globoce- phalus spp., Syngamus spp., Cyathostomum spp., Cylicocyclus spp., Neostrongylus spp., Cystocaulus spp., Pneumostrongylus spp., Spicocaulus spp., Elaphostrongylus spp., Par elaphostrongylus spp., Crenosoma spp., Paracrenosoma spp., Angiostron- gylus spp., Aelurostrongylus spp., Filaroides spp., Parafilaroides spp., Tricho- strongylus spp., Haemonchus spp., Ostertagia spp., Marshallagia spp., Cooperia spp., Nematodirus spp., Hyostrongylus spp., Obeliscoides spp., Amidostomum spp.,
Ollulanus spp.
Oxyurida, z.B. Oxyuris spp., Enterobius spp., Passalurus spp., Syphacia spp., spz- culuris spp., Heterakis spp. Ascaridia, z.B. Ascaris spp., Toxascaris spp., Toxocara spp., Parascaris spp., Anisa- kis spp., Ascaridia spp.
Spirurida, z.B. Gnathostoma spp., Physaloptera spp., Thelazia spp., Gongylonema spp., Habronema spp., Parabronema spp., Draschia spp., Dracunculus spp.
Filariida, z.B. Stephanoßlaria spp., Parafilaria spp., Setaria spp., Zoα spp., Diroßlaria spp., Litomosoides spp., Brugia spp., Wuchereria spp., Onchocerca spp.
Gigantorhynchida, z.B. Filicollis spp., Moniliformis spp., Macracanthorhynchus spp., Prosthenorchis spp.
Mastigophora (Flagellata)
Trypanosomatidae, z.B. Trypanosoma b. brucei, T. b. gambiense, T b. rhodesiense, r. congolense, T. cruzi, T. evansi, T. equinum, T. lewisi, T. percae, T. simiae, T. vivax, Leishmania brasiliensis, L. donovani, L. tropica
Trichomonadidae , z.B. Giardia lambilia, G. canis.
Sarcomastigophora (Rhizopoda), z.B. Entamoeba histolytica
Hartmanellidae, z.B. Acanthamoeba sp., Hartmanella spp. Apicomplexa (Sporozoa), z.B. Eimer ia acervulina, E. adenoides, E. alabahmensis,
E. anatis, E. anseris, E. arloingi, E. ashata, E. auburnensis, E. bovis, E. brunetti, E. canis, E. chinchillae, E. clupearum, E. columbae, E. contorta, E. crandalis, E. debliecki, E. dispersa, E. ellipsoidales, E. falciformis, E. faurei, E. labbeana, E. leucarti, E. magna, E. maxima, E. media, E. meleagridis. E. meleagrimitis, E. mitis, E. necatrix, E. ninakohlyakimovae, E. ovis, E. parva, E. pavonis, E. perforans, E. phasani, E. piriformis, E. praecox, E. residua, E. scabra, E. spec, E. stiedai, E. suis,
E. tenella, E. truncata, E. truttae, E. zuernii, Globidium spec, Isospora bellt, I. canis, I. felis, I. ohioensis, I. rivolta, I. spec, I. suis, Neospora caninum,
Cystisospora spec. Cryptosporidium spec. Toxoplasmadidae, z.B. Toxoplasma gondii Sarcocystidae, z.B. Sarcocystis bovicanis, S. bovihominis, S. neuvona, S. ovicanis, S. ovifelis, S. spec, S. suihominis Leucozoide, z.B. Leucozytozoon simondi
Plasmodiidae, z.B. Plasmodium berghei, P. falciparum, P. malariae, P. ovale, P. vivax, P. spec.
Piroplasmea, z.B. Babesia argentina, B. bovis, B. canis, B. spec, Theileria parva, T. spec.
Adeleina, z.B. Hepatozoon canis, H spec.
Weiterhin von Bedeutung sind
Myxospora und Microspora, z.B. Glugea spec. und Nosema spec, sowie Pneumocystis carinii, Ciliophora (Ciliata), z.B. Balantidium coli, Ichthiophthirius spec, Trichondina spec. oder Epistylis spec.
Die gefundenen Verbindungen und Mittel sind ebenfalls effektiv gegenüber Protozoen von Insekten, wie solche des Stammes Microsporidia, besonders solche der Ordnung Nosema, ganz besonder solche der Art Nosema apis, die Parasiten der Honigbiene sind.
Beispiele
Beispiel 1
Gewinnung von ß-Tubulin-cDNA und genomischer DNA
mRNA wurde mit Hilfe des Quick Prep® Micro mRNA Kits (Pharmacia Biotech, Freiburg, Deutschland) aus C. nassatus-Wüτmem und aus C. coronatum- und Ccαt αtam-Würmern mit dem Dynal® mRNA Direct Kit (Dynal, Hamburg, Deutschland) gewonnen. Die Würmer wurden aus dem Dickdarm von Pferden isoliert und mikroskopisch gemäß der charakteristischen Struktur von Kopf und Schwanz differenziert (siehe R. S. Lichtenfeld (1975), Helminths of domestic equids. Proceedings of the Helminthological Society, Washington, 42 (Special issue), 1-92).
Die Synthese der cDNA erfolgte mit Hilfe des "Reverse Transkription System"
(Promega, Madison, USA) im Falle der mRNA aus C. nassatus und mit der Super- script RT II Reverse Transcriptase (Gibco BRL Life Technologies) im Falle der mRNA aus C. coronatum und C. catinatum. In den genannten Fällen wurden Oligonukleotide mit einer Länge von 15 Basenpaaren verwendet. Die Inkubation erfolgte für eine Stunde bei 42°C.
Genomische DNA wurde aus 4 bis 40 erwachsenen Würmern mit dem QIA Amp- Tissue Kit (Qiagen, Hilden, Deutschland) gewonnen. Dabei wurden die Würmer für 2 Stunden bei 55°C mit Proteinase K verdaut und die genomische DNA mit "Spin Columns" extrahiert. Beispiel 2
Amplifikation von ß-Tubulin-Sequenzen
Die Amplifikation von ß-Tubulin-Sequenzen voller Länge oder von Fragmenten kann z.B. mit AmpliTaq Gold™ Polymerase (Perkin Eimer, Foster City, California, USA) erfolgen.
Eine Amplifikation der ß-Tubulin-Sequenzen gemäß SEQ ID NO. 1, 3, 5, 7, 9 oder 11 oder Fragmenten davon kann mit Hilfe der Primer gemäß SEQ LD NO. 12 - 51 erfolgen.
Für die Amplifikation der cDNA von C. coronatum eignen sich z.B. die Sequenzen gemäß SEQ LD NO. 43 und 44, für die Amplifikation der cDNA von C. catinatum eignen sich besonders die Sequenzen gemäß SEQ ID NO. 40 und 42.
Die Amplifikation der C. nassatus cDNA und der genomischen DNA aller Spezies gemäß der vorliegenden Erfindung erfolgte in einem Gesamtvolumen von 50 μl, enthaltend 5 μl 10 x Puffer, 2,5 μl MgCl2 (25 mM), 2 μl dNTP-Mix (2mM je NTP), 1 μl jedes spezifischen Primers (SEQ ID NO. 12 - 47) (50 p mol/μl), 0,5 μl (2,5 U)
Polymerase und 1 - 5 μl DNA-Template. Bei der Verwendung degenerierter Primer (SEQ ID NO. 48 - 51) wurden 1 μl jedes Primers einer Konz. von 500 pmol/μl eingesetzt. Das Annealing erfolgte im Falle degenerierter Primer bei 46°C, bei spezifischen Primern wurde die Temperatur entsprechend der berechneten Schmelztemperatur variiert. Die PCR-Zyklen wurden wie folgt gewählt:
95°C für 10 min, dann 35 - 40 Zyklen mit 1 min Denaturierung bei 94°C, 1 min Annealing, 1 min bei 72°C und ein abschließender Schritt bei 72°C für 10 min. Bei der Amplifikation von cDNA aus C. coronatum und C. catinatum wurde ein soge- nanntes "Touchdown" PCR-Temperaturprogramm durchgeführt, das folgendes Profil hat: zunächst 15 Zyklen mit 94°C für 30 sec, dann 1 min bei 60°C und 1 min bei 72°C, gefolgt von 15 Zyklen mit 30 sec bei 95°C, 55°C für 1 min und 72°C für 1 min und schließlich 10 Zyklen bei 95°C für 30 sec, dann 45°C für 1 min und 72°C für 1 min. Für die Amplifikation größerer Fragmente (>1000 Basenpaare) wurde die Elonga- tionsphase bei 72°C auf 2.30 min verlängert.
Beispiel 3
PCR-Produkte aus der Amplifikation von cDNA oder genomischer DNA aus C. nassatus, C coronatum und C. catinatum wurden mit Hilfe des "Original TA
Cloning Kit" /Invitrogen, Leek, Niederlande) kloniert, und zwar in den "Original TA Cloning®"-Vektor.

Claims

Patentansprttche
1. DNA kodierend für ß-Tubulin aus Cyathostominae oder Fragmente davon.
2. DNA gemäß Anspruch 1, umfassend
a) ein Polynukleotid mit mindestens 85% Identität zu einem Polynukleotid kodierend für eine Aminosäuresequenz gemäß SEQ ED NO. 2;
b) ein Polynukleotid mit mindestens 85% Identität zu einem Polynukleotid kodierend für eine Aminosäuresequenz gemäß SEQ ID NO. 4;
c) ein Polynukleotid mit mindestens 85% Identität zu einem Polynukleotid kodierend für eine Aminosäuresequenz gemäß SEQ ID NO. 6;
d) ein Polynukleotid mit mindestens 85% Identität zu einem Polynukleotid kodierend für eine Aminosäuresequenz gemäß SEQ ID NO. 8;
e) ein Polynukleotid mit mindestens 85% Identität zu einem Polynukleo- tid kodierend für eine Aminosäuresequenz gemäß SEQ ID NO. 10.
3. DNA gemäß Anspruch 1 , umfassend
a) ein Polynukleotid mit mindestens 95% Identität zu einem Polynukleo- tid kodierend für eine Aminosäuresequenz gemäß SEQ ID NO. 2;
b) ein Polynukleotid mit mindestens 95% Identität zu einem Polynukleotid kodierend für eine Aminosäuresequenz gemäß SEQ ID NO. 4;
c) ein Polynukleotid mit mindestens 95% Identität zu einem Polynukleotid kodierend für eine Aminosäuresequenz gemäß SEQ ID NO. 6; d) ein Polynukleotid mit mindestens 95% Identität zu einem Polynukleotid kodierend für eine Aminosäuresequenz gemäß SEQ LD NO. 8;
e) ein Polynukleotid mit mindestens 95% Identität zu einem Polynukleotid kodierend für eine Aminosäuresequenz gemäß SEQ LD NO. 10.
4. DNA gemäß einem der Ansprüche 1 bis 3, umfassend eine Sequenz gemäß SEQ ID NO. 1.
5. DNA gemäß einem der Ansprüche 1 bis 3, umfassend eine Sequenz gemäß SEQ ID NO. 3.
6. DNA gemäß einem der Ansprüche 1 bis 3, umfassend eine Sequenz gemäß SEQ ID NO. 5.
7. DNA gemäß einem der Ansprüche 1 bis 3, umfassend eine Sequenz gemäß SEQ ID NO. 7.
8. DNA gemäß einem der Ansprüche 1 bis 3, umfassend eine Sequenz gemäß
SEQ ID NO. 9.
9. DNA gemäß einem der Ansprüche 1 bis 3, umfassend eine Sequenz gemäß SEQ LD NO. 11.
10. DNA gemäß einem der Ansprüche 1 bis 3 und 5 bis 9, dadurch gekennzeichnet, daß sie aus Cylicocyclus stammt.
11. DNA gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie aus Cyathostomum stammt.
12. DNA gemäß einem der Ansprüche 1 bis 3 und 5 bis 10, dadurch gekennzeichnet, daß sie aus Cylicocyclus nassatus stammt.
13. DNA gemäß einem der Ansprüche 1 bis 4 und 11, dadurch gekennzeichnet, daß sie aus Cyathostomum coronatum stammt.
14. DNA gemäß einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß sie in Kodon 200 mindestens einen Basenaustausch enthält, der zur Expression eines Polypeptids mit anthelmintischer Resistenz führt.
15. DNA, dadurch gekennzeichnet, daß sie komplementär zu DNA gemäß einem der Ansprüche 1 bis 14 ist oder Fragmente davon.
16. RNA, dadurch gekennzeichnet, daß sie komplementär zu DNA gemäß einem der Ansprüche 1 bis 15 ist.
17. Expressionskonstrukt, dadurch gekennzeichnet, daß es DNA gemäß einem der Ansprüche 1 bis 14 sowie eine funktionell damit verknüpfte Sequenz, die die Expression der DNA ermöglicht, umfaßt.
18. Vektor, dadurch gekennzeichnet, daß er DNA gemäß einem der Ansprüche 1 bis 14 umfaßt.
19. Wirtszelle, enthaltend DNA gemäß einem der Ansprüche 1 bis 14, ein Expressionskonstrukt gemäß Anspruch 17, oder einen Vektor gemäß
Anspruch 18.
20. Polypeptid kodiert von einer DNA gemäß einem der Ansprüche 1 bis 14 oder Fragmente davon.
21. Polypeptid gemäß Anspruch 20, bestehend aus oder umfassend eine Aminosäuresequenz gemäß SEQ ID NO. 2.
22. Polypeptid gemäß Anspruch 20, bestehend aus oder umfassend eine Aminosäuresequenz gemäß SEQ LD NO. 4.
23. Polypeptid gemäß Anspruch 20, bestehend aus oder umfassend eine Aminosäuresequenz gemäß SEQ ID NO. 6.
24. Polypeptid gemäß Anspruch 20, bestehend aus oder umfassend eine
Aminosäuresequenz gemäß SEQ ID NO. 8.
25. Polypeptid gemäß Anspruch 20, bestehend aus oder umfassend eine Aminosäuresequenz gemäß SEQ ID NO. 10.
26. Polypeptid kodiert von einer DNA gemäß Anspruch 14.
27. Verfahren zur Herstellung eines Polypeptids gemäß einem der Ansprüche 20 bis 26, umfassend die Expression des Polypeptids oder Fragmente davon in einem prokaryontischen oder eukaryontischen Expressionssystem.
28. Verwendung von DNA-Oligonukleotiden, die spezifisch an DNA gemäß einem der Ansprüche 1 bis 15 hybridisieren, bevorzugt an nicht kodierende DNA- Abschnitte, zur Detektion von DNA, die aus Cyathostominae stammt.
29. Verwendung von DNA, die spezifisch an DNA gemäß einem der Ansprüche 1 bis 15 hybridisiert, zur Detektion von DNA, die aus Cyathostominae stammt und für ein Polypeptid gemäß Anspruch 26 kodiert.
30. Verfahren zur Detektion von Cyathostominae, dadurch gekennzeichnet, daß man DNA gemäß Anspruch 28 an DNA gemäß einem der Ansprüche 1 bis 15 hybridisiert und diese mittels PCR amplifiziert.
31. Verfahren zur Detektion von Cyathostominae mir anthelmintischer Resistenz, dadurch gekennzeichnet, daß man DNA gemäß Anspruch 29 an DNA gemäß einem der Ansprüche 1 bis 15 hybridisiert und diese mittels PCR amplifiziert.
32. DNA-Oligonukleotide umfassend eine der Sequenzen gemäß SEQ LD NO. 12 bis SEQ ID NO. 51 oder eine aus einer der DNA-Sequenzen gemäß Anspruch
1 bis 15 abgeleitete Sequenz.
33. Diagnostischer Testkit umfassend mindestens eines der Oligonukleotide gemäß Anspruch 32 und/oder Antikörper gemäß Anspruch 35 oder 36.
34. Diagnostischer Testkit gemäß Anspruch 33, dadurch gekennzeichnet, daß die DNA-Oligonukleotide mit einem detektierbaren Marker versehen sind.
35. Antikörper, dadurch gekennzeichnet, daß er spezifisch mit einem Epitop eines Polypeptids gemäß einem der Ansprüche 20 bis 26 reagiert.
36. Antikörper gemäß Anspruch 35, dadurch gekennzeichnet, daß er monoklonal ist.
37. Verwendung von Antikörpern gemäß Anspruch 35 oder 36 als Nematizide.
38. Verwendung von Polypeptiden gemäß einem der Ansprüche 20 bis 26 zur Herstellung von Vakzinen.
39. Verfahren zum Identifizieren von Substanzen, die die Interaktion von Tubulin modulieren.
40. Verfahren gemäß Anspruch 39, dadurch gekennzeichnet, daß man
a) die Testsubstanz unter solchen Bedingungen mit Tubulin in Kontakt bringt, die eine Interaktion der Tubulinmoleküle miteinander und eine
Bindung der Testsubstanz an Tubulin gestatten,
b) die erfolgte Bindung der Testsubstanz detektiert, indem man die Fähigkeit der Tubulin-Proteinmoleküle zur Interaktion miteinander bestimmt, und
c) die Fähigkeit der Tubulin-Proteinmoleküle zur Interaktion miteinander bei Anwesenheit der Testsubstanz mit ihrer Fähigkeit zur Interaktion miteinander bei Abwesenheit einer Testsubstanz vergleicht.
41. Verfahren gemäß Anspruch 39 oder 40, dadurch gekennzeichnet, daß das verwendete Tubulin ein Polypeptid gemäß einem der Ansprüche 20 bis 26 ist.
42. Verfahren gemäß einem der Ansprüche 39 bis 41, dadurch gekennzeichnet, daß man zur Detektion einer Modulation der Tubulininteraktion bei Anwesenheit einer Testsubstanz ein auf Zellen basierendes Testsystem verwendet.
43. Verfahren gemäß einem der Ansprüche 39 bis 41, dadurch gekennzeichnet, daß man zur Detektion einer Modulation der Tubulininteraktion bei Anwe- senheit einer Testsubstanz ein zellfreies Testsystem verwendet.
44. Substanzen, die in einem Verfahren gemäß einem der Ansprüche 39 bis 43 identifiziert werden.
5. Verwendung einer Substanz gemäß Anspruch 44 zur Herstellung eines Mittels zur prophylaktischen oder therapeutischen Behandlung von Nemato- denbefall.
PCT/EP2000/006104 1999-07-09 2000-06-30 Dna kodierend für beta-tubulin und deren verwendung WO2001004281A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU68215/00A AU6821500A (en) 1999-07-09 2000-06-30 Dna coding for beta-tubulin and use thereof
EP00956159A EP1208199A2 (de) 1999-07-09 2000-06-30 Dna kodierend für beta-tubulin und deren verwendung
JP2001509485A JP2003504051A (ja) 1999-07-09 2000-06-30 β−チューブリンをコードするDNAおよびその使用
CA002378407A CA2378407A1 (en) 1999-07-09 2000-06-30 Dna coding for beta-tubulin and use thereof
BR0012274-2A BR0012274A (pt) 1999-07-09 2000-06-30 Dna codificante para beta-tubulina e seu uso
HK03102122.4A HK1050026A1 (zh) 1999-07-09 2003-03-24 編碼β-微管蛋白的DNA及其應用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19931883A DE19931883A1 (de) 1999-07-09 1999-07-09 DNA kodierend für Beta-Tubulin und deren Verwendung
DE19931883.2 1999-07-09

Publications (2)

Publication Number Publication Date
WO2001004281A2 true WO2001004281A2 (de) 2001-01-18
WO2001004281A3 WO2001004281A3 (de) 2001-07-12

Family

ID=7914118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/006104 WO2001004281A2 (de) 1999-07-09 2000-06-30 Dna kodierend für beta-tubulin und deren verwendung

Country Status (9)

Country Link
EP (1) EP1208199A2 (de)
JP (1) JP2003504051A (de)
CN (1) CN1382216A (de)
AU (1) AU6821500A (de)
BR (1) BR0012274A (de)
CA (1) CA2378407A1 (de)
DE (1) DE19931883A1 (de)
HK (1) HK1050026A1 (de)
WO (1) WO2001004281A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451285A (zh) * 2008-05-29 2013-12-18 花王株式会社 宛氏拟青霉的检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492775B (zh) * 2011-12-15 2013-09-11 童永清 抗微管化疗药物基因TUBB3 mRNA表达量快速检测试剂盒

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003549A1 (en) * 1990-08-16 1992-03-05 Euro-Diagnostics B.V. Specific dna sequences of a nematode which can be used for the diagnosis of infection with the nematode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003549A1 (en) * 1990-08-16 1992-03-05 Euro-Diagnostics B.V. Specific dna sequences of a nematode which can be used for the diagnosis of infection with the nematode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELARD, L. ET AL.: "Sequences of beta-tubulin cDNA from benzimidazole-susceptible and -resistant strains of Teledorsagia circumcincta, a nematode parasite of small ruminants" MOLECULAR AND BIOCHEMICAL PARASITOLOGY, Bd. 79, 1996, Seiten 249-253, XP000943406 *
GEARY, T. ET AL.: "Three beta-tubulin cDNAs from the parasitic nematode Haemonchus contortus" MOLECULAR AND BIOMCHEMICAL PARASITOLOGY, Bd. 50, 1992, Seiten 295-306, XP000943402 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451285A (zh) * 2008-05-29 2013-12-18 花王株式会社 宛氏拟青霉的检测方法
CN102083976B (zh) * 2008-05-29 2014-05-07 花王株式会社 宛氏拟青霉的检测方法
CN103451285B (zh) * 2008-05-29 2015-05-06 花王株式会社 宛氏拟青霉的检测方法
US9102987B2 (en) 2008-05-29 2015-08-11 Kao Corporation Method of detecting paecilomyces variotii

Also Published As

Publication number Publication date
JP2003504051A (ja) 2003-02-04
EP1208199A2 (de) 2002-05-29
CN1382216A (zh) 2002-11-27
BR0012274A (pt) 2002-03-12
CA2378407A1 (en) 2001-01-18
AU6821500A (en) 2001-01-30
WO2001004281A3 (de) 2001-07-12
DE19931883A1 (de) 2001-01-11
HK1050026A1 (zh) 2003-06-06

Similar Documents

Publication Publication Date Title
Blackhall et al. Selection at a γ-aminobutyric acid receptor gene in Haemonchus contortus resistant to avermectins/milbemycins
Fechner et al. A K+-selective CNG channel orchestrates Ca2+ signalling in zebrafish sperm
Demeler et al. Potential contribution of P-glycoproteins to macrocyclic lactone resistance in the cattle parasitic nematode Cooperia oncophora
EP1841788A1 (de) Neues schlangentoxin
DE69830422T2 (de) Zyklische nukleotid-vermittelte ionenkanal verbindungen aus hirn und herz sowie deren verwendungen
DE69935159T2 (de) Screening-verfahren
US6008046A (en) Drug and pesticide screening
DE69533796T2 (de) Für die glutamatabhängigen chloridkanäle kodierende dna
DE60031241T2 (de) Kaliumkanäle und für diese kaliumkanäle kodierende gene
US6403308B1 (en) Methods for detecting and reversing resistance to macrocyclic lactone compounds
EREZ et al. Anthelmintic resistance in farm animals
WO2001004281A2 (de) Dna kodierend für beta-tubulin und deren verwendung
DE69631516T2 (de) Familie von Kaliumkanälen von Säugetieren, deren Klonierung und Anwendung für Drogenscreening
Taguchi et al. A novel insect defensin from the ant Formica rufa
EP1317562A2 (de) Auf transmembranrezeptoren aus helminthen basierende testsysteme und deren verwendung zur identifizierung und charakterisierung von verbindungen
US20050037436A1 (en) Test systems and the use thereof for identifying and characterizing compounds
Blackhall Genetic variation and multiple mechanisms of anthelmintic resistance in Haemonchus contortus
DE10053785A1 (de) Testsysteme und deren Verwendung zur Identifizierung und Charakterisierung von Verbindungen
Galazzo A comparison of laboratory and field resistance to macrocyclic lactones in Haemonchus contortus
Njue Mechanisms of anthelmintic resistance in Cooperia oncophora, a nematode parasite of cattle
MXPA99009998A (en) Methods for detecting and reversing resistance to macrocyclic lactone compounds
von Samson-Himmelstjerna Anthelmintic resistance in helminths of horses and ruminants: Recent molecular research data
Pietrantonio Cloning and immunolocalization of a 17 kDa protein implicated in V-ATPase mediated proton transport and gap junctional communication in the tobacco budworm, Heliothis virescens
CONTORTUS Institute of Parasitology
Levitt Genetics of avermectin resistance in the nematode parasite Haemonchus contortus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2000956159

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 509485

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2378407

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 68215/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 008101213

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000956159

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000956159

Country of ref document: EP