WO2001003833A1 - Support d'analyse a transmission de lumiere de fluorescence - Google Patents

Support d'analyse a transmission de lumiere de fluorescence Download PDF

Info

Publication number
WO2001003833A1
WO2001003833A1 PCT/FR2000/002016 FR0002016W WO0103833A1 WO 2001003833 A1 WO2001003833 A1 WO 2001003833A1 FR 0002016 W FR0002016 W FR 0002016W WO 0103833 A1 WO0103833 A1 WO 0103833A1
Authority
WO
WIPO (PCT)
Prior art keywords
face
analysis
regions
analysis support
support
Prior art date
Application number
PCT/FR2000/002016
Other languages
English (en)
Inventor
Patrick Chaton
Daniel Amingual
Patrice Caillat
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO2001003833A1 publication Critical patent/WO2001003833A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • G01N21/6454Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters

Definitions

  • the present invention relates to an analysis support and an analysis system including said support and optical means for reading the support. It relates more precisely to biological analysis supports, also designated by "biochips".
  • the biochips comprise a plurality of analysis sites equipped with probes.
  • the probes are molecules capable of selectively recognizing and fixing biological material or capable of causing chemical or biochemical reactions with target molecules found in a medium to be analyzed.
  • the probes are for example nucleic acids such as DNA strands, fixed at the sites and capable of pairing with complementary DNA strands or target strands found in the analyte.
  • Other types of recognition such as antibody-antigen recognition can also be used to cause a selective pairing between the probes and the targets.
  • the invention finds analysis and diagnostic applications in particular in the medical, pharmacological, agro-food and environmental fields.
  • biochips operate on a principle of recognition between probes, fixed on analysis sites of the chip, and targets which are in particular molecules or strands of DNA of the medium to be analyzed.
  • targets which are in particular molecules or strands of DNA of the medium to be analyzed.
  • An illustration of the site preparation techniques, and in particular of their lining with biological or chemical probes, is given, for example, by documents (1) and (2) whose references are given at the end of this description. .
  • the examination of the sites is facilitated by using a medium to be analyzed whose target DNA molecules or strands carry a fluorescent or fluorophore marker.
  • the examination of the chip comes down to a step of excitation of all the fluorescent markers it carries, and a step of reading the sites to detect the fluorescence light re-emitted by the markers .
  • the sites for which fluorescence light is detected are those which have fixed molecules or strands of target DNA.
  • the probes are formed on the pixels of the retina, directly or through a removable coating.
  • Crosstalk is a phenomenon of mutual interference between the fluorescence lights produced at different sites. This phenomenon affects the accuracy and sharpness of reading.
  • the object of the invention is to propose an analysis support and an analysis system which do not have the limitations or difficulties mentioned above.
  • One aim is in particular to propose an inexpensive support with a very high number of sites, capable of being read with precision by means of an electronic retina.
  • the invention more specifically relates to an analysis support, in particular a biochip, comprising a first face provided with sites for receiving probes, also called analysis sites, and a second face opposite to the first face and likely to be associated with light detection means.
  • the analysis support has a plurality of regions transparent to fluorescent light, forming light passages between the sites and said second face, the regions being mutually separated by regions opaque to fluorescent light.
  • the fluorescence light capable of being emitted by marked target molecules present on the sites is available on the second free face, that is to say the face devoid of sites. , for reading the chip.
  • the opaque regions of the analysis support have an essential function which consists in reducing or preventing the propagation of fluorescent light emitted by a site towards a neighboring site or towards a part of an electronic retina associated with a neighboring site. In other words, the opaque regions constitute an optical isolation between the sites.
  • the analysis support may include a plate of opaque material forming said opaque regions and crossed by a plurality of boxes made of a material transparent to fluorescent light. These boxes then form said transparent regions.
  • the opaque material thus surrounds the transparent regions and laterally fixes the limits of the light passage associated with each site.
  • the support can comprise a plate of material transparent to fluorescent light and forming said transparent regions.
  • the support also comprises at least one mask layer formed on at least one face of the plate, said mask layer extending outside the transparent regions and forming said opaque regions. Stray light transmissions and reflections between sites are prevented by the mask layer.
  • the mask layer can be in one piece, that is to say completely surround the transparent regions on the second face, or be formed from a plurality of disjointed opaque elements.
  • the mask layer can be formed on one of the first or second analysis support faces.
  • a mask layer can also be formed on each of the faces. The openings of the masks on the opposite faces are then arranged so as to coincide with each other and with the sites.
  • the material of the transparent regions can be a material which is substantially opaque for a spectrum of wavelengths comprising at least one wavelength of excitation of fluorescent markers of target molecules capable of being attached to the sites, and substantially transparent to a spectrum of wavelengths comprising at least one fluorescence wavelength of said markers.
  • the support may further comprise an optical filter layer formed on the first face and intended to retain at least one wavelength of an excitation light for the fluorescent markers.
  • the filter can be designed to retain the entire excitation spectrum.
  • the support can be equipped with a plurality of optical lenses, formed on the second face and coinciding with said transparent regions.
  • the lenses collect fluorescent light to concentrate it in a localized manner, for example on an electronic retina, and in particular on photosensitive areas, or pixels, of the retina.
  • the invention also relates to a biological analysis system comprising an analysis support as described above and a reading system equipped with an electronic retina associated with the second face of the support.
  • the electronic retina can be equipped with a plurality of photosensitive zones, coinciding with the transparent regions of the analysis support when the latter is placed on the retina.
  • a silicon retina of the CCD (charge coupling) or CMOS (metal-oxide-complementary semiconductor) type Such retinas are known and used for example in camcorders.
  • the electronic retina may in particular have a sensitive face, facing the analysis support, which is covered with an anti-reflection filter tuned on at least one wavelength of the fluorescent light.
  • This filter essentially has an anti-reflection function also intended to limit a crosstalk between the pixels, due to various parasitic phenomena such as multiple reflections.
  • - Figure 1 is a partial schematic section illustrating a first possibility of producing an analysis system according to one invention.
  • - Figure 2 is a transmission diagram of an optical filter used to separate the excitation and emission light from the fluorophores. It blocks the excitation light and lets the fluorescent light through.
  • - Figure 3 is a partial schematic section illustrating a second possibility of producing an analysis system according to one invention. Detailed description of methods of implementing the invention
  • the analysis system of FIG. 1 comprises two main elements which are an analysis support 10 and a reading device 12, equipped for example with an electronic retina.
  • the analysis support can be removably placed on the reading device or near a photosensitive face 16 thereof, so as to perform a reading of a number of analysis sites 14 of the support 'analysis.
  • the photosensitive face 16 of the reading device is more particularly provided with photosensitive areas 18 which constitute pixels of a CCD type charge transfer retina.
  • the arrangement of the analysis sites 14 on the analysis support 10 is designed so as to be able to associate a pixel 18 of the reading device with each analysis site.
  • the pixels 18 are intended to detect the presence or absence, and possibly the intensity of a fluorescence light emitted from fluorescent markers, present on analysis sites. Fluorescence light thus makes it possible to recognize the sites on which a chemical or biological reaction has taken place.
  • the analysis sites 14 are in the form of small cuvettes formed on a first face 20 of the analysis support.
  • the bottom of the cuvettes is lined with chemical or biological reagents. As mentioned in the introductory part, these reagents are designated by probes and capable of reacting with molecules or biological material from the medium to be analyzed.
  • the reagents are oligonucleotide probes made up of GCTA nitrogen bases.
  • the probes can be fixed to the bottom of the cuvettes by means of a silanization operation and deposition of strepavidin.
  • silanization operation and deposition of strepavidin.
  • strepavidin for fixing the probes, reference can also be made to the documents (1) and (2) already mentioned.
  • the analysis support is brought into contact with a medium containing, for example, oligonucleotides to be recognized. These constitute the "targets”.
  • Recognition can be based on the complementarity of nitrogen bases. Hybridization between targets and probes then takes place according to the pairing laws G-C and T-A.
  • the target oligonucleotides carry fluorescent markers such as fluorescein, CY 3 or CY 5 , for example.
  • Table I indicates, for these three markers, the central wavelength of an excitation light denoted ⁇ p and the wavelength of the re-emitted fluorescence light denoted ⁇ f . Wavelengths are expressed in nanometers.
  • the oligonucleotides, probes or targets are represented in the form of a deposit at the bottom of the cuvettes of the analysis sites 14, and designated with the reference 22.
  • the reading of the analysis support uses an excitation light, indicated by arrows, and supplied by a light source 30 disposed opposite the first face 20.
  • the light source 30 may for example be a laser emitting light at a wavelength close to the wavelength ⁇ p of the fluorescent marker used.
  • the light source can also be an incoherent source whose emission spectrum includes the wavelength ⁇ p .
  • the analysis support 10 of FIG. 1 is formed of a structure of opaque material (at wavelengths ⁇ p and ⁇ f ) constituting regions 40 called
  • regions, opaque This structure is crossed by light passages formed by regions 42 called “transparent regions”.
  • the material of the transparent regions is chosen to be transparent at the wavelength ⁇ f of the fluorescence light.
  • the light passages formed by the transparent regions allow the transmission of fluorescent light to a second face 44 of the analysis support, facing the photosensitive face 16 of the reading device. The light then propagates from the second face 44 towards the pixels 18 of the reading device.
  • the main role of opaque regions is to prevent light from an analysis site from interfering with that from a neighboring site or from reaching a pixel which is not the same as its source. is specifically associated.
  • This role can be reinforced by a set of lenses 46 formed on the second face 44 of the analysis support and coinciding respectively with the transparent regions 42.
  • the lenses are in fact provided to converge the fluorescence light from each site to an associated pixel of the reading device.
  • the lenses of the analysis support can be replaced by an array of lenses 46a formed on a support separate from the analysis support. This keeps the lenses on the reading device and reduces the manufacturing cost of the analysis support.
  • the analysis support can be manufactured from a silicon wafer, etched, for example, according to preferential crystallographic planes according to a chemical etching technique (KOH).
  • KOH chemical etching technique
  • the transparent regions of the analysis support can then be obtained by localized thermal oxidation of the silicon. In these regions the silicon is transformed into silicon oxide Si0 2 .
  • the lenses 46 the opening of which can vary from 1.5 to 30, can be obtained by creep of a resin on the second face 44 of the analysis support 10.
  • the reference 48 designates an anti-reflection filter deposited on the photosensitive face of the reading device.
  • the support of the microlens array can also be made up or equipped with an anti-reflection filter 48a.
  • the first face 20 of the analysis support is also covered with an optical filter 50.
  • This filter essentially has the role of blocking the excitation light directed towards the analysis sites and of not passing through the reading device as fluorescent light.
  • the optical filter 50 is for example an interference filter formed by an alternation of Ti0 2 / Si0 2 layers. Its characteristics and in particular its rejection rate, between 10 2 and 10 6 , can be adjusted as a function of the desired detection quality.
  • FIG. 2 is a diagram representing the transmission curve of the filter 50.
  • a cut-off wavelength ⁇ c of the filter is defined for which the transmission coefficient T c is 50%.
  • the transmission T p of the filter is very small compared to
  • the transmission T p is very high compared to T c .
  • a rejection rate ⁇ of the filter is defined by
  • T P The value ⁇ c of the cut-off wavelength of the filter is chosen according to the type of marker used so as to allow selective passage of the fluorescent light.
  • the analysis support 10 comprises a plate of transparent material, for example glass.
  • microdrops 22 of liquid containing DNA probes On a first face 20 of the glass plate are deposited microdrops 22 of liquid containing DNA probes. These drops thus define the sites 14 of the analysis support.
  • microdrops are deposited in a regular arrangement on an optical filter layer 50, as described above with reference to Figures 1 and 2, which covers the first face.
  • a mask 41 made of a light absorbing material (opaque) such as chromium oxide (Cr 2 0 3 ) for example.
  • the mask 41 has openings which coincide with the location of the analysis sites 14, defined by the drops deposited on the first face 20.
  • the parts of the analysis support coinciding with the openings of the mask correspond to transparent regions 42 comparable to the transparent regions defined with reference to FIG. 1.
  • the parts coinciding with areas of light-absorbing material constitute regions 40 called “opaque regions" of the analysis support.
  • the mask 41 essentially has the function of limiting the crosstalk between the neighboring analysis sites and of limiting the Fresnel reflection at the interface between the material of the analysis support, in this case glass, and the surrounding medium. It thus avoids the influence of stray light capable of affecting the measurement of fluorescence light.
  • the analysis support of FIG. 2, like that of FIG. 1 is associated with a source 30 of excitation light and with a reading device 12 capable of selectively measuring the fluorescence light emitted by each analysis site. , and transmitted through the transparent regions 42.
  • the references 18 designate photosensitive zones of an electronic retina of the reading device 12.
  • the photosensitive zones are formed respectively by one or more pixels and are each associated with a particular site of the analysis medium.
  • the concentration of light on the pixels can be improved by lenses 46 formed on the second face of the analysis support. Reference can be made to the description relating to FIG. 1 on this subject.
  • the reading device can include an optical filter layer 50a, shown in broken lines in FIG. 2.
  • This layer 50a has substantially the same characteristics as the layer 50 formed on the first face of the analysis support and is intended to stop the excitation light while letting the fluorescence light pass.
  • the layer 50a can replace or supplement an antireflection layer such as the antireflection layer 48 shown in FIG. 1.
  • the reading device When the reading device is equipped with a filter layer 50a capable of eliminating the excitation light, it can be used with analysis supports which are devoid of such a layer. This reduces the cost of analysis supports.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

La présente invention concerne un support d'analyse (10), en particulier biopuce, comprenant une première face (20) pourvue de sites (14) de réception de sondes et une deuxième face (44) opposée à la première face et susceptible d'être associée à des moyens de détection de lumière, le support d'analyse présentant une pluralité de régions (42) transparentes à une lumière de fluorescence, formant des passages de lumière entre les sites et ladite deuxième face, lesdites régions étant mutuellement séparées par des régions (40) opaques à ladite lumière de fluorescence.

Description

SUPPORT D'ANALYSE A TRANSMISSION DE LUMIERE DE
FLUORESCENCE
Domaine technique La présente invention concerne un support d'analyse et un système d'analyse incluant ledit support et des moyens optiques de lecture du support. Elle concerne plus précisément des supports d'analyse biologique, encore désignés par "biopuces". Les biopuces comportent une pluralité de sites d'analyse équipés de sondes. Les sondes sont des molécules capables de reconnaître et de fixer de façon sélective de la matière biologique ou capables de provoquer des réactions chimiques ou biochimiques avec des molécules cibles se trouvant dans un milieu à analyser.
Les sondes sont par exemple des acides nucléiques tels que des brins d'ADN, fixés sur les sites et capables de s'apparier avec des brins d'ADN complémentaires ou brins cibles se trouvant dans l'analyte. D'autres types de reconnaissance tels que la reconnaissance anticorps-antigène peuvent également être mis en oeuvre pour provoquer un appariement sélectif entre les sondes et les cibles. L'invention trouve des applications d'analyse et de diagnostic dans notamment les domaines médical, pharmacologique, agro-alimentaire et environnemental.
Etat de la technique antérieure Comme évoqué dans la partie introductive, les biopuces fonctionnent sur un principe de reconnaissance entre des sondes, fixées sur des sites d'analyse de la puce, et des cibles qui sont notamment des molécules ou des brins d'ADN du milieu à analyser. Une illustration des techniques de préparation des sites, et en particulier de leur garniture avec les sondes biologiques ou chimiques, est donnée, par exemple, par des documents (1) et (2) dont les références sont précisées à la fin de la présente description.
Après avoir mis en contact une biopuce avec le milieu à analyser il convient d'examiner les sites pour déterminer lesquels ont été le siège d'une réaction ou d'un appariement.
La connaissance de ces sites, et la connaissance du type de sondes qui les équipent, permettent de déterminer la composition du milieu.
L'examen des sites est facilité en utilisant un milieu à analyser dont les molécules ou les brins d'ADN cibles sont porteurs d'un marqueur fluorescent ou fluorophore. Dans ce cas, en effet, l'examen de la puce se résume à une étape d'excitation de l'ensemble des marqueurs fluorescents qu'elle porte, et une étape de lecture des sites pour détecter la lumière de fluorescence réémise par les marqueurs. On sait alors que les sites pour lesquels une lumière de fluorescence est détectée, sont ceux qui ont fixé des molécules ou des brins d'ADN cibles.
On connaît différents types d'équipements utilisés pour la lecture des sites. Parmi ces équipements, on peut citer les systèmes optiques tels que le microscope confocal. Ces systèmes sont généralement associés à des moyens de déplacement de la puce dans un plan, de façon à balayer successivement tous les sites.
Les équipements de lecture des sites explorant les sites les uns après les autres ne sont bien adaptés que pour les biopuces comprenant un nombre de sites d'analyse relativement faible. En outre, les appareillages utilisés doivent respecter des exigences de précision élevés et sont donc particulièrement coûteux. A titre d'alternative, le document (3),dont les références sont également précisées à la fin de la description, propose d'utiliser comme support de puce une rétine de type CCD (à couplage de charge). De telles rétines, connues dans les caméras électroniques, permettent de mesurer directement et simultanément la lumière de fluorescence émise depuis un grand nombre de sites .
Les sondes sont formées sur les pixels de la rétine, directement ou par l'intermédiaire d'un revêtement amovible.
Lorsque la densité de sites est importante un tel dispositif peut cependant poser des problèmes de résolution et de diaphotie entre les pixels. La diaphotie est un phénomène d'interférence mutuelle entre les lumières de fluorescence produites sur différents sites. Ce phénomène affecte la précision et l'acuité de la lecture. Exposé de 1 ' invention
L ' invention a pour but de proposer un support d'analyse et un système d'analyse ne présentant pas les limitations ou difficultés mentionnées ci-dessus. Un but est en particulier de proposer un support peu coûteux avec un nombre très élevé de sites, susceptibles d'être lus avec précision au moyen d'une rétine électronique.
Pour atteindre ces buts, l'invention a plus précisément pour objet un support d'analyse, en particulier une biopuce, comprenant une première face pourvue de sites de réception de sondes, encore appelés sites d'analyse, et une deuxième face opposée à la première face et susceptible d'être associée à des moyens de détection de lumière. Le support d'analyse présente une pluralité de régions transparentes à une lumière de fluorescence, formant des passages de lumière entre les sites et ladite deuxième face, les régions étant mutuellement séparées par des régions opaques à la lumière de fluorescence.
Grâce aux passages de lumière formés par les régions transparentes, la lumière de fluorescence susceptible d'être émise par des molécules cibles marquées présentes sur les sites, est disponible sur la deuxième face libre, c'est-à-dire la face dépourvue de sites, pour une lecture de la puce.
Cette caractéristique facilite grandement la mise en place du support d'analyse sur une rétine électronique . De plus, comme la première face équipée des sites reste libre, il est possible d'envisager de façon simultanée, l'excitation des marqueurs fluorescents par une source de lumière tournée vers la première face et la lecture des sites par une rétine tournée vers la deuxième face. Les régions opaques du support d'analyse ont une fonction essentielle qui consiste à réduire ou à empêcher la propagation de la lumière de fluorescence émise par un site vers un site voisin ou vers une partie d'une rétine électronique associée à un site voisin. En d'autres termes, les régions opaques constituent une isolation optique entre les sites.
Les phénomènes parasites de diaphotie, évoqués précédemment s ' en trouvent réduits ou annulés .
Selon une réalisation particulière du support d'analyse, celui-ci peut comporter une plaque de matériau opaque formant lesdites régions opaques et traversée par une pluralité de caissons en un matériau transparent à la lumière de fluorescence. Ces caissons forment alors lesdites régions transparentes. Le matériau opaque entoure ainsi les régions transparentes et fixe latéralement les limites du passage de lumière associé à chaque site.
Selon une autre réalisation possible, le support peut comporter une plaque de matériau transparent à la lumière de fluorescence et formant lesdites régions transparentes. Dans ce cas le support comprend aussi au moins une couche de masque formée sur au moins une face de la plaque, ladite couche de masque s ' étendant en dehors des régions transparentes et formant lesdites régions opaques. Les transmissions et réflexions parasites de lumière entre les sites sont empêchés par la couche de masque.
La couche de masque peut être d'un seul tenant, c'est-à-dire entourer entièrement les régions transparentes sur la deuxième face, ou être formée d'une pluralité d'éléments opaques disjoints.
La couche de masque peut être formée sur 1 ' une des première ou deuxième faces support d'analyse. Une couche de masque peut également être formée sur chacune des faces. Les ouvertures des masques sur les faces opposées sont alors agencées de façon à coïncider entre elles et avec les sites.
Selon un aspect particulier avantageux de l'invention, le matériau des régions transparentes peut être un matériau sensiblement opaque pour un spectre de longueurs d'onde comprenant au moins une longueur d'onde d'excitation de marqueurs fluorescent de molécules cibles susceptibles d'être fixées sur les sites, et sensiblement transparent à un spectre de longueurs d'onde comprenant au moins une longueur d'onde de fluorescence desdits marqueurs.
Grâce à ces caractéristiques, tout ou partie d'une lumière d'excitation appliquée aux sites sur la première face est arrêtée et seule la lumière de fluorescence est dirigée vers la deuxième face. Ainsi, lorsqu'une rétine de lecture est disposée au voisinage de la deuxième face, celle-ci se trouve affranchie dans une large mesure de la lumière d'excitation. Une lecture avec une plus grande sensibilité est par conséquent possible. A titre d'alternative, ou de façon complémentaire, le support peut comporter en outre une couche de filtre optique formée sur la première face et destinée à retenir au moins une longueur d'onde d'une lumière d'excitation des marqueurs fluorescents. En particulier, le filtre peut être conçu pour retenir l'ensemble du spectre d'excitation.
Pour augmenter encore 1 ' cuité et la sensibilité de la lecture des sites par une rétine électronique, le support peut être équipé d'une pluralité de lentilles optiques, formées sur la deuxième face et coïncidant avec lesdites régions transparentes .
Les lentilles collectent la lumière de fluorescence pour la concentrer de façon localisée, par exemple sur une rétine électronique, et en particulier sur des zones photosensibles, ou pixels, de la rétine.
L ' invention concerne également un système d'analyse biologique comprenant un support d'analyse tel que décrit précédemment et un système de lecture équipé d'une rétine électronique associée à la deuxième face du support.
La rétine électronique peut être équipée d'une pluralité de zones photosensibles, coïncidant avec les régions transparentes du support d'analyse lorsque celui-ci est disposé sur la rétine.
Il s'agit par exemple d'une rétine de silicium du type CCD (à couplage de charges) ou CMOS (metal- oxyde-semi-conducteur complémentaire). De telles rétines sont connues et utilisées par exemple dans des caméscopes . La rétine électronique peut présenter en particulier une face sensible, tournée vers le support d'analyse, qui est recouverte d'un filtre antiréflexion accordé sur au moins une longueur d'onde de la lumière de fluorescence. Ce filtre a essentiellement une fonction antiréflexion destinée également à limiter une diaphotie entre les pixels, due à divers phénomènes parasites tels que des réflexions multiples.
D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, en référence aux figures des dessins annexés.
Cette description est donnée à titre purement illustratif et non limitatif.
Brève description des figures
- La figure 1 est une coupe schématique partielle illustrant une première possibilité de réalisation d'un système d'analyse conforme à 1 ' invention. - La figure 2 est un diagramme de transmission d'un filtre optique permettant de séparer la lumière d'excitation et d'émission des fluorophores . Il bloque la lumière d'excitation et il laisse passer la lumière de fluorescence. - La figure 3 est une coupe schématique partielle illustrant une deuxième possibilité de réalisation d'un système d'analyse conforme à 1' invention. Description détaillée de modes de mise en oeuyre de 1 ' invention
Dans la description qui suit, des parties identiques, similaires ou équivalentes des différentes figures sont désignées parles mêmes références, afin de faciliter la lecture des figures.
Le système d'analyse de la figure 1 comprend deux éléments principaux qui sont un support d'analyse 10 et un dispositif de lecture 12, équipé par exemple d'une rétine électronique.
Le support d'analyse peut être disposé de façon amovible sur le dispositif de lecture ou à proximité d'une face photosensible 16 de celui-ci, de façon à effectuer une lecture d'un certain nombre de sites d'analyse 14 du support d'analyse.
Dans l'exemple illustré, la face photosensible 16 du dispositif de lecture est plus particulièrement pourvue de zones photosensibles 18 qui constituent des pixels d'une rétine à transfert de charge du type CCD. L'agencement des sites d'analyse 14 sur le support d'analyse 10 est conçu de façon à pouvoir associer un pixel 18 du dispositif de lecture à chaque site d'analyse.
Les pixels 18 sont destinés à détecter la présence ou l'absence, et éventuellement l'intensité d'une lumière de fluorescence émise depuis des marqueurs fluorescents, présents sur des sites d'analyse. La lumière de fluorescence permet de reconnaître ainsi les sites sur lesquels une réaction chimique ou biologique a eu lieu. Les sites d'analyse 14 se présentent sous la forme de petites cuvettes pratiquées sur une première face 20 du support d'analyse.
Le fond des cuvettes est garni de réactifs chimiques ou biologiques . Comme évoqué dans la partie introductive, ces réactifs sont désignés par sondes et susceptibles de réagir avec des molécules ou de la matière biologique du milieu à analyser.
Dans l'exemple illustré, les réactifs sont des sondes d' oligonucleotides constituées de bases azotées GCTA. Les sondes peuvent être fixées au fond des cuvettes au moyen d'une opération de silanisation et de dépôt de strépavidine. Pour la fixation des sondes, on peut se reporter également aux documents (1) et (2) déjà mentionnés.
Il convient de noter que les différents sites d'une même support d'analyse peuvent être pourvus de différents types de sondes.
Après cette première opération de fonctionnalisation des sites, le support d'analyse est mis en contact avec un milieu contenant, par exemple, des oligonucleotides à reconnaître. Ceux-ci constituent les "cibles".
La reconnaissance peut être basée sur la complémentarité de bases azotées. Une hybridation entre cibles et sondes a alors lieu selon les lois d ' appariement G-C et T-A.
Pour reconnaître les sites sur lesquels une hybridation a eu lieu, les oligonucleotides cibles sont porteurs de marqueurs fluorescents tels que la fluorescéine, le CY3 ou le CY5, par exemple. Le tableau I ci-après indique, pour ces trois marqueurs, la longueur d'onde centrale d'une lumière d'excitation notée λp et la longueur d'onde de la lumière de fluorescence réémise et notée λf. Les longueurs d'onde sont exprimées en nanomètres.
TABLEAU I
Figure imgf000013_0001
Sur la figure 1, les oligonucleotides, sondes ou cibles, sont représentés sous la forme d'un dépôt au fond des cuvettes des sites d'analyse 14, et désignés avec la référence 22.
La lecture du support d'analyse fait appel à une lumière d'excitation, indiquée par des flèches, et fournie par une source de lumière 30 disposée en regard de la première face 20. La source de lumière 30 peut être par exemple un laser émettant une lumière à une longueur d'onde voisine de la longueur d'onde λp du marqueur fluorescent utilisé. La source de lumière peut aussi être une source incohérente dont le spectre d'émission comprend la longueur d'onde λp.
Le support d'analyse 10 de la figure 1 est formé d'une structure de matière opaque (aux longueurs d'onde λp et λf) constituant des régions 40 dites
"régions, opaques". Cette structure est traversée de passages de lumières formés par des régions 42 dites "régions transparentes".
En particulier, le matériau des régions transparentes est choisi pour être transparent à la longueur d'onde λf de la lumière de fluorescence. Eventuellement, il est avantageux d'utiliser un matériau transparent à la longueur d'onde λf de la lumière de fluorescence et sensiblement opaque, ou atténuant la longueur d'onde λp de la lumière d'excitation.
Les passages de lumière formés par les régions transparentes permettent les transmission de la lumière de fluorescence vers une deuxième face 44 du support d'analyse, tournée vers la face photosensible 16 du dispositif de lecture. La lumière se propage ensuite de la deuxième face 44 vers les pixels 18 du dispositif de lecture.
Les régions opaques ont essentiellement pour rôle d'éviter que de la lumière provenant d'un site d'analyse, n'interfère avec celle d'un site voisin ou qu'elle n'atteigne un pixel qui n'est pas celui qui lui est spécifiquement associé.
Ce rôle peut être renforcé par un ensemble de lentilles 46 formées sur la deuxième face 44 du support d'analyse et coïncidant respectivement avec les régions transparente 42.
Les lentilles sont prévues en effet pour faire converger la lumière de fluorescence de chaque site vers un pixel associé du dispositif de lecture. Selon une variante, représentée en trait discontinu, les lentilles du support d'analyse peuvent être remplacées par un réseau de lentilles 46a formées sur un support séparé du support d'analyse. Ceci permet de conserver les lentilles sur le dispositif de lecture et réduire le coût de fabrication du support d'analyse. Le support d'analyse peut être fabriqué à partir d'une plaquette de silicium, gravée, par exemple, suivant des plans cristallographiques préférentiels selon une technique de gravure chimique (KOH). Les régions transparentes du support d'analyse peuvent alors être obtenues par oxydation thermique localisée du silicium. Dans ces régions le silicium est transformé en oxyde de silicium Si02.
Les lentilles 46 dont l'ouverture peut varier de 1,5 à 30, peuvent être obtenues par fluage d'une résine sur la deuxième face 44 du support d'analyse 10. Une description de techniques pour la réalisation des lentilles peut aussi être trouvée dans le document (4) dont les références sont précisées à la fin de la description. La référence 48 désigne un filtre antireflet déposé sur la face photosensible du dispositif de lecture. De la même façon, le support du réseau de microlentilles peut également être constitué ou équipé d'un filtre antireflet 48a. Enfin, on observe que la première face 20 du support d'analyse est également recouverte d'un filtre optique 50. Ce filtre a essentiellement pour rôle de bloquer la lumière d'excitation dirigée vers les sites d'analyse et de ne laisser passer vers le dispositif de lecture que la lumière de fluorescence. Le filtre optique 50 est par exemple un filtre interférentiel formé d'une alternance de couches Ti02/Si02. Ses caractéristiques et en particulier son taux de réjection, compris entre 102 et 106, peuvent être ajustés en fonction d'une qualité de détection recherchée.
La figure 2 est un diagramme représentant la courbe de transmission du filtre 50. On définit une longueur d'onde de coupure λc du filtre pour laquelle le coefficient de transmission Tc est de 50%.
Pour une gamme de longueurs d'onde inférieure à λc, et comprenant notamment la longueur d'onde λp de la lumière d'excitation, par exemple à 490 nm, la transmission Tp du filtre est très petite par rapport à
Tc.
En revanche, pour une plage de longueurs d'onde supérieure à λc, comprenant notamment la longueur d'onde λf de la lumière de fluorescence, par exemple à 530 nm, la transmission Tp est très élevée par rapport à Tc.
Un taux de réjection τ du filtre est défini par
τ - 3. .
TP La valeur λc de la longueur d'onde de coupure du filtre est choisie en fonction du type de marqueur utilisé de façon à permettre un passage sélectif de la lumière de fluorescence.
On peut se reporter à cette fin au tableau I, par exemple. La figure 3, décrite ci-après, illustre une autre possibilité de réalisation du support d'analyse de l'invention. Le support d'analyse 10 comprend une plaque de matériau transparent, par exemple en verre.
Sur une première face 20 de la plaque de verre sont déposées des microgouttes 22 de liquide contenant des sondes d'ADN. Ces gouttes définissent ainsi les sites 14 du support d'analyse.
De façon plus précise, les microgouttes sont déposées selon un agencement régulier sur une couche de filtre optique 50, telle que décrite précédemment en référence aux figures 1 et 2 , qui recouvre la première face.
Sur la deuxième face 44 du support d'analyse se trouve un masque 41 en un matériau absorbant la lumière (opaque) tel que de l'oxyde de chrome (Cr203) par exemple. Le masque 41 présente des ouvertures qui coïncident avec l'emplacement des sites d'analyse 14, définis par les gouttes déposées sur la première face 20.
Les parties du support d'analyse coïncidant avec les ouvertures du masque correspondent à des régions transparentes 42 comparables aux régions transparentes définies en référence à la figue 1.
De la même façon, les parties coïncidant avec des plages de matériau absorbant la lumière (opaque) constituent des régions 40 appelées "régions opaques" du support d'analyse. Le masque 41 a essentiellement pour fonction de limiter la diaphotie entre les sites d'analyse voisins et de limiter la réflexion de Fresnel à 1 ' interface entre le matériau du support d'analyse, en l'occurrence le verre, et le milieu environnant. Il permet ainsi d'éviter l'influence d'une lumière parasite susceptible d'affecter la mesure de la lumière de fluorescence.
Pour la réalisation d'un tel masque, on peut se reporter au document (5) dont les références sont précisées à la fin de la description.
Le support d'analyse de la figure 2, tout comme celui de la figure 1 est associé à une source 30 de lumière d'excitation et à un dispositif de lecture 12 apte à mesurer sélectivement la lumière de fluorescence émise par chaque site d'analyse, et transmise à travers les régions transparentes 42.
Les références 18 désignent des zones photosensibles d'une rétine électronique du dispositif de lecture 12. Les zones photosensibles sont formées respectivement d'un ou de plusieurs pixels et sont associées chacune à un site particulier du support d' analyse.
La concentration de la lumière sur les pixels peut être améliorée par des lentilles 46 formées sur la deuxième face du support d'analyse. On peut se reporter à ce sujet à la description relative à la figure 1.
Dans une réalisation particulière du système d'analyse selon la figure 2, le dispositif de lecture peut comporter une couche de filtre optique 50a, représentée en trait discontinu sur la figure 2. Cette couche 50a présente sensiblement les mêmes caractéristiques que la couche 50 formée sur la première face du support d'analyse et est destinée à arrêter la lumière d'excitation tout en laissant passer la lumière de fluorescence.
La couche 50a peut remplacer ou compléter une couche antireflet telle que la couche antireflet 48 représentée à la figure 1.
Lorsque le dispositif de lecture est équipé d'une couche de filtre 50a apte à éliminer la lumière d'excitation, il peut être utilisé avec des supports d'analyse qui sont dépourvus d'une telle couche. Ceci permet de réduire le coût des supports d'analyse.
Une telle mesure suppose cependant que le dispositif de lecture soit utilisé pour l'analyse d'un milieu avec des cibles portant des marqueurs fluorescents adaptés.
DOCUMENTS CITES
(1 )
"Electroconducting polymers for the construction of DNA or peptide arrays on silicon chips" Thierry Livache et coll. Biosensors & Bioelectronics 13 (1998) 629-634
(2)
US-A-5 474 796 (3)
"A Microchip for Quantitative Détection of Molécules Utilizing Luminescent and Radioisotope Reporter Groups" M. Eggers et coll.
Bio Techniques, vol 17, n° 3, 1994, pages 516-523
(4)
"Fibre coupling of microchip lasers with silica microlenses"
M. Rabarot et coll.
Pure Appl. Opt. 6 (1997) 699-705
(5) "A métal oxide approach for production of selectable absorption, enhanced contrast, anti- reflection coatings for the display mar et" Ronald E. Laird, et coll. Topical meeting on Optical Interférence coatings, 5-9 June 1995, Tucson, USA Technical digest séries volume 17, p. 364, 1995

Claims

REVENDICATIONS
1. Support d'analyse (10), en particulier biopuce, comprenant une première face (20) pourvue de sites (14) de réception de sondes et une deuxième face (44) opposée à la première face et susceptible d'être associée à des moyens de détection de lumière, le support d'analyse présentant une pluralité de régions (42) transparentes à une lumière de fluorescence, formant des passages de lumière entre les sites et ladite deuxième face, lesdites régions étant mutuellement séparées par des régions (40) opaques à ladite lumière de fluorescence, et dans lequel le matériau des régions transparentes (42) est un matériau sensiblement opaque pour un spectre de longueurs d'onde comprenant au moins une longueur d'onde d'excitation de marqueurs fluorescents susceptibles d'être présents sur les sites, et sensiblement transparent à un spectre de longueurs d'onde comprenant au moins une longueur d'onde de fluorescence desdits marqueurs.
2. Support selon la revendication 1, comprenant une plaque de matériau opaque formant lesdites régions opaques et traversée par une pluralité de caissons en un matériau transparent à la lumière de fluorescence, formant lesdites régions transparentes.
3. Support selon la revendication 1, comprenant une plaque de matériau transparent à la lumière de fluorescence formant lesdites régions transparentes et comprenant au moins une couche de masque (41) formée sur au moins une face de la plaque, ladite couche de masque s ' étendant en dehors des régions transparentes et formant lesdites régions opaques.
4. Support selon la revendication 3, dans lequel la couche de masque est formée d'une pluralité d'éléments opaques disjoints.
5. Support selon la revendication 1 , comprenant en outre une couche de filtre optique (50) formée sur la première face et destinée à retenir au moins une longueur d'onde d'une lumière d'excitation des marqueurs fluorescents susceptibles d'être présents sur les sites.
6. Support selon la revendication 1, comprenant en outre une pluralité de lentilles optiques (46), formées sur la deuxième face (44) et coïncidant avec lesdites régions transparentes.
7. Dispositif de lecture d'un support d'analyse selon la revendication 1, comprenant une rétine électronique (12) équipée d'une pluralité de zones photosensibles (18), coïncidant avec les régions transparentes (42) lorsque le support d'analyse (10) est disposé sur la rétine (12).
8. Système d'analyse biologique comprenant : - un support d'analyse (10) selon la revendication 1, et - un dispositif de lecture pouvant être associé à la deuxième face (44) du support d'analyse.
9. Système d'analyse selon la revendication 8, comprenant en outre une source de lumière d ' excitation (30) tournée vers la première face (20) du support d'analyse.
10. Système d'analyse selon la revendication 9, comprenant en outre un réseau de lentilles (46a), associées respectivement aux régions transparentes (42) du support d'analyse (10), le réseau étant disposé entre le support d'analyse et la rétine électronique.
11. Système selon la revendication 8, dans lequel le dispositif de lecture comprend une rétine en silicium du type CCD (rétine à couplage de charge) ou du type CMOS (métal-oxyde-semi-conducteur- complémentaire) .
12. Système selon la revendication 8, dans lequel la rétine électronique présente une face sensible, tournée vers le support d'analyse, qui est recouverte d'un filtre antiréflexion (48) accordé sur au moins une longueur d ' onde de la lumière de fluorescence.
13. Système selon la revendication 8, dans lequel la rétine électronique comporte une pluralité de pixels (18) coïncidant respectivement avec les régions transparentes (42) du support d'analyse.
PCT/FR2000/002016 1999-07-13 2000-07-12 Support d'analyse a transmission de lumiere de fluorescence WO2001003833A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9909089A FR2797053B1 (fr) 1999-07-13 1999-07-13 Support d'analyse a transmission de lumiere de fluorescence
FR99/09089 1999-07-13

Publications (1)

Publication Number Publication Date
WO2001003833A1 true WO2001003833A1 (fr) 2001-01-18

Family

ID=9548056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002016 WO2001003833A1 (fr) 1999-07-13 2000-07-12 Support d'analyse a transmission de lumiere de fluorescence

Country Status (2)

Country Link
FR (1) FR2797053B1 (fr)
WO (1) WO2001003833A1 (fr)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090945A2 (fr) * 2001-05-03 2002-11-14 Technische Universiteit Delft Procede destine a realiser une analyse, appareil associe et procede de fabrication de cet appareil
DE10145701A1 (de) * 2001-09-17 2003-04-10 Infineon Technologies Ag Fluoreszenz-Biosensorchip und Fluoreszenz-Biosensorchip-Anordnung
WO2003034101A1 (fr) * 2001-10-18 2003-04-24 Commissariat A L'energie Atomique Substrat revetu d'un film organique transparent et procede de fabrication
DE10217568A1 (de) * 2002-04-19 2003-11-13 Infineon Technologies Ag Wellenleiter in porösen Substraten
WO2005108955A1 (fr) * 2004-04-29 2005-11-17 Applera Corporation Procede permettant de reduire au minimum l'effet de menisque
WO2007120202A2 (fr) * 2005-11-09 2007-10-25 Zs Genetics, Inc. Réseaux de ligangs nanométriques disposés sur des substrats pour instruments à faisceaux de particules et procédés correspondants
WO2008140158A1 (fr) 2007-05-16 2008-11-20 Siliconfile Technologies Inc. Biopuce
US7604943B2 (en) 2004-07-14 2009-10-20 Zs Genetics, Inc. Systems and methods of analyzing nucleic acid polymers and related components
FR2946157A1 (fr) * 2009-06-02 2010-12-03 Commissariat Energie Atomique Systeme d'imagerie a microlentilles et dispositif associe pour la detection d'un echantillon.
EP2221606A3 (fr) * 2009-02-11 2012-06-06 Samsung Electronics Co., Ltd. Biopuce intégrée et son procédé de fabrication
EP2284521A3 (fr) * 2009-08-12 2012-06-06 Sony Corporation Puce de détection de lumière et dispositif de détection de lumière avec puce de détection de lumière
EP2537010A1 (fr) * 2010-02-19 2012-12-26 Pacific Biosciences Of California, Inc. Systeme et procede de detection et de collecte d'optique
US8994946B2 (en) 2010-02-19 2015-03-31 Pacific Biosciences Of California, Inc. Integrated analytical system and method
EP2750190A4 (fr) * 2011-08-24 2015-04-08 Sony Corp Capteur d'image, son procédé de fabrication et dispositif de contrôle
EP2772751A4 (fr) * 2011-10-24 2015-06-10 Sony Corp Capteur chimique, dispositif de détection de biomolécule et procédé de détection de biomolécule
KR101563158B1 (ko) 2009-02-11 2015-10-27 삼성전자주식회사 집적된 바이오칩 및 이의 제조방법
KR101563688B1 (ko) * 2009-02-11 2015-10-28 삼성전자주식회사 집적된 바이오칩 및 이의 제조방법
KR101569834B1 (ko) * 2009-02-11 2015-11-18 삼성전자주식회사 집적된 바이오칩 및 이의 제조방법
WO2017061600A1 (fr) * 2015-10-08 2017-04-13 凸版印刷株式会社 Dispositif microfluidique et procédé d'analyse d'échantillon
EP3371575A4 (fr) * 2015-09-14 2019-06-26 Shenzhen Genorivision Technology Co. Ltd. Biocapteur
EP3709003A1 (fr) * 2013-11-17 2020-09-16 Quantum-Si Incorporated Système optique et puce d'analyse pour sonder détected et analyser des molécules
EP3805737A1 (fr) * 2019-10-10 2021-04-14 VisEra Technologies Company Limited Biocapteur optique intégré
US11983790B2 (en) 2015-05-07 2024-05-14 Pacific Biosciences Of California, Inc. Multiprocessor pipeline architecture
US12078596B2 (en) 2017-07-24 2024-09-03 Quantum-Si Incorporated Hand-held, massively-parallel, bio-optoelectronic instrument
US12123834B2 (en) 2020-06-12 2024-10-22 Quantum-Si Incorporated Active-source-pixel, integrated device for rapid analysis of biological and chemical specimens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169601A (en) * 1990-04-27 1992-12-08 Suzuki Motor Corporation Immunological agglutination detecting apparatus with separately controlled supplementary light sources
JPH0720037A (ja) * 1993-07-01 1995-01-24 J T Sci:Kk タイタプレート
US5759494A (en) * 1995-10-05 1998-06-02 Corning Incorporated Microplates which prevent optical cross-talk between wells
WO1998028075A1 (fr) * 1996-12-20 1998-07-02 Imaging Research Inc. Plaque a micro-puits pour imagerie d'essais en fluorescence, chimiluminescence, bioluminescence et colorimetrie
WO1999049974A1 (fr) * 1998-04-01 1999-10-07 The Du Pont Merck Pharmaceutical Company Dispositif sous forme de plaque servant a contenir de petits volumes de liquide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169601A (en) * 1990-04-27 1992-12-08 Suzuki Motor Corporation Immunological agglutination detecting apparatus with separately controlled supplementary light sources
JPH0720037A (ja) * 1993-07-01 1995-01-24 J T Sci:Kk タイタプレート
US5759494A (en) * 1995-10-05 1998-06-02 Corning Incorporated Microplates which prevent optical cross-talk between wells
WO1998028075A1 (fr) * 1996-12-20 1998-07-02 Imaging Research Inc. Plaque a micro-puits pour imagerie d'essais en fluorescence, chimiluminescence, bioluminescence et colorimetrie
WO1999049974A1 (fr) * 1998-04-01 1999-10-07 The Du Pont Merck Pharmaceutical Company Dispositif sous forme de plaque servant a contenir de petits volumes de liquide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 04 31 May 1995 (1995-05-31) *

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090945A2 (fr) * 2001-05-03 2002-11-14 Technische Universiteit Delft Procede destine a realiser une analyse, appareil associe et procede de fabrication de cet appareil
WO2002090945A3 (fr) * 2001-05-03 2003-01-03 Univ Delft Tech Procede destine a realiser une analyse, appareil associe et procede de fabrication de cet appareil
DE10145701A1 (de) * 2001-09-17 2003-04-10 Infineon Technologies Ag Fluoreszenz-Biosensorchip und Fluoreszenz-Biosensorchip-Anordnung
WO2003034101A1 (fr) * 2001-10-18 2003-04-24 Commissariat A L'energie Atomique Substrat revetu d'un film organique transparent et procede de fabrication
FR2831275A1 (fr) * 2001-10-18 2003-04-25 Commissariat Energie Atomique Substrat revetu d'un film organique transparent et procede de fabrication
DE10217568A1 (de) * 2002-04-19 2003-11-13 Infineon Technologies Ag Wellenleiter in porösen Substraten
WO2005108955A1 (fr) * 2004-04-29 2005-11-17 Applera Corporation Procede permettant de reduire au minimum l'effet de menisque
US8697432B2 (en) 2004-07-14 2014-04-15 Zs Genetics, Inc. Systems and methods of analyzing nucleic acid polymers and related components
US7604943B2 (en) 2004-07-14 2009-10-20 Zs Genetics, Inc. Systems and methods of analyzing nucleic acid polymers and related components
US7604942B2 (en) 2004-07-14 2009-10-20 Zs Genetics, Inc. Systems and methods of analyzing nucleic acid polymers and related components
US7910311B2 (en) 2004-07-14 2011-03-22 Zs Genetics, Inc. Systems and methods of analyzing nucleic acid polymers and related components
WO2007120202A2 (fr) * 2005-11-09 2007-10-25 Zs Genetics, Inc. Réseaux de ligangs nanométriques disposés sur des substrats pour instruments à faisceaux de particules et procédés correspondants
WO2007120202A3 (fr) * 2005-11-09 2008-04-03 Zs Genetics Inc Réseaux de ligangs nanométriques disposés sur des substrats pour instruments à faisceaux de particules et procédés correspondants
EP2156167A1 (fr) * 2007-05-16 2010-02-24 SiliconFile Technologies Inc. Biopuce
EP2156167A4 (fr) * 2007-05-16 2010-06-30 Siliconfile Technologies Inc Biopuce
WO2008140158A1 (fr) 2007-05-16 2008-11-20 Siliconfile Technologies Inc. Biopuce
EP2221606A3 (fr) * 2009-02-11 2012-06-06 Samsung Electronics Co., Ltd. Biopuce intégrée et son procédé de fabrication
KR101563158B1 (ko) 2009-02-11 2015-10-27 삼성전자주식회사 집적된 바이오칩 및 이의 제조방법
KR101569834B1 (ko) * 2009-02-11 2015-11-18 삼성전자주식회사 집적된 바이오칩 및 이의 제조방법
US8921280B2 (en) 2009-02-11 2014-12-30 Samsung Electronics Co., Ltd. Integrated bio-chip and method of fabricating the integrated bio-chip
KR101563688B1 (ko) * 2009-02-11 2015-10-28 삼성전자주식회사 집적된 바이오칩 및 이의 제조방법
FR2946157A1 (fr) * 2009-06-02 2010-12-03 Commissariat Energie Atomique Systeme d'imagerie a microlentilles et dispositif associe pour la detection d'un echantillon.
US20120142086A1 (en) * 2009-06-02 2012-06-07 Comissariat a l'Energie Atomique et aux Energies Alternatives Imaging system comprising microlenses and associated device for detecting a sample
US9256008B2 (en) 2009-06-02 2016-02-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Imaging system comprising microlenses and associated device for detecting a sample
WO2010139900A1 (fr) * 2009-06-02 2010-12-09 Commissariat à l'énergie atomique et aux énergies alternatives Système d'imagerie à microlentilles et dispositif associé pour la détection d'un échantillon
EP2284521A3 (fr) * 2009-08-12 2012-06-06 Sony Corporation Puce de détection de lumière et dispositif de détection de lumière avec puce de détection de lumière
US8466475B2 (en) 2009-08-12 2013-06-18 Sony Corporation Light detecting chip and light detecting device provided with light detecting chip
US10640825B2 (en) 2010-02-19 2020-05-05 Pacific Biosciences Of California, Inc. Integrated analytical system and method
US11001889B2 (en) 2010-02-19 2021-05-11 Pacific Biosciences Of California, Inc. Illumination of integrated analytical systems
US9157864B2 (en) 2010-02-19 2015-10-13 Pacific Biosciences Of California, Inc. Illumination of integrated analytical systems
US12071664B2 (en) 2010-02-19 2024-08-27 Pacific Biosciences Of California, Inc. Optics collection and detection system and method
US8994946B2 (en) 2010-02-19 2015-03-31 Pacific Biosciences Of California, Inc. Integrated analytical system and method
US8867038B2 (en) 2010-02-19 2014-10-21 Pacific Biosciences Of California, Inc. Integrated analytical system and method
EP2537010A4 (fr) * 2010-02-19 2013-12-25 Pacific Biosciences California Systeme et procede de detection et de collecte d'optique
US9291569B2 (en) 2010-02-19 2016-03-22 Pacific Biosciences Of California, Inc. Optics collection and detection system and method
US9291568B2 (en) 2010-02-19 2016-03-22 Pacific Biosciences Of California, Inc. Integrated analytical system and method
US9410891B2 (en) 2010-02-19 2016-08-09 Pacific Biosciences Of California, Inc. Optics collection and detection system and method
US9488584B2 (en) 2010-02-19 2016-11-08 Pacific Bioscience Of California, Inc. Integrated analytical system and method
US10724090B2 (en) 2010-02-19 2020-07-28 Pacific Biosciences Of California, Inc. Integrated analytical system and method
US9822410B2 (en) 2010-02-19 2017-11-21 Pacific Biosciences Of California, Inc. Integrated analytical system and method
EP2537010A1 (fr) * 2010-02-19 2012-12-26 Pacific Biosciences Of California, Inc. Systeme et procede de detection et de collecte d'optique
US10138515B2 (en) 2010-02-19 2018-11-27 Pacific Biosciences Of California, Inc. Illumination of integrated analytical systems
EP2750190A4 (fr) * 2011-08-24 2015-04-08 Sony Corp Capteur d'image, son procédé de fabrication et dispositif de contrôle
EP2772751A4 (fr) * 2011-10-24 2015-06-10 Sony Corp Capteur chimique, dispositif de détection de biomolécule et procédé de détection de biomolécule
KR102399962B1 (ko) * 2013-11-17 2022-05-20 퀀텀-에스아이 인코포레이티드 분자들을 검사, 검출 및 분석하기 위한 광 시스템 및 어세이 칩
US11287382B2 (en) 2013-11-17 2022-03-29 Quantum-Si Incorporated Optical system and assay chip for probing, detecting and analyzing molecules
EP3709003A1 (fr) * 2013-11-17 2020-09-16 Quantum-Si Incorporated Système optique et puce d'analyse pour sonder détected et analyser des molécules
KR20210024219A (ko) * 2013-11-17 2021-03-04 퀀텀-에스아이 인코포레이티드 분자들을 검사, 검출 및 분석하기 위한 광 시스템 및 어세이 칩
AU2020286308B2 (en) * 2013-11-17 2022-02-17 Quantum-Si Incorporated Optical system and assay chip for probing, detecting and analyzing molecules
US11983790B2 (en) 2015-05-07 2024-05-14 Pacific Biosciences Of California, Inc. Multiprocessor pipeline architecture
US10670527B2 (en) 2015-09-14 2020-06-02 Shenzhen Genorivision Technology Co., Ltd. Biosensor
EP3371575A4 (fr) * 2015-09-14 2019-06-26 Shenzhen Genorivision Technology Co. Ltd. Biocapteur
WO2017061600A1 (fr) * 2015-10-08 2017-04-13 凸版印刷株式会社 Dispositif microfluidique et procédé d'analyse d'échantillon
JPWO2017061600A1 (ja) * 2015-10-08 2018-08-02 凸版印刷株式会社 マイクロ流体デバイスおよび試料分析方法
US12078596B2 (en) 2017-07-24 2024-09-03 Quantum-Si Incorporated Hand-held, massively-parallel, bio-optoelectronic instrument
US11105745B2 (en) 2019-10-10 2021-08-31 Visera Technologies Company Limited Biosensor
EP3805737A1 (fr) * 2019-10-10 2021-04-14 VisEra Technologies Company Limited Biocapteur optique intégré
US12123834B2 (en) 2020-06-12 2024-10-22 Quantum-Si Incorporated Active-source-pixel, integrated device for rapid analysis of biological and chemical specimens

Also Published As

Publication number Publication date
FR2797053B1 (fr) 2001-08-31
FR2797053A1 (fr) 2001-02-02

Similar Documents

Publication Publication Date Title
WO2001003833A1 (fr) Support d'analyse a transmission de lumiere de fluorescence
EP2084515B1 (fr) Dispositif pour la detection exaltee de l'emission d'une particule cible
EP2302366B1 (fr) Dispositif de support d'élements chromophores
TWI521205B (zh) Chemical detectors, biological molecular detection devices and biological molecular detection methods
EP0882979B1 (fr) Support d'électrodes comportant au moins une électrode recouverte par un dépot et système de lecture de ce support
US20090305909A1 (en) Method and System for Multiplex Genetic Analysis
FR2747783A1 (fr) Procede et appareil de detection moleculaire utilisant la detection par guides d'ondes optiques
CA2345372A1 (fr) Biopuce et dispositif de lecture d'une biopuce comportant une pluralite de zones de reconnaissance moleculaire
WO2006018534A1 (fr) Dispositif de detection de la fluorescence emise par des elements chromophores dans des puits d'une plaque a puits multiples
EP1234170A1 (fr) Amplification d'un signal de fluorescence emis par un echantillon surfacique
US20220011486A1 (en) Optical absorption filter for an integrated device
JP2011504595A (ja) 蛍光バイオチップ診断装置
CN101493411A (zh) 生物芯片及其制备方法、以及应用生物芯片的装置
EP3704471A1 (fr) Appareil et procede de microscopie a fluorescence a super-resolution et de mesure de temps de vie de fluorescence
EP1446653B1 (fr) Dispositif perfectionne du type bio-puce
Hlady et al. Spatially resolved detection of antibody—antigen reaction on solid/liquid interface using total internal reflection excited antigen fluorescence and charge-coupled device detection
TWI796556B (zh) 生物感測器
EP1344062B1 (fr) Support pour determiner un analyte comportant un filtre spectral selectif
FR2747786A1 (fr) Dispositif integre pour la detection moleculaire optique et procede de cette detection
EP2488854B1 (fr) Procede et systeme d'imagerie par fonctionnalisation du substrat
FR2893130A1 (fr) Dispositif d'imagerie pour biopuce, et biopuce associee
FR2793560A1 (fr) Support d'analyse a microcavites
EP4202417B1 (fr) Dispositif de détection biomoléculaire par nanophotodétecteurs
US20220278152A1 (en) Spectrally filtered photodiode pair
EP0882980A1 (fr) Traitement de surface d'un substrat limitant sa fluorescence naturelle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)