WO2001000550A1 - Verfahren zur herstellung von mannit - Google Patents

Verfahren zur herstellung von mannit Download PDF

Info

Publication number
WO2001000550A1
WO2001000550A1 PCT/EP2000/005454 EP0005454W WO0100550A1 WO 2001000550 A1 WO2001000550 A1 WO 2001000550A1 EP 0005454 W EP0005454 W EP 0005454W WO 0100550 A1 WO0100550 A1 WO 0100550A1
Authority
WO
WIPO (PCT)
Prior art keywords
fructose
carried out
mannitol
reaction
hydrogen
Prior art date
Application number
PCT/EP2000/005454
Other languages
English (en)
French (fr)
Inventor
Thomas Mohr
Eugen Schwarz
Peter-Johannes Mackert
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to US10/018,825 priority Critical patent/US6649754B1/en
Priority to EP00945749A priority patent/EP1189858B1/de
Priority to BR0011942-3A priority patent/BR0011942A/pt
Priority to AT00945749T priority patent/ATE276988T1/de
Priority to CA002377106A priority patent/CA2377106A1/en
Priority to DE50007914T priority patent/DE50007914D1/de
Priority to AU59729/00A priority patent/AU5972900A/en
Priority to JP2001506965A priority patent/JP2003503374A/ja
Publication of WO2001000550A1 publication Critical patent/WO2001000550A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group

Definitions

  • the present invention relates to a method for producing mannitol by hydrogenating fructose.
  • the hydrogenation takes place in the presence of a
  • Raney copper catalyst is carried out in a continuous manner.
  • Mannitol is used, for example, in tablet production and as a sugar substitute.
  • EP 0 006 313 uses supported copper catalysts for the fructose hydrogenation of 20% by weight aqueous fructose solutions.
  • the use of a copper / SiO 2 catalyst provides 60-65% of mannitol in the fructose hydrogenation which is carried out in a batchwise manner. Such catalysts must be stored for a few days under a hydrogen atmosphere.
  • Raney copper catalysts include the selectivities for mannitol
  • DE 197 20 496 describes a process for the hydrogenation of sugars or sugar mixtures to give sugar alcohols or sugar alcohol mixtures, the sugar or sugar mixtures in aqueous solution at elevated temperature and pressure using hydrogen using a mixture of a pure Raney metal and a Raney metal alloy containing shell catalyst are hydrogenated and the shell catalyst has a catalytically largely inactive and acting as a core and a catalytically active shell.
  • the object of the present invention was to develop a process for the production of mannitol from fructose which avoids or at least reduces the disadvantages of known processes and, in particular with a short reaction time, enables the production of mannitol from fructose with high conversions and with little formation of by-products.
  • the invention thus relates to a process for the preparation of mannitol from fructose, characterized in that the hydrogenation of fructose takes place in the presence of a Raney copper catalyst and is carried out in a continuous manner.
  • the process according to the invention is characterized in particular by the fact that mannitol is produced from fructose with short reaction times, with high conversions and with little by-product formation.
  • the present invention provides an advantageous process for the preparation of mannitol by reduction or hydrogenation of fructose. According to this process, an aqueous fructose solution is passed over a fixed bed of a Raney copper catalyst.
  • the fructose is 90-100% pure, preferably 95-100% pure.
  • the main contamination here is glucose.
  • Raney copper catalysts suitable for the process according to the invention are commercially available or can be prepared by known methods [see, for example, M. Hegedüs, S. Göbölös, JL Margitfaivi in “Heterogeneous Catalysis and Fine Chemicals III”, M. Guisnet et al. (Ed .), 1993 Elsevier Publishers, 187-194; HU 60230].
  • a copper-aluminum alloy is ground and sieved into the desired particle size, and by treatment with, for example, 10-20% aqueous sodium hydroxide solution activated at 20-80X on the surface, forming a coated catalyst consisting of an inactive Raney alloy core and an active one Surface consists of the corresponding Raney metal.
  • the shell thickness depends on the activation time of the catalyst particles.
  • the catalysts used for the process according to the invention have the advantage that they are very inexpensive and easy to produce. In addition, they do not have to be activated by pre-reduction for the actual reaction and have a high storage stability under water.
  • the catalysts used for the process according to the invention can be doped, i.e. the copper-aluminum alloy can contain a total of 0.1-20% by weight of other elements, e.g. Boron, chrome, cobalt, iron, molybdenum, titanium or zinc.
  • other elements e.g. Boron, chrome, cobalt, iron, molybdenum, titanium or zinc.
  • the reaction can e.g. take place in a trickle bed reactor.
  • a vertical tube reactor is filled with the catalyst bed and is mixed with the aqueous sugar solution in cocurrent
  • Hydrogen trickles through or flows through In an alternative process, the catalyst bed can be flowed through from below, for example in a kind of bubble column, by the aqueous sugar solution in cocurrent with the hydrogen.
  • a temperature gradient is created over a plurality of reactors connected in series, for example four reactors connected in series.
  • hydrogenation is advantageously carried out in the first reactor at relatively low starting temperatures and in the following reactors - -
  • the residual sugar is hydrogenated at higher temperatures.
  • the proportion of by-products can be kept below 1% by weight for sales greater than 99.8%.
  • Suitable reaction temperatures for the process according to the invention are temperatures between 50 and 180 ° C.
  • the process according to the invention is preferably carried out at reaction temperatures of 90 to 140 ° C.
  • Suitable hydrogen pressures for the process according to the invention are hydrogen pressures between 50 and 300 bar.
  • the process according to the invention is preferably carried out at hydrogen pressures of 150 to 250 bar.
  • the process according to the invention is particularly preferably carried out at hydrogen pressures of 160 to 200 bar.
  • Suitable concentrations of fructose in water for the process according to the invention are concentrations of 10 to 70% by weight.
  • the process according to the invention is preferably carried out with concentrations of fructose in water of 40 to 60% by weight.
  • the process according to the invention is particularly preferably carried out with concentrations of fructose in water of 50 to 55% by weight.
  • the high concentrations of the aqueous educt solution which can be achieved using the process according to the invention, have the advantage that only a little water has to be removed to work up the product solution. This can e.g. energy consumption is significantly reduced compared to processes that use lower educt concentrations.
  • Suitable ratios of fructose to hydrogen for the process according to the invention are ratios of 1 mol fructose: 1 mol hydrogen to 1 mol fructose: 10 mol hydrogen.
  • the process according to the invention was carried out with fructose to hydrogen ratios of 1 mol fructose: 5 mol hydrogen to 1 mol fructose: 40 mol hydrogen.
  • a suitable reactor load (ratio of volume flow of sugar solution to catalyst volume) for the process according to the invention is LHSV 0.01 h “1 to 10.0 h “ 1 .
  • the process according to the invention is preferably carried out with LHSV 0.1 h “1 to 1.0 h " .
  • the process according to the invention is preferably carried out at a pH of 3.0 to 12.0, in particular at a pH of 4.0 to 6.0.
  • Reaction products can e.g. by means of HPLC, e.g. under
  • customary workup means the following:
  • the reaction mixture is collected in a high pressure separator and the hydrogen is recycled after replacing the used hydrogen.
  • the solution is then let down, which usually has a temperature of about 90-95 ° C. It is hot filtered to remove catalyst residues (at temperatures above 60 ° C) and then cleaned using anion and cation exchange resins to remove ionic impurities.
  • Mannitol can be obtained from the purified hydrogenation solution by crystallization of the mannitol from the mother liquor or by The two main products mannitol and sorbitol are separated chromatographically.
  • a commercially available Raney copper fixed bed catalyst (Al: 39.0%; Cu: 61.0%) is used.
  • the particle size of the irregularly shaped particles is approx. 2x3mm.
  • the catalyst bed has a free volume of approx. 50%, the bulk density is approx. 1.75 g / cm 3 .
  • reaction control and the analysis of the reaction products is carried out by means of HPLC.
  • the tube reactor consists of a vertical stainless steel tube with a length of 25 cm and 2.5 cm
  • the tubular reactor contains 241.5 g (moist) Raney copper catalyst.
  • the pressure is 170 bar and the temperature is 110 ° C. It A hydrogen flow of 75NI / h is applied.
  • the purity of the fructose used is 100%.
  • the results of the HPLC analysis are shown in Table 1.
  • the ratio of mannitol to sorbitol is reduced in Example 2 by hydrogenating the glucose portion of the educt to sorbitol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Saccharide Compounds (AREA)

Abstract

Es wird ein Verfahren zur Herstellung von Mannit aus Fructose beschrieben, wobei die Hydrierung von Fructose in Gegenwart eines Raney-Kupfer Katalysators erfolgt und in kontinuierlicher Fahrweise durchgeführt wird.

Description

Verfahren zur Herstellung von Mannit
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Mannit durch Hydrierung von Fructose. Die Hydrierung erfolgt in Gegenwart eines
Raney-Kupfer Katalysators und wird in kontinuierlicher Fahrweise durchgeführt.
Mannit findet beispielsweise in der Tablettenproduktion und als Zucker- austauschstoff Verwendung.
Verfahren zur Herstellung von Mannit aus Fructose durch Hydrierung an heterogenen Kupfer-Katalysatoren sind bereits bekannt.
Geträgerte Kupferkatalysatoren wie z.B. Kupfer auf Kieselgel zeigen in diskontinuierlicher Fahrweise bei der Hydrierung von 10 Gew.-%iger wäßriger Fructose-Lösung Selektivitäten zu Mannit von 60-65% [M. Makkee, A.P.G. Kieboom, H. Bekkum, Carbohydr. Res., 138 (1985) 225].
In der EP 0 006 313 werden geträgerte Kupfer-Katalysatoren für die Fructose-Hydrierung 20 Gew.-%iger wäßriger Fructose-Lösungen verwendet. Der Einsatz eines Kupfer/SiO2-Katalysators liefert bei der in diskontinuierlicher Fahrweise erfolgenden Fructose-Hydrierung 60-65% an Mannit. Eine Lagerung derartiger Katalysatoren für einige Tage muß unter Wasserstoff atmosphäre erfolgen.
Die in diskontinuierlicher Fahrweise erfolgende Hydrierung von D-Fructose zu Mannit ist an pulverförmigen kupferhaltigen Gerüstkatalysatoren und trägergebundenen Kupferkatalysatoren für den Einsatz von 20%igen wäßrigen Fructose-Lösungen bei Temperaturen von 50-60°C und einem Wasserstoffdruck von 50-60bar in der Literatur beschrieben. Für unterschiedlich modifizierte (z.B. mit Co, Fe, B, Zn oder Cr dotierte)
Raney-Kupfer-Katalysatoren liegen die Selektivitäten zu Mannit bei
60-65%. Mit den Raney-Katalysatoren werden Umsätze von bis zu 97% erreicht [M. Hegedüs, S. Göbölös, J.L. Margitfaivi in „Heterogeneous
Catalysis and Fine Chemicals III", M. Guisnet et al. (Ed.), 1993 Elsevier
Pubiishers, 187-194; HU 60230].
In der DE 197 20 496 wird ein Verfahren zur Hydrierung von Zuckern oder Zuckergemischen zu Zuckeralkoholen oder Zuckeralkohoigemischen beschrieben, wobei die Zucker oder Zuckergemische in wäßriger Lösung bei erhöhter Temperatur und erhöhtem Druck mit Wasserstoff unter Verwendung eines ein Gemisch aus einem reinen Raney-Metall und einer Raney-Metallegierung enthaltenden Schalenkatalysators hydriert werden und wobei der Schalenkatalysator einen katalytisch weitgehend inaktiven und als Träger wirkenden Kern und eine katalytisch aktive Schale aufweist. In einem diskontinuierlichen Verfahren wird 30 Gew.-%ige wäßrige Fructoselösung unter Verwendung eines Katalysators in Tablettenform bestehend aus einer Kupfer/Aluminium-Legierung (Cu : AI gleich 50 : 50 Gew.-%) und reinem Kupfer als Binder im Gewichtsverhältnis 100 : 15 bei 90 °C und einer Reaktionszeit von 22 h hydriert und ein Umsatz von 98,4% erzielt. Es werden 61 ,6 Gew.-% Mannit, 36,2 % Sorbit, 0,12 Gew.-% Glucose und 0,52 Gew.-% weitere Nebenprodukte gebildet.
Aufgabe der vorliegenden Erfindung war es, ein Verfahren zur Herstellung von Mannit aus Fructose zu entwickeln, welches die Nachteile bekannter Verfahren vermeidet oder zumindest vermindert und insbesondere bei kurzer Reaktionszeit die Herstellung von Mannit aus Fructose mit hohen Umsätzen und unter geringer Nebenproduktbildung ermöglicht.
Überraschenderweise wurde nun gefunden, daß diese Aufgabe gelöst wird, wenn das Verfahren zur Herstellung von Mannit aus Fructose so durchgeführt wird, daß die Hydrierung von Fructose in Gegenwart eines Raney-Kupfer Katalysators erfolgt und in kontinuierlicher Fahrweise durchgeführt wird.
Die Erfindung betrifft somit ein Verfahren zur Herstellung von Mannit aus Fructose, dadurch gekennzeichnet, daß die Hydrierung von Fructose in Gegenwart eines Raney-Kupfer Katalysators erfolgt und in kontinuierlicher Fahrweise durchgeführt wird.
Das erfindungsgemäße Verfahren zeichnet sich insbesondere dadurch aus, daß die Herstellung von Mannit aus Fructose bei kurzen Reaktionszeiten mit hohen Umsätzen und unter geringer Neben- produktbildung erfolgt.
Die vorliegende Erfindung stellt ein vorteilhaftes Verfahren zur Herstellung von Mannit durch Reduktion bzw. Hydrierung von Fructose zur Verfügung. Nach diesem Verfahren wird eine wäßrige Fructoselösung über ein Festbett aus einem Raney-Kupfer Katalysator geleitet.
Die Fructose hat eine Reinheit von 90-100%, vorzugsweise von 95-100%. Hauptverunreinigung hierbei ist Glucose.
Die für das erfindungsgemäße Verfahren geeigneten Raney-Kupfer Katalysatoren sind käuflich erwerbbar oder können nach bekannten Methoden hergestellt werden [s. z.B. M. Hegedüs, S. Göbölös, J.L. Margitfaivi in „Heterogeneous Catalysis and Fine Chemicals III", M. Guisnet et al. (Ed.), 1993 Elsevier Publishers, 187-194; HU 60230]. Zur Herstellung der Raney-Kupfer Katalysatoren wird eine Kupfer-Aluminium- Legierung, in die gewünschte Partikelgröße gemahlen und gesiebt, und durch Behandlung mit z.B. 10-20%iger wäßriger Natronlauge bei 20-80X auf der Oberfläche aktiviert. Hierbei bildet sich ein Schalenkatalysator aus, der aus einem inaktiven Kern aus Raney-Legierung und einer aktiven Oberfläche aus dem entsprechenden Raney-Metall besteht. Die Schalendicke ist abhängig von der Aktivierungsdauer der Katalysatorpartikel.
Zur Herstellung der für das erfindungsgemäße Verfahren verwendeten
Katalysatoren werden keine Bindemittel für die Raney-Kupferlegierung, wie beispielsweise reines Raney-Metall, verwendet.
Die für das erfindungsgemäße Verfahren verwendeten Katalysatoren besitzen den Vorteil, daß sie sehr kostengünstig und einfach herstellbar sind. Zudem müssen sie für die eigentliche Reaktion nicht durch Vorreduktion aktiviert werden und besitzen unter Wasser eine hohe Lagerstabilität.
Die für das erfindungsgemäße Verfahren verwendeten Katalysatoren können dotiert sein, d.h. die Kupfer-Aluminium-Legierung kann insgesamt 0,1-20 Gew.-% an anderen Elementen enthalten, wie z.B. Bor, Chrom, Cobalt, Eisen, Molybdän, Titan oder Zink.
Die Reaktion kann z.B. in einem Rieselbettreaktor stattfinden. Hierbei ist ein senkrecht stehender Rohrreaktor mit der Katalysatorschüttung gefüllt und wird von der wäßrigen Zuckerlösung im Gleichstrom mit dem
Wasserstoff durchrieselt bzw. durchströmt. In einem alternativen Verfahren kann die Katalysatorschüttung beispielsweise in einer Art Blasensäule von der wäßrigen Zuckerlösung im Gleichstrom mit dem Wasserstoff von unten durchströmt werden.
In einer bevorzugten Verfahrensvariante wird über mehrere hintereinander geschaltete Reaktoren, beispielsweise vier hintereinandergeschaltete Reaktoren, ein Temperaturgradient angelegt. Bei dieser Verfahrensvariante wird wiederum vorteilhaft in dem ersten Reaktor bei relativ niedrigen Anfangstemperaturen hydriert und in den folgenden Reaktoren - -
bei höheren Temperaturen der Restzucker hydriert. Hierdurch kann der Anteil an Nebenprodukten bei einem Umsatz größer 99,8 % unter 1 Gew.-% gehalten werden.
Geeignete Reaktionstemperaturen für das erfindungsgemäße Verfahren sind Temperaturen zwischen 50 und 180 °C. Vorzugsweise wird das erfindungsgemäße Verfahren bei Reaktionstemperaturen von 90 bis 140 °C durchgeführt.
Geeignete Wasserstoffdrücke für das erfindungsgemäße Verfahren sind Wasserstoffdrücke zwischen 50 und 300 bar. Vorzugsweise wird das erfindungsgemäße Verfahren bei Wasserstoffdrücken von 150 bis 250 bar durchgeführt. Insbesondere bevorzugt wird das erfindungsgemäße Verfahren bei Wasserstoffdrücken von 160 bis 200 bar durchgeführt.
Geeignete Konzentrationen von Fructose in Wasser für das erfindungsgemäße Verfahren sind Konzentrationen von 10 bis 70 Gew.-%. Vorzugsweise wird das erfindungsgemäße Verfahren mit Konzentrationen von Fructose in Wasser von 40 bis 60 Gew.-% durchgeführt. Insbesondere bevorzugt wird das erfindungsgemäße Verfahren mit Konzentrationen von Fructose in Wasser von 50 bis 55 Gew.-% durchgeführt.
Die hohen Konzentrationen der wäßrigen Eduktlösung, die bei Anwendung des erfindungsgemäßen Verfahrens realisiert werden können, haben den Vorteil, daß zur Aufarbeitung der Produktlösung nur wenig Wasser entfernt werden muß. Hierdurch kann z.B. der Energieverbrauch im Vergleich zu Verfahren, die niedrigere Eduktkonzentrationen verwenden, signifikant abgesenkt werden.
Geeignete Verhältnisse von Fructose zu Wasserstoff für das erfindungsgemäße Verfahren sind Verhältnisse von 1mol Fructose : 1mol Wasserstoff bis 1mol Fructose : l OOmol Wasserstoff. Vorzugsweise wird das erfindungsgemäße Verfahren mit Verhältnissen von Fructose zu Wasserstoff von 1 mol Fructose : 5mol Wasserstoff bis 1mol Fructose : 40mol Wasserstoff durchgeführt.
Eine geeignete Reaktorbelastung (Verhältnis Volumenstrom Zuckerlösung zu Katalysatorvolumen) für das erfindungsgemäße Verfahren liegt bei LHSV 0,01 h"1 bis 10,0 h"1. Vorzugsweise wird das erfindungsgemäße Verfahren mit LHSV 0,1 h"1 bis 1 ,0 h" durchgeführt.
Vorzugsweise wird das erfindungsgemäße Verfahren bei einem pH-Wert von 3,0 bis 12,0 durchgeführt, insbesondere bei einem pH-Wert von 4,0 bis 6,0.
Das Fortschreiten bzw. das Ende der Reaktion sowie die Analyse der
Reaktionsprodukte kann z.B. mittels HPLC erfolgen, z.B. unter
Verwendung von Standard-HPLC-Geräten mit Kalzium-Ionentauscher- Säulen.
Nach beendeter Reaktion erfolgt die Isolierung des Reaktionsprodukts nach gängigen Methoden. Unter "üblicher Aufarbeitung" wird im Rahmen der vorliegenden Erfindung folgendes verstanden:
Das Reaktionsgemisch wird in einem Hochdruckabscheider aufgefangen und der Wasserstoff nach Ersatz des verbrauchten Wasserstoffs recycelt. Die Lösung wird anschließend entspannt, wobei sie üblicherweise eine Temperatur von ca. 90-95 °C besitzt. Sie wird zur Entfernung von Katalysatorresten heiß filtriert (bei Temperaturen größer 60° C) und danach zur Abtrennung von ionischen Verunreinigungen über Anionen- und Kationentauscherharze gereinigt.
Die Gewinnung von Mannit aus der aufgereinigten Hydrierlösung kann nun durch Kristallisation des Mannits aus der Mutterlauge oder durch chromatographische Trennung der beiden Hauptprodukte Mannit und Sorbit erfolgen.
Auch ohne weitere Ausführungen wird davon ausgegangen, daß ein Fachmann die obige Beschreibung in weitestem Umfang nutzen kann. Die bevorzugten Ausführungsformen sind deswegen lediglich als beschreibende, keinesfalls als in irgendeiner Weise limitierende Offenbarung aufzufassen.
Die vollständige Offenbarung aller vor- und nachstehend aufgeführten Anmeldungen und Veröffentlichungen sind durch Bezugnahme in diese Anmeldung eingeführt.
Die folgenden Beispiele sollen die vorliegende Erfindung verdeutlichen. Sie sind jedoch keinesfalls als limitierend zu betrachten.
Beispiele
Es wird ein handelsüblicher Raney-Kupfer-Festbettkatalysator (AI: 39,0%; Cu: 61 ,0%) verwendet. Die Partikelgröße der unregelmäßig geformten Teilchen liegt bei ca. 2x3mm. Die Katalysatorschüttung weist ein Freivolumen von ca. 50% auf, die Schüttdichte liegt bei ca. 1 ,75 g/cm3.
Die Reaktionskontrolle und die Analyse der Reaktionsprodukte erfolgt mittels HPLC.
Beispiel 1
In einem Hydrierreaktor mit 120 ml Volumen wird im kontinuierlichen
Festbettverfahren eine Fructoselösung hydriert. Der Rohrreaktor besteht aus einem senkrecht stehenden Edelstahlrohr mit 25cm Länge und 2,5cm
Innendurchmesser. Am Boden des Reaktors befindet sich eine Metallfritte, der Einlaß von Hydrierlösung und Wasserstoff erfolgt im Gleichstrom von oben (Rieselbettreaktor).
Im Rohrreaktor befinden sich 241 ,5g (feucht) Raney-Kupfer-Katalysator. Bei einem Rohrreaktorvolumen von 120ml wird ein Fluß von 60ml/h (LHSV=0,5 h"1) an Fructoselösung (50 Gew.-%ige wäßrige Lösung) angelegt. Der Druck liegt bei 170bar und die Temperatur bei 110°C. Es wird ein Wasserstoffstrom von 75NI/h angelegt. Die Reinheit der verwendeten Fructose liegt bei 100%. Die Ergebnisse der HPLC-Analytik sind in Tabelle 1 dargestellt.
Beispiel 2
Die Reaktion wird wie in Beispiel 1 beschrieben durchgeführt. Anstelle einer reinen Fructoselösung wird jedoch ein Edukt, das zu 96,0 Gew.-% aus Fructose besteht, verwendet. Die Ergebnisse der HPLC-Analytik sind in Tabelle 1 dargestellt.
Tabelle 1
Figure imgf000009_0001
Das Verhältnis von Mannit zu Sorbit verringert sich in Beispiel 2 dadurch, daß der Glucose-Anteil des Edukts zu Sorbit hydriert wird.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Mannit aus Fructose, dadurch gekennzeichnet, daß die Hydrierung von Fructose in Gegenwart eines Raney-Kupfer Katalysators erfolgt und in kontinuierlicher
Fahrweise durchgeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Reduktion in wäßrigem Milieu durchgeführt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekenn- zeichnet, daß die Reaktion bei einer Reaktionstemperatur von 50 bis
180 °C durchgeführt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Reaktion bei einem Wasserstoffdruck von 50 bis 300 bar durchgeführt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Konzentration von Fructose in Wasser von 10 bis 70 Gew.-% beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzzeeiicchhnneett,, ddaaßß das die Reaktorbelastung bei LHSV 0,01 h"1 bis 10,0 h"1 beträgt.
PCT/EP2000/005454 1999-06-25 2000-06-14 Verfahren zur herstellung von mannit WO2001000550A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/018,825 US6649754B1 (en) 1999-06-25 2000-06-14 Method for producing mannitol
EP00945749A EP1189858B1 (de) 1999-06-25 2000-06-14 Verfahren zur herstellung von mannit
BR0011942-3A BR0011942A (pt) 1999-06-25 2000-06-14 Processo para preparar manitol
AT00945749T ATE276988T1 (de) 1999-06-25 2000-06-14 Verfahren zur herstellung von mannit
CA002377106A CA2377106A1 (en) 1999-06-25 2000-06-14 Process for preparing mannitol
DE50007914T DE50007914D1 (de) 1999-06-25 2000-06-14 Verfahren zur herstellung von mannit
AU59729/00A AU5972900A (en) 1999-06-25 2000-06-14 Method for producing mannitol
JP2001506965A JP2003503374A (ja) 1999-06-25 2000-06-14 マンニトールの調製法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19929368.6 1999-06-25
DE19929368A DE19929368A1 (de) 1999-06-25 1999-06-25 Verfahren zur Herstellung von Mannit

Publications (1)

Publication Number Publication Date
WO2001000550A1 true WO2001000550A1 (de) 2001-01-04

Family

ID=7912681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/005454 WO2001000550A1 (de) 1999-06-25 2000-06-14 Verfahren zur herstellung von mannit

Country Status (10)

Country Link
US (1) US6649754B1 (de)
EP (1) EP1189858B1 (de)
JP (1) JP2003503374A (de)
AT (1) ATE276988T1 (de)
AU (1) AU5972900A (de)
BR (1) BR0011942A (de)
CA (1) CA2377106A1 (de)
DE (2) DE19929368A1 (de)
ES (1) ES2228566T3 (de)
WO (1) WO2001000550A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2361255A1 (de) 2009-12-23 2011-08-31 Evonik Degussa GmbH SÜßUNGSMITTEL UND VERFAHREN ZU SEINER HERSTELLUNG

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005010328A1 (de) * 2005-03-03 2006-09-07 Basf Ag Verfahren zur Abreicherung von Schwefel und/oder einer schwefelhaltigen Verbindung aus einem Zucker, einem Zuckeralkohol und/oder einer Zuckersäure
BE1021455B1 (nl) * 2012-11-22 2015-11-26 Syral Belgium Nv Werkwijze voor het verwerken van substraten die een uitgangsstof voor mannitol omvatten.
US10472310B2 (en) 2016-06-03 2019-11-12 Iowa Corn Promotion Board Continuous processes for the highly selective conversion of sugars to propylene glycol or mixtures of propylene glycol and ethylene glycol
KR102437548B1 (ko) 2016-06-03 2022-08-26 아이오와 콘 프로모션 보드 알도헥소스-생성 탄수화물의 에틸렌 글리콜로의 매우 선택적인 전환을 위한 연속 공정
KR101902835B1 (ko) 2017-05-29 2018-10-01 한국화학연구원 부탄올을 이용한 프룩토스로부터 만니톨의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0006313A1 (de) * 1978-05-25 1980-01-09 Imperial Chemical Industries Plc Verfahren zur Reduktion von Zuckern zu Zuckeralkoholen
DE19720496A1 (de) * 1997-01-17 1998-07-23 Suedzucker Ag Verfahren zur Hydrierung von Zuckern mittels eines Schalenkatalysators

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0006313A1 (de) * 1978-05-25 1980-01-09 Imperial Chemical Industries Plc Verfahren zur Reduktion von Zuckern zu Zuckeralkoholen
DE19720496A1 (de) * 1997-01-17 1998-07-23 Suedzucker Ag Verfahren zur Hydrierung von Zuckern mittels eines Schalenkatalysators

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 118, no. 11, 15 March 1993, Columbus, Ohio, US; abstract no. 102391a, page 898; XP002151789 *
M. HEGEDÜS, ET AL.: "Stereoselective hydrogenation of D-fructose to D-mannitol on skeletal and supported copper-containing catalysts", STUDIES IN SURFACE SCIENCE AND CATALYSIS, vol. 78, Heterogeneous Catalysis and Fine Chemicals III, 1993, Elsevier Science, Amsterdam, NL, pages 187 - 194, XP000953460, ISSN: 0167-2991 *
M. MAKKEE, ET AL.: "Hydrogenation of D-fructose and D-fructose/D-glucose mixtures", CARBOHYDRATE RESEARCH., vol. 138, no. 2, 15 May 1985 (1985-05-15), Elsevier Science Publishers, Amsterdam, NL, pages 225 - 236, XP002151788, ISSN: 0008-6215 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2361255A1 (de) 2009-12-23 2011-08-31 Evonik Degussa GmbH SÜßUNGSMITTEL UND VERFAHREN ZU SEINER HERSTELLUNG

Also Published As

Publication number Publication date
ES2228566T3 (es) 2005-04-16
EP1189858A1 (de) 2002-03-27
US6649754B1 (en) 2003-11-18
BR0011942A (pt) 2002-03-12
ATE276988T1 (de) 2004-10-15
DE50007914D1 (de) 2004-10-28
AU5972900A (en) 2001-01-31
DE19929368A1 (de) 2000-12-28
EP1189858B1 (de) 2004-09-22
CA2377106A1 (en) 2001-01-04
JP2003503374A (ja) 2003-01-28

Similar Documents

Publication Publication Date Title
EP0412337B1 (de) Verfahren zur Herstellung von 1,3-Propandiol
DE69817356T2 (de) Verfahren zur herstellung von 1,3-propandiol durch hydrierung von 3-hydroxypropanal
EP0572812B1 (de) Verfahren zur Herstellung von 1,3-Propandiol durch Hydrierung von Hydroxypropionaldehyd
DE60010893T2 (de) Katalytische hydrierung von 3-hydroxypropanal zu 1,3-propandiol
DE2628987B2 (de) Verfahren zur Herstellung von C3 -C3 -Alkanolen
EP1284948A1 (de) Verfahren zur herstellung von gesättigten c 3-c 20-alkoholen
DE10311075A1 (de) Verfahren zur Erzeugung eines Esters
EP0304696B1 (de) Verfahren zur Herstellung von 1,4-Butandiol und/oder Tetrahydrofuran
DE102017202404A1 (de) Verfahren zur Herstellung von Isophoronaminoalkohol (IPAA)
EP0796839B1 (de) Verfahren zur Herstellung eines Gemisches von Amino-methyl-cyclohexanen und Diamino-methyl-cyclohexanen
EP0771784A1 (de) Verfahren zur Herstellung von 3-Aminomethyl-3,5,5-trimethylcyclohexylamin
WO2012010695A1 (de) Isomerisierungskatalysator
EP1189858B1 (de) Verfahren zur herstellung von mannit
DE2923949C2 (de) Verfahren zur Herstellung von 1,4-Butandiol durch katalytische Hydrierung von 1,4-Butindiol
DE2926641C2 (de) Molybdän enthaltender Raney-Nickel-Katalysator und seine Verwendung zur katalytischen Hydrierung von Butindiol
EP0949233B1 (de) Verfahren zur Herstellung von Zuckeralkoholen
DE3116395C2 (de)
EP0510382B1 (de) Verfahren zur Herstellung von Alpha-Omega-Aminoalkoholen
EP0767769B1 (de) Verfahren zur herstellung von 1,4-butandiol
DE10253802A1 (de) Verfahren zur Hydrierung von aromatischen Urethanen in Gegenwart eines geträgerten Rutheniumkatalysators
EP0922689B1 (de) Verfahren zur Hydrierung von Alkinolen unter Verwendung eines Makroporen aufweisenden Katalysators
DE3724239A1 (de) Verfahren zur herstellung von aliphatischen n,n-dialkylsubstituierten aminoalkoholen
DE3144320A1 (de) "verfahren zur kontinuierlichen herstellung von mehrwertigen alkoholen"
DE4207787C2 (de) Verfahren zur Herstellung von entschwefelten Fetten und Ölen oder Fettsäureestern und Verfahren zur Herstellung von Alkoholen unter Verwendung der entschwefelten Fette, Öle oder Fettsäureester
DE1468779C3 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000945749

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2377106

Country of ref document: CA

Ref document number: 10018825

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 506965

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000945749

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000945749

Country of ref document: EP