WO2000079544A1 - Transparent conductive film and electroluminescence panel comprising the same - Google Patents

Transparent conductive film and electroluminescence panel comprising the same Download PDF

Info

Publication number
WO2000079544A1
WO2000079544A1 PCT/JP2000/004045 JP0004045W WO0079544A1 WO 2000079544 A1 WO2000079544 A1 WO 2000079544A1 JP 0004045 W JP0004045 W JP 0004045W WO 0079544 A1 WO0079544 A1 WO 0079544A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
film
resin
thin film
Prior art date
Application number
PCT/JP2000/004045
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Ohya
Yoshiharu Morihara
Masanao Kudo
Yasushi Aikawa
Seiichiro Yokoyama
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to JP2001505023A priority Critical patent/JP3743560B2/en
Publication of WO2000079544A1 publication Critical patent/WO2000079544A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making

Definitions

  • the present invention relates to a transparent conductive film using a biaxially oriented polyester film having a coating layer, and an electroluminescence (hereinafter abbreviated as EL) panel using the same.
  • EL electroluminescence
  • Transparent conductive films formed by forming a transparent and low-resistance compound thin film on a plastic film are used in applications that use the conductivity, such as flat panel displays such as liquid crystal displays and EL displays, and transparent electrodes for touch panels. Widely used in field applications.
  • Typical examples of the transparent conductive thin film include tin oxide, indium oxide, indium tin oxide, zinc oxide, and the like. Substrates such as polyethylene terephthalate and the like Plastic film is used.
  • EL panels have attracted attention as backlights for these liquid crystal displays.
  • EL panels have low power consumption during light emission, and are suitable as light sources for portable devices.
  • an EL panel is manufactured by a process of sequentially printing an EL light emitting layer, a dielectric layer, a back electrode layer, and an insulating layer on a transparent conductive thin film of a transparent conductive film. Further, by applying an AC voltage of about 400 Hz between the transparent conductive thin film and the back electrode, a voltage is applied to the light emitting layer to emit light. As the applied voltage increases, the light emission luminance increases. Needless to say, the higher the light transmittance of the transparent conductive film, the higher the luminance of the EL panel. In response to such demands, conventionally used transparent conductive films have the following problems.
  • particles are contained in the polyester film to improve the slipperiness.
  • the light transmittance of the polyester film tends to be impaired.
  • the polyester film does not contain particles or contains only a small amount of particles so as not to impair the light transmittance, it is generally necessary to include the particles in the coating layer to improve the slipperiness. is there.
  • fine particles having an extremely small average particle size smaller than the wavelength of visible light.
  • the slipperiness is insufficient. For this reason, the film surface is likely to be damaged by a roll that comes into contact in a post-process such as a coating process.
  • the conventional transparent conductive film based on a biaxially oriented polyester film has a problem that the haze value increases and white appearance defects occur after the heat treatment. Since these deteriorate the visibility and quality of the EL panel, improvement of the above-mentioned problems has been desired.
  • the present invention is intended to solve the above-mentioned conventional problems.
  • the first purpose is to have high light transmittance, excellent scratch resistance, and transparency even after heat treatment in post-processing.
  • the object of the present invention is to provide a transparent conductive film having a small change in the film thickness.
  • a second purpose is to provide an EL panel that has very few external defects such as whitening and has excellent visibility. Disclosure of the invention
  • the present invention has been made in view of the above situation, and a transparent conductive film and an electroluminescence panel using the same that can solve the above problems are as follows. .
  • the first invention of the present invention is a transparent conductive film in which a transparent conductive thin film is laminated on one surface of a biaxially oriented polyester film, A coating layer is formed on at least one side of the film, the total light transmittance is 90% or more, and the three-dimensional center plane average surface roughness (SR a) of the coating layer surface is 0.002 to 0.01. 0, and the haze value before and after the heat treatment when the transparent conductive film is heat-treated at 150 ° C. for 3 hours is 2.0% or less.
  • a second invention is the first invention, wherein when the transparent conductive film is heated at 150 ° C. for 2 hours, a haze value increase before and after the heat treatment is 0.5% or less. It is a transparent conductive film of the description.
  • a third invention is the transparent conductive film according to the first invention, wherein a total light transmittance of the transparent conductive film is 84% or more.
  • a fourth invention is the transparent conductive film according to the first invention, wherein the resin composition constituting the coating layer contains a copolymerized polyester resin and a polyurethane resin.
  • the resin composition constituting the coating layer includes a copolymerized polyester resin containing a branched glycol component and a resin containing a block-type isocyanate group. Is a transparent conductive film.
  • a sixth invention is the transparent conductive film according to the first invention, wherein the content of the cyclic trimer in the biaxially stretched polyester film is 500 ppm or less.
  • a seventh invention is the polyester film according to the first invention, wherein a thin film layer made of a crosslinked resin is provided on a surface of the transparent conductive film on which the transparent conductive thin film is not formed. .
  • An eighth invention is a transparent conductive film, characterized in that the cross-linkable resin according to the seventh invention comprises an isocyanate-based resin and an epoxy or epoxy-based resin.
  • a ninth invention is the transparent conductive film according to the first invention, wherein the thickness of the transparent conductive thin film is 80 nm or more.
  • the transparent conductive film according to the ninth aspect has a warpage of 2 mm or less in a size of 3 O mm x 3 O mm when heated at 150 ° C. for 3 hours.
  • the eleventh invention is the transparent conductive film according to the ninth invention, wherein a heat shrinkage when heat-treated at 150 ° C. for 3 hours is 0.2% or less.
  • the transparent conductive film has a maximum light transmittance in a wavelength range of 450 to 600 nm, and the maximum value of brackets is 80 to 97%.
  • the transparent conductive film according to the ninth invention characterized in that:
  • a thirteenth aspect of the present invention is the transparent conductive film according to the thirteenth aspect, wherein the surface resistivity is 10 to 10.
  • a fourteenth invention is the transparent conductive film according to the twenty-second invention, wherein a dielectric thin film is laminated on the transparent conductive thin film.
  • a fifteenth invention is characterized in that a light-emitting layer, a dielectric layer, a back electrode layer, and an insulating layer are laminated in this order on the transparent conductive thin film of the transparent conductive film according to the first to fourteenth inventions.
  • This is an electronic luminescence panel.
  • a sixteenth invention is characterized in that the emission wavelength / IE of the light-emitting layer and the wavelength at which the light transmittance of the transparent conductive film according to the second invention has the highest value satisfy the following expression.
  • This is an electroluminescent panel.
  • the biaxially oriented polyester film is used as a base for a transparent conductive film.
  • the raw material resin for the biaxially oriented polyester film include polyethylene terephthalate, polybutylene terephthalate, polyethylene-1,6-naphthalate, and a copolymer mainly composed of the components of these resins.
  • polyethylene terephthalate Is particularly preferred.
  • the dicarboxylic acid component includes aliphatic dicarboxylic acids such as adipic acid and sebacic acid, terephthalic acid, isophthalic acid, phthalic acid, and 2, 6 _ Aromatic dicarboxylic acids such as naphthalene dicarboxylic acid, etc., and polyfunctional carboxylic acids such as trimellilotic acid and pyromellilotic acid are used.
  • the glycol components include ethylene glycol, diethylene glycol, 1,4-butanediol, and propylene.
  • Fatty acid glycols such as glycol and neopentyl glycol; aromatic glycols such as p-xylene glycol; alicyclic dalicol such as 1,4-cyclohexanedimethanol: polyethylene having an average molecular weight of 150 to 200,000 Dali call is used.
  • Preferred copolymer proportions are less than 20%. If it exceeds 20%, the film strength, transparency and heat resistance may be poor.
  • the polyester-based resin may contain various additives. Examples of the additive include an antistatic agent, a UV absorber, and a stabilizer. It is preferable that the biaxially oriented polyester film does not contain particles from the viewpoint of transparency.
  • the intrinsic viscosity of the polyester resin which is the starting material of the biaxially oriented polyester film, is preferably in the range of 0.45 to 0.70 d1Zg. If the intrinsic viscosity is less than 0.45 d1 Zg, rupture tends to occur frequently during stretching of the polyester film. On the other hand, if the intrinsic viscosity exceeds 0.70 dl Zg, the increase in filtration pressure becomes large, and high-precision filtration tends to be difficult.
  • the coating layer is preferably provided on at least one surface of the unstretched or uniaxially stretched polyester film, and then laminated by an inline coating method in which the film is stretched in at least one axis direction and heat-fixed.
  • the resin composition constituting the coating layer preferably contains a copolymerized polyester resin (A) and a polyurethane resin (B).
  • A copolymerized polyester resin
  • B polyurethane resin
  • the adhesion to the polyester film is sufficient, but the adhesion to the acrylic resin used for the hard coat tends to be insufficient.
  • the polyurethane resin alone has excellent adhesiveness with the acrylic resin, the adhesiveness with the polyester film tends to be insufficient.
  • the copolymerized polyester resin (A) contains a dicarboxylic acid component and a branched glycol component as constituent components.
  • Said branched glycol component Is, for example, 2,2-dimethyl-l, 3-propanediol, 2-methyl-l-ethyl-l, l, 3-propanediol, 2-methyl-l-butyl-l, l, 3-propanediol, 2- Methyl-2-propyl-1-1,3-propanediol, 2-methyl-1-isopropyl-1-1.3-propanediol, 2-methyl_2-n-hexyl-1,3-propanediol, 2.2 —Jetyl-1,3-propanediol, 2-ethyl-2-n-butyl-1,3-propanediol, 2-ethyl-2-n-hexyl-1,3-propanediol, 2,2-
  • the branched glycol component is preferably contained in a proportion of at least 10 mol%, more preferably at a proportion of at least 20 mol%, in all the glycol components.
  • ethylene dalicol is most preferred. If it is a small amount, diethylene glycol, propylene glycol, butanediol, hexanediol or 1,4-cyclohexanedimethanol may be used.
  • dicarboxylic acid component which is another component of the copolymerized polyester resin (A)
  • terephthalic acid and isophthalic acid are most preferable. If it is a small amount, another dicarboxylic acid, in particular, an aromatic dicarboxylic acid such as diphenyl carboxylic acid and 2,6-naltalenedicarboxylic acid may be added and copolymerized.
  • an aromatic dicarboxylic acid such as diphenyl carboxylic acid and 2,6-naltalenedicarboxylic acid
  • sulfoterephthalic acid For example, sulfoterephthalic acid, 5-sulfoisophthalic acid, —Sulfonaphthalene isophthalic acid-2,7-dicarboxylic acid and 5- (4-sulfofenoxy) isophthalic acid and salts thereof.
  • the polyurethane resin (B) is, for example, a resin having a block-type isocyanate group, and is a heat-reactive water-soluble urethane having a terminal isocyanate group blocked with a hydrophilic group (hereinafter, abbreviated as a block).
  • a block a hydrophilic group
  • the blocking agent for the isocyanate group include phenols containing bisulfites and sulfonic acid groups. Alcohols, lactams, oximes and active methylene compounds.
  • the blocked isocyanate groups hydrophilize or solubilize the polyurethane prepolymer.
  • the blocking agent is removed from the isocyanate group. It not only fixes the copolymerized polyester resin but also reacts with the terminal groups of the resin.
  • the resin being prepared is poor in water resistance because it is hydrophilic, but when the coating, drying and heat setting are completed and the thermal reaction is completed, the hydrophilic group of the urethane resin, that is, the blocking agent, comes off and the water resistance is good. Coating film is obtained.
  • bisulfites are most preferable as those which are suitable for heat treatment temperature and heat treatment time and are widely used industrially.
  • the chemical composition of the urethane prepolymer used in the polyurethane resin (B) is as follows: (a) an organic polysocyanate having two or more active hydrogen atoms in the molecule, or at least two active hydrogen atoms in the molecule. A compound having a hydrogen atom and a molecular weight of 200 to 200,000; (b) an organic polyisocyanate having two or more isocyanate groups in the molecule; or (c) at least a molecule in the molecule. A compound having a terminal isocyanate group obtained by reacting a chain extender having two active hydrogen atoms is preferred.
  • the compound (a) is generally known as a compound containing two or more hydroxyl groups, carboxyl groups, amino groups or mercapto groups at the terminal or in the molecule. Particularly preferred compounds are polyethers. Polyols and polyester ester polyols.
  • polyether polyol examples include, for example, alkylene oxides such as ethylene oxide and propylene oxide, or compounds obtained by polymerizing styrene oxide and epihydric hydrin, or the like, or random polymerization, block polymerization, or addition to polyhydric alcohol. There are compounds obtained by performing polymerization.
  • polyester polyol and the polyetherester polyol linear or branched compounds are mainly mentioned.
  • polyhydric saturated and unsaturated alcohols such as xandiol and trimethylolpropane
  • polyalkylene ether daricols such as relatively low molecular weight polyethylene glycol and polypropylene glycol, or a mixture of these alcohols.
  • polyester polyols include polyesters obtained from lactones and hydroxy acids
  • polyether ester polyols include polyether esters obtained by adding ethylene oxide or propylene oxide to polyesters prepared in advance. Kinds can also be used.
  • organic polyisocyanate (b) examples include isomers of toluylene diisocyanate, aromatic diisocyanates such as 4,4-diphenylmethane diisocyanate, and xylylene diisocyanate.
  • Alicyclic diisocyanates such as aromatic aliphatic diisocyanates, isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, and 2,2,4 — Aliphatic diisocyanates such as trimethylhexamethylene diisocyanate, and polyisocyanates in which one or more of these compounds are added in advance to trimethylolpropane or the like.
  • Examples of the chain extender having at least two active hydrogens of the above (c) include dalicols such as ethylene glycol, diethylene glycol, 1,4-butanediol, and 1,6-hexanediol, glycerin, trimethylolpropane, And polyhydric alcohols such as pentaerythritol, diamines such as ethylenediamine, hexamethylenediamine and piperazine; aminoalcohols such as monoethanolamine and diethanolamine; thiodiglycols such as thioethylendarcol; Or water.
  • dalicols such as ethylene glycol, diethylene glycol, 1,4-butanediol, and 1,6-hexanediol, glycerin, trimethylolpropane
  • polyhydric alcohols such as pentaerythritol, diamines such as ethylenediamine, hexamethylenediamine and piperazine;
  • a single-stage or multi-stage isocyanate polyaddition method using the above-described chain extender is carried out at a temperature of 150 ° C or lower, preferably 70 ° C to 120 ° C. And react for 5 minutes to several hours.
  • the ratio of the isocyanate groups can be freely selected as long as it is 1 or more, but it is necessary that free isocyanate groups remain in the obtained urethane prepolymer. Further, the content of the free isocyanate group may be 10% by weight or less, but is preferably 7% by weight or less in consideration of the stability of the urethane polymer aqueous solution after blocking.
  • the obtained urethane prepolymer is preferably subjected to blocking using bisulfite.
  • the reaction temperature is preferably set to 60 ° C or lower.
  • the mixture is diluted with water to an appropriate concentration to obtain a heat-reactive water-soluble urethane composition.
  • the composition is adjusted to an appropriate concentration and viscosity.However, if the composition is heated to about 80 to 200 ° C, the bisulfite of the blocking agent is dissociated, and the active isocyanate group is regenerated.
  • a polyurethane polymer is formed by a polyaddition reaction occurring within or between molecules of the prepolymer, or has a property of causing addition to another functional group.
  • Elastron (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) is typically exemplified.
  • the elastomeric mouth is made by blocking the isocyanate group with sodium bisulfite, and is water-soluble due to the presence of a strong hydrophilic and terminal rubamoyl sulfonate group at the molecular end.
  • an aqueous coating solution is used as a coating solution for forming a coating layer.
  • Various additives such as an antistatic agent, an ultraviolet absorber, a plasticizer, a pigment, an organic filler, and a lubricant may be mixed with the composition of the aqueous coating solution as long as the adhesiveness is not impaired.
  • the coating solution is water-based, other water-soluble resins, water-dispersible resins, emulsions and the like may be added to the coating solution as long as the adhesiveness is not impaired.
  • a catalyst may be added to the aqueous coating solution to promote a thermal crosslinking reaction.
  • various chemicals such as inorganic substances, salts, organic substances, alkaline substances, acidic substances, and metal-containing organic compounds can be used.
  • the substance is used.
  • an alkaline substance or an acidic substance may be added.
  • a known anionic active agent and a known nonionic surfactant are used to improve the wettability to the film and uniformly coat the coating solution. It is preferable to add a necessary amount of the agent.
  • the solvent used for the coating solution may be mixed with alcohols such as ethanol, isopropyl alcohol and benzyl alcohol, in addition to water, until the proportion of the solvent in the total coating solution is less than 50% by weight.
  • an organic solvent other than alcohols may be mixed as long as it can be dissolved.
  • the total amount of alcohols and other organic solvents in the coating liquid is preferably less than 50% by weight.
  • the amount of the organic solvent added is less than 50% by weight, the drying property after coating is improved, and the appearance of the coating layer becomes better than when water alone is used. If the content is more than 50% by weight, the solvent evaporates at a high rate, and the concentration of the coating solution changes during coating, and the viscosity increases to lower the coating property, which may cause poor appearance of the coating film. In addition, there is a risk of fire.
  • the coating amount (the weight of the solid content per unit area of the film) is preferably 0.05 to 0.50 g Zm 2 . If the coating amount is less than 0.05 g Zm 2 , the adhesiveness becomes insufficient. If the coating amount exceeds 0.50 g Zm 2 , the total light transmittance decreases, which is not preferable.
  • the biaxially oriented polyester film needs to have a total light transmittance of 90% or more, preferably 91% or more, and particularly preferably 92% or more. When the total light transmittance is less than 90%, the total light transmittance as a transparent conductive film is insufficient, which is not preferable. In order to make the total light transmittance of the biaxially oriented polyester film 90% or more, it is preferable not to include particles in the base film. When no particles are contained in the base film, it is preferable to include appropriate particles in the coating layer in order to improve the scratch resistance and the winding property of the film in the coating layer.
  • Such particles include inorganic particles such as calcium carbonate, calcium phosphate, silica, glass filler, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum disulfide, and the like.
  • Organic particles such as polymer particles, silicon resin particles and calcium oxalate can be given.
  • silica particles are most preferable because they have a refractive index relatively close to that of the polyester resin and can easily obtain a highly transparent film.
  • the average particle size of the particles A is preferably from 20 to 300 nm, more preferably from 30 to 100 nm. If the average particle size of the particles A is less than 20 nm, the scratch resistance tends to deteriorate. On the other hand, when the average particle diameter of the particles A exceeds 300 nm, the total light transmittance tends to decrease.
  • the scratch resistance can be further improved by using the particles A in combination with the particles A.
  • the average particle size of the particles B is preferably from 300 to 100 nm, more preferably from 400 to 800 nm. If the average particle size of the particles B is less than 300 nm, the scratch resistance tends to deteriorate. On the other hand, when the average particle diameter of the particles B exceeds 1 OOOnm, the total light transmittance tends to decrease.
  • the particles B are preferably aggregated particles obtained by aggregating primary particles. It is particularly preferable that the ratio of the average particle diameter of the particles B in the aggregated state to the average particle diameter of the primary particles be 6 times or more from the viewpoint of scratch resistance.
  • the content ratio (AZB) of the particles A and B in the coating layer should be 5 to 30 and the content of the particles B should be 0.1 to 1% by weight based on the solid content of the coating layer. Is suitable for setting the three-dimensional center plane average surface roughness (SR a) of the coating layer surface to 0.002 to 0.010, and setting the respective particle contents to be within the above range. It is necessary to. In particular, when the content of the particles B exceeds 1% by weight with respect to the resin composition of the coating layer, the total light transmittance is significantly reduced.
  • the resin composition of the coating layer described above Means a solid content composed of resin A, resin B, particle A, and particle B.
  • the filter medium for microfiltration of the coating solution preferably has a filtration particle size (initial filtration efficiency: 95%) of 25 m or less. If the filtration particle size exceeds 25 m, the removal of coarse aggregates tends to be insufficient. For this reason, coarse aggregates that could not be removed by filtration are spread as a result of stretching stress in the uniaxial stretching or biaxial stretching process after coating and drying, and are recognized as aggregates of 100 m or more. It causes the light transmittance to decrease.
  • filter medium for finely filtering the coating solution there is no particular limitation on the type of filter medium for finely filtering the coating solution as long as it has the above performance, and examples thereof include a filament type, a filter type, and a mesh type.
  • the material of the filter medium for precision filtration of the coating liquid is not particularly limited as long as it has the above-mentioned performance and does not adversely affect the coating liquid, and examples thereof include stainless steel, polyethylene, polypropylene, and nylon.
  • the filter medium used for the high-precision filtration of the molten polyester resin is not particularly limited.
  • the aggregates mainly composed of Si, Ti, Sb, Ge, and Cu It is excellent in removing performance of catalyst (caused by contamination) and high melting point polyester, and is suitable.
  • the filtration particle size (initial filtration efficiency: 95%) of the filter medium used for high-precision filtration of the molten polyester resin is preferably 15 m or less.
  • the filter particle size of the filter medium exceeds 15 m, the removal of foreign substances of 20 m or more tends to be insufficient.
  • Productivity may be reduced by high-precision filtration of molten polyester resin using a filter medium with a filtration particle size (initial filtration efficiency: 95%) of 15 m or less, but high total light transmittance is high. It is very suitable for obtaining a biaxially oriented polyester film.
  • the lens effect will cause the object with a shape of 20 m to be visually recognized as a size of 50 m or more, and even a size of 100 m or more. It may be recognized as an optical defect.
  • the molten resin is extruded from a die onto a rotating cooling drum onto a sheet, and the sheet-like molten material is rapidly cooled while being in close contact with the rotating cooling drum to form a sheet.
  • Known methods can be applied.
  • As a method for cooling the air surface (the surface opposite to the surface that comes into contact with the cooling drum) of this sheet-like material a method of blowing a high-speed air stream to cool the sheet is effective.
  • a method for producing a biaxially oriented polyester film used as a substrate of the transparent conductive film of the present invention will be described using polyethylene terephthalate (hereinafter abbreviated as PET) as an example. is not.
  • the PET resin pellets substantially containing no particles After sufficiently drying the PET resin pellets substantially containing no particles, they are supplied to an extruder, melt-extruded into a sheet at about 280 ° C, cooled and solidified to form an undrawn FET sheet. Form a film. At this time, the high-precision filtration is performed at an arbitrary place where the molten resin is kept at about 280 ° C. in order to remove foreign substances contained in the resin.
  • the obtained unstretched PET sheet is stretched 2.5 to 5.0 times in the longitudinal direction by a roll heated to 80 to 120 ° C to obtain a uniaxially oriented PET film. Furthermore, the end of the film is gripped with a clip, guided to a hot air zone heated to 80 to 180 ° C, and stretched 2.5 to 5.0 times in the width direction after drying. Subsequently, it is led to a heat treatment zone of 160 to 240 ° C., and heat-treated for 1 to 60 seconds to complete the crystal orientation. This heat During the treatment process, if necessary, a 1 to 12% relaxation treatment may be performed in the width direction or the longitudinal direction.
  • an aqueous solution of the above-mentioned copolymerized polyester and polyurethane resin is applied to one or both sides of the PET film.
  • the aqueous coating solution can be applied by any known method. For example, reverse roll-coat method, gravure 'coat method, kiss' coat method, roll brush method, spray coat method, air knife coat method, wire-barber coat method, pipe doctor method, impregnation coat method and curtain Coating methods and the like can be mentioned, and these methods can be performed alone or in combination.
  • the step of applying the aqueous coating solution may be a normal coating step, that is, a step of coating a biaxially stretched and heat-set base PET film, but an in-line coating method of coating during the PET film manufacturing process may be used. preferable. More preferably, it is applied to the base PET film before the crystal orientation is completed.
  • the solid concentration in the aqueous coating solution is preferably 30% by weight or less, particularly preferably 10% by weight or less.
  • the PET film coated with the aqueous coating solution is guided to a tenter for stretching and heat setting, where it is heated to form a stable film by a thermal crosslinking reaction, and becomes a laminated PET film. Further, when stacking another layer on the coating layer, in order to obtain good adhesion with other layers, there is a coating fabric of the PET film is 0. 05 gZm 2 or more, 100 ° C, Heat treatment for 1 minute or more is required.
  • the three-dimensional center plane average surface roughness (SRa) of the coating layer surface of the biaxially oriented FET film needs to be 0.002 to 0.001 ⁇ m, preferably 0.0025 to 0.008 0 ⁇ m. And 0.0030 to 0.0060 ⁇ m are particularly preferred. Smooth surfaces with SRa of less than 0.002 m are not preferred because scratch resistance deteriorates. On the other hand, when SRa exceeds 0.010 m, the total light transmittance is reduced and the transparency is deteriorated, so that it is not preferable as a substrate of the transparent conductive film.
  • the content and the ratio of the particles A and the particles B and the coating amount are within the above ranges, so that the ranges of SRa and the total light transmittance defined in the present invention are within the ranges. It is effective for achieving both scratch resistance.
  • the biaxially oriented PET film having the coating layer obtained in this manner has excellent transparency and adhesiveness and excellent scratch resistance in a post-processing step. Therefore, it is suitable as a base film of a transparent conductive thin film as described below.
  • the thickness of the biaxially oriented PET film is preferably in the range of more than 10 m and not more than 300 m, particularly preferably in the range of 70 to 260 m.
  • the thickness of the film is 10 m or less, the stiffness of the film tends to be insufficient, and the durability tends to be poor.
  • the light transmittance is undesirably high.
  • the characteristics of the film, which is lightweight, become indispensable.
  • the biaxially oriented PET film may be subjected to surface treatment such as corona discharge treatment and glow discharge treatment to the extent that the object of the present invention is not impaired.
  • a heat treatment at 100 to 150 ° C is performed in a printing process such as circuit processing. This heat treatment may cause an increase in haze value or white appearance defects.
  • the inventors of the present invention focused on the fact that the main factors of the increase in haze and the white defect after the heat treatment of the biaxially oriented PET film were the cyclic trimer, which is the main component of the oligomer, and conducted extensive studies. As a result, the content of cyclic trimer contained in the raw material PET resin and the residence time until casting in the PET film forming process have the greatest effect on the content of cyclic trimer in the film. Elucidated.
  • the raw PET resin is first subjected to a low-pressure treatment under a specific pressure and temperature range for a specific time in an atmosphere of an inert gas such as nitrogen. Is preferred.
  • the pressurizing condition is preferably higher than 1 atm and 2 atm or less, particularly preferably higher than 1 atm and 1.4 atm or less.
  • the heating temperature is preferably from 180 ° C to 250 ° C, particularly preferably from 200 ° C to 230 ° C.
  • processing time is more than 12 hours 3 Preferably not more than 6 hours.
  • the temperature of the low oligomerization treatment is higher than 250 ° C, problems such as fusion, melting, and discoloration of the PET resin are likely to occur.
  • the temperature is lower than 180 ° C., the effect of reducing oligomers tends to be insufficient.
  • the treatment time is shorter than 12 hours, the effect of reducing oligomers tends to be insufficient.
  • the treatment time is longer than 36 hours, the effect of increasing the haze value by the heat treatment of the film does not change.
  • a deactivation treatment for reducing the catalytic activity may be performed by a chemical treatment such as oxidation, reduction, or hydration, or a physical treatment such as irradiation with sonic or electromagnetic waves or electromagnetic waves.
  • a chemical modification such as etherification may be applied to the alcohol terminal of PET to suppress the oligomer regeneration reaction such as a cyclic trimer. If the catalyst deactivation treatment and the regeneration suppression treatment are not performed, if the raw PET resin is re-melted during the production of the film, the oligomer is regenerated with time.
  • the residence time from re-melting the PET resin to extrusion and cooling to within 20 minutes, more preferably within 12 minutes, the content of the cyclic trimer in the biaxially oriented PET film is controlled.
  • oligomers may segregate on the film surface due to heat setting during film formation, but by controlling the amount of oligomers on the surface to 0.5 mg / m 2 or less, heating in the printing process such as circuit processing can be performed. It is possible to further reduce the increase in the haze value and the occurrence of white appearance defects due to the treatment.
  • the thin film layer made of a crosslinked resin makes it possible to block oligomers precipitated from the film by heating, and increases the haze value and the white appearance defect due to heat treatment in a printing process such as circuit processing. It will not occur.
  • the crosslinked network structure of the crosslinked resin is smaller than that of the oligomer.
  • the thin film layer made of the cross-linked resin is made of a polyfunctional cross-linked resin having three or more functional groups, and the functional groups and Z or the functional group and the bi-functional resin or water previously added to the thin film layer are added. Formed as a result of the reaction with It is preferable that the thin film layer made of the crosslinked resin contains a polyfunctional isocyanate resin and a Z or polyfunctional epoxy resin as main polyfunctional crosslinked resin components.
  • a resin having an initial molecular weight of 200 or less per three functional groups is preferable. More preferably, it is a resin of 150 or less, particularly preferably 100 or less. Further, a resin having a minimum value of 50 or less chemical bonds between functional groups is also preferable. The resin is more preferably 30 or less, particularly preferably 20 or less.
  • polyfunctional isocyanate-based resin examples include low-molecular or high-molecular aromatic and aliphatic diisocyanates and trivalent or higher polyisocyanates.
  • trivalent or higher polyisocyanate examples include tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, Xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate — And trimers of these isocyanate compounds.
  • excess amounts of these isocyanate compounds and low-molecular-weight substances such as ethylene dalicol, propylene dalicol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, etc.
  • examples include an active hydrogen compound or a compound containing a terminal isocyanate group, which is obtained by reacting with a high molecular weight active hydrogen compound such as polyester polyols, polyether polyols, and polyamides.
  • polyfunctional epoxy resin examples include diglycidyl ether of bisphenol A and its oligomer, diglycidyl ether of hydrogenated bisphenol A and its oligomer, diglycidyl orthophthalate, diglycidyl isophthalate, diglycidyl terephthalate, and the like.
  • Glycidyl ester diglycidyl p-oxybenzoate, diglycidyl tetrahydrophthalate, diglycidyl hexahydrophtallate, diglycidyl succinate, diglycidyl adipic acid, diglycidyl sebacate, ethylene glycol diethylene glycol Glycidyl ether, propylene dalicol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1.6-hexanediol diglycidyl ether Ter and polyalkylene glycol diglycidyl ethers, triglycidyl trimeric ester, triglycidyl isocyanurate, 1,4-diglycidyloxybenzene, diglycidyl propylene urea, glycerol triglycidyl ether, Limethylolpropant glycidyl ether, erythritol glycidyl
  • the thin film layer formed of the cross-linked resin may be easily cracked or curled when the thin film layer is bent.
  • Other resins may be mixed to alleviate this.
  • the mixing amount of the other resin is preferably 70% by weight or less based on the crosslinked resin composed of the isocyanate resin and the epoxy resin. If the mixing amount exceeds 70% by weight, the network of cross-linking becomes large, and the effect of suppressing whitening during heating becomes insufficient.
  • a polyester resin, an ataryl resin examples include methacrylic resin, urethane acryl resin, melamine resin, silicone resin and the like. Of these, copolymerized polyester resins are most preferred. This copolymerized polyester resin is composed of a dalicol component and a dicarboxylic acid component.
  • glycol component ethylene glycol is most preferred. It may contain diethylene glycol, propylene glycol, butanediol, neopentyl glycol, hexanediol or 1,4-cyclohexanedimethanol.
  • the dicarboxylic acid component terephthalic acid and isophthalic acid are most preferred. If the amount is a small amount, another dicarboxylic acid, in particular, an aromatic dicarboxylic acid such as difluorocarboxylic acid and 2,6-naphthalenedicarboxylic acid may be added for copolymerization.
  • the thickness of the thin film layer made of the crosslinked resin is preferably 0.05 to 3.0 ⁇ m in order to prevent oligomer precipitation. Particularly preferably, it is 0.1 to 2.0 ⁇ m. If the thickness of the thin film layer exceeds 3.0 m, the bending resistance becomes insufficient, and if it is less than 0.5 m, the effect of preventing oligomer precipitation becomes insufficient.
  • a coating method is preferable.
  • a catalyst may be added to the coating solution containing the cross-linkable resin in order to promote the thermal cross-linking reaction.
  • Various chemical substances are used.
  • Coating methods include air-coating method, knife coating method, ⁇ head coating method, forward rotation roll coating method, reverse roll coating method, gravure coating method, kiss coating method, bead coating method, slit orifice A coating method, a cast coating method, or the like is used.
  • the transparent conductive thin film of the present invention is not particularly limited as long as it is a material having both transparency and conductivity. Typical examples thereof include indium oxide, zinc oxide, tin oxide, indium oxide composite oxide, and silver oxide. Examples of the thin film include a zooantimony composite oxide, a zinc-aluminum composite oxide, and an indium zinc composite oxide. It is known that these compound thin films can be made into transparent conductive thin films having both transparency and conductivity when manufactured under appropriate conditions.
  • a vacuum evaporation method As a method for forming the transparent conductive thin film, a vacuum evaporation method, a sputtering method, a CVD method, an ion plating method, a spray method, etc. are known. Can be used.
  • a normal sputtering method using a compound, a reactive sputtering method using a metal target, or the like is used.
  • oxygen, nitrogen, steam, or the like may be introduced as a reactive gas, or a means such as ozone addition or ion assist may be used in combination.
  • a bias such as direct current, alternating current, or high frequency may be applied to the substrate.
  • other forming methods such as a vapor deposition method and a CVD method.
  • the present inventors have found that increasing the thickness of the transparent conductive thin film to some extent improves the light transmittance. For example, in the case of an indium oxide composite oxide thin film, when the thickness is 80 nm or more, the light transmittance is improved.
  • the transmitted light increases due to the decrease in the light transmittance, and the light transmittance improves. That is, the refractive index of the transparent conductive thin film is N, the thickness of the transparent conductive thin film is D, and the wavelength at which light transmittance is desired to be the highest! Then
  • N D ( ⁇ / 2) x ⁇
  • the thickness of the transparent conductive thin film may be adjusted so as to satisfy the following.
  • is 1 or more Is the integer above.
  • the wavelength at which the light transmittance is highest is preferably 450 nm or more and 600 nm or less. At a wavelength lower than 450 nm, the emission luminance does not improve when used in an EL panel because it is shorter than the wavelength of visible light. Also, if the wavelength is designed to be longer than 600 nm, the transmittance at a wavelength of about 500 nm will be insufficient, and as a result, the emission luminance will not be improved when used for EL panels.
  • the transmittance at the design wavelength is preferably 80% or more and 97% or less.
  • the reflected light is designed to have a minimum value due to the interference effect as described above, so that the absorption in the transparent conductive thin film must be reduced.
  • the degree of oxidation is increased so that the light transmittance exceeds 97%, the surface resistivity becomes so high that it is not suitable as a transparent electrode of an EL panel.
  • the surface resistivity of the transparent conductive film is preferably in the range of 10 to 10 ⁇ / b.
  • the surface resistivity is higher than 100 ⁇ / ⁇ ] the improvement in light emission luminance when used in an EL panel becomes insufficient.
  • the amount of warpage in a size of 3 Omm x 3 Omm when the transparent conductive film is heat-treated at 150 ° C for 3 hours is 2 mm or less.
  • the dimensional shrinkage of the transparent conductive film be 0.2% or less after heat treatment at 150 ° C. for 3 hours.
  • Heat treatment In order to reduce the dimensional change due to the process, it is preferable to heat-treat the transparent conductive film in advance or to provide a thin film layer made of the above-mentioned crosslinked resin.
  • the step of heat-treating the transparent conductive film may be performed after the production of the biaxially oriented PET film before forming the transparent conductive thin film, or may be performed during the production of the biaxially oriented PET film. The latter is more preferable from the viewpoint of productivity.
  • an in-line treatment in which a heat treatment at about 200 to 240 ° C. is performed in the heat setting treatment step in the production of the biaxially oriented PET film is preferable. If the heat setting temperature is lower than 200 ° C, the effect of reducing the dimensional shrinkage after heat treatment during post-processing is insufficient. On the other hand, at a high temperature exceeding 240 ° C., it is difficult to stably form a biaxially oriented PET film.
  • a coating agent containing the above-mentioned cross-linkable resin is applied to the biaxially oriented PET film off-line, and a heat treatment is performed to dry and cure the coating agent. You may.
  • the temperature of the drying oven is preferably set to 120 to 240 ° C. If the temperature is lower than 120 ° C., the effect of reducing the dimensional shrinkage after the heat treatment is insufficient. On the other hand, at a high temperature exceeding 240 ° C., the planarity of the biaxially oriented PET film tends to decrease.
  • the transparent conductive film of the present invention can suppress blackening of the transparent conductive film when used for a transparent electrode of an EL panel by laminating a dielectric thin film on the transparent conductive thin film.
  • the mechanism of this blackening is considered to be that the transparent conductive thin film is reduced and blackened by electron transfer due to the voltage applied to the light emitting layer when used in an EL panel.
  • By laminating a dielectric thin film electron transfer to the transparent conductive thin film is suppressed, and blackening is less likely to occur.
  • the dielectric material preferably used in the present invention includes boron oxide, magnesium oxide, aluminum oxide, silicon oxide, titanium oxide, vanadium oxide, chromium oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, and copper oxide. , Zinc oxide, yttrium oxide, zirconium oxide, niobium oxide, molybdenum oxide, lead oxide, tin oxide, antimony oxide, barium oxide, hafnium oxide, thallium oxide, thallium oxide Ngustene, platinum oxide, bismuth oxide, barium titanate, lead titanate, potassium niobate, lithium niobate, lithium tantalate, lead sulfate, silicon carbide, strontium sulfate, zinc sulfide, silicon nitride, silver bromide, silver chloride These may be used alone or as a mixture of two or more.
  • titanium oxide is preferably used. Titanium oxide has a very large non-dielectric constant of 170, and when the transparent conductive film of the present invention in which a titanium oxide thin film is laminated is used for an EL panel, an applied voltage can be efficiently applied to the light emitting layer. There is almost no decrease in light emission luminance.
  • a vacuum deposition method In order to form the dielectric thin film, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, and the like are known. Depending on the type of the material and the required film thickness, an appropriate method is used. A known method can be used.
  • a normal sputtering method using a compound, a reactive sputtering method using a metal target, or the like is used.
  • oxygen, nitrogen, steam, or the like may be introduced as a reactive gas, or a means such as ozone addition or ion assist may be used in combination.
  • a bias such as direct current, alternating current, or high frequency may be applied to the substrate. Further, the substrate may be heated or cooled as necessary.
  • other production methods such as a vapor deposition method and a CVD method.
  • the thickness of the dielectric thin film is preferably in the range of 1 to 300 nm. When the thickness is less than 1 nm, the effect of suppressing blackening of the transparent conductive thin film is insufficient. On the other hand, when the thickness is more than 300 nm, it is not preferable because it affects the optical design for increasing the light transmittance of the transparent conductive thin film.
  • An EL panel using the transparent conductive film of the present invention is manufactured by laminating a light-emitting layer, a dielectric layer, a plane electrode layer, and an insulating layer in this order on a transparent conductive thin film of the transparent conductive film.
  • Each layer may be formed by a dry process such as vapor deposition or sputtering, or may be formed by a printing method that is a wet coat, but a printing method is preferable from the viewpoint of manufacturing cost.
  • the light emitting layer is obtained by dispersing a light emitting powder in a binder resin.
  • the binder resin needs to be a resin having excellent moisture-proof properties in order to protect the phosphor powder from moisture, it is preferable to use a fluoroelastomer.
  • Fluoroelast The monomer is preferably a simple substance or a copolymer of vinylidene fluoride, propylene hexafluoride, tetrafluoroethylene, perfluoromethyl vinyl ether, or the like.
  • polyester resin, acrylic resin, epoxy resin, melamine resin, methacrylic resin, urethane acrylic resin, silicone resin, etc. may be blended in order to strengthen the adhesion to the transparent conductive thin film and the dielectric layer. .
  • the luminescent powder preferably contains ZnS as a main component, and the emission wavelength can be selectively obtained in the visible light region by the added impurities.
  • the impurity added C u, Ag, C l , I, A l, Mn, P r F 3, Nd F 3, SmF 3, Eu F 3, T b F 3, Dy F 3, H o F 3 , E r F 3, TmF 3 , Y b F 3 is favored arbitrary choose from such.
  • the emission wavelengths of these phosphor powders are:
  • a moisture-proof coating such as aluminum oxide, titanium oxide, silicon oxide, and magnesium oxide on the surface.
  • the phosphor powder in a ratio of 0.1 to 100 g per 1 g of the binder resin of the light emitting layer. If the amount is less than 0.1 g, the light emission luminance is insufficient.
  • the thickness of the light emitting layer is preferably in the range of 1 to 100 ⁇ m. If the thickness is less than 1 ⁇ m, the emission luminance is still insufficient. If the thickness is more than 100 m, printing is difficult in one process, which is not preferable from the viewpoint of productivity.
  • a powder having a high dielectric constant such as titanium oxide, barium titanate, lead titanate, potassium niobate, lithium niobate, lithium tantalate is dispersed in the same fluoroelastomer as the light emitting layer.
  • the thickness of the dielectric layer is in the range of 1 to 100 m. At a thickness of less than 1 m from the back electrode The leakage current to the light emitting layer increases, and the light emission luminance decreases. If it is thicker than ⁇ ⁇ ⁇ / m, printing is difficult in one process, which is not preferable from the viewpoint of productivity.
  • the back electrode is printed with polyester resin and Z or silver powder dispersed in polyester resin.
  • the thickness of the printing layer is preferably in the range of 1 to 100 m. If the thickness is less than 1 m, the surface resistivity of the back electrode becomes too high, and the emission luminance is also insufficient. If the thickness is more than 100 i / m, printing is difficult in a single step, and productivity is reduced. Not desirable from a viewpoint.
  • the surface resistivity of the back electrode is preferably from 0.1 to 500 ⁇ / ⁇ . In order to make it less than 0.1 ⁇ / port, the thickness of the back electrode must be considerably increased, which is not preferable from the viewpoint of productivity. On the other hand, when the surface resistivity is higher than 500 ⁇ / ⁇ ], the applied voltage cannot be efficiently applied to the light emitting layer, and the light emission luminance decreases.
  • the insulating layer is mainly composed of a polyester resin, an acrylic resin, an epoxy resin, a melamine resin, a methacryl resin, a urethane acrylic resin, a silicone resin or the like, and is printed in a range of 1 to 100 m.
  • the thickness is less than 1 m, the insulating effect is insufficient.
  • the thickness is more than 100 m, printing is difficult in one process, which is not preferable in terms of productivity.
  • a hard coat treatment layer may be provided on the surface of the transparent conductive film on which the transparent conductive thin film is not formed, in order to prevent abrasion or the like generated in the process of manufacturing an EL panel.
  • An irregularity treatment layer may be provided to suppress the generation of Newton rings when the LCD is in close contact with the LCD, and an antireflection treatment layer may be provided to further increase the light transmittance of the transparent conductive film.
  • the hard coat treatment is a cross-linkable resin made of a single or mixed curable resin such as polyester resin, urethane resin, acryl resin, melamine resin, epoxy resin, silicon resin, polyimide resin.
  • a cured resin layer is preferred.
  • the thickness of the hard coat treatment layer is preferably in the range of 3 to 50 / m, particularly preferably in the range of 4 to 30 ⁇ m. If the thickness is less than 3 m, the function of the hard coat treatment will not be sufficiently exhibited. On the other hand, in order to make the thickness more than 50 m, the rate at which the coating liquid containing the curable resin is applied to the transparent conductive film must be significantly reduced, which is not preferable in terms of productivity.
  • a coating solution containing the above-mentioned curable resin is applied to a surface of the transparent conductive film opposite to the surface on which the transparent conductive thin film is provided, by a Daravia method, a reverse method, After coating the transparent conductive film with a die method or the like, it is cured by applying energy such as heat, ultraviolet rays, and electron beams.
  • the unevenness-treated layer is formed by coating a curable resin, drying and then forming an unevenness on the surface of the coating layer using an embossing roll, embossed film, or the like, and then curing the applied layer by applying energy such as heat, ultraviolet rays, or an electron beam.
  • a curable resin a polyester resin, a urethane resin, an acrylic resin, a melamine resin, an epoxy resin, a silicone resin, a polyimide resin, or a mixture thereof is preferable.
  • an inorganic or Z and an organic filler may be mixed in the resin.
  • a material having a refractive index different from that of the biaxially oriented PET film be a single layer or a laminate of two or more layers.
  • a material having a smaller refractive index than the biaxially oriented PET film it is preferable to use a material having a smaller refractive index than the biaxially oriented PET film.
  • a material having a higher refractive index than the biaxially oriented PET film is used for the layer adjacent to the biaxially oriented PET film, and a smaller It is preferable to select a material having a refractive index.
  • the material constituting such an anti-reflection treatment layer is not particularly limited as long as it satisfies the above-mentioned relationship of the refractive index, whether it is an organic material or an inorganic material.
  • the refractive index whether it is an organic material or an inorganic material.
  • the method of laminating the anti-reflection treatment layer may be a dry coating process such as a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, or a wet coating process such as a gravure method, a reverse method, or a die method. Good.
  • corona discharge treatment plasma treatment, sputter etching treatment, electron beam irradiation treatment, ultraviolet irradiation treatment, primer treatment, A known treatment such as an easy adhesion treatment may be performed.
  • the transparent conductive film of the present invention is particularly suitable for an electroluminescent panel. However, it can also be used as a touch panel member.
  • the touch panel is formed by disposing a pair of panel plates having a transparent conductive thin film via a spacer so that the transparent conductive thin films face each other. When a character is input with the pen from the transparent conductive film side, the touch panel touches the opposite transparent conductive thin films due to the pressure from the pen and turns on electrically, and the pen touches the touch panel. This is to detect the position.
  • the transparent conductive film of the present invention for one or both of the pair of panel plates having the transparent conductive thin film, it is possible to produce a touch panel having high light transmittance and less appearance defects due to heat treatment. .
  • Polyester was dissolved in a mixed solvent of 60% by weight of phenol and 40% by weight of 1,1,2,2-tetracloane, and the solid content was substantially filtered, followed by measurement at 30 ° C.
  • a hard coat agent (Seika Beam EXF01 (B), manufactured by Dainichi Seika Co., Ltd.) to the coated surface of the biaxially oriented polyester film using a # 8 wire bar, and dry at 70 ° C for 1 minute to remove the solvent.
  • a hard coat layer having a thickness of 3 m was formed using a high-pressure mercury lamp under the conditions of 200 mJZcm 2 , irradiation distance of 15 cm and running speed of 5 mZ.
  • the adhesiveness of the obtained film was determined by a test method according to 8.5.1 of JIS-K5400. Specifically, 100 square cuts that penetrated the easy-adhesion layer and reached the base film were made using a cutter guide with a gap of 2 mm.
  • a cellophane adhesive tape (Nichiban No. 405; 24 mm width) was attached to the cut-like surface of the grid, rubbed with an eraser and completely adhered, and then peeled off vertically to visually determine the adhesiveness from the following formula.
  • a cellophane adhesive tape (Nichiban No. 405; 24 mm width) was attached to the cut-like surface of the grid, rubbed with an eraser and completely adhered, and then peeled off vertically to visually determine the adhesiveness from the following formula.
  • Adhesion (%) (1 peeled area Z evaluation area) X 100
  • a 1000 mm wide slit film of the transparent conductive film, on which the transparent conductive thin film is not laminated, is coated with a hard chrome-plated free roll with a diameter of 220 mm and a rotation resistance of lkg (surface roughness Ra: 100 nm).
  • the running conditions at this time were a running speed of 10 mZ, a winding angle of 60 °, and a running tension of 10 kg.
  • the scratches that entered the film surface by this treatment were deposited with platinum and observed with a microscope.
  • the measurement conditions are as follows.
  • 3 Ommx 30 mm size film is heat-treated at 150 ⁇ 3 ° C for 3 hours, left on a flat glass plate at room temperature for 30 minutes, and the amount of film warpage from the glass plate is cut in 0.1 mm increments with calipers. Measure with The measurement was performed at the four corners of the film, and the maximum value was used. The unit is mm.
  • the whitening of the transparent conductive film surface was visually observed with the EL panel turned on and off, and judged according to the following criteria.
  • the coating solution used in the present invention was prepared according to the following method. 95 parts by weight of dimethyl terephthalate, 95 parts by weight of dimethyl isophthalate, 35 parts by weight of ethylene glycol, 145 parts by weight of neopentyl glycol, 0.1 part by weight of zinc acetate and 0.1 part by weight of antimony trioxide in a reaction vessel The mixture was charged and an ester exchange reaction was performed at 180 ° C. for 3 hours.
  • Particle A (Nissan Chemical Industries, Ltd .: Snowtex II L, average particle size 40) nm) 2 1.8 parts by weight of a 0% by weight aqueous dispersion, and 1.1 parts by weight of a 4% by weight aqueous dispersion of particles B (manufactured by Nippon Aerosil Co., Ltd., Aerozil 0X50, average particle diameter 500 nm, average primary particle diameter 40 nm).
  • a coating solution was prepared by adding parts by weight.
  • Particle-free polyethylene terephthalate (PET) resin pellets are heat-treated at 220 ° C for 24 hours under a nitrogen atmosphere at 1.1 atm, containing 0.64 dl Zg of intrinsic viscosity and containing cyclic trimer PET resin pellets with a volume of 3000 ppm were obtained.
  • PET polyethylene terephthalate
  • This pellet is used as a raw material resin for PET film, re-melted at 265 ° C, extruded from a slit die with a residence time of 6 minutes, contacted with a roll at 30 ° C, cooled and solidified, and unstretched film with a thickness of 1750 m I got At this time, a stainless sintered filter medium with a filter particle size (initial filtration efficiency 95%) of 15 m was used as a filter medium for removing foreign substances from the molten PET resin.
  • the unstretched film is heated to 100 ° C. by a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction by a roll group having a peripheral speed difference to be uniaxially oriented. PET film was obtained.
  • the coating solution was subjected to microfiltration with a filter material made of a polypropylene having a filtration particle size (initial filtration efficiency: 95%) of 25 m, applied to one surface of a uniaxially oriented FET film by a reverse roll method, and dried.
  • the content ratio of the particles A and the particles B was 8, and the content of the particles B was 0.42% by weight based on the resin composition of the coating layer.
  • the coated amount of the obtained film after drying was 0.10 g / m 2 .
  • the end of the film was gripped with a clip and guided to a hot air zone heated to 130 ° C. After drying, the film was stretched 4.0 times in the width direction, and then heat-set at 230 ° C.
  • a biaxially oriented PET film having a coating layer on one side with a thickness of 188 m was obtained.
  • a transparent conductive thin film made of indium tin oxide was formed on the non-coated side of the biaxially oriented PET film having a coating layer on one side by the following method.
  • DC power of 2 WZcm 2 was applied using an indium alloy containing 10% by weight of tin as a target (manufactured by Mitsui Kinzoku Mining Co., Ltd.). Further, eight 1 "to 1303 Ji. 111, ⁇ 2 703 0 Ji 171 flow, under an atmosphere of 0. 4 P a, DC magnetron sputtering The film was formed by a ring method. However, instead of normal DC, a pulse of +20 V and a width of 5 s was applied at a period of 50 kHz to prevent arc discharge. Sputtering was performed while cooling the film with a cooling roll at 110 ° C.
  • plasma emission spectroscopy was performed to control the film thickness accurately, and the intensity of 452 nm, which is the emission of indium, was constantly monitored. Since the luminous intensity is proportional to the deposition rate of the Indymoods composite oxide thin film, the luminous intensity was fed back to the film feed speed to control the film thickness. Also, the oxygen partial pressure of the atmosphere is constantly monitored by a sputter process monitor 1 (SPM200 manufactured by Hakuto Co., Ltd.), and the flow rate of the oxygen gas is adjusted so that the degree of oxidation in the thin-film tin oxide composite oxide film becomes constant. And fed back to the DC power supply. As described above, a transparent conductive thin film made of indium-tin tin oxide was deposited to obtain a transparent conductive film.
  • SPM200 sputter process monitor 1
  • a light emitting layer for assembling an EL panel was prepared as follows.
  • a paste (barrier titanate FEL-615, manufactured by Fujikura Kasei Co., Ltd.) dispersed in a fluoroelastomer as a dielectric layer material is used, and a 200-mesh printing plate is used to form a paste on the light emitting layer. Screen printed. Thereafter, drying was performed at 150 ° C for 60 minutes. The thickness after drying was 30 m. Further, as a back electrode, a carbon paste (DY-152H-30, manufactured by Toyobo Co., Ltd.) was screen-printed on the dielectric layer using a 250-mesh printing plate. Thereafter, drying was performed at 150 ° C for 30 minutes. The thickness after drying was 20 m. Also, as an insulating layer, resist
  • Example 3 In preparing the coating liquid, the same method as in Example 1 was performed except that the content ratio of the particles A and the particles B was 20 and the content of the particles B was 0.17% by weight based on the resin composition of the coating layer. A biaxially oriented PET film having a coating layer on one side was obtained by the method. The addition amounts of water and isopropyl alcohol were adjusted while keeping the addition amount ratio constant so that the solid concentration in the coating solution was the same as in Example 1. Further, a transparent conductive thin film was deposited in the same manner as in Example 1 to obtain a transparent conductive film. An EL panel was assembled in the same manner as in Example 1. Example 3
  • Example 4 A biaxially oriented PET film having a coating layer on one side was obtained in the same manner as in Example 1 except that the residence time was 12 minutes. Further, a transparent conductive thin film layer was provided in the same manner as in Example 1 to obtain a transparent conductive film. An EL panel was assembled in the same manner as in Example 1.
  • Example 4 A biaxially oriented PET film having a coating layer on one side was obtained in the same manner as in Example 1 except that the residence time was 12 minutes. Further, a transparent conductive thin film layer was provided in the same manner as in Example 1 to obtain a transparent conductive film. An EL panel was assembled in the same manner as in Example 1. Example 4
  • a trifunctional isocyanate-based resin (manufactured by Nippon Polyurethane Industry Co., Ltd .: Coroneto L) was used, and dibutyltin dilaurate (manufactured by Kyodo Yakuhin Co., Ltd .: S-1260) was used as a catalyst for crosslinking. These were dissolved in a mixed solvent composed of methyl ethyl ketone, toluene and cyclohexanone at the ratios shown in Table 1 to prepare a coating solution having a solid content of 5% by weight. (Formation of thin film layer made of cross-linked resin)
  • the coating surface of the biaxially stretched FET film produced in the same manner as in Example 1 was coated by the reverse coating method using the above coating solution.
  • the gap between the metalling roll and the applicator roll was set to 50 ⁇ m, and heated at 180 ° C. for 30 seconds, followed by drying and crosslinking.
  • the line speed at this time was set to 2 O mZ.
  • the thickness of the formed thin film layer of the crosslinked resin was 0.5 ⁇ m.
  • Example 5 A transparent conductive thin film was formed on the surface of the biaxially stretched PET film on which no thin film layer made of a crosslinked resin was formed, in the same manner as in Example 1, to obtain a transparent conductive film.
  • an EL panel was produced in the same manner as in Example 1 using this transparent conductive film.
  • Example 6 Using trifunctional epoxy resin (Dainippon Ink & Chemicals, Inc .: CR-5L), coating solutions having a solid content concentration of 5% by weight as shown in Table 1 were prepared. This coating solution was applied in the same manner as in Example 4. The thickness of the thin film layer made of a crosslinked resin was set to 0.5 m. A transparent conductive thin film was formed on the surface of the biaxially stretched PET film on which no thin film layer made of a crosslinked resin was formed, in the same manner as in Example 1, to obtain a transparent conductive film. Further, an EL panel was produced in the same manner as in Example 1 using this transparent conductive film.
  • Example 6
  • Example 7 Using a trifunctional isocyanate-based resin (manufactured by Nippon Polyurethane Industry Co., Ltd .: Coronate L) and a copolymerized polyester resin (manufactured by Toyobo Co., Ltd .: Byron 200), the solid content concentration as shown in Table 1 was 5% by weight. Was prepared. This coating solution was applied in the same manner as in Example 4. The thickness of the thin film layer made of cross-linked resin was 0.5 m. A transparent conductive thin film was formed on the surface of the biaxially stretched PET film on which the thin film layer made of the crosslinked resin was not formed in the same manner as in Example 1 to obtain a transparent conductive film. Further, an EL panel was manufactured in the same manner as in Example 1 using this transparent conductive film.
  • Example 7 Example 7
  • a dielectric material is formed on the transparent conductive thin film of the laminate made of the transparent conductive thin film.
  • a titanium oxide thin film was formed as a thin film.
  • titanium was used as a target, and the applied power was 8 W / cm 2 .
  • a +20 V pulse of 5 s width was applied at a period of 100 kHz to prevent arc discharge.
  • the film was wound around a cooling roll at 110 ° C, and sputtering was performed while cooling the film. At this time, the thickness of the titanium oxide was 10 nm.
  • Example 2 In the preparation of the coating solution, the same method as in Example 1 was used except that aggregated silica particles having an average particle size of 1400 nm (Fuji Silicia: Silica 310) were used as the particles A. An axially oriented PET film was obtained. At this time, the content ratio of the particles A and the particles B was 8, and the content of the particles B was 0.42% by weight based on the solid content of the coating layer. Incidentally, the solid content concentration in the coating liquid so that in the same manner as in Example 1, Mizu ⁇ Beauty isopropyl alcohol amount to a constant amount ratio therebetween while adjusted c further transparent in the same manner as in Example 1 A conductive thin film was formed to obtain a transparent conductive film. Using this transparent conductive film, an EL panel was produced in the same manner as in Example 1. Comparative Example 2
  • Example 1 low-pressure drying (1 To rr) treatment at 135 ° C for 6 hours without using FET resin that had been treated with low temperature (1.1 heat treatment at 220 ° C for 24 hours under a nitrogen stream). Except for using the PET resin subjected to A biaxially oriented PET film having a coating layer on the surface was obtained. Further, a transparent conductive thin film was formed in the same manner as in Example 1 to obtain a transparent conductive film. An electroluminescent panel was produced in the same manner as in Example 1 using this transparent conductive film. Comparative Example 3
  • a biaxially oriented PET film having a coating layer on one side was obtained in the same manner as in Example 1 except that the residence time was 25 minutes. Further, a transparent conductive thin film was formed in the same manner as in Example 1 to obtain a transparent conductive film. Using this transparent conductive film, an EL panel was produced in the same manner as in Example 1. Comparative Example 4
  • a transparent conductive film was produced in the same manner as in Example 6, except that the ratio of the trifunctional isocyanate-based resin and the copolymerized polyester resin was changed to the ratio shown in Table 1. Further, an EL panel was produced in the same manner as in Example 1 using this transparent conductive film.
  • Table 2 shows the properties of the biaxially stretched PET film for the above Examples and Comparative Examples.
  • Tables 3 and 4 show the properties of the transparent conductive film.
  • Table 5 shows the characteristics of EL panels manufactured using these transparent conductive films. The invention's effect
  • the transparent conductive film of the present invention uses a highly transparent biaxially oriented polyester film having a coating layer on at least one side as a base material, and has a small change in transparency even after heat treatment during post-processing. Therefore, when used for EL panels, there are very few external defects such as whitening and excellent visibility. Further, by making the warp value when the transparent conductive film of the present invention is subjected to heat treatment at 150 ° C. for 3 hours to 2 mm or less, printing deviation during EL panel production is extremely reduced. Furthermore, the light transmittance of the transparent conductive film has a maximum value in the visible light region of 450 to 600 nm, the light transmittance at this wavelength is set to 80 to 97%, and furthermore, the surface is broken. By lowering the rate, light emission An EL panel with excellent brightness can be obtained,
  • Example 1 0.3 0.8 0.68 0.0
  • Example 2 0.3 0.8 0.68 0.0
  • Example 3 0.5 1.2 0.68 0.0
  • Example 4 0.1 0.3 0.10 0.1
  • Example 5 0.3 0.8 0.12 0.1
  • Example 6 0.5 1.2 0.15 0.1
  • Example 7 0.3 0.8 0.10 0.1 Comparative example 1 0.4 0.8 0.68 0.0 Comparative example 2 13.2 15.2 0.68 0.0 Comparative example 3 12.5 13.8 0.68 0.0 Comparative Example 4 0.9 2.5 0.15 0.1 Table 5
  • Example 1 45 100 ⁇ ⁇ Example 2 45 100 ⁇ ⁇ Example 3 45 100 ⁇ ⁇ Example 4 75 210 ⁇ ⁇ ⁇ Example 5 75 210 ⁇ ⁇ ⁇ Example 6 75 220 ⁇ ⁇ Example 7 75 700 ⁇ ⁇ Compare Example 1 31 80 ⁇ ⁇ Comparative example 2 45 90 ⁇ X Comparative example 3 45 100 ⁇ X Comparative example 4 75 120 ⁇ ⁇

Landscapes

  • Laminated Bodies (AREA)

Abstract

A transparent conductive film comprising a biaxially-oriented polyester film and a transparent conductive thin film formed on one side of the polyester film. A coating layer is formed at least on one side of the polyester film. The total flux transmittance is 90 % or more. The three-dimensional central surface average roughness (SRa) is 0.002 to 0.010 νm. The increase of the haze value when the transparent conductive film is heat-treated at 150 °C for three hours is 2.0 % or less. The transparency is excellent and hardly changes after the heat-treatment during the post-processing. When the transparent conductive film is used as an electroluminescence (EL) panel, the appearance defects such as whitening are few, and the visibility is excellent. An electroluminescence (EL) panel comprising such a transparent conductive film is also provided.

Description

明 細 書 透明導電性フィルム、 及びこれを用いたエレク トロルミネッセンスパネル 技術分野  Description Transparent conductive film and electroluminescent panel using the same
本発明は塗布層を有する二軸配向ポリエステルフィルムを用いた透明導電性フ イルム、 及びこれを用いたエレクト口ルミネッセンス (以後、 E Lと略す) パネ ルに関するものである。 背景技術  The present invention relates to a transparent conductive film using a biaxially oriented polyester film having a coating layer, and an electroluminescence (hereinafter abbreviated as EL) panel using the same. Background art
プラスチックフィルム上に透明かつ低抵抗な化合物薄膜を形成した透明導電性 フィルムは、 その導電性を利用した用途、 例えば、 液晶ディスプレイ、 E Lディ スプレイといったフラットパネルディスプレイや、 タツチパネルの透明電極など 電気、 電子分野の用途に広く使用される。  Transparent conductive films formed by forming a transparent and low-resistance compound thin film on a plastic film are used in applications that use the conductivity, such as flat panel displays such as liquid crystal displays and EL displays, and transparent electrodes for touch panels. Widely used in field applications.
透明導電性薄膜としては、 一般的には、 酸化スズ、 酸化インジウム、 インジゥ ムースズ複合酸化物、 酸化亜鉛などが代表的なものであり、 基板としては、 ポリ エチレンテレフタレ一トをはじめとする各種のプラスチックフィルムが用いられ ている。  Typical examples of the transparent conductive thin film include tin oxide, indium oxide, indium tin oxide, zinc oxide, and the like. Substrates such as polyethylene terephthalate and the like Plastic film is used.
近年、 携帯電話や携帯情報端末などの普及により、 これらの液晶ディスプレイ のバックライ トとして、 E Lパネルが注目されている。 また、 E Lパネルは発光 時の消費電力が少ないため、 携帯機器の光源に適している。 さらに、 表示部の拡 大、 高精細化に伴い、 E Lパネルの高輝度化及び外観欠点の低減に関する要望が 強くなりつつある。  In recent years, with the spread of mobile phones and personal digital assistants, EL panels have attracted attention as backlights for these liquid crystal displays. In addition, EL panels have low power consumption during light emission, and are suitable as light sources for portable devices. Furthermore, with the enlargement and higher definition of the display unit, there is a growing demand for higher brightness and reduced appearance defects of EL panels.
従来、 E Lパネルは、 透明導電性フィルムの透明導電性薄膜上に、 E L発光層、 誘電体層、 背面電極層、絶縁層を順次印刷していく工程により作製される。 また、 透明導電性薄膜と背面電極の間に、 4 0 0 H z程度の交流電圧を印加することで、 発光層に電圧印加して発光させる。 この印加電圧を上げるほど、 発光輝度は高く なる。 また、 透明導電性フィルムの光線透過率が高いほど、 E Lパネルの輝度が 向上するのはいうまでもない。 このような要求に対し、 従来から使用されていた透明導電性フィルムは次のよ うな課題を有していた。 Conventionally, an EL panel is manufactured by a process of sequentially printing an EL light emitting layer, a dielectric layer, a back electrode layer, and an insulating layer on a transparent conductive thin film of a transparent conductive film. Further, by applying an AC voltage of about 400 Hz between the transparent conductive thin film and the back electrode, a voltage is applied to the light emitting layer to emit light. As the applied voltage increases, the light emission luminance increases. Needless to say, the higher the light transmittance of the transparent conductive film, the higher the luminance of the EL panel. In response to such demands, conventionally used transparent conductive films have the following problems.
一般に、 ポリエステルフィルム中には、 滑り性を良好にするために粒子が含有 される。 しかしながら、 これらの粒子をポリエステルフィルムに含有させると、 ポリエステルフィルムの光線透過率を阻害する傾向にある。 さらに、 ポリエステ ルフィルム中に粒子を含有させないか、 または光線透過率を阻害しない程度に少 量しか粒子を含有させない場合には、 一般に、 塗布層中に粒子を含有させ、 滑り 性を改善する必要がある。 その際、 透明性を確保するために、 可視光線の波長以 下の極めて平均粒径が小さい微粒子を用いる必要がある。 しかし、 このような平 均粒径の小さい微粒子のみでは、 透明性は良好であるものの、 滑り性が不十分と なる。 そのため、 コーティング加工工程等の後工程において接触するロールによ つてフィルム表面に傷がつきやすくなる。  Generally, particles are contained in the polyester film to improve the slipperiness. However, when these particles are contained in a polyester film, the light transmittance of the polyester film tends to be impaired. In addition, when the polyester film does not contain particles or contains only a small amount of particles so as not to impair the light transmittance, it is generally necessary to include the particles in the coating layer to improve the slipperiness. is there. At that time, in order to ensure transparency, it is necessary to use fine particles having an extremely small average particle size smaller than the wavelength of visible light. However, with only such fine particles having a small average particle size, although the transparency is good, the slipperiness is insufficient. For this reason, the film surface is likely to be damaged by a roll that comes into contact in a post-process such as a coating process.
また、 E Lパネルの生産時には、 回路加工等の印刷工程で 1 2 0〜 1 5 0 °Cの 加熱処理を行うことが必要である。 しかしながら、 従来の二軸配向ポリエステル フィルムを基材とした透明導電性フィルムは、 前記加熱処理後に、 ヘイズ値の上 昇や白色状の外観欠点が発生するという問題があった。 これらは、 E Lパネルの 視認性や品位の低下になるため、 前記問題点の改善が望まれていた。  In the production of EL panels, it is necessary to perform heat treatment at 120 to 150 ° C in a printing process such as circuit processing. However, the conventional transparent conductive film based on a biaxially oriented polyester film has a problem that the haze value increases and white appearance defects occur after the heat treatment. Since these deteriorate the visibility and quality of the EL panel, improvement of the above-mentioned problems has been desired.
本発明は、 上記の従来の問題点を解決しょうとするものであり、 その第一の目 的は光線透過率が高く、 耐スクラッチ性に優れ、 かつ後加工時の加熱処理後も透 明性の変化が小さい透明導電性フィルムを提供することにある。 また、 第二の目 的は白化などの外観欠点が極めて少なく視認性に優れる E Lパネルを提供するこ とにある。 発明の開示  The present invention is intended to solve the above-mentioned conventional problems. The first purpose is to have high light transmittance, excellent scratch resistance, and transparency even after heat treatment in post-processing. The object of the present invention is to provide a transparent conductive film having a small change in the film thickness. A second purpose is to provide an EL panel that has very few external defects such as whitening and has excellent visibility. Disclosure of the invention
本発明は、 上記のような状況に鑑みなされたものであって、 上記の課題を解決 することができた透明導電性フィルム、 及びこれを用いたエレクトロルミネッセ ンスパネルとは、 以下の通りである。  The present invention has been made in view of the above situation, and a transparent conductive film and an electroluminescence panel using the same that can solve the above problems are as follows. .
即ち、 本発明の第 1の発明は、 二軸配向ポリエステルフィルムの片面に透明導 電性薄膜が積層された透明導電性フィルムであって、 前記二軸配向ポリエステル フィルムの少なくとも片面に塗布層が形成され、 全光線透過率が 9 0 %以上で、 かつ塗布層表面の三次元中心面平均表面粗さ (S R a ) が 0. 0 0 2〜0. 0 1 0 であり、 さらに透明導電性フィルムを 1 5 0 °Cで 3時間加熱処理した時の 加熱処理前後のヘイズ値上昇が 2. 0 %以下であることを特徴とする透明導電性 フィルムである。 That is, the first invention of the present invention is a transparent conductive film in which a transparent conductive thin film is laminated on one surface of a biaxially oriented polyester film, A coating layer is formed on at least one side of the film, the total light transmittance is 90% or more, and the three-dimensional center plane average surface roughness (SR a) of the coating layer surface is 0.002 to 0.01. 0, and the haze value before and after the heat treatment when the transparent conductive film is heat-treated at 150 ° C. for 3 hours is 2.0% or less.
第 2の発明は、 前記透明導電性フィルムを 1 5 0 °Cで 2時間加熱処理した時の 加熱処理前後のヘイズ値上昇が 0. 5 %以下であることを特徴とする第 1の発明 に記載の透明導電性フィルムである。  A second invention is the first invention, wherein when the transparent conductive film is heated at 150 ° C. for 2 hours, a haze value increase before and after the heat treatment is 0.5% or less. It is a transparent conductive film of the description.
第 3の発明は、 前記透明導電性フィルムの全光線透過率が 8 4 %以上であるこ とを特徴とする第 1の発明に記載の透明導電性フィルムである。  A third invention is the transparent conductive film according to the first invention, wherein a total light transmittance of the transparent conductive film is 84% or more.
第 4の発明は、 前記塗布層を構成する樹脂組成物が共重合ポリエステル系樹脂 及びポリゥレタン系樹脂を含むことを特徴とする第 1の発明に記載の透明導電性 フィルムである。  A fourth invention is the transparent conductive film according to the first invention, wherein the resin composition constituting the coating layer contains a copolymerized polyester resin and a polyurethane resin.
第 5の発明は、 前記塗布層を構成する樹脂組成物が分岐したグリコール成分を 含有する共重合ポリエステル樹脂及びプロック型ィソシァネート基を含有する樹 脂を含むことを特徴とする第 1の発明に記載の透明導電性フィルムである。  In a fifth aspect, the resin composition constituting the coating layer includes a copolymerized polyester resin containing a branched glycol component and a resin containing a block-type isocyanate group. Is a transparent conductive film.
第 6の発明は、 前記二軸延伸ポリエステルフィルム中の環状 3量体の含有量が 5 0 0 0 p p m以下であることを特徴とする第 1の発明に記載の透明導電性フィ ルムである。  A sixth invention is the transparent conductive film according to the first invention, wherein the content of the cyclic trimer in the biaxially stretched polyester film is 500 ppm or less.
第 7の発明は、 前記透明導電性フィルムの透明導電性薄膜を形成していない表 面に、 架橋型樹脂からなる薄膜層を設けることを特徴とする第 1の発明に記載の ポリエステルフィルムである。  A seventh invention is the polyester film according to the first invention, wherein a thin film layer made of a crosslinked resin is provided on a surface of the transparent conductive film on which the transparent conductive thin film is not formed. .
第 8の発明は、 第 7の発明に記載の架橋型樹脂が、 イソシァネート系樹脂およ びノまたはエポキシ系樹脂からなることを特徴とする透明導電性フイルムである。 第 9の発明は、 前記透明導電性薄膜の厚みが 8 0 n m以上であることを特徴と する第 1の発明に記載の透明導電性フィルムである。  An eighth invention is a transparent conductive film, characterized in that the cross-linkable resin according to the seventh invention comprises an isocyanate-based resin and an epoxy or epoxy-based resin. A ninth invention is the transparent conductive film according to the first invention, wherein the thickness of the transparent conductive thin film is 80 nm or more.
第 1 0の発明は、 第 9の発明に記載の透明導電性フィルムを 1 5 0 °C、 3時間 加熱した際の 3 O mm x 3 O mmのサイズにおける反り量が 2 mm以下であるこ とを特徴とする透明導電性フィルムである。 第 1 1の発明は、 1 5 0 °Cで 3時間熱処理したときの熱収縮率が 0. 2 %以下 であることを特徴とする第 9の発明に記載の透明導電性フイルムである。 According to a tenth aspect, the transparent conductive film according to the ninth aspect has a warpage of 2 mm or less in a size of 3 O mm x 3 O mm when heated at 150 ° C. for 3 hours. Is a transparent conductive film. The eleventh invention is the transparent conductive film according to the ninth invention, wherein a heat shrinkage when heat-treated at 150 ° C. for 3 hours is 0.2% or less.
第 1 2の発明は、 前記透明導電性フィルムが 4 5 0〜6 0 0 n mの波長範囲内 で光線透過率が最高値を有し、 かっこの最高値が 8 0〜9 7 %であることを特徴 とする第 9の発明に記載の透明導電性フィルムである。  According to a twelfth aspect, the transparent conductive film has a maximum light transmittance in a wavelength range of 450 to 600 nm, and the maximum value of brackets is 80 to 97%. The transparent conductive film according to the ninth invention, characterized in that:
第 1 3の発明は、 表面抵抗率が 1 0〜 1 0 であることを特徴とする第 1 2の発明に記載の透明導電性フィルムである。  A thirteenth aspect of the present invention is the transparent conductive film according to the thirteenth aspect, wherein the surface resistivity is 10 to 10.
第 1 4の発明は、 前記透明導電性薄膜の上に誘電体薄膜を積層したことを特徴 とする第 1 2の発明に記載の透明導電性フィルムである。  A fourteenth invention is the transparent conductive film according to the twenty-second invention, wherein a dielectric thin film is laminated on the transparent conductive thin film.
第 1 5の発明は、 第 1〜 1 4の発明に記載の透明導電性フィルムの透明導電性 薄膜上に、 発光層、 誘電体層、 背面電極層、 絶縁層の順に積層したことを特徴と するエレク ト口ルミネッセンスパネルである。  A fifteenth invention is characterized in that a light-emitting layer, a dielectric layer, a back electrode layer, and an insulating layer are laminated in this order on the transparent conductive thin film of the transparent conductive film according to the first to fourteenth inventions. This is an electronic luminescence panel.
第 1 6の発明は、 前記発光層の発光波長/ I E と第 1 2の発明に記載の透明導電 性フィルムの光線透過率が最高値を有する波長 Π せ、 下記式を満足することを 特徴とするエレク トロルミネッセンスパネルである。  A sixteenth invention is characterized in that the emission wavelength / IE of the light-emitting layer and the wavelength at which the light transmittance of the transparent conductive film according to the second invention has the highest value satisfy the following expression. This is an electroluminescent panel.
λ I - 5 0 n m ≤ ; i E ≤ 1 1 + 5 0 n m 次に、 本発明の実施形態を詳細に説明する。  λ I-50 nm ≤; i E ≤ 11 + 50 nm Next, embodiments of the present invention will be described in detail.
本発明において、 二軸配向ポリエステルフィルムは透明導電性フィルムの基材 として用いられる。 二軸配向ポリエステルフィルムの原料樹脂としては、 ポリエ チレンテレフタレート、 ポリブチレンテレフタレート、 ポリエチレン一 2, 6— ナフタレート又はこれらの樹脂の構成成分を主成分とする共重合体が挙げられる が、 なかでもポリエチレンテレフタレートが特に好適である。  In the present invention, the biaxially oriented polyester film is used as a base for a transparent conductive film. Examples of the raw material resin for the biaxially oriented polyester film include polyethylene terephthalate, polybutylene terephthalate, polyethylene-1,6-naphthalate, and a copolymer mainly composed of the components of these resins. Among them, polyethylene terephthalate Is particularly preferred.
二軸配向ポリエステルフィルムを形成する樹脂として、 ポリエステル共重合体 を用いる場合、 ジカルボン酸成分としては、 アジピン酸、 セバシン酸等の脂肪族 ジカルボン酸、 テレフタル酸、 イソフタル酸、 フタル酸、 及び 2 , 6 _ナフタレ ンジカルボン酸等の芳香族ジカルボン酸、 トリメリロッ ト酸及びピロメリロッ ト 酸等の多官能カルボン酸等が用いられる。 また、 グリコール成分としては、 ェチ レングリコ一ル、 ジエチレングリコール、 1 , 4一ブタンジオール、 プロピレン グリコール及びネオペンチルグリコール等の脂肪酸グリコール; p—キシレング リコール等の芳香族グリコール; 1 , 4—シクロへキサンジメタノール等の脂環 族ダリコール :平均分子量が 1 5 0〜2 0 0 0 0のポリエチレンダリコール等が 用いられる。 好ましい共重合体の比率は 2 0 %未満である。 2 0 %以上ではフィ ルム強度、 透明性、 耐熱性が劣る場合がある。 また、 上記ポリエステル系樹脂に は、 各種の添加剤が含有されていても良い。 添加剤として、 例えば、 帯電防止剤、 UV吸収剤、 安定剤等が挙げられる。 また、 前記の二軸配向ポリエステルフィル ムには、 透明性の点から粒子を含有させないことが好ましい。 When a polyester copolymer is used as the resin forming the biaxially oriented polyester film, the dicarboxylic acid component includes aliphatic dicarboxylic acids such as adipic acid and sebacic acid, terephthalic acid, isophthalic acid, phthalic acid, and 2, 6 _ Aromatic dicarboxylic acids such as naphthalene dicarboxylic acid, etc., and polyfunctional carboxylic acids such as trimellilotic acid and pyromellilotic acid are used. The glycol components include ethylene glycol, diethylene glycol, 1,4-butanediol, and propylene. Fatty acid glycols such as glycol and neopentyl glycol; aromatic glycols such as p-xylene glycol; alicyclic dalicol such as 1,4-cyclohexanedimethanol: polyethylene having an average molecular weight of 150 to 200,000 Dali call is used. Preferred copolymer proportions are less than 20%. If it exceeds 20%, the film strength, transparency and heat resistance may be poor. Further, the polyester-based resin may contain various additives. Examples of the additive include an antistatic agent, a UV absorber, and a stabilizer. It is preferable that the biaxially oriented polyester film does not contain particles from the viewpoint of transparency.
また、 二軸配向ポリエステルフィルムの出発原料であるポリエステル樹脂の固 有粘度は、 0. 4 5〜0. 7 0 d 1 Z gの範囲が好ましい。 固有粘度が 0. 4 5 d 1 Z g未満であると、ポリエステルフィルム延伸時に破断が多発しやすくなる。 一方、 固有粘度が 0. 7 0 d l Z gを超えると、 濾圧上昇が大きくなり高精度濾 過が困難となりやすい。  The intrinsic viscosity of the polyester resin, which is the starting material of the biaxially oriented polyester film, is preferably in the range of 0.45 to 0.70 d1Zg. If the intrinsic viscosity is less than 0.45 d1 Zg, rupture tends to occur frequently during stretching of the polyester film. On the other hand, if the intrinsic viscosity exceeds 0.70 dl Zg, the increase in filtration pressure becomes large, and high-precision filtration tends to be difficult.
二軸配向ポリエステルフィルムは、 その少なくとも片面に塗布層を設ける必要 がある。 前記塗布層は、 未延伸または一軸延伸後のポリエステルフィルムの少な くとも片面に設けられ、 その後少なくとも一軸方向に延伸 ·熱固定処理するイン ラインコ一ト法により積層することが好ましい。 インラインコート法により積層 された塗布層中に適切な粒径の微粒子を含有させ、 滑り性を改善することで、 良 好な巻き取り性、 耐スクラッチ性を付与することができる。 このため、 二軸配向 ポリエステルフィルム中に微粒子を含有させる必要がなく、 高透明性を保持する ことができる。  It is necessary to provide a coating layer on at least one side of the biaxially oriented polyester film. The coating layer is preferably provided on at least one surface of the unstretched or uniaxially stretched polyester film, and then laminated by an inline coating method in which the film is stretched in at least one axis direction and heat-fixed. By incorporating fine particles of an appropriate particle size into the coating layer laminated by the in-line coating method and improving the slipperiness, it is possible to impart favorable winding properties and scratch resistance. Therefore, it is not necessary to include fine particles in the biaxially oriented polyester film, and high transparency can be maintained.
前記塗布層を構成する樹脂組成物は、 共重合ポリエステル系樹脂 (A) 及びポ リウレタン系樹脂 (B) を含有していることが好ましい。 共重合ポリエステル系 樹脂単独では、 ポリエステルフィルムとの接着性は十分であるが、 ハードコート に用いられるアクリル系樹脂との接着性が不十分になりやすい。 また、 ポリウレ タン系樹脂単独ではアクリル系樹脂との接着性には優れるが、 ポリエステルフィ ルムとの接着性が不十分になりやすい。  The resin composition constituting the coating layer preferably contains a copolymerized polyester resin (A) and a polyurethane resin (B). When the copolymerized polyester resin alone is used, the adhesion to the polyester film is sufficient, but the adhesion to the acrylic resin used for the hard coat tends to be insufficient. Moreover, although the polyurethane resin alone has excellent adhesiveness with the acrylic resin, the adhesiveness with the polyester film tends to be insufficient.
前記共重合ポリエステル系樹脂 (A) は、 ジカルボン酸成分と分岐したグリコ —ル成分を構成成分とすることが特に好ましい。 前記の分岐したグリコール成分 とは、 例えば、 2 , 2—ジメチル一 1, 3—プロパンジオール、 2—メチルー 2 一ェチル一 1 , 3—プロパンジオール、 2—メチル一 2—ブチル一 1 , 3—プロ パンジオール、 2—メチル一 2—プロピル一 1, 3—プロパンジオール、 2—メ チル一 2—イソプロピル一 1 . 3—プロパンジオール、 2—メチル _ 2— n—へ キシル一 1, 3—プロパンジオール、 2. 2—ジェチル一 1 , 3—プロパンジォ ール、 2—ェチル _ 2— n—ブチル一 1 , 3—プロパンジオール、 2—ェチル一 2— n—へキシル一 1, 3—プロパンジオール、 2 , 2—ジ一 n—ブチルー 1, 3—プロパンジオール、 2— n—ブチル一 2—プロピル一 1 , 3—プロパンジォ ール、 及び 2 , 2—ジ一 n—へキシル一 1 , 3—プロパンジオールなどが挙げら れる。 It is particularly preferable that the copolymerized polyester resin (A) contains a dicarboxylic acid component and a branched glycol component as constituent components. Said branched glycol component Is, for example, 2,2-dimethyl-l, 3-propanediol, 2-methyl-l-ethyl-l, l, 3-propanediol, 2-methyl-l-butyl-l, l, 3-propanediol, 2- Methyl-2-propyl-1-1,3-propanediol, 2-methyl-1-isopropyl-1-1.3-propanediol, 2-methyl_2-n-hexyl-1,3-propanediol, 2.2 —Jetyl-1,3-propanediol, 2-ethyl-2-n-butyl-1,3-propanediol, 2-ethyl-2-n-hexyl-1,3-propanediol, 2,2- Di-n-butyl-1,3-propanediol, 2-n-butyl-12-propyl-11,3-propanediol, and 2,2-di-n-hexyl-11,3-propanediol No.
上記の分岐したグリコール成分は、 全グリコール成分の中に、 好ましくは 1 0 モル%以上の割合で、 さらに好ましくは 2 0モル%以上の割合で含有される。 上 記化合物以外のダリコール成分としては、 エチレンダリコールが最も好ましい。 少量であれば、 ジエチレングリコール、 プロピレングリコール、 ブタンジオール、 へキサンジオールまたは 1 , 4ーシクロへキサンジメタノールなどを用いても良 い。  The branched glycol component is preferably contained in a proportion of at least 10 mol%, more preferably at a proportion of at least 20 mol%, in all the glycol components. As the darichol component other than the above compounds, ethylene dalicol is most preferred. If it is a small amount, diethylene glycol, propylene glycol, butanediol, hexanediol or 1,4-cyclohexanedimethanol may be used.
また、 共重合ポリエステル系樹脂 (A) の他の構成成分である、 ジカルボン酸 成分としては、 テレフタル酸およびイソフタル酸が最も好ましい。 少量であれば 他のジカルボン酸、 特に、 ジフエ二ルカルボン酸及び 2 , 6—ナルタレンジカル ボン酸などの芳香族ジカルボン酸を加えて共重合させてもよい。 前記ジカルボン 酸成分の他に、 水分散性を付与させるため、 5—スルホイソフタル酸を 1〜 1 0 モル%の範囲で使用するのが好ましく、 例えば、 スルホテレフタル酸、 5—スル ホイソフタル酸、 4—スルホナフタレンイソフタル酸ー 2 , 7—ジカルボン酸お よび 5— (4—スルフオフヱノキシ) イソフタル酸及びその塩類等を挙げること ができる。  As the dicarboxylic acid component, which is another component of the copolymerized polyester resin (A), terephthalic acid and isophthalic acid are most preferable. If it is a small amount, another dicarboxylic acid, in particular, an aromatic dicarboxylic acid such as diphenyl carboxylic acid and 2,6-naltalenedicarboxylic acid may be added and copolymerized. In addition to the dicarboxylic acid component, it is preferable to use 5-sulfoisophthalic acid in the range of 1 to 10 mol% in order to impart water dispersibility. For example, sulfoterephthalic acid, 5-sulfoisophthalic acid, —Sulfonaphthalene isophthalic acid-2,7-dicarboxylic acid and 5- (4-sulfofenoxy) isophthalic acid and salts thereof.
前記ポリウレタン系樹脂 (B) は、 例えば、 ブロック型イソシァネート基を含 有する樹脂であって、 末端イソシァネート基を親水性基で封鎖 (以後、 ブロック と略す) した、 熱反応型の水溶性ウレタンなどが挙げられる。 上記イソシァネー ト基のブロック化剤としては、 重亜硫酸塩類及びスルホン酸基を含有したフヱノ ール類、 アルコール類、 ラクタム類ォキシム類及び活性メチレン化合物類等が挙 げられる。 The polyurethane resin (B) is, for example, a resin having a block-type isocyanate group, and is a heat-reactive water-soluble urethane having a terminal isocyanate group blocked with a hydrophilic group (hereinafter, abbreviated as a block). No. Examples of the blocking agent for the isocyanate group include phenols containing bisulfites and sulfonic acid groups. Alcohols, lactams, oximes and active methylene compounds.
プロック化されたィソシァネ一ト基は、 ゥレタンプレポリマ一を親水化あるい は水溶化する。 フィルムへの塗布後、 乾燥工程あるいは熱固定処理工程で、 上記 樹脂に熱エネルギ一が与えられると、 ブロック化剤がイソシァネート基からはず れるため、 上記樹脂は自己架橋した編み目に混合した水分散性共重合ポリエステ ル樹脂を固定化するとともに、 上記樹脂の末端基等とも反応する。 塗布液調整中 の樹脂は親水性であるため耐水性が悪いが、 塗布、 乾燥、 熱セッ 卜して熱反応が 完了すると、 ウレタン樹脂の親水基すなわちブロック化剤がはずれるため、 耐水 性が良好な塗膜が得られる。  The blocked isocyanate groups hydrophilize or solubilize the polyurethane prepolymer. When heat energy is applied to the resin in the drying step or the heat setting treatment step after application to the film, the blocking agent is removed from the isocyanate group. It not only fixes the copolymerized polyester resin but also reacts with the terminal groups of the resin. The resin being prepared is poor in water resistance because it is hydrophilic, but when the coating, drying and heat setting are completed and the thermal reaction is completed, the hydrophilic group of the urethane resin, that is, the blocking agent, comes off and the water resistance is good. Coating film is obtained.
上記ブロック化剤のうち、 熱処理温度、 熱処理時間が適当で、 工業的に広く用 いられるものとして、 重亜硫酸塩類が最も好ましい。  Among the above blocking agents, bisulfites are most preferable as those which are suitable for heat treatment temperature and heat treatment time and are widely used industrially.
上記ポリウレタン系樹脂 (B ) において使用される、 ウレタンプレボリマーの 化学組成としては、 (a ) 分子内に 2個以上の活性水素原子を有する、 有機ポリ ィソシァネート、 あるいは分子内に少なくとも 2個の活性水素原子を有する分子 量が 2 0 0〜2 0 , 0 0 0の化合物、 (b ) 分子内に 2個以上のイソシァネート 基を有する、 有機ポリイソシァネート、 あるいは、 (c ) 分子内に少なくとも 2 個活性水素原子を有する鎖伸長剤を反応せしめて得られる、 末端イソシァネート 基を有する化合物が好適である。  The chemical composition of the urethane prepolymer used in the polyurethane resin (B) is as follows: (a) an organic polysocyanate having two or more active hydrogen atoms in the molecule, or at least two active hydrogen atoms in the molecule. A compound having a hydrogen atom and a molecular weight of 200 to 200,000; (b) an organic polyisocyanate having two or more isocyanate groups in the molecule; or (c) at least a molecule in the molecule. A compound having a terminal isocyanate group obtained by reacting a chain extender having two active hydrogen atoms is preferred.
上記 (a ) の化合物として一般に知られているのは、 末端又は分子中に 2個以 上のヒドロキシル基、 カルボキシル基、 アミノ基あるいはメルカプト基を含むも のであり、 特に好ましい化合物としては、 ポリエーテルポリオールおよびポリェ 一テルエステルポリオール等が挙げられる。  The compound (a) is generally known as a compound containing two or more hydroxyl groups, carboxyl groups, amino groups or mercapto groups at the terminal or in the molecule. Particularly preferred compounds are polyethers. Polyols and polyester ester polyols.
ポリエーテルポリオ一ルとしては、 例えば、 エチレンォキシド及び、 プロピレ ンォキシド等アルキレンォキシド類、 あるいはスチレンォキシドおよびェピク口 ルヒドリン等を重合した化合物、 あるいはそれらのランダム重合、 ブロック重合 あるいは多価アルコールへの付加重合を行って得られた化合物がある。  Examples of the polyether polyol include, for example, alkylene oxides such as ethylene oxide and propylene oxide, or compounds obtained by polymerizing styrene oxide and epihydric hydrin, or the like, or random polymerization, block polymerization, or addition to polyhydric alcohol. There are compounds obtained by performing polymerization.
ポリエステルポリオール及びポリエーテルエステルポリオールとしては、 主と して直鎖状あるいは分岐状の化合物が挙げられる。 コハク酸、 アジピン酸、 フタ ル酸及び無水マレイン酸等の多価の飽和あるいは不飽和カルボン酸、 あるいは該 カルボン酸無水物等と、 エチレングリコール、 ジエチレングリコール、 1 , 4— ブタンジオール、 ネオペンチルグリコ一ル、 1 , 6—へキサンジオール及びトリ メチロールプロパン等の多価の飽和及び不飽和のアルコール類、 比較的低分子量 のポリエチレングリコールおよびポリプロピレングリコール等のポリアルキレン エーテルダリコール類、 あるいはそれらアルコール類の混合物とを縮合すること により得ることができる。 As the polyester polyol and the polyetherester polyol, linear or branched compounds are mainly mentioned. Succinic acid, adipic acid, lid To polyhydric saturated or unsaturated carboxylic acids such as maleic acid and maleic anhydride, or the carboxylic anhydrides, etc., to ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, 1,6- By condensing polyhydric saturated and unsaturated alcohols such as xandiol and trimethylolpropane, polyalkylene ether daricols such as relatively low molecular weight polyethylene glycol and polypropylene glycol, or a mixture of these alcohols. Obtainable.
さらに、 ポリエステルポリオールとしては、 ラクトン及びヒドロキシ酸から得 られるポリエステル類、 またポリエーテルエステルポリオールとしては、 あらか じめ製造されたポリエステル類にエチレンォキシドあるいはプロピレンォキシド 等を付加せしめたポリエーテルエステル類も使用することができる。  Further, polyester polyols include polyesters obtained from lactones and hydroxy acids, and polyether ester polyols include polyether esters obtained by adding ethylene oxide or propylene oxide to polyesters prepared in advance. Kinds can also be used.
上記 (b ) の有機ポリイソシァネートとしては、 トルイレンジイソシァネート の異性体類、 4, 4ージフヱニルメタンジイソシァネート等の芳香族ジイソシァ ネート類、 キシリ レンジィソシァネート等の芳香族脂肪族ジイソシァネート類、 イソホロンジイソシァネート及び 4 , 4—ジシクロへキシルメタンジイソシァネ ート等の脂環式ジイソシァネート類、 へキサメチレンジイソシァネート、 および 2 , 2 , 4—トリメチルへキサメチレンジイソシァネート等の脂肪族ジイソシァ ネート類、 あるいはこれらの化合物を単一あるいは複数でトリメチロールプロパ ン等とあらかじめ付加させたポリィソシァネート類が挙げられる。  Examples of the organic polyisocyanate (b) include isomers of toluylene diisocyanate, aromatic diisocyanates such as 4,4-diphenylmethane diisocyanate, and xylylene diisocyanate. Alicyclic diisocyanates such as aromatic aliphatic diisocyanates, isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, and 2,2,4 — Aliphatic diisocyanates such as trimethylhexamethylene diisocyanate, and polyisocyanates in which one or more of these compounds are added in advance to trimethylolpropane or the like.
上記 (c ) の少なくとも 2個の活性水素を有する鎖伸長剤としては、 エチレン グリコール、 ジエチレングリコール、 1 , 4—ブタンジオール、 及び 1 , 6—へ キサンジオール等のダリコール類、 グリセリン、 トリメチロールプロパン、 およ びペンタエリスリ トール等の多価アルコール類、 エチレンジァミン、 へキサメチ レンジァミン、 およびピぺラジン等のジァミン類、 モノエタノールァミンおよび ジエタノールアミン等のアミノアルコール類、 チオジェチレンダルコール等のチ ォジグリコール類、 あるいは水が挙げられる。  Examples of the chain extender having at least two active hydrogens of the above (c) include dalicols such as ethylene glycol, diethylene glycol, 1,4-butanediol, and 1,6-hexanediol, glycerin, trimethylolpropane, And polyhydric alcohols such as pentaerythritol, diamines such as ethylenediamine, hexamethylenediamine and piperazine; aminoalcohols such as monoethanolamine and diethanolamine; thiodiglycols such as thioethylendarcol; Or water.
ウレタンプレボリマ一を合成するには通常、 上記鎖伸長剤を用いた一段式ある いは多段式イソシァネート重付加方法により、 1 5 0 °C以下、 好ましくは 7 0〜 1 2 0 °Cの温度において、 5分ないし数時間反応させる。 活性水素原子に対する イソシァネート基の比は、 1以上であれば自由に選べるが、 得られるウレタンプ レポリマー中に遊離のイソシァネート基が残存することが必要である。 さらに、 遊離のイソシァネ一ト基の含有量は 10重量%以下であればよいが、 ブロック化 された後のウレタンポリマー水溶液の安定性を考慮すると、 7重量%以下である ことが好ましい。 In order to synthesize the urethane prepolymer, a single-stage or multi-stage isocyanate polyaddition method using the above-described chain extender is carried out at a temperature of 150 ° C or lower, preferably 70 ° C to 120 ° C. And react for 5 minutes to several hours. For active hydrogen atom The ratio of the isocyanate groups can be freely selected as long as it is 1 or more, but it is necessary that free isocyanate groups remain in the obtained urethane prepolymer. Further, the content of the free isocyanate group may be 10% by weight or less, but is preferably 7% by weight or less in consideration of the stability of the urethane polymer aqueous solution after blocking.
得られた上記ウレタンプレボリマーは、 好ましくは重亜硫酸塩を用いてブロッ ク化を行う。 重亜硫酸塩水溶液と混合し、 約 5分〜 1時間、 よく攪拌しながら反 応を進行させる。 反応温度は 60°C以下とするのが好ましい。 その後、 水で希釈 して適当な濃度にして、 熱反応型水溶性ウレタン組成物とする。 該組成物は使用 する際、 適当な濃度および粘度に調製するが、 通常 80〜200°C前後に加熱す ると、 ブロック剤の重亜硫酸塩が解離し、 活性なイソシァネート基が再生するた めに、 プレポリマーの分子内あるいは分子間で起こる重付加反応によってポリゥ レタン重合体が生成したり、 また他の官能基への付加を起こす性質を有するよう になる。  The obtained urethane prepolymer is preferably subjected to blocking using bisulfite. Mix with an aqueous bisulfite solution and allow the reaction to proceed with good stirring for about 5 minutes to 1 hour. The reaction temperature is preferably set to 60 ° C or lower. Thereafter, the mixture is diluted with water to an appropriate concentration to obtain a heat-reactive water-soluble urethane composition. When the composition is used, it is adjusted to an appropriate concentration and viscosity.However, if the composition is heated to about 80 to 200 ° C, the bisulfite of the blocking agent is dissociated, and the active isocyanate group is regenerated. In addition, a polyurethane polymer is formed by a polyaddition reaction occurring within or between molecules of the prepolymer, or has a property of causing addition to another functional group.
上記で説明したブロック型イソシァネート基を含有する樹脂 (Β ') の 1例と しては、 第一工業製薬 (株) 製の商品名エラストロンが代表的に例示される。 ェ ラスト口ンは、 重亜硫酸ソーダによってイソシァネート基をブロックしたもので あり、 分子末端に強力な親水性を有する、 力ルバモイルスルホネート基が存在す るため、 水溶性となっている。  As an example of the resin (Β ') containing a block-type isocyanate group described above, Elastron (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) is typically exemplified. The elastomeric mouth is made by blocking the isocyanate group with sodium bisulfite, and is water-soluble due to the presence of a strong hydrophilic and terminal rubamoyl sulfonate group at the molecular end.
本発明で使用される、 分岐したダリコール成分を含有する共重合ポリエステル 樹脂 、 、 およびブロック型イソシァネート基を含有する樹脂 (Β ') を混合 して塗布液を調製する場合、 樹脂 (Α一) と樹脂 (Β ') の重量比は (Α ') : (Β一) =90 : 10〜1 0 : 90が好ましく、 更に好ましくは (Α ') : (Β 一) =80 : 20〜 20 : 80の範囲である。 固形分重量に対する上記樹脂 (Α 一) の割合が 10重量%未満では、 基材フィルムへの塗布性が不良で、 表面層と 該フィルムとの間の接着性が不十分となる。固形分重量に対する上記樹脂(Β ') の割合が 10重量%未満の場合には、 UV硬化タイプのハードコートにおいては 実用性のある接着性が得られない。  When a coating liquid is prepared by mixing a copolymerized polyester resin containing a branched dalicol component and a resin containing a block-type isocyanate group (Β ′) used in the present invention, the resin (Α 一) and The weight ratio of the resin (Β ′) is preferably (Α ′) :( Β1) = 90: 10 to 10:90, more preferably (Α ′) :( Β1) = 80: 20 to 20:80. Range. If the ratio of the resin (樹脂) to the weight of the solid content is less than 10% by weight, the coatability to the base film is poor, and the adhesiveness between the surface layer and the film becomes insufficient. When the ratio of the resin (Β ′) to the weight of the solid content is less than 10% by weight, practical adhesiveness cannot be obtained with a UV-curable hard coat.
本発明において、 塗布層形成のための塗布液として、 水性塗布液を用いるのが 好ましい。 水性塗布液の組成物には、 接着性を阻害しない範囲で、 帯電防止剤、 紫外線吸収剤、 可塑剤、 顔料、 有機フィラーおよび潤滑剤等の種々の添加剤を混 合してもよい。 さらに、 塗布液が水性であるため、 接着性を阻害しない範囲で、 他の水溶性樹脂、水分散性樹脂およびェマルジヨン等を塗布液に添加してもよい。 前記水性塗布液には、熱架橋反応を促進させるために、触媒を添加しても良く、 例えば、 無機物質、 塩類、 有機物質、 アルカリ性物質、 酸性物質および含金属有 機化合物等、種々の化学物質が用いられる。また水溶液の p Hを調節するために、 アル力リ性物質あるいは酸性物質を添加してもよい。 In the present invention, an aqueous coating solution is used as a coating solution for forming a coating layer. preferable. Various additives such as an antistatic agent, an ultraviolet absorber, a plasticizer, a pigment, an organic filler, and a lubricant may be mixed with the composition of the aqueous coating solution as long as the adhesiveness is not impaired. Further, since the coating solution is water-based, other water-soluble resins, water-dispersible resins, emulsions and the like may be added to the coating solution as long as the adhesiveness is not impaired. A catalyst may be added to the aqueous coating solution to promote a thermal crosslinking reaction. For example, various chemicals such as inorganic substances, salts, organic substances, alkaline substances, acidic substances, and metal-containing organic compounds can be used. The substance is used. In order to adjust the pH of the aqueous solution, an alkaline substance or an acidic substance may be added.
上記水性塗布液を基材フィルム表面に塗布する際には、 前記フィルムへの濡れ 性を向上させ、 塗布液を均一にコートするために、 公知のァニオン性活性剤およ びノニオン性の界面活性剤を必要量添加することが好ましい。 塗布液に用いる溶 剤は、 水の他にエタノール、 イソプロピルアルコールおよびべンジルアルコール 等のアルコール類を、 全塗布液に占める割合が 5 0重量%未満となるまで混合し てもよい。  When the aqueous coating solution is applied to the surface of the base film, a known anionic active agent and a known nonionic surfactant are used to improve the wettability to the film and uniformly coat the coating solution. It is preferable to add a necessary amount of the agent. The solvent used for the coating solution may be mixed with alcohols such as ethanol, isopropyl alcohol and benzyl alcohol, in addition to water, until the proportion of the solvent in the total coating solution is less than 50% by weight.
さらに、 1 0重量%未満であれば、 アルコール類以外の有機溶剤を溶解可能な 範囲で混合してもよい。 ただし、 塗布液中、 アルコール類とその他の有機溶剤と の合計量は、 5 0重量%未満とすることが好ましい。 有機溶剤の添加量が 5 0重 量%未満であれば、 塗布後の乾燥性が向上するとともに、 水のみの場合と比較し て塗布層の外観が良好となる。 5 0重量%以上では、 溶剤の蒸発速度が速く塗工 中に塗布液の濃度変化が起こり、 粘度が上昇して塗工性が低下するために、 塗布 膜の外観不良を起こす恐れがあり、 さらには火災などの危険性も考えられる。 また、 塗布量 (フィルム単位面積当りの固形分重量) は、 0. 0 5〜0. 5 0 g Zm2が好ましい。 塗布量が 0. 0 5 g Zm2未満であると、 接着性が不十分と なる。 塗布量が 0. 5 0 g Zm 2を超えると、 全光線透過率が低下し、 好ましく ない。 Furthermore, if it is less than 10% by weight, an organic solvent other than alcohols may be mixed as long as it can be dissolved. However, the total amount of alcohols and other organic solvents in the coating liquid is preferably less than 50% by weight. When the amount of the organic solvent added is less than 50% by weight, the drying property after coating is improved, and the appearance of the coating layer becomes better than when water alone is used. If the content is more than 50% by weight, the solvent evaporates at a high rate, and the concentration of the coating solution changes during coating, and the viscosity increases to lower the coating property, which may cause poor appearance of the coating film. In addition, there is a risk of fire. Further, the coating amount (the weight of the solid content per unit area of the film) is preferably 0.05 to 0.50 g Zm 2 . If the coating amount is less than 0.05 g Zm 2 , the adhesiveness becomes insufficient. If the coating amount exceeds 0.50 g Zm 2 , the total light transmittance decreases, which is not preferable.
二軸配向ポリエステルフィルムは、 全光線透過率が 9 0 %以上である必要があ り、 9 1 %以上が好ましく、 特に好ましくは 9 2 %以上である。 全光線透過率が 9 0 %未満であると、透明導電性フィルムとしての全光線透過率が不十分であり、 好ましくない。 二軸配向ポリエステルフィルムの全光線透過率を 9 0 %以上にするためには、 基材フィルム中に粒子を含有させないことが好ましい。 基材フィルム中に粒子を 含有しない場合、 塗布層に耐スクラッチ性、 フィルムの巻き上げ性を向上させる ために、 塗布層中に適切な粒子を含有させることが好ましい。 The biaxially oriented polyester film needs to have a total light transmittance of 90% or more, preferably 91% or more, and particularly preferably 92% or more. When the total light transmittance is less than 90%, the total light transmittance as a transparent conductive film is insufficient, which is not preferable. In order to make the total light transmittance of the biaxially oriented polyester film 90% or more, it is preferable not to include particles in the base film. When no particles are contained in the base film, it is preferable to include appropriate particles in the coating layer in order to improve the scratch resistance and the winding property of the film in the coating layer.
かかる粒子の例としては、 炭酸カルシウム、 リン酸カルシウム、 シリカ、 ガラ スフイラ一、 カオリン、 タルク、 二酸化チタン、 アルミナ、 硫酸バリウム、 フッ 化カルシウム、 フッ化リチウム、 ゼォライ ト、 二硫化モリブデン等の無機粒子、 架橋高分子粒子、 シリコン樹脂粒子シユウ酸カルシウム、 等の有機粒子を挙げる ことができる。 なかでもシリカ粒子はポリエステル樹脂と屈折率が比較的近く、 高透明のフィルムを得やすいため最も好適である。  Examples of such particles include inorganic particles such as calcium carbonate, calcium phosphate, silica, glass filler, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum disulfide, and the like. Organic particles such as polymer particles, silicon resin particles and calcium oxalate can be given. Among them, silica particles are most preferable because they have a refractive index relatively close to that of the polyester resin and can easily obtain a highly transparent film.
二軸配向ポリエステルフィルムの塗布層中には、 2種類の粒子 (粒子 A及び粒 子 B) を含有させることが好ましい。 粒子 Aの平均粒径は 2 0〜3 0 0 n mが好 ましく、 さらに好ましくは 3 0〜 1 0 0 n mである。 粒子 Aの平均粒径が 2 0 n m未満であると、 耐スクラッチ性が悪化する傾向がある。 一方、 粒子 Aの平均粒 径が 3 0 0 n mを超えると、 全光線透過率が低くなる傾向がある。  It is preferable that two types of particles (particle A and particle B) are contained in the coating layer of the biaxially oriented polyester film. The average particle size of the particles A is preferably from 20 to 300 nm, more preferably from 30 to 100 nm. If the average particle size of the particles A is less than 20 nm, the scratch resistance tends to deteriorate. On the other hand, when the average particle diameter of the particles A exceeds 300 nm, the total light transmittance tends to decrease.
本発明では、 粒子 Aに粒子 Bを併用することで、 耐スクラッチ性をさらに向上 させることができる。 粒子 Bの平均粒径は 3 0 0 ~ 1 O O O n mが好ましく、 さ らに好ましくは 4 0 0〜8 0 0 n mである。 粒子 Bの平均粒径が 3 0 0 n m未満 であると、 耐スクラッチ性が悪化する傾向がある。 一方、 粒子 Bの平均粒径が 1 O O O n mを超えると、 全光線透過率が低くなる傾向がある。 また、 粒子 Bは一 次粒子が凝集した凝集粒子であることが好ましい。 粒子 Bの凝集状態での平均粒 径と一次粒子との平均粒径の比を 6倍以上とすることは、 耐スクラッチ性の点か ら特に好ましい。  In the present invention, the scratch resistance can be further improved by using the particles A in combination with the particles A. The average particle size of the particles B is preferably from 300 to 100 nm, more preferably from 400 to 800 nm. If the average particle size of the particles B is less than 300 nm, the scratch resistance tends to deteriorate. On the other hand, when the average particle diameter of the particles B exceeds 1 OOOnm, the total light transmittance tends to decrease. Further, the particles B are preferably aggregated particles obtained by aggregating primary particles. It is particularly preferable that the ratio of the average particle diameter of the particles B in the aggregated state to the average particle diameter of the primary particles be 6 times or more from the viewpoint of scratch resistance.
さらに、 塗布層中の粒子 Aと粒子 Bの含有量比 (AZB) を 5〜3 0とし、 か つ粒子 Bの含有量を塗布層の固形分に対し 0. 1〜1重量%とすることは、 塗布 層表面の三次元中心面平均表面粗さ (S R a ) を 0. 0 0 2〜0. 0 1 0 と するのに好適であり、 上記範囲になるようそれぞれの粒子含有量を設定すること が必要である。 特に、 塗布層の樹脂組成物に対し、粒子 Bの含有量が 1重量%を 超えると、 全光線透過率の低下が著しい。 上記に記載した塗布層の樹脂組成物と は、 樹脂 A、 樹脂 B、 粒子 A、 及び粒子 Bからなる固形分を意味する。 Further, the content ratio (AZB) of the particles A and B in the coating layer should be 5 to 30 and the content of the particles B should be 0.1 to 1% by weight based on the solid content of the coating layer. Is suitable for setting the three-dimensional center plane average surface roughness (SR a) of the coating layer surface to 0.002 to 0.010, and setting the respective particle contents to be within the above range. It is necessary to. In particular, when the content of the particles B exceeds 1% by weight with respect to the resin composition of the coating layer, the total light transmittance is significantly reduced. With the resin composition of the coating layer described above Means a solid content composed of resin A, resin B, particle A, and particle B.
さらに、 二軸配向ポリエステルフィルムの全光線透過率を 9 0 %以上にするた めには、 塗布液及び基材ポリエステルフィルム中の異物の除去、 及び未延伸シー ト作成時のシート全体 (特に、 チルロールに接触しない面) を急冷することが有 効である。  Furthermore, in order to increase the total light transmittance of the biaxially oriented polyester film to 90% or more, it is necessary to remove foreign substances from the coating liquid and the base polyester film, and to prepare an unstretched sheet (particularly, It is effective to rapidly cool the surface that does not contact the chill roll.
塗布液を精密濾過するための濾材は、濾過粒子サイズ (初期濾過効率: 9 5 %) が 2 5〃m以下であることが好ましい。 濾過粒子サイズが 2 5 mを超えると、 粗大凝集物の除去が不十分となりやすい。 そのため、 濾過で除去できなかった粗 大凝集物は、 塗布乾燥後の一軸延伸又は二軸延伸工程での延伸応力により広がつ て、 1 0 0 m以上の凝集物として認識され、 フィルムの全光線透過率を低下さ せる原因となる。  The filter medium for microfiltration of the coating solution preferably has a filtration particle size (initial filtration efficiency: 95%) of 25 m or less. If the filtration particle size exceeds 25 m, the removal of coarse aggregates tends to be insufficient. For this reason, coarse aggregates that could not be removed by filtration are spread as a result of stretching stress in the uniaxial stretching or biaxial stretching process after coating and drying, and are recognized as aggregates of 100 m or more. It causes the light transmittance to decrease.
塗布液を精密濾過するための濾材のタイプは、 上記性能を有していれば特に限 定はなく、 例えば、 フィラメント型、 フ Iルト型、 メッシュ型が挙げられる。 塗 布液を精密濾過するための濾材の材質は、 上記性能を有しかつ塗布液に悪影響を 及ばさない限り特に限定はなく、 例えば、 ステンレス、 ポリエチレン、 ポリプロ ピレン、 ナイロン等が挙げられる。  There is no particular limitation on the type of filter medium for finely filtering the coating solution as long as it has the above performance, and examples thereof include a filament type, a filter type, and a mesh type. The material of the filter medium for precision filtration of the coating liquid is not particularly limited as long as it has the above-mentioned performance and does not adversely affect the coating liquid, and examples thereof include stainless steel, polyethylene, polypropylene, and nylon.
基材ポリエステルフィルムについても、 原料ポリエステル樹脂中に含まれてい る異物を除去するために、 溶融押出しの際に溶融ポリエステル樹脂が約 2 8 0 °C に保たれた任意の場所で、 高精度濾過を行う。 溶融ポリエステル樹脂の高精度濾 過に用いられる濾材は特に限定はされないが、 ステンレス焼結体の濾材の場合、 S i、 T i、 S b、 G e、 C uを主成分とする凝集物 (触媒ゃコンタミ起因) 及 び高融点ポリエステルの除去性能に優れ好適である。 溶融ポリエステル樹脂の高 精度濾過に用いられる濾材の濾過粒子サイズ (初期濾過効率: 9 5 %) は 1 5 m以下が好ましい。 濾材の濾過粒子サイズが 1 5 mを超えると、 2 0 m以上 の異物の除去が不十分となりやすい。 濾過粒子サイズ (初期濾過効率: 9 5 %) が 1 5 m以下の濾材を使用して溶融ポリエステル樹脂の高精度濾過を行うこと により生産性が低下する場合があるが、 全光線透過率の高い二軸配向ポリエステ ルフィルムを得るには極めて好適である。  For the base polyester film, high-precision filtration is performed at any place where the molten polyester resin is maintained at about 280 ° C during melt extrusion in order to remove foreign substances contained in the raw polyester resin. I do. The filter medium used for the high-precision filtration of the molten polyester resin is not particularly limited. In the case of the filter medium of the sintered stainless steel, the aggregates mainly composed of Si, Ti, Sb, Ge, and Cu ( It is excellent in removing performance of catalyst (caused by contamination) and high melting point polyester, and is suitable. The filtration particle size (initial filtration efficiency: 95%) of the filter medium used for high-precision filtration of the molten polyester resin is preferably 15 m or less. If the filter particle size of the filter medium exceeds 15 m, the removal of foreign substances of 20 m or more tends to be insufficient. Productivity may be reduced by high-precision filtration of molten polyester resin using a filter medium with a filtration particle size (initial filtration efficiency: 95%) of 15 m or less, but high total light transmittance is high. It is very suitable for obtaining a biaxially oriented polyester film.
前記高精度濾過において濾材を通過する微細な異物であっても、 未延伸ポリェ ステルシート製造時の冷却過程で異物の周囲で結晶化が進み、 これが延伸工程に おいて延伸の不均一性を引き起こし、 微小な厚みの差異を生じせしめレンズ状態 となる。 ここでは光はレンズがあるかの様に屈折又は散乱し、 肉眼で観察した時 には実際の異物より大きく見える様になる。 この微小な厚みの差は、 凸部の高さ と凹部の深さの差として観測することができ、 凸部の高さが 1 m以上で、 凸部 に隣接する凹部の深さが 0. 5 m以上であると、 レンズ効果により、 大きさが 2 0〃mの形状の物でも肉眼的には 5 0 m以上の大きさとして認識され、 さら には 1 0 0 m以上の大きさの光学欠点として認識される場合もある。 高透明な フィルムを得るためには、 基材フィルム中に易滑性を付与するための粒子を含有 させない方が望ましいが、 粒子添加量が少なく透明性が高い程、 微小な凹凸によ る光学欠点はより鮮明となる傾向にある。 また、 厚手のフィルムの表面は薄手の フィルムより急冷となりにく く、 結晶化が進む傾向にあるため、 未延伸シート作 成時フィルム全体を急冷することが必要となる。 未延伸シ一トを冷却する方法と しては、 溶融樹脂を回転冷却ドラム上にダイスからシート上に押し出し、 シート 状溶融物を回転冷却ドラムに密着させながら、 急冷してシ一トとする公知の方法 が適用できる。 このシート状物のエア面 (冷却ドラムと接触する面との反対面) を冷却する方法としては、 高速気流を吹きつけて冷却する方法が有効である。 次に、 本発明の透明導電性フィルムの基材として用いる二軸配向ポリエステル フィルムの製造方法について、 ポリエチレンテレフタレート (以下、 P E Tと略 す) を例にして説明するが、 当然これに限定されるものではない。 Even in the case of fine foreign matter that passes through the filter medium in the high-precision filtration, Crystallization progresses around the foreign material during the cooling process during the production of the steal sheet, which causes non-uniformity of the stretching in the stretching process, causing a minute difference in thickness and a lens state. Here, the light is refracted or scattered as if it has a lens, and when viewed with the naked eye it appears larger than the actual foreign object. This small difference in thickness can be observed as the difference between the height of the projections and the depth of the depressions, where the height of the projections is 1 m or more and the depth of the depressions adjacent to the projections is 0. If it is 5 m or more, the lens effect will cause the object with a shape of 20 m to be visually recognized as a size of 50 m or more, and even a size of 100 m or more. It may be recognized as an optical defect. In order to obtain a highly transparent film, it is desirable not to include particles for imparting lubricity in the base film.However, as the amount of added particles is small and the transparency is high, the optical properties due to fine irregularities The disadvantages tend to be sharper. Also, the surface of a thick film is less likely to be quenched than a thin film and tends to be crystallized. Therefore, it is necessary to quench the entire film when preparing an unstretched sheet. As a method of cooling the unstretched sheet, the molten resin is extruded from a die onto a rotating cooling drum onto a sheet, and the sheet-like molten material is rapidly cooled while being in close contact with the rotating cooling drum to form a sheet. Known methods can be applied. As a method for cooling the air surface (the surface opposite to the surface that comes into contact with the cooling drum) of this sheet-like material, a method of blowing a high-speed air stream to cool the sheet is effective. Next, a method for producing a biaxially oriented polyester film used as a substrate of the transparent conductive film of the present invention will be described using polyethylene terephthalate (hereinafter abbreviated as PET) as an example. is not.
粒子を実質的に含有していない P E T樹脂ペレツ トを十分に真空乾燥した後、 押出し機に供給し、 約 2 8 0 °Cでシート状に溶融押出しし、 冷却固化せしめて未 延伸 F E Tシートを製膜する。 この際、 溶融樹脂が約 2 8 0 °Cに保たれた任意の 場所で、 樹脂中に含まれる異物を除去するために前記高精度濾過を行う。  After sufficiently drying the PET resin pellets substantially containing no particles, they are supplied to an extruder, melt-extruded into a sheet at about 280 ° C, cooled and solidified to form an undrawn FET sheet. Form a film. At this time, the high-precision filtration is performed at an arbitrary place where the molten resin is kept at about 280 ° C. in order to remove foreign substances contained in the resin.
得られた未延伸 P E Tシートを、 8 0〜 1 2 0 °Cに加熱したロールで長手方向 に 2. 5〜5. 0倍延伸して、 一軸配向 P E Tフィルムを得る。 さらに、 フィル ムの端部をクリップで把持して、 8 0〜 1 8 0 °Cに加熱された熱風ゾーンに導き、 乾燥後幅方向に 2. 5〜5. 0倍に延伸する。 引き続き 1 6 0〜2 4 0 °Cの熱処 理ゾーンに導き、 1〜6 0秒間の熱処理を行い、 結晶配向を完了させる。 この熱 処理工程中で、 必要に応じて、 幅方向あるいは長手方向に 1〜 12%の弛緩処理 を施してもよい。 The obtained unstretched PET sheet is stretched 2.5 to 5.0 times in the longitudinal direction by a roll heated to 80 to 120 ° C to obtain a uniaxially oriented PET film. Furthermore, the end of the film is gripped with a clip, guided to a hot air zone heated to 80 to 180 ° C, and stretched 2.5 to 5.0 times in the width direction after drying. Subsequently, it is led to a heat treatment zone of 160 to 240 ° C., and heat-treated for 1 to 60 seconds to complete the crystal orientation. This heat During the treatment process, if necessary, a 1 to 12% relaxation treatment may be performed in the width direction or the longitudinal direction.
この工程中の任意の段階で、 PETフィルムの片面もしくは両面に、 前記の共 重合ポリエステル及びポリゥレタン樹脂の水溶液を塗布する。 上記水性塗布液を 塗布するには、公知の任意の方法で行うことができる。例えば、 リバースロール - コート法、 グラビア ' コート法、 キス ' コート法、 ロールブラッシュ法、 スプレ 一コート法、 エアナイフコ一ト法、 ワイヤ一バーバ一コート法、 パイプドクター 法、 含浸 · コート法およびカーテン · コート法などが挙げられ、 これらの方法を 単独であるいは組み合わせて行うことができる。  At any stage during this step, an aqueous solution of the above-mentioned copolymerized polyester and polyurethane resin is applied to one or both sides of the PET film. The aqueous coating solution can be applied by any known method. For example, reverse roll-coat method, gravure 'coat method, kiss' coat method, roll brush method, spray coat method, air knife coat method, wire-barber coat method, pipe doctor method, impregnation coat method and curtain Coating methods and the like can be mentioned, and these methods can be performed alone or in combination.
上記水性塗布液を塗布する工程は、 通常の塗布工程、 すなわち二軸延伸し熱固 定した基材 PETフィルムに塗布する工程でもよいが、 PETフィルムの製造ェ 程中に塗布するインラインコート法が好ましい。 さらに好ましくは、 結晶配向が 完了する前の基材 PETフィルムに塗布する。  The step of applying the aqueous coating solution may be a normal coating step, that is, a step of coating a biaxially stretched and heat-set base PET film, but an in-line coating method of coating during the PET film manufacturing process may be used. preferable. More preferably, it is applied to the base PET film before the crystal orientation is completed.
水性塗布液中の固形分濃度は、 30重量%以下であることが好ましく、 特に好 ましくは 10重量%以下である。 該水性塗布液が塗布された PETフィルムは、 延伸および熱固定のためにテンターに導かれ、 そこで加熱されて、 熱架橋反応に より安定な被膜を形成し、 積層 PETフィルムとなる。 さらに、 塗布層上に他の 層を積層する際、 他の層と良好な密着性を得るためには、 PETフィルムへの塗 布量が 0. 05 gZm2以上であって、 100°C、 1分以上の熱処理が必要であ る。 The solid concentration in the aqueous coating solution is preferably 30% by weight or less, particularly preferably 10% by weight or less. The PET film coated with the aqueous coating solution is guided to a tenter for stretching and heat setting, where it is heated to form a stable film by a thermal crosslinking reaction, and becomes a laminated PET film. Further, when stacking another layer on the coating layer, in order to obtain good adhesion with other layers, there is a coating fabric of the PET film is 0. 05 gZm 2 or more, 100 ° C, Heat treatment for 1 minute or more is required.
二軸配向 FETフィルムの塗布層表面の三次元中心面平均表面粗さ (SRa) は、 0. 002〜0. 010〃mである必要があり、 0. 0025〜0. 008 0〃mが好ましく、 0. 0030〜0. 0060〃mが特に好ましい。 SRaが 0. 002 m未満の平滑な表面では耐スクラッチ性が悪化し、 好ましくない。 一方、 SRaが 0. 010 mを超えると、 全光線透過率が低下し透明性が悪化 するため、 透明導電性フィルムの基材として好ましくない。  The three-dimensional center plane average surface roughness (SRa) of the coating layer surface of the biaxially oriented FET film needs to be 0.002 to 0.001〃m, preferably 0.0025 to 0.008 0〃m. And 0.0030 to 0.0060 μm are particularly preferred. Smooth surfaces with SRa of less than 0.002 m are not preferred because scratch resistance deteriorates. On the other hand, when SRa exceeds 0.010 m, the total light transmittance is reduced and the transparency is deteriorated, so that it is not preferable as a substrate of the transparent conductive film.
粒子 Aと粒子 Bの含有量及びその比率、 さらに塗布量を前記範囲内にすること は、 本発明で規定した S R a及び全光線透過率の範囲内にするのに好適であり、 透明性と耐スクラッチ性を両立させるのに有効である。 このようにして得られた塗布層を有する二軸配向 PETフィルムは、 透明性、 接着性に優れ、 かつ後加工の工程において耐スクラッチ性に優れるという特徴を 有している。 そのため、 以下に述べるような透明導電性薄膜の基材フィルムとし て好適である。 It is preferable that the content and the ratio of the particles A and the particles B and the coating amount are within the above ranges, so that the ranges of SRa and the total light transmittance defined in the present invention are within the ranges. It is effective for achieving both scratch resistance. The biaxially oriented PET film having the coating layer obtained in this manner has excellent transparency and adhesiveness and excellent scratch resistance in a post-processing step. Therefore, it is suitable as a base film of a transparent conductive thin film as described below.
二軸配向 PETフィルムの厚みは、 10〃mを越え、 300 m以下の範囲に あることが好ましく、 特に好ましくは 70〜260〃mの範囲である。 前記フィ ルムの厚みが 10〃m以下の場合、 フィルムの腰 (スティッフネス) が不十分と なり、 耐久性が劣る傾向がある。 一方、 300 mを越えると、 光線透過率が高 くなり好ましくない。 また、 軽量というフィルムの特徴がいかせなくなる。  The thickness of the biaxially oriented PET film is preferably in the range of more than 10 m and not more than 300 m, particularly preferably in the range of 70 to 260 m. When the thickness of the film is 10 m or less, the stiffness of the film tends to be insufficient, and the durability tends to be poor. On the other hand, if it exceeds 300 m, the light transmittance is undesirably high. In addition, the characteristics of the film, which is lightweight, become indispensable.
二軸配向 PETフィルムは、 本発明の目的を損なわない程度に、 コロナ放電処 理、 グロ一放電処理などの表面処理を行なってもよい。  The biaxially oriented PET film may be subjected to surface treatment such as corona discharge treatment and glow discharge treatment to the extent that the object of the present invention is not impaired.
二軸延伸 PETフィルムを基材として用いた透明導電性フィルムは、 ELパネ ルの透明電極として用いる際に、 回路加工等の印刷工程で 100〜150°Cの加 熱処理が行なわれる。 この加熱処理により、 ヘイズ値の上昇や白色状の外観欠点 が発生することがある。  When a transparent conductive film using a biaxially stretched PET film as a base material is used as a transparent electrode of an EL panel, a heat treatment at 100 to 150 ° C is performed in a printing process such as circuit processing. This heat treatment may cause an increase in haze value or white appearance defects.
そこで、 本発明者らは、 二軸配向 PETフィルムの加熱処理後におけるヘイズ 値の上昇と白色状欠点の主要因が、 オリゴマーの主成分である環状 3量体である ことに着目し、 鋭意検討の結果、 原料となる PET樹脂中に含まれる環状 3量体 の含有量と PETフィルム製膜工程でのキャスティングまでの滞留時間が、 フィ ルム中の環状 3量体の含有量に最も影響することを解明した。  The inventors of the present invention focused on the fact that the main factors of the increase in haze and the white defect after the heat treatment of the biaxially oriented PET film were the cyclic trimer, which is the main component of the oligomer, and conducted extensive studies. As a result, the content of cyclic trimer contained in the raw material PET resin and the residence time until casting in the PET film forming process have the greatest effect on the content of cyclic trimer in the film. Elucidated.
その結果、フィルム中に含まれる環状 3量体の含有量を 5000 p pm以下に、 さらに好ましくは 4500 p pm以下にすることで、 加熱処理後のヘイズ値の上 昇を抑制できることが分かった。  As a result, it was found that when the content of the cyclic trimer contained in the film was set to 5000 ppm or less, more preferably 4500 ppm or less, an increase in the haze value after the heat treatment could be suppressed.
環状 3量体に代表されるオリゴマーの量を低減するために、 まず原料の PET 樹脂を窒素などの不活性ガス雰囲気下、 特定の加圧及び温度範囲で特定時間の低 ォリゴマ一化処理を行なうことが好ましい。  To reduce the amount of oligomers typified by cyclic trimers, the raw PET resin is first subjected to a low-pressure treatment under a specific pressure and temperature range for a specific time in an atmosphere of an inert gas such as nitrogen. Is preferred.
加圧条件は 1気圧より高く 2気圧以下が好ましく、 1気圧より高く 1. 4気圧 以下が特に好ましい。 また、 加熱温度は 180°C以上 250°C以下が好ましく、 200°C以上 230°C以下が特に好ましい。 さらに、 処理時間は 12時間以上 3 6時間以下が好ましい。 The pressurizing condition is preferably higher than 1 atm and 2 atm or less, particularly preferably higher than 1 atm and 1.4 atm or less. The heating temperature is preferably from 180 ° C to 250 ° C, particularly preferably from 200 ° C to 230 ° C. In addition, processing time is more than 12 hours 3 Preferably not more than 6 hours.
このとき、 雰囲気下に酸素が存在すると酸化反応による着色などの問題が発生 し、 水蒸気が存在すると加水分解反応によって、 P E Tの重合度が低下し、 フィ ルムの強度が低下するなどの問題が発生する。 不活性ガス雰囲気下における気圧 が 1気圧より低い場合には、 外気とともに酸素や水蒸気が侵入しないよう特別に 設計された装置が必要となる。 一方、 不活性ガス雰囲気下における気圧を 2気圧 より高くしても、 オリゴマーの低減効果は変わらない。  At this time, if oxygen is present in the atmosphere, problems such as coloring due to an oxidation reaction occur, and if water vapor is present, a hydrolysis reaction causes a reduction in the degree of polymerization of PET and a problem such as a reduction in film strength. I do. If the pressure in an inert gas atmosphere is lower than 1 atm, specially designed equipment is required to prevent oxygen and water vapor from entering with the outside air. On the other hand, even if the pressure in an inert gas atmosphere is higher than 2 atm, the effect of reducing oligomers does not change.
低オリゴマー化処理の温度が 2 5 0 °Cより高い場合、 P E T樹脂の融着ゃ溶融、 変色などの問題が発生しやすくなる。 一方、 前記温度が 1 8 0 °Cより低い場合、 オリゴマーの低減効果が不十分となりやすい。 また、 処理時間が 1 2時間より短 い場合には、 オリゴマーの低減効果が不十分となりやすい。 一方、 処理時間を 3 6時間より長くしても、 フィルムの熱処理によるヘイズ値上昇に及ぼす効果は変 わらない。  If the temperature of the low oligomerization treatment is higher than 250 ° C, problems such as fusion, melting, and discoloration of the PET resin are likely to occur. On the other hand, when the temperature is lower than 180 ° C., the effect of reducing oligomers tends to be insufficient. If the treatment time is shorter than 12 hours, the effect of reducing oligomers tends to be insufficient. On the other hand, if the treatment time is longer than 36 hours, the effect of increasing the haze value by the heat treatment of the film does not change.
P E T樹脂の低オリゴマ一化処理に引き続き、 触媒活性を低下させる失活処理 を併用することが好ましい。 例えば、 酸化、 還元、 水和などの化学処理、 および ノまたは音波、 電磁波照射などの物理処理により、 触媒活性を低下または失わせ る処理を行っても良い。 また、 P E Tのアルコール末端に例えばエーテル化など の化学修飾を施して環状 3量体などのオリゴマー再生反応を抑止しても良い。 このような触媒の失活処理ゃォリゴマ一再生抑止処理を行わない場合、 フィル ムの製造の際に原料 P E T樹脂を再溶融すると、 時間の経過とともにォリゴマー が再生する。 従って、 P E T樹脂を再溶融してから押し出し冷却するまでの滞留 時間を 2 0分以内、 より好ましくは 1 2分以内に制御することにより、 二軸配向 P E Tフィルム中の環状 3量体の含有量を 5 0 0 0 p p m以下に抑制し、 加熱後 のヘイズ値の上昇が少ないフィルムを製造することができる。  It is preferable to use, in combination with the low oligomerization treatment of the PET resin, a deactivation treatment for reducing the catalytic activity. For example, a treatment for reducing or losing the catalytic activity may be performed by a chemical treatment such as oxidation, reduction, or hydration, or a physical treatment such as irradiation with sonic or electromagnetic waves or electromagnetic waves. Further, a chemical modification such as etherification may be applied to the alcohol terminal of PET to suppress the oligomer regeneration reaction such as a cyclic trimer. If the catalyst deactivation treatment and the regeneration suppression treatment are not performed, if the raw PET resin is re-melted during the production of the film, the oligomer is regenerated with time. Therefore, by controlling the residence time from re-melting the PET resin to extrusion and cooling to within 20 minutes, more preferably within 12 minutes, the content of the cyclic trimer in the biaxially oriented PET film is controlled. Can be suppressed to 500 ppm or less, and a film with a small increase in haze value after heating can be produced.
また、 フィルム製膜時の熱固定処理により、 フィルム表面にオリゴマーが偏析 することがあるが、 この表面オリゴマー量を 0. 5 m g /m2以下にすることで、 回路加工等の印刷工程の加熱処理によるヘイズ値の上昇や白色状の外観欠点の発 生をより少なくすることができる。 表面オリゴマー量を 0. 5 m g Zm2以下と するためには、 フィルム製膜時の熱固定処理温度を 2 3 5 °C以下にすることが好 ましく、 2 3 0 °C以下にすることが特に好ましい。 In addition, oligomers may segregate on the film surface due to heat setting during film formation, but by controlling the amount of oligomers on the surface to 0.5 mg / m 2 or less, heating in the printing process such as circuit processing can be performed. It is possible to further reduce the increase in the haze value and the occurrence of white appearance defects due to the treatment. To the surface an oligomer amount and 0. 5 mg Zm 2 or less, good to make the heat treatment temperature during the film formation below 2 3 5 ° C It is particularly preferable that the temperature be 230 ° C. or lower.
さらに、 加熱処理によるヘイズ値の上昇を抑えるためには、 透明導電性フィル ムの透明導電層を形成していない表面に、 架橋型樹脂からなる薄膜層を設けてお くことも有効な手段である。 この架橋型樹脂からなる薄膜層により、 加熱により フィルム中から析出してくるオリゴマ一をブロックすることが可能となり、 回路 加工等の印刷工程の加熱処理によるヘイズ値の上昇や白色状の外観欠点が発生す ることがなくなる。 このように低分子量であるオリゴマーをプロックするために は、 架橋型樹脂の架橋網目構造がオリゴマーよりも小さくする必要がある。 この ような網目構造を得るためには、 架橋型樹脂に架橋点が多く、 かつ、 分子量の低 い架橋型樹脂が好ましい。 すなわち、 この架橋型樹脂からなる薄膜層は 3官能以 上の多官能架橋型樹脂からなり、 さらに該官能基同士および Zまたは該官能基と 該薄膜層にあらかじめ添加された 2官能性樹脂や水との反応の結果生成される。 前記架橋型樹脂からなる薄膜層は、 主な多官能架橋型樹脂成分として、 多官能 ィソシァネート系樹脂および Zまたは多官能エポキシ系樹脂を含有させることが 好ましい。  Furthermore, in order to suppress the increase in the haze value due to the heat treatment, it is effective to provide a thin film layer made of a crosslinked resin on the surface of the transparent conductive film on which the transparent conductive layer is not formed. is there. The thin film layer made of the cross-linked resin makes it possible to block oligomers precipitated from the film by heating, and increases the haze value and the white appearance defect due to heat treatment in a printing process such as circuit processing. It will not occur. In order to block such a low molecular weight oligomer, it is necessary that the crosslinked network structure of the crosslinked resin is smaller than that of the oligomer. In order to obtain such a network structure, a crosslinked resin having many crosslinking points and a low molecular weight is preferable. That is, the thin film layer made of the cross-linked resin is made of a polyfunctional cross-linked resin having three or more functional groups, and the functional groups and Z or the functional group and the bi-functional resin or water previously added to the thin film layer are added. Formed as a result of the reaction with It is preferable that the thin film layer made of the crosslinked resin contains a polyfunctional isocyanate resin and a Z or polyfunctional epoxy resin as main polyfunctional crosslinked resin components.
架橋型樹脂からなる薄膜曆に使用される多官能イソシァネート系樹脂や多官能 エポキシ系樹脂としては、 初期分子量が 3官能基あたり 2 0 0 0以下の樹脂が好 ましい。 より好ましくは 1 5 0 0以下、 特に好ましくは 1 0 0 0以下の樹脂であ る。 また、 官能基間の化学結合数の最小値が 5 0以下の樹脂も好ましい。 より好 ましくは 3 0以下、 特に好ましくは 2 0以下の樹脂である。  As the polyfunctional isocyanate-based resin and the polyfunctional epoxy-based resin used for the thin film 2 composed of a cross-linked resin, a resin having an initial molecular weight of 200 or less per three functional groups is preferable. More preferably, it is a resin of 150 or less, particularly preferably 100 or less. Further, a resin having a minimum value of 50 or less chemical bonds between functional groups is also preferable. The resin is more preferably 30 or less, particularly preferably 20 or less.
初期分子量や官能基間の化学結合数が多すぎる場合には、 反応により形成され る架橋網目構造の網目が大きくなり過ぎ、 白化抑制効果が不十分になる傾向があ り好ましくない。  If the initial molecular weight or the number of chemical bonds between the functional groups is too large, the network of the crosslinked network structure formed by the reaction tends to be too large, and the effect of suppressing whitening tends to be insufficient.
多官能性イソシァネート系樹脂としては、 低分子または高分子の芳香族、 脂肪 族のジィソシァネート、 3価以上のポリィソシァネ一卜が挙げられる。  Examples of the polyfunctional isocyanate-based resin include low-molecular or high-molecular aromatic and aliphatic diisocyanates and trivalent or higher polyisocyanates.
3価以上のポリィソシァネートとしては、 テトラメチレンジィソシァネ一ト、 へキサメチレンジイソシァネート、 トルエンジイソシァネート、 ジフエニルメタ ンジイソシァネート、 水素化ジフエニルメタンジイソシァネート、 キシリ レンジ イソシァネート、 水素化キシリ レンジイソシァネート、 イソホロンジイソシァネ —ト、 およびこれらのイソシァネート化合物の 3量体がある。 さらに、 これらの ィソシァネ一ト化合物の過剰量と、エチレンダリコール、プロピレンダリコール、 ト リメチロールプロパン、 グリセリン、 ソルビトール、 エチレンジァミン、 モノ エタノールァミン、 ジエタノールァミン、 ト リエタノールァミンなどの低分子活 性水素化合物、 またはポリエステルポリオール類、 ポリエーテルポリオール類、 ポリアミ ド類などの高分子活性水素化合物とを反応させて得られる、 末端イソシ ァネート基含有化合物が挙げられる。 Examples of the trivalent or higher polyisocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, Xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate — And trimers of these isocyanate compounds. In addition, excess amounts of these isocyanate compounds and low-molecular-weight substances such as ethylene dalicol, propylene dalicol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, etc. Examples include an active hydrogen compound or a compound containing a terminal isocyanate group, which is obtained by reacting with a high molecular weight active hydrogen compound such as polyester polyols, polyether polyols, and polyamides.
多官能性エポキシ系樹脂としては、 例えば、 ビスフエノール Aのジグリシジル エーテルおよびそのォリゴマー、 水素化ビスフエノール Aのジグリシジルエーテ ルおよびそのオリゴマー、 オルソフタル酸ジグリシジルエステル、 イソフタル酸 ジグリシジルエステル、 テレフタル酸ジグリシジルエステル、 p—ォキシ安息香 酸ジグリシジルエステル、 テトラハイ ドロフタル酸ジグリシジルエステル、 へキ サハイ ドロフタル酸ジグリシジルエステル、 コハク酸ジグリシジルエステル、 ァ ジピン酸ジグリシジルエステル、 セバシン酸ジグリシジルエステル、 エチレング リコールジグリシジルエーテル、 プロピレンダリコールジグリシジルエーテル、 1 , 4一ブタンジォ一ルジグリシジルエーテル、 1 . 6—へキサンジオールジグ リシジルェ一テルおよびポリアルキレングリコールジグリシジルエーテル類、 ト リメリ ッ ト酸ト リグリシジルエステル、 ト リグリシジルイソシァヌ レート、 1, 4ージグリシジルォキシベンゼン、 ジグリシジルプロピレン尿素、 グリセロール ト リグリシジルエーテル、 ト リメチロールプロパント リグリシジルェ一テル、 ぺ ン夕エリスリ トールト リグリシジルエーテル、 グリセロールアルキレンォキサイ ド付加物のトリグリシジルエーテルなどを挙げることができる。  Examples of the polyfunctional epoxy resin include diglycidyl ether of bisphenol A and its oligomer, diglycidyl ether of hydrogenated bisphenol A and its oligomer, diglycidyl orthophthalate, diglycidyl isophthalate, diglycidyl terephthalate, and the like. Glycidyl ester, diglycidyl p-oxybenzoate, diglycidyl tetrahydrophthalate, diglycidyl hexahydrophtallate, diglycidyl succinate, diglycidyl adipic acid, diglycidyl sebacate, ethylene glycol diethylene glycol Glycidyl ether, propylene dalicol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1.6-hexanediol diglycidyl ether Ter and polyalkylene glycol diglycidyl ethers, triglycidyl trimeric ester, triglycidyl isocyanurate, 1,4-diglycidyloxybenzene, diglycidyl propylene urea, glycerol triglycidyl ether, Limethylolpropant glycidyl ether, erythritol glycidyl ether, and glycerol alkylene oxide adduct triglycidyl ether can be exemplified.
一方、 官能基間の化学結合数が 7以下の場合には、 生成した架橋型樹脂からな る薄膜層を曲げた際に亀裂が入りやすくなつたり、 カールが発生しやすくなる場 合がある。 これを緩和するために他の樹脂を混合しても構わない。 他の樹脂の混 合量は、 ィソシァネート系樹脂およびノまたはエポキシ樹脂からなる架橋型樹脂 に対して、 7 0重量%以下が好ましい。 7 0重量%を越える混合量では、 架橋の 網目が大きくなつてしまい、 加熱時の白化抑制効果が不十分となってしまう。 前記の架橋型樹脂に混合する樹脂としては、ポリエステル樹脂、アタリル樹脂、 メタクリル樹脂、 ウレタンァクリル樹脂、 メラミン樹脂、 シリコ一ン樹脂等が挙 げられる。 これらのなかで、 共重合ポリエステル系樹脂が最も好ましい。 この共 重合ポリエステル系樹脂は、 ダリコール成分とジカルボン酸成分とから構成され る。 On the other hand, when the number of chemical bonds between the functional groups is 7 or less, the thin film layer formed of the cross-linked resin may be easily cracked or curled when the thin film layer is bent. Other resins may be mixed to alleviate this. The mixing amount of the other resin is preferably 70% by weight or less based on the crosslinked resin composed of the isocyanate resin and the epoxy resin. If the mixing amount exceeds 70% by weight, the network of cross-linking becomes large, and the effect of suppressing whitening during heating becomes insufficient. As the resin to be mixed with the crosslinked resin, a polyester resin, an ataryl resin, Examples include methacrylic resin, urethane acryl resin, melamine resin, silicone resin and the like. Of these, copolymerized polyester resins are most preferred. This copolymerized polyester resin is composed of a dalicol component and a dicarboxylic acid component.
グリコール成分としては、 エチレングリコールが最も好ましい。 ジエチレング リコール、 プロピレングリコール、 ブタンジオール、 ネオペンチルグリコール、 へキサンジオールまたは 1 , 4ーシクロへキサンジメタノールなどを含有しても 良い。  As the glycol component, ethylene glycol is most preferred. It may contain diethylene glycol, propylene glycol, butanediol, neopentyl glycol, hexanediol or 1,4-cyclohexanedimethanol.
ジカルボン酸成分としては、テレフタル酸およびィソフタル酸が最も好ましい。 少量であれば他のジカルボン酸、 特に、 ジフヱ二ルカルボン酸及び 2 , 6—ナル 夕レンジカルボン酸などの芳香族ジカルボン酸を加えて共重合させてもよい。 さらに、 架橋型樹脂からなる薄膜層の厚さは、 オリゴマー析出防止のために、 0. 0 5〜3. 0〃mが好ましい。 特に好ましくは、 0. 1〜2 . 0〃mである。 薄膜層の厚さが、 3. 0 mを超えると、 耐屈曲性が不十分となり、 ◦. 0 5〃 m未満ではォリゴマー析出防止効果が不十分となる。  As the dicarboxylic acid component, terephthalic acid and isophthalic acid are most preferred. If the amount is a small amount, another dicarboxylic acid, in particular, an aromatic dicarboxylic acid such as difluorocarboxylic acid and 2,6-naphthalenedicarboxylic acid may be added for copolymerization. Further, the thickness of the thin film layer made of the crosslinked resin is preferably 0.05 to 3.0 μm in order to prevent oligomer precipitation. Particularly preferably, it is 0.1 to 2.0 μm. If the thickness of the thin film layer exceeds 3.0 m, the bending resistance becomes insufficient, and if it is less than 0.5 m, the effect of preventing oligomer precipitation becomes insufficient.
架橋型樹脂からなる薄膜層を二軸配向 P E Tフィルム上に積層する方法として は、 コーティング法が好ましい。 また、 架橋型樹脂を含む塗布液には、 熱架橋反 応を促進させるため、 触媒を添加しても良く、 例えば、 無機物質、 塩類、 有機物 質、 アルカリ性物質、 酸性物質および含金属有機化合物等、 種々の化学物質が用 いられる。  As a method of laminating a thin film layer made of a crosslinked resin on a biaxially oriented PET film, a coating method is preferable. Further, a catalyst may be added to the coating solution containing the cross-linkable resin in order to promote the thermal cross-linking reaction. For example, inorganic substances, salts, organic substances, alkaline substances, acidic substances, metal-containing organic compounds, etc. Various chemical substances are used.
コ一ティング法としては、 エアドクタコート法、 ナイフコート法、 □ッ ドコ一 ト法、 正回転ロールコート法、 リバースロールコート法、 グラビアコート法、 キ スコート法、 ビードコート法、 スリ ッ トオリフェスコート法、 キャス トコート法 などが用いられる。  Coating methods include air-coating method, knife coating method, □ head coating method, forward rotation roll coating method, reverse roll coating method, gravure coating method, kiss coating method, bead coating method, slit orifice A coating method, a cast coating method, or the like is used.
この後、 架橋構造を付与するために、 コーティング後に、 加熱、 紫外線、 また は電子線照射によりエネルギーを印加する。  Thereafter, in order to impart a crosslinked structure, after coating, energy is applied by heating, ultraviolet rays, or electron beam irradiation.
また、 架橋型樹脂を含む塗布液をフィルムに塗布する際、 さらに密着性を上げ るために、 予めフィルムをコロナ放電処理、 グロ一放電処理などの表面処理を行 なってもよい。 本発明における透明導電性薄膜としては、 透明性及び導電性をあわせもつ材料 であれば特に制限はないが、 代表的なものとしては、酸化ィンジゥム、酸化亜鉛、 酸化スズ、 インジウムースズ複合酸化物、 スズーアンチモン複合酸化物、 亜鉛— アルミニゥム複合酸化物、 インジゥムー亜鉛複合酸化物等の薄膜が挙げられる。 これらの化合物薄膜は、 適切な作成条件で製造することで、 透明性と導電性をあ わせもつ透明導電性薄膜となることが知られている。 When a coating solution containing a cross-linkable resin is applied to a film, the film may be subjected to a surface treatment such as a corona discharge treatment or a glow discharge treatment in order to further increase the adhesion. The transparent conductive thin film of the present invention is not particularly limited as long as it is a material having both transparency and conductivity. Typical examples thereof include indium oxide, zinc oxide, tin oxide, indium oxide composite oxide, and silver oxide. Examples of the thin film include a zooantimony composite oxide, a zinc-aluminum composite oxide, and an indium zinc composite oxide. It is known that these compound thin films can be made into transparent conductive thin films having both transparency and conductivity when manufactured under appropriate conditions.
透明導電性薄膜の作成方法としては、 真空蒸着法、 スパッタリング法、 C V D 法、 イオンプレーティング法、 スプレー法などが知られており、 上記材料の種類 および必要膜厚に応じて、 適宜公知の方法を用いることができる。  As a method for forming the transparent conductive thin film, a vacuum evaporation method, a sputtering method, a CVD method, an ion plating method, a spray method, etc. are known. Can be used.
例えば、 スパッタリング法の場合、 化合物を用いた通常のスパッタリング法、 あるいは、 金属ターゲッ トを用いた反応性スパッタリング法等が用いられる。 こ の時、 反応性ガスとして、 酸素、 窒素、 水蒸気等を導入したり、 オゾン添加、 ィ オンアシスト等の手段を併用してもよい。 また、 基板に直流、 交流、 高周波など のバイアスを印加してもよい。 蒸着法、 C V D法などの他の作成方法においても 同様である。  For example, in the case of a sputtering method, a normal sputtering method using a compound, a reactive sputtering method using a metal target, or the like is used. At this time, oxygen, nitrogen, steam, or the like may be introduced as a reactive gas, or a means such as ozone addition or ion assist may be used in combination. Alternatively, a bias such as direct current, alternating current, or high frequency may be applied to the substrate. The same applies to other forming methods such as a vapor deposition method and a CVD method.
透明導電性薄膜の表面抵抗率を低くするためには、 一般的には透明導電性薄膜 の膜厚を厚くすればよいが、 逆に光線透過率が低下するという問題がある。 さら に、 透明導電性薄膜の膜厚を厚く しすぎると、 E Lパネル作成時の加熱処理によ り、 カールが発生しやすくなり、 その結果著しく生産性が低下する恐れもある。 しかしながら、 本発明者らは、 透明導電性薄膜の膜厚をある程度厚くすると、 光線透過率が向上することを見い出した。 例えば、 インジウムースズ複合酸化物 薄膜の場合、 8 0 n m以上の膜厚にすると光線透過率が向上してくる。 これは、 透明導電性薄膜の表面での反射光と、 二軸配向 P E Tフィルムと透明導電性薄膜 との界面での反射光とが干渉して打ち消うことで反射光が減り、 この反射光の減 少分により透過光が増えることになり、光線透過率が向上するためと考えられる。 すなわち、 透明導電性薄膜の屈折率を N、 透明導電性薄膜の膜厚を D、 光線透過 率を最高にしたい波長を !とすると、  In order to lower the surface resistivity of the transparent conductive thin film, it is generally sufficient to increase the thickness of the transparent conductive thin film, but on the contrary, there is a problem that the light transmittance is reduced. Furthermore, if the thickness of the transparent conductive thin film is too large, curling is likely to occur due to the heat treatment during the production of the EL panel, and as a result, productivity may be significantly reduced. However, the present inventors have found that increasing the thickness of the transparent conductive thin film to some extent improves the light transmittance. For example, in the case of an indium oxide composite oxide thin film, when the thickness is 80 nm or more, the light transmittance is improved. This is because the reflected light at the surface of the transparent conductive thin film and the reflected light at the interface between the biaxially oriented PET film and the transparent conductive thin film interfere with each other and cancel each other, reducing the reflected light. It is considered that the transmitted light increases due to the decrease in the light transmittance, and the light transmittance improves. That is, the refractive index of the transparent conductive thin film is N, the thickness of the transparent conductive thin film is D, and the wavelength at which light transmittance is desired to be the highest! Then
N D = ( λ / 2 ) x η  N D = (λ / 2) x η
を満足するように、 透明導電性薄膜の膜厚を調整すればよい。 ここで、 ηは 1以 上の整数である。 The thickness of the transparent conductive thin film may be adjusted so as to satisfy the following. Where η is 1 or more Is the integer above.
例えば、 550 nmでの光線透過率を最高にしたい場合には、 屈折率が 2であ るインジウム—スズ複合酸化物薄膜を用いた場合、 膜厚を 137. 5nm, 27 5. O nm、 412. 5 nm (n= l、 2、 3に対応する) などとすればよい。 光線透過率が最高になる波長は、 450 nm以上 600 nm以下であることが 好ましい。 450 nmよりも低波長では、 可視光の波長よりも短いために、 EL パネルに用いた際に発光輝度が向上しない。 また、 600 nmよりも長波長で設 計すると、 500 nm程度の波長の透過率が不十分となり、 結果的にはやはり E Lパネルに用いた際に発光輝度が向上しない。  For example, to obtain the highest light transmittance at 550 nm, when using an indium-tin composite oxide thin film with a refractive index of 2, the film thicknesses are 137.5 nm, 27 5.O nm, and 412 nm. . 5 nm (corresponding to n = l, 2, 3). The wavelength at which the light transmittance is highest is preferably 450 nm or more and 600 nm or less. At a wavelength lower than 450 nm, the emission luminance does not improve when used in an EL panel because it is shorter than the wavelength of visible light. Also, if the wavelength is designed to be longer than 600 nm, the transmittance at a wavelength of about 500 nm will be insufficient, and as a result, the emission luminance will not be improved when used for EL panels.
また、 設計波長での透過率は 80%以上 97%以下であることが好ましい。 光 線透過率を高いものにするためには、 前述の通り反射光は干渉効果により最小値 となるように設計してあるので、 透明導電性薄膜での吸収を小さく しなければな らない。 そのためには、 透明導電性薄膜の酸化度をできるだけ高く したほうがよ い。 しかしながら、 光線透過率が 97%を越えるほど酸化度を高めてしまうと、 表面抵抗率が非常に高くなりすぎ、 ELパネルの透明電極として適さない。  The transmittance at the design wavelength is preferably 80% or more and 97% or less. In order to increase the light transmittance, the reflected light is designed to have a minimum value due to the interference effect as described above, so that the absorption in the transparent conductive thin film must be reduced. For that purpose, it is better to make the degree of oxidation of the transparent conductive thin film as high as possible. However, if the degree of oxidation is increased so that the light transmittance exceeds 97%, the surface resistivity becomes so high that it is not suitable as a transparent electrode of an EL panel.
透明導電性フィルムの表面抵抗率は、 10〜10 ΟΩ/ロの範囲内であることが 好ましい。表面抵抗率を 1 0 Ω /口よりも低くするためには、透明導電性薄膜の膜 厚を非常に厚くする必要があるため、 曲げ加工などの特性が不十分となり、 さら に製造コストも非常に高くなる。一方、表面抵抗率が 100 Ω/Ε]よりも高い場合、 ELパネルに用いた際に発光輝度の向上が不十分となる。  The surface resistivity of the transparent conductive film is preferably in the range of 10 to 10 Ω / b. In order to make the surface resistivity lower than 10 Ω / port, it is necessary to make the thickness of the transparent conductive thin film extremely large, so that the properties such as bending are insufficient, and the production cost is also extremely high. Become higher. On the other hand, if the surface resistivity is higher than 100 Ω / Ε], the improvement in light emission luminance when used in an EL panel becomes insufficient.
また、 単に透明導電性薄膜の膜厚を 80 nm以上と厚く しただけでは、 後工程 での印刷工程において加熱処理した際にカールが生じやすくなる。 そのため、 ェ 程通過性が悪くなり、 生産性の低下を招くことがある。 このため、 透明導電性フ ィルムの 150°Cで 3時間の熱処理した際の 3 Ommx 3 Ommのサイズにおけ る反り量を 2mm以下とすることが好ましい。 反り量を 2mm以下にするために は、透明導電性フィルムの寸法収縮率を、 150°Cで 3時間熱処理した後で、 0. 2%以下とすることが好ましい。 150°Cで 3時間熱処理した後の寸法収縮率が 0. 2%を超えると、 ELパネル製造時の印刷工程において、 カールが発生しや すくなる。 そのため、 工程通過性を悪く し、 生産性が低下する傾向がある。 熱処 理による寸法変化を小さくするためには、 透明導電性フィルムに予め熱処理を行 なっておくことや前記の架橋型樹脂からなる薄膜層を設けることが好ましい。 透明導電性フィルムの熱処理を行う工程は、 透明導電性薄膜を形成する前の二 軸配向 P E Tフィルム製造後でもよいし、 二軸配向 P E Tフィルムの製造時でも よい。 生産性の観点からは、 後者のほうが好ましい。 Also, if the thickness of the transparent conductive thin film is simply increased to 80 nm or more, curling is likely to occur when heat treatment is performed in a subsequent printing process. As a result, the processability deteriorates, which may lead to a decrease in productivity. Therefore, it is preferable that the amount of warpage in a size of 3 Omm x 3 Omm when the transparent conductive film is heat-treated at 150 ° C for 3 hours is 2 mm or less. In order to reduce the warpage to 2 mm or less, it is preferable that the dimensional shrinkage of the transparent conductive film be 0.2% or less after heat treatment at 150 ° C. for 3 hours. If the dimensional shrinkage after heat treatment at 150 ° C for 3 hours exceeds 0.2%, curling is likely to occur in the printing process during EL panel manufacturing. For this reason, process passability is deteriorated, and productivity tends to decrease. Heat treatment In order to reduce the dimensional change due to the process, it is preferable to heat-treat the transparent conductive film in advance or to provide a thin film layer made of the above-mentioned crosslinked resin. The step of heat-treating the transparent conductive film may be performed after the production of the biaxially oriented PET film before forming the transparent conductive thin film, or may be performed during the production of the biaxially oriented PET film. The latter is more preferable from the viewpoint of productivity.
二軸配向 P E Tフィルムに熱処理を行なうには、 二軸配向 P E Tフィルム製造 時の熱固定処理工程で、 2 0 0〜2 4 0 °C程度の加熱処理を行う、 インライン処 理が好ましい。 熱固定温度が 2 0 0 °Cよりも低温では、 後加工時の熱処理後の寸 法収縮率を低減する効果が不十分である。 一方、 2 4 0 °Cを越える高温では、 二 軸配向 P E Tフィルムを安定して製膜することが難しくなる。  In order to perform a heat treatment on the biaxially oriented PET film, an in-line treatment in which a heat treatment at about 200 to 240 ° C. is performed in the heat setting treatment step in the production of the biaxially oriented PET film is preferable. If the heat setting temperature is lower than 200 ° C, the effect of reducing the dimensional shrinkage after heat treatment during post-processing is insufficient. On the other hand, at a high temperature exceeding 240 ° C., it is difficult to stably form a biaxially oriented PET film.
また、 オフラインで二軸配向 P E Tフィルム上に前記の架橋型樹脂を含むコ一 ティング剤を塗布し、 このコーティング剤を乾燥、 硬化させるために熱処理を施 し、 この熱により低収縮処理も同時に行ってもよい。  In addition, a coating agent containing the above-mentioned cross-linkable resin is applied to the biaxially oriented PET film off-line, and a heat treatment is performed to dry and cure the coating agent. You may.
架橋型樹脂からなる薄膜層の乾燥、 硬化および透明導電性フィルムの寸法収縮 率低減のためには、 乾燥炉の温度を 1 2 0〜2 4 0 °Cとすることが好ましい。 1 2 0 °Cよりも低温では熱処理後の寸法収縮率を低減する効果が不十分である。 一 方、 2 4 0 °Cを越える高温では二軸配向 P E Tフィルムの平面性が低下しやすく なる。  In order to dry and cure the thin film layer made of the crosslinked resin and to reduce the dimensional shrinkage of the transparent conductive film, the temperature of the drying oven is preferably set to 120 to 240 ° C. If the temperature is lower than 120 ° C., the effect of reducing the dimensional shrinkage after the heat treatment is insufficient. On the other hand, at a high temperature exceeding 240 ° C., the planarity of the biaxially oriented PET film tends to decrease.
本発明の透明導電性フィルムは、 透明導電性薄膜上に誘電体薄膜を積層するこ とで、 E Lパネルの透明電極に用いた際の透明導電性フィルムの黒変を抑制する ことが可能となる。 この黒変のメカニズムは、 E Lパネルに用いた際に発光層に 印加する電圧による電子移動により、 透明導電性薄膜が還元され黒変するためと 考えられる。 誘電体薄膜を積層することで透明導電性薄膜への電子移動が抑制さ れ、 黒変が発生しにくくなる。  The transparent conductive film of the present invention can suppress blackening of the transparent conductive film when used for a transparent electrode of an EL panel by laminating a dielectric thin film on the transparent conductive thin film. . The mechanism of this blackening is considered to be that the transparent conductive thin film is reduced and blackened by electron transfer due to the voltage applied to the light emitting layer when used in an EL panel. By laminating a dielectric thin film, electron transfer to the transparent conductive thin film is suppressed, and blackening is less likely to occur.
本発明で好適に用いられる誘電性材料としては、 酸化ホウ素、 酸化マグネシゥ ム、 酸化アルミニウム、 酸化ケィ素、 酸化チタン、 酸化バナジウム、 酸化クロム、 酸化マンガン、 酸化鉄、 酸化コバルト、 酸化ニッケル、 酸化銅、 酸化亜鉛、 酸化 イッ ト リウム、 酸化ジルコニウム、 酸化ニオブ、 酸化モリブデン、 酸化鉛、 酸化 スズ、 酸化アンチモン、 酸化バリウム、 酸化ハフニウム、 酸化タリウム、 酸化タ ングステン、 酸化白金、 酸化ビスマス、 チタン酸バリウム、 チタン酸鉛、 ニオブ 酸カリウム、 ニオブ酸リチウム、 タンタル酸リチウム、 硫酸鉛、 炭化シリコン、 硫酸ス トロンチウム、 硫化亜鉛、 窒化シリコン、 臭化銀、 塩化銀などが挙げられ、 これら単体もしくは二種類以上の混合物でもよい。 The dielectric material preferably used in the present invention includes boron oxide, magnesium oxide, aluminum oxide, silicon oxide, titanium oxide, vanadium oxide, chromium oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, and copper oxide. , Zinc oxide, yttrium oxide, zirconium oxide, niobium oxide, molybdenum oxide, lead oxide, tin oxide, antimony oxide, barium oxide, hafnium oxide, thallium oxide, thallium oxide Ngustene, platinum oxide, bismuth oxide, barium titanate, lead titanate, potassium niobate, lithium niobate, lithium tantalate, lead sulfate, silicon carbide, strontium sulfate, zinc sulfide, silicon nitride, silver bromide, silver chloride These may be used alone or as a mixture of two or more.
これらの材料の中で、 酸化チタンが好適に用いられる。 酸化チタンは非誘電率 が 1 7 0と非常に大きく、 酸化チタン薄膜を積層した本発明の透明導電性フィル ムを E Lパネルに用いた場合、 印加電圧を効率的に発光層に印加できるため、 発 光輝度の低下がほとんど生じない。  Among these materials, titanium oxide is preferably used. Titanium oxide has a very large non-dielectric constant of 170, and when the transparent conductive film of the present invention in which a titanium oxide thin film is laminated is used for an EL panel, an applied voltage can be efficiently applied to the light emitting layer. There is almost no decrease in light emission luminance.
前記誘電体薄膜を製膜するには、 真空蒸着法、 スパッタリング法、 C V D法、 イオンプレーティング法、 スプレー法などが知られており、 上記材料の種類およ び必要膜厚に応じて、 適宜公知の方法を用いることができる。  In order to form the dielectric thin film, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, and the like are known. Depending on the type of the material and the required film thickness, an appropriate method is used. A known method can be used.
例えば、 スパッタリング法の場合、 化合物を用いた通常のスパッ夕リング法、 あるいは金属夕ーゲッ トを用いた反応性スパッ夕リング法等が用いられる。 この 時、 反応性ガスとして、 酸素、 窒素、 水蒸気等を導入したり、 オゾン添加、 ィォ ンアシス ト等の手段を併用してもよい。 また、 基板に直流、 交流、 高周波などの バイアスを印加してもよい。 さらに、 必要に応じて、 基板を加熱もしくは冷却し てもよい。 蒸着法、 C V D法などの他の作成方法においても同様である。  For example, in the case of the sputtering method, a normal sputtering method using a compound, a reactive sputtering method using a metal target, or the like is used. At this time, oxygen, nitrogen, steam, or the like may be introduced as a reactive gas, or a means such as ozone addition or ion assist may be used in combination. Further, a bias such as direct current, alternating current, or high frequency may be applied to the substrate. Further, the substrate may be heated or cooled as necessary. The same applies to other production methods such as a vapor deposition method and a CVD method.
誘電体薄膜の膜厚は 1〜3 0 0 n mの範囲であることが好ましい。 膜厚が 1 n mよりも薄い場合には、 透明導電性薄膜の黒変を抑制する効果が不十分である。 一方、 3 0 0 n mよりも厚い場合には、 透明導電性薄膜の光線透過率を高める光 学設計に影響を与えるために、 好ましくない。  The thickness of the dielectric thin film is preferably in the range of 1 to 300 nm. When the thickness is less than 1 nm, the effect of suppressing blackening of the transparent conductive thin film is insufficient. On the other hand, when the thickness is more than 300 nm, it is not preferable because it affects the optical design for increasing the light transmittance of the transparent conductive thin film.
本発明の透明導電性フィルムを用いた E Lパネルは、 透明導電性フィルムの透 明導電性薄膜上に、 発光層、 誘電体層、 平面電極層、 絶縁層をこの順に積層して 作製する。 各々の層は、 蒸着やスパッタリングなどのドライプロセス法を用いて もよいし、 ウエッ トコートである印刷法を用いてもよいが、 製造コス トの観点か ら、 印刷法が好ましい。  An EL panel using the transparent conductive film of the present invention is manufactured by laminating a light-emitting layer, a dielectric layer, a plane electrode layer, and an insulating layer in this order on a transparent conductive thin film of the transparent conductive film. Each layer may be formed by a dry process such as vapor deposition or sputtering, or may be formed by a printing method that is a wet coat, but a printing method is preferable from the viewpoint of manufacturing cost.
発光層はバインダ一樹脂中に発光体粉体を分散させたものである。 バインダー 樹脂は、 発光体粉体を水分から守るために防湿性に優れた樹脂であることが必要 であることから、 フッ素エラストマ一を用いるのが好適である。 フッ素エラスト マ一はフッ化ビニリデン、 六フッ化プロピレン、 四フッ化工チレン、 パ一フロロ メチルビニルエーテルなどの単体もしくは共重合したものが好ましい。 さらに、 透明導電性薄膜や誘電体層との付着力を強くするために、 ポリエステル樹脂、 ァ クリル樹脂、 エポキシ樹脂、 メラミン樹脂、 メタクリル樹脂、 ウレタンアクリル 樹脂、 シリコーン系樹脂などをブレンドしてもよい。 The light emitting layer is obtained by dispersing a light emitting powder in a binder resin. Since the binder resin needs to be a resin having excellent moisture-proof properties in order to protect the phosphor powder from moisture, it is preferable to use a fluoroelastomer. Fluoroelast The monomer is preferably a simple substance or a copolymer of vinylidene fluoride, propylene hexafluoride, tetrafluoroethylene, perfluoromethyl vinyl ether, or the like. Furthermore, polyester resin, acrylic resin, epoxy resin, melamine resin, methacrylic resin, urethane acrylic resin, silicone resin, etc. may be blended in order to strengthen the adhesion to the transparent conductive thin film and the dielectric layer. .
発光体粉体は Z n Sを主成分としたものが好ましく、 添加する不純物により、 可視光領域内で発光波長を選択的に得ることができる。添加する不純物としては、 C u、 Ag、 C l、 I、 A l、 Mn、 P r F3、 Nd F3、 SmF3、 Eu F3、 T b F3、 Dy F3、 H o F3、 E r F3、 TmF3、 Y b F 3などから選ぶのが好ま しい。 The luminescent powder preferably contains ZnS as a main component, and the emission wavelength can be selectively obtained in the visible light region by the added impurities. The impurity added, C u, Ag, C l , I, A l, Mn, P r F 3, Nd F 3, SmF 3, Eu F 3, T b F 3, Dy F 3, H o F 3 , E r F 3, TmF 3 , Y b F 3 is favored arbitrary choose from such.
これらの発光体粉末の発光波長; IE と透明電極に用いた本発明の透明導電性フ ィルムの光線透過率が最高値を有する波長 Πが、  The emission wavelengths of these phosphor powders; the wavelengths at which the light transmittance of the IE and the transparent conductive film of the present invention used for the transparent electrode have the highest value are:
^ I- 50 nm ≤ λΕ ≤ 1+ 50 nm  ^ I- 50 nm ≤ λΕ ≤ 1+ 50 nm
の関係式を満足するように設計することで、 発光輝度の非常に高いエレクトロル ミネッセンスパネルを提供することができる。/ JEとス Iの差が 50 nmよりも大 きくなると、 発光輝度の向上が不十分となりやすい。 By designing so as to satisfy the relational expression, it is possible to provide an electroluminescent panel having extremely high emission luminance. If the difference between / JE and I is larger than 50 nm, the improvement in emission luminance tends to be insufficient.
発光体粉体の耐湿性を向上するために、表面に酸化アルミニウム、酸化チタン、 酸化シリコン、 酸化マグネシウムなどの防湿性被膜を形成させることが好適であ る。  In order to improve the moisture resistance of the phosphor powder, it is preferable to form a moisture-proof coating such as aluminum oxide, titanium oxide, silicon oxide, and magnesium oxide on the surface.
また、 発光層のバインダー樹脂 1 gに対し、 発光体粉体を 0. l〜1 00 gの 比率で分散させるのが好ましい。 0. 1 g未満では発光輝度が不十分であり、 1 00 gよりも多いとバインダ一による接着の効果が不足する。  Further, it is preferable to disperse the phosphor powder in a ratio of 0.1 to 100 g per 1 g of the binder resin of the light emitting layer. If the amount is less than 0.1 g, the light emission luminance is insufficient.
発光層の厚さは 1 ~ 1 00〃mの範囲であることが好ましい。 1 〃m未満の厚 さではやはり発光輝度が不十分であり、 1 00 mよりも厚い場合は 1回の工程 で印刷が難しく、 生産性の観点から好ましくない。  The thickness of the light emitting layer is preferably in the range of 1 to 100 μm. If the thickness is less than 1 μm, the emission luminance is still insufficient. If the thickness is more than 100 m, printing is difficult in one process, which is not preferable from the viewpoint of productivity.
誘電体層は発光層と同様のフッ素エラストマ一中に酸化チタン、 チタン酸バリ ゥム、 チタン酸鉛、 ニオブ酸カリウム、 ニオブ酸リチウム、 タンタル酸リチウム などの高誘電率を有する粉体を分散させたものを積層する。 誘電体層の厚さは 1 〜 1 00〃mの範囲であることが好ましい。 1 m未満の厚さでは背面電極から 発光層へのリーク電流が多くなり、 発光輝度が低下してしまう。 Ι Ο Ο ί/ mより も厚い場合は 1回の工程で印刷が難しく、 生産性の観点から好ましくない。 For the dielectric layer, a powder having a high dielectric constant such as titanium oxide, barium titanate, lead titanate, potassium niobate, lithium niobate, lithium tantalate is dispersed in the same fluoroelastomer as the light emitting layer. Are stacked. Preferably, the thickness of the dielectric layer is in the range of 1 to 100 m. At a thickness of less than 1 m from the back electrode The leakage current to the light emitting layer increases, and the light emission luminance decreases. If it is thicker than Ι Ο ί / m, printing is difficult in one process, which is not preferable from the viewpoint of productivity.
背面電極はポリエステル樹脂中に力一ボンおよび Zまたは銀の粉体を分散させ たものを印刷する。印刷層の厚さは 1〜 1 0 0〃mの範囲であることが好ましい。 1 m未満の厚さでは背面電極の表面抵抗率が高くなりすぎ、 やはり発光輝度が 不十分であり、 1 0 0 i/ mよりも厚い場合は 1回の工程で印刷が難しく、 生産性 の観点から好ましくない。背面電極の表面抵抗率は 0. 1〜5 0 0 Ω/υが好適で ある。 0. 1 Ω /口未満とするためには、背面電極の厚さをかなり厚く しなければ ならず、 生産性の点から好ましくない。 一方、 5 0 0 Ω/Ε]よりも高表面抵抗率で は、 印加電圧を効率良く発光層に印加することができず発光輝度が低下してしま う。  The back electrode is printed with polyester resin and Z or silver powder dispersed in polyester resin. The thickness of the printing layer is preferably in the range of 1 to 100 m. If the thickness is less than 1 m, the surface resistivity of the back electrode becomes too high, and the emission luminance is also insufficient.If the thickness is more than 100 i / m, printing is difficult in a single step, and productivity is reduced. Not desirable from a viewpoint. The surface resistivity of the back electrode is preferably from 0.1 to 500 Ω / υ. In order to make it less than 0.1 Ω / port, the thickness of the back electrode must be considerably increased, which is not preferable from the viewpoint of productivity. On the other hand, when the surface resistivity is higher than 500 Ω / Ε], the applied voltage cannot be efficiently applied to the light emitting layer, and the light emission luminance decreases.
絶縁層はポリエステル樹脂、 アクリル樹脂、 エポキシ樹脂、 メラミン樹脂、 メ タクリル樹脂、 ウレタンアクリル樹脂、 シリコーン系樹脂などを主成分としたも のを 1〜 1 0 0 mの範囲で印刷することが好ましい。 1 m未満の厚さでは絶 縁の効果が不十分であり、 1 0 0 mよりも厚い場合は 1回の工程で印刷が難し く、 生産性の点から好ましくない。  It is preferable that the insulating layer is mainly composed of a polyester resin, an acrylic resin, an epoxy resin, a melamine resin, a methacryl resin, a urethane acrylic resin, a silicone resin or the like, and is printed in a range of 1 to 100 m. When the thickness is less than 1 m, the insulating effect is insufficient. When the thickness is more than 100 m, printing is difficult in one process, which is not preferable in terms of productivity.
また、 本発明においては、 透明導電性フィルムの透明導電性薄膜を形成してい ない表面に、 E Lパネル作製時の工程で発生する擦り傷等を防止するために、 ハ ―ドコート処理層を設けたり、 L C Dと密着した際のニュートンリング発生を抑 制するために凹凸処理層を設けたり、 透明導電性フィルムの光線透過率をさらに 高めるために反射防止処理層を設けたりしてもよい。  Further, in the present invention, a hard coat treatment layer may be provided on the surface of the transparent conductive film on which the transparent conductive thin film is not formed, in order to prevent abrasion or the like generated in the process of manufacturing an EL panel. An irregularity treatment layer may be provided to suppress the generation of Newton rings when the LCD is in close contact with the LCD, and an antireflection treatment layer may be provided to further increase the light transmittance of the transparent conductive film.
ハードコート処理曆としては、 ポリエステル系樹脂、 ウレタン系樹脂、 ァクリ ル系樹脂、 メラミン系樹脂、 エポキシ系樹脂、 シリコン系樹脂、 ポリイミ ド系樹 脂などの硬化性樹脂を、 単体もしくは混合した架橋性樹脂硬化物層が好ましい。 ハ一ドコ一ト処理層の厚さは 3 ~ 5 0 / mの範囲が好ましく、 特に好ましくは 4〜3 0〃mの範囲である。 厚さが 3〃mより薄い場合は、 ハードコート処理の 機能が十分発現しない。 一方、 5 0 mを超える厚さとするためには、 前記硬化 性樹脂を含む塗布液を透明導電性フィルムに塗布する速度を著しく遅くしなけれ ばならず、 生産性の点から好ましくない。 ハ—ドコート処理層を積曆する方法としては、 透明導電性フィルムの透明導電 性薄膜を設けた面の反対側の面に、 上記の硬化性樹脂を含む塗布液をダラビア方 式、 リバース方式、 ダイ方式などにより、 透明導電性フィルムにコーティ ングし た後、 熱、 紫外線、 電子線等のエネルギーを印加して硬化させる。 The hard coat treatment is a cross-linkable resin made of a single or mixed curable resin such as polyester resin, urethane resin, acryl resin, melamine resin, epoxy resin, silicon resin, polyimide resin. A cured resin layer is preferred. The thickness of the hard coat treatment layer is preferably in the range of 3 to 50 / m, particularly preferably in the range of 4 to 30 μm. If the thickness is less than 3 m, the function of the hard coat treatment will not be sufficiently exhibited. On the other hand, in order to make the thickness more than 50 m, the rate at which the coating liquid containing the curable resin is applied to the transparent conductive film must be significantly reduced, which is not preferable in terms of productivity. As a method of depositing the hard coat treatment layer, a coating solution containing the above-mentioned curable resin is applied to a surface of the transparent conductive film opposite to the surface on which the transparent conductive thin film is provided, by a Daravia method, a reverse method, After coating the transparent conductive film with a die method or the like, it is cured by applying energy such as heat, ultraviolet rays, and electron beams.
凹凸処理層は、 硬化性樹脂をコーティング、 乾燥後にエンボスロール、 ェンボ スフイルムなどでコーティング層表面に凹凸を形成し、 この後熱、 紫外線、 電子 線等のエネルギーを印加することで、 硬化させる。 硬化性樹脂としては、 ポリエ ステル系樹脂、 ウレタン系樹脂、 アクリル系樹脂、 メラミン系樹脂、 エポキシ系 樹脂、 シリコン系樹脂、 ポリイミ ド系樹脂などの単体もしくは混合したものが好 ましい。 または、 樹脂中に無機または Zおよび有機フイラ一を混合しても良い。 反射防止処理層には、 二軸配向 PETフィルムの屈折率とは異なる屈折率を有 する材料を単層もしくは 2層以上積層することが好ましい。 単層構造の場合、 二 軸配向 PETフィルムよりも小さな屈折率を有する材料を用いるのがよい。また、 2層以上の多層構造とする場合は、 二軸配向 PETフィルムと隣接する層は、 二 軸配向 PETフィルムよりも大きな屈折率を有する材料を用い、 この上の層には これよりも小さな屈折率を有する材料を選ぶのがよい。 このような反射防止処理 層を構成する材料としては、 有機材料でも無機材料でも上記の屈折率の関係を満 足すれば特に限定されないが、 例えば、 CaF2、 MgF2、 NaA l F4、 S i 〇2、 ThF4、 Z r〇2、 Nd203、 S n〇2、 T i〇2、 C e〇2、 Zn S、 I n23、 などの誘電体を用いるのが好ましい。 The unevenness-treated layer is formed by coating a curable resin, drying and then forming an unevenness on the surface of the coating layer using an embossing roll, embossed film, or the like, and then curing the applied layer by applying energy such as heat, ultraviolet rays, or an electron beam. As the curable resin, a polyester resin, a urethane resin, an acrylic resin, a melamine resin, an epoxy resin, a silicone resin, a polyimide resin, or a mixture thereof is preferable. Alternatively, an inorganic or Z and an organic filler may be mixed in the resin. In the antireflection treatment layer, it is preferable that a material having a refractive index different from that of the biaxially oriented PET film be a single layer or a laminate of two or more layers. In the case of a single-layer structure, it is preferable to use a material having a smaller refractive index than the biaxially oriented PET film. In the case of a multilayer structure of two or more layers, a material having a higher refractive index than the biaxially oriented PET film is used for the layer adjacent to the biaxially oriented PET film, and a smaller It is preferable to select a material having a refractive index. The material constituting such an anti-reflection treatment layer is not particularly limited as long as it satisfies the above-mentioned relationship of the refractive index, whether it is an organic material or an inorganic material.For example, CaF 2 , MgF 2 , NaAlF 4 , S i 〇 2, ThF 4, Z R_〇 2, Nd 2 0 3, S N_〇 2, T I_〇 2, C E_〇 2, Zn S, preferably used dielectrics such as I n 23, .
この反射防止処理層を積層する方法としては、真空蒸着法、 スパッタリング法、 CVD法、 イオンプレーティング法などのドライコーティングプロセスでも、 グ ラビア方式、 リバース方式、 ダイ方式などのゥヱッ トコ一ティングプロセスでも よい。  The method of laminating the anti-reflection treatment layer may be a dry coating process such as a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, or a wet coating process such as a gravure method, a reverse method, or a die method. Good.
さらに、 このハードコート処理層、 凹凸処理層、 反射防止処理層の積層に先立 つて、 前処理として、 コロナ放電処理、 プラズマ処理、 スパッタエッチング処理、 電子線照射処理、 紫外線照射処理、 プライマ処理、 易接着処理などの公知の処理 を施してもよい。  Further, prior to lamination of the hard coat treatment layer, the unevenness treatment layer, and the anti-reflection treatment layer, corona discharge treatment, plasma treatment, sputter etching treatment, electron beam irradiation treatment, ultraviolet irradiation treatment, primer treatment, A known treatment such as an easy adhesion treatment may be performed.
本発明の透明導電性フィルムは、 特にエレク ト口ルミネッセンスパネルに好適 であるが、 タツチパネルの部材としても使用することができる。 タツチパネルと は、 透明導電性薄膜を有する一対のパネル板を、 透明導電性薄膜が対向するよう にスぺーサ一を介して配置してなるものである。 このタツチパネルは、 透明導電 性フィルム側より、 ペンにより文字入力したときに、 ペンからの押圧により、 対 向した透明導電性薄膜同士が接触し、 電気的に ONになり、 ペンのタツチパネル 上での位置を検出するものである。 この透明導電性薄膜を有する一対のパネル板 の一方もしくは両方に、 本発明の透明導電性フィルムを用いることで、 光線透過 率が高く、 かつ加熱処理による外観欠点の少ないタッチパネルを作製することが できる。 実施態様例 The transparent conductive film of the present invention is particularly suitable for an electroluminescent panel. However, it can also be used as a touch panel member. The touch panel is formed by disposing a pair of panel plates having a transparent conductive thin film via a spacer so that the transparent conductive thin films face each other. When a character is input with the pen from the transparent conductive film side, the touch panel touches the opposite transparent conductive thin films due to the pressure from the pen and turns on electrically, and the pen touches the touch panel. This is to detect the position. By using the transparent conductive film of the present invention for one or both of the pair of panel plates having the transparent conductive thin film, it is possible to produce a touch panel having high light transmittance and less appearance defects due to heat treatment. . Example of embodiment
次に、 実施例を用いて本発明を詳細に説明する。 ただし、 本発明は、 その要旨 を逸脱しない限り、 以下の実施例に限定されるものではない。 なお、 以下の実施 例及び比較例で、 各特性の評価に用いた測定方法は以下の通りである。  Next, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples unless departing from the gist thereof. In the following examples and comparative examples, the measurement methods used for evaluating each characteristic are as follows.
(1) ポリエステルの固有粘度  (1) Intrinsic viscosity of polyester
フエノール 60重量%と 1, 1, 2, 2, —テトラクロ口ェ夕ン 40重量%の 混合溶媒に、 ポリエステルを溶解し、 固形分を実質的に濾過した後、 30°Cにて 測定した。  Polyester was dissolved in a mixed solvent of 60% by weight of phenol and 40% by weight of 1,1,2,2-tetracloane, and the solid content was substantially filtered, followed by measurement at 30 ° C.
(2) ポリエステルの環状 3量体の含有量  (2) Polyester cyclic trimer content
試料をへキサフルォロイソプロパノール クロロホルム混合液に溶解し、 さら にクロ口ホルムを加えて希釈する。 これにメタノールを加えてポリマ一を沈殿さ せた後、 濾過する。 濾液を蒸発乾固し、 ジメチルホルムアミ ドで定容とし、 液体 クロマトグラフ法よりエチレンテレフタレート単位から構成される環状 3量体を 定量した。  Dissolve the sample in a mixture of hexafluoroisopropanol and chloroform, and dilute with chloroform. To this is added methanol to precipitate a polymer, which is then filtered. The filtrate was evaporated to dryness, made up to a constant volume with dimethylformamide, and the cyclic trimer composed of ethylene terephthalate units was quantified by liquid chromatography.
(3) 接着性  (3) Adhesiveness
二軸配向ポリエステルフィルムの塗布面に、 # 8ワイヤバーを用いてハードコ ート剤 (大日精化社製、 セイカビーム EXF01 (B) ) を塗布し、 70°Cで 1 分間乾燥し溶剤を除去した後、 高圧水銀灯で 200mJZcm2、 照射距離 15 cm, 走行速度 5 mZ分の条件下で、 厚み 3 mのハードコート層を形成した。 得られたフィルムを J I S— K5400の 8. 5. 1記載に準じた試験方法で接 着性を求めた。 具体的には、 易接着層を貫通して基材フィルムに達する 100個 の升目状の切り傷を、隙間間隔 2mmのカッターガイ ドを用いて付けた。次いで、 セロハン粘着テープ (ニチバン社製 405番; 24mm幅) を升目状の切り傷面 に張り付け、 消しゴムでこすって完全に付着させた後、 垂直に引き剥がして目視 により下記の式から接着性を求めた。 Apply a hard coat agent (Seika Beam EXF01 (B), manufactured by Dainichi Seika Co., Ltd.) to the coated surface of the biaxially oriented polyester film using a # 8 wire bar, and dry at 70 ° C for 1 minute to remove the solvent. A hard coat layer having a thickness of 3 m was formed using a high-pressure mercury lamp under the conditions of 200 mJZcm 2 , irradiation distance of 15 cm and running speed of 5 mZ. The adhesiveness of the obtained film was determined by a test method according to 8.5.1 of JIS-K5400. Specifically, 100 square cuts that penetrated the easy-adhesion layer and reached the base film were made using a cutter guide with a gap of 2 mm. Next, a cellophane adhesive tape (Nichiban No. 405; 24 mm width) was attached to the cut-like surface of the grid, rubbed with an eraser and completely adhered, and then peeled off vertically to visually determine the adhesiveness from the following formula. Was.
接着性 (%) = (1一剥がれ面積 Z評価面積) X 100  Adhesion (%) = (1 peeled area Z evaluation area) X 100
(4) 耐スクラッチ性  (4) Scratch resistance
透明導電性フィルムの透明導電性薄膜を積層していない面を、 幅 1000mm にスリ ッ ト したフィルムを、 直径 220mm、 回転抵抗 l k gのハードクロムメ ツキ処理されたフリーロール (表面粗度 R a : 100 nm) 上を走行させる。 こ の時の走行条件は、 走行速度を 10 mZ分、 巻き付け角を 60° 、 走行張力を 1 0 kgとした。 この処理によりフィルム表面に入った傷を、 白金蒸着し、 顕微鏡 で観察した。 幅 3 以上でかつ長さ 500 以上の傷の本数を面積 1 m2あ たりカウントし、 下記のような基準で判定した。 A 1000 mm wide slit film of the transparent conductive film, on which the transparent conductive thin film is not laminated, is coated with a hard chrome-plated free roll with a diameter of 220 mm and a rotation resistance of lkg (surface roughness Ra: 100 nm). The running conditions at this time were a running speed of 10 mZ, a winding angle of 60 °, and a running tension of 10 kg. The scratches that entered the film surface by this treatment were deposited with platinum and observed with a microscope. The number of width 3 or more and a length more than 500 wound area 1 m 2 counts or Ah, was determined according to the following criteria.
◎ : 10本未満  ◎: less than 10
〇: 10本以上 20本未満 (実用的には使用可能)  〇: 10 or more and less than 20 (practically usable)
: 20本以上  : 20 or more
(5) 全光線透過率、 ヘイズ値  (5) Total light transmittance, haze value
J I S-K7105に準拠し、 ヘイズメータ一 (日本電色工業 (株) 製: ND H- 1001 DP) を用いて、 全光線透過率およびヘイズ値を測定した。  Based on JIS-K7105, total light transmittance and haze value were measured using a haze meter-1 (NDH-1001 DP manufactured by Nippon Denshoku Industries Co., Ltd.).
(6) 三次元中心面平均表面粗さ (SRa)  (6) 3D center plane average surface roughness (SRa)
触針式三次元表面粗さ計 (小坂研究所社製、 ET— 30HK) および三次元粗 さ解析装置 (小坂研究所社製、 SPA— 1 1) を用い、 フィルムの塗布層表面の 三次元中心面平均表面粗さ (SRa) を測定した。測定条件は下記の通りである。  Using a stylus type three-dimensional surface roughness meter (Kosaka Laboratories, ET-30HK) and a three-dimensional roughness analyzer (Kosaka Laboratories, SPA-11), the three-dimensional surface of the film coating layer is measured. The center plane average surface roughness (SRa) was measured. The measurement conditions are as follows.
1) 触針先端半径: 2 m、 2) 触針荷重: 20mg、 3) カツ トオフ値: 8 0 m、 4) X方向測定長さ : lmm、 5) X方向送り速さ : 100 秒、 6) X方向サンプルピッチ : 0. 4 m、 7) Y方向送りピッチ : 2〃m、 8) Y方向ライン数: 100、 9) Z方向倍率: 5万倍 (7) 150°Cにおける熱収縮率 1) Probe tip radius: 2 m, 2) Probe load: 20 mg, 3) Cut-off value: 80 m, 4) Measurement length in X direction: lmm, 5) Feed speed in X direction: 100 seconds, 6 ) Sample pitch in X direction: 0.4 m, 7) Feed pitch in Y direction: 2 、 m, 8) Number of lines in Y direction: 100, 9) Magnification in Z direction: 50,000 times (7) Heat shrinkage at 150 ° C
一辺が 5 Ommの正方形に切ったフィルムの対角線の交点を中心に、 直径 3 0mmの円を描き、 150±3°Cに加熱した熱風乾燥機中に、 無荷重の状態で 一定温度下 2時間または 3時間放置した。 その後フィルムを取り出し、 平坦な ガラス板に室温で 30分間放置した後、 デジタイザ一によつて寸法変化を読み 取り、 対角線の交点を通る収縮の最大位置の長さ B (mm) から下式により求 めた。 なお、 上記手順での測定を 3回行ない、 その平均値を使用した。  Draw a circle with a diameter of 30 mm around the intersection of the diagonal lines of the film cut into a square with a side of 5 Omm and place it in a hot-air dryer heated to 150 ± 3 ° C without load and at a constant temperature for 2 hours Or left for 3 hours. Then, remove the film, leave it on a flat glass plate at room temperature for 30 minutes, read the dimensional change with a digitizer, and calculate the maximum shrinkage position B (mm) through the intersection of the diagonal lines using the following formula. I did. The measurement in the above procedure was performed three times, and the average value was used.
150°Cにおける熱収縮率 (%) = (50— B) /50 100  Heat shrinkage at 150 ° C (%) = (50—B) / 50 100
(8) 表面抵抗率  (8) Surface resistivity
J I S-K-7194に準拠し、 4端子法にて測定した。 測定機は、 三菱油化 (株) 製の Lotest AMCP- T400を用いた。  Measured by the four-terminal method according to JIS-K-7194. As a measuring device, Lotest AMCP-T400 manufactured by Mitsubishi Yuka Co., Ltd. was used.
(9) 150°Cで 3時間の熱処理による反り量  (9) Warpage due to heat treatment at 150 ° C for 3 hours
3 Ommx 30 mmサイズのフィルムを 150 ± 3 °Cで 3時間加熱処理し、 平 坦なガラス板に室温で 30分間放置した後、 ガラス板上からのフィルムの反り量 をノギスで 0. 1mm刻みで測定する。 測定はフィルムの四隅について行ない、 その最大値を使用した。 単位は mmである。  3 Ommx 30 mm size film is heat-treated at 150 ± 3 ° C for 3 hours, left on a flat glass plate at room temperature for 30 minutes, and the amount of film warpage from the glass plate is cut in 0.1 mm increments with calipers. Measure with The measurement was performed at the four corners of the film, and the maximum value was used. The unit is mm.
(10) 分光光線透過率測定による最高光線透過率とその波長  (10) Maximum light transmittance and its wavelength based on spectral light transmittance measurement
分光光度計 ( (株) 日立製: U-3500) を用いて、 300〜800 nmの波長の 光線透過率を測定し、 この範囲内の最高光線透過率とその波長を測定した。  Using a spectrophotometer (manufactured by Hitachi, Ltd .: U-3500), the light transmittance at a wavelength of 300 to 800 nm was measured, and the maximum light transmittance within this range and its wavelength were measured.
(1 1) ELパネルの発光輝度  (1 1) EL panel emission brightness
透明導電性薄膜と背面電極の間に、 100Vrms、 40 OH zの正弦波を印 加して、 このパネルの輝度を色彩色度計 (ミノルタ製: CS— 100) を用いて 測定した。  A sine wave of 100 Vrms and 40 OHz was applied between the transparent conductive thin film and the back electrode, and the luminance of this panel was measured using a colorimeter (MINOLTA: CS-100).
(12) ELパネルの寿命時間  (12) EL panel lifetime
ELパネルを発光させたまま、 温度 50°C、 湿度 90%RHに管理された恒温 恒湿槽中に放置し、 直径 1 mm以上の黒点が発生した時点までの発光時間を寿命 時間 (Hr) とした。  With the EL panel emitting light, leave it in a constant temperature / humidity bath controlled at a temperature of 50 ° C and a humidity of 90% RH. The emission time until the black spot with a diameter of 1 mm or more occurs is the lifetime (Hr). And
(13) ELパネルの印刷ズレ  (13) Print shift of EL panel
ELパネルの印刷ズレをノギスで 0. 1mm刻みで測定し、 下記基準で判定し た。 〇は実用上使用可能レベルである。 また、 Xは上下電極の短絡等を発生する 可能性があり、 実用上使用することができない。 Measure the printing deviation of the EL panel with a vernier caliper in increments of 0.1 mm, and judge according to the following criteria. Was. 〇 is a practically usable level. Further, X may cause a short circuit between the upper and lower electrodes, and cannot be used for practical use.
〇: 0. 3 mm未満  〇: less than 0.3 mm
: 0. 3 mm以上  : 0.3 mm or more
(14) ELパネルの外観欠点検査  (14) Inspection of appearance defect of EL panel
透明導電性フィルム表面の白化を、 ELパネルの点灯及び非点灯の状態で目視 観察し、 下記基準で判定した。  The whitening of the transparent conductive film surface was visually observed with the EL panel turned on and off, and judged according to the following criteria.
〇: ELパネルが点灯時でも白化が見られない  〇: No whitening is observed even when the EL panel is lit
△ : ELパネルが点灯時に白化が見られる  △: Whitening is observed when the EL panel is lit
: ELパネルが非点灯時でも白化が見られる 実施例 1  : Whitening is observed even when the EL panel is not lit.
(1) 塗布液の調整  (1) Adjustment of coating liquid
本発明に用いる塗布液を以下の方法に従って調製した。 ジメチルテレフタレー ト 95重量部、 ジメチルイソフタレート 95重量部、 エチレングリコール 35重 量部、 ネオペンチルグリコール 145重量部、 酢酸亜鉛 0. 1重量部および三酸 化アンチモン 0. 1重量部を反応容器に仕込み、 180°Cで 3時間かけてエステ ル交換反応を行った。  The coating solution used in the present invention was prepared according to the following method. 95 parts by weight of dimethyl terephthalate, 95 parts by weight of dimethyl isophthalate, 35 parts by weight of ethylene glycol, 145 parts by weight of neopentyl glycol, 0.1 part by weight of zinc acetate and 0.1 part by weight of antimony trioxide in a reaction vessel The mixture was charged and an ester exchange reaction was performed at 180 ° C. for 3 hours.
次に、 5—ナトリウムスルホイソフタル酸 6. 0重量部を添加し、 24 CTCで 1時間かけてエステル化反応を行った後、 250°Cで減圧下 (10〜0. 2mm Hg) で 2時間かけて重縮合反応を行い、 分子量 19500、 軟化点 60°Cのポ リエステル樹脂を得た。  Next, 6.0 parts by weight of 5-sodium sulfoisophthalic acid was added, and the esterification reaction was performed at 24 CTC for 1 hour, and then at 250 ° C under reduced pressure (10 to 0.2 mm Hg) for 2 hours. A polycondensation reaction was performed to obtain a polyester resin having a molecular weight of 19,500 and a softening point of 60 ° C.
得られたポリエステル樹脂 (A) の 30重量%水分散液を 6. 7重量部、 重亜 硫酸ソ一ダでブ口ックしたィソシァネート基を含有する自己架橋型ポリウレタン 樹脂 (B) の 20重量%水溶液 (第一工業製薬製:商品名 エラストロン H— 3) を 40重量部、 エラス トロン用触媒 (第一工業製薬製:商品名 Ca t 64) を 0. 5重量部、 水を 44. 3重量部およびイソプロピルアルコールを 5重量部、 それぞれ混合し、 さらにァニオン系界面活性剤の 10重量%水溶液を 0. 6重量 部、 粒子 A (日産化学工業社製: スノーテックス〇L、 平均粒径 40 n m) の 2 0重量%水分散液を 1. 8重量部、 粒子 B (日本ァエロジル社製; ァエロジル 0 X 50、 平均粒径 500 nm、 平均一次粒径 40 nm) の 4重量%水分散液を 1. 1重量部添加し塗布液とした。 6.7 parts by weight of the obtained 30% by weight aqueous dispersion of the polyester resin (A), and 20 parts by weight of the self-crosslinkable polyurethane resin (B) containing an isocyanate group, which was opened with sodium bisulfite. % Aqueous solution (manufactured by Daiichi Kogyo Seiyaku Co., Ltd .: trade name Elastron H-3), 40 parts by weight, Elastron catalyst (manufactured by Daiichi Kogyo Seiyaku; trade name: Cat 64) 0.5 part by weight, water 44.3 Parts by weight, and 5 parts by weight of isopropyl alcohol, and 0.6 parts by weight of a 10% by weight aqueous solution of an anionic surfactant. Particle A (Nissan Chemical Industries, Ltd .: Snowtex II L, average particle size 40) nm) 2 1.8 parts by weight of a 0% by weight aqueous dispersion, and 1.1 parts by weight of a 4% by weight aqueous dispersion of particles B (manufactured by Nippon Aerosil Co., Ltd., Aerozil 0X50, average particle diameter 500 nm, average primary particle diameter 40 nm). A coating solution was prepared by adding parts by weight.
(2) フィルムの製膜  (2) Film formation
粒子を含有していないポリエチレンテレフ夕レート (PET) 樹脂ペレツ トを 1. 1気圧の窒素気流下、 220°Cで 24時間熱処理し、 固有粘度が 0. 64 d l Zg、 環状 3量体の含有量が 3000 p pmの PET樹脂ペレットを得た。 こ のペレツトを PETフィルムの原料樹脂とし、 265 °Cで再溶融して滞留時間 6 分でスリッ トダイから押し出し、 30°Cのロールに接触、 冷却固化し、 厚さ 17 50 mの未延伸フィルムを得た。 この際、 溶融 PET樹脂の異物除去用濾材と して、 濾過粒子サイズ (初期濾過効率 95%) が 15 mのステンレス製焼結濾 材を用いた。  Particle-free polyethylene terephthalate (PET) resin pellets are heat-treated at 220 ° C for 24 hours under a nitrogen atmosphere at 1.1 atm, containing 0.64 dl Zg of intrinsic viscosity and containing cyclic trimer PET resin pellets with a volume of 3000 ppm were obtained. This pellet is used as a raw material resin for PET film, re-melted at 265 ° C, extruded from a slit die with a residence time of 6 minutes, contacted with a roll at 30 ° C, cooled and solidified, and unstretched film with a thickness of 1750 m I got At this time, a stainless sintered filter medium with a filter particle size (initial filtration efficiency 95%) of 15 m was used as a filter medium for removing foreign substances from the molten PET resin.
次に、 この未延伸フィルムを加熱されたロール群及び赤外線ヒータ一で 1 0 0°Cに加熱し、 その後、 周速差のあるロール群で長手方向に 3. 5倍延伸して一 軸配向 PETフィルムを得た。  Next, the unstretched film is heated to 100 ° C. by a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction by a roll group having a peripheral speed difference to be uniaxially oriented. PET film was obtained.
次いで、 前記塗布液を濾過粒子サイズ (初期濾過効率: 95%) 25 mのフ ヱルト型ポリプロピレン製濾材で精密濾過し、 リバ一スロール法で一軸配向 F E Tフィルムの片面に塗布し、 乾燥した。 この時の粒子 Aと粒子 Bの含有量比は 8 であり、 粒子 Bの含有量は塗布層の樹脂組成物に対し 0. 42重量%であった。 また、 得られたフィルムの乾燥後の塗布量は、 0. 10 g/m2であった。 塗布 後引き続いて、 フィルムの端部をクリップで把持して 130°Cに加熱された熱風 ゾーンに導き、 乾燥後幅方向に 4. 0倍に延伸したのち、 230°Cの熱固定を施 し、 厚さ 188 mの片面に塗布層を有する二軸配向 PETフィルムを得た。Next, the coating solution was subjected to microfiltration with a filter material made of a polypropylene having a filtration particle size (initial filtration efficiency: 95%) of 25 m, applied to one surface of a uniaxially oriented FET film by a reverse roll method, and dried. At this time, the content ratio of the particles A and the particles B was 8, and the content of the particles B was 0.42% by weight based on the resin composition of the coating layer. The coated amount of the obtained film after drying was 0.10 g / m 2 . After the application, the end of the film was gripped with a clip and guided to a hot air zone heated to 130 ° C. After drying, the film was stretched 4.0 times in the width direction, and then heat-set at 230 ° C. A biaxially oriented PET film having a coating layer on one side with a thickness of 188 m was obtained.
(3) 透明導電性薄膜の製膜 (3) Transparent conductive thin film formation
上記の片面に塗布層を有する二軸配向 PETフィルムの非塗布面に、 インジゥ ムースズ複合酸化物からなる透明導電性薄膜を下記方法により製膜した。  A transparent conductive thin film made of indium tin oxide was formed on the non-coated side of the biaxially oriented PET film having a coating layer on one side by the following method.
スズ 10重量%含有したインジウム合金をタ一ゲッ ト (三井金属鉱業 (株)製) に用いて、 2WZcm2の DC電力を印加した。 また、 八1"を 1303 じ 。 111、 〇2を703 0 じ171流し、 0. 4 P aの雰囲気下で、 DCマグネトロンスパッタ リング法で製膜した。 ただし、 通常の DCではなく、 アーク放電を防止するため に、 + 20 Vの 5〃 s幅のパルスを 50 kH z周期で印加した。 また、 一 10°C の冷却ロールでフィルムを冷却しながら、 スパッタリングを行なった。 また、 膜 厚を精度よく制御するために、 プラスマ発光分析を行ない、 特にインジウムの発 光である 452 nmの強度を常時モニタ一した。 この発光強度がィンジゥムース ズ複合酸化物薄膜の堆積速度に比例するため、 発光強度をフィルムの送り速度に フィートバックし、 膜厚の制御を行なった。 また、 雰囲気の酸素分圧をスパッタ プロセスモニタ一 (伯東 (株) 製: S PM200) にて常時観測して、 ィンジゥ ムースズ複合酸化物薄膜中の酸化度が一定になるように、 酸素ガスの流量計およ び DC電源にフィードバックした。 以上のようにして、 インジウム一スズ複合酸 化物からなる透明導電性薄膜を堆積して、 透明導電性フィルムを得た。 DC power of 2 WZcm 2 was applied using an indium alloy containing 10% by weight of tin as a target (manufactured by Mitsui Kinzoku Mining Co., Ltd.). Further, eight 1 "to 1303 Ji. 111, 〇 2 703 0 Ji 171 flow, under an atmosphere of 0. 4 P a, DC magnetron sputtering The film was formed by a ring method. However, instead of normal DC, a pulse of +20 V and a width of 5 s was applied at a period of 50 kHz to prevent arc discharge. Sputtering was performed while cooling the film with a cooling roll at 110 ° C. In addition, plasma emission spectroscopy was performed to control the film thickness accurately, and the intensity of 452 nm, which is the emission of indium, was constantly monitored. Since the luminous intensity is proportional to the deposition rate of the Indymoods composite oxide thin film, the luminous intensity was fed back to the film feed speed to control the film thickness. Also, the oxygen partial pressure of the atmosphere is constantly monitored by a sputter process monitor 1 (SPM200 manufactured by Hakuto Co., Ltd.), and the flow rate of the oxygen gas is adjusted so that the degree of oxidation in the thin-film tin oxide composite oxide film becomes constant. And fed back to the DC power supply. As described above, a transparent conductive thin film made of indium-tin tin oxide was deposited to obtain a transparent conductive film.
(4) ELパネルの作製  (4) EL panel fabrication
ELパネルを組むための発光層を次のように準備した。  A light emitting layer for assembling an EL panel was prepared as follows.
メチルェチルケトン 100 gに対して、 20 gのフッ素エラストマ一 (ダイキ ン工業 (株) 製: ダイエル) を溶解させ、 さらに 200 gの硫化亜鉛発光体粉体 Dissolve 20 g of fluorine elastomer (Daikin Industries, Ltd .: Daiel) in 100 g of methyl ethyl ketone, and add 200 g of zinc sulfide phosphor powder
(ォスラム . シルバニァ社製: カプセルタイプ #30) を分散させた。 この発光 体粉体の発光波長は 520 nmである。 これを 200メッシュの刷版を用いて、 透明導電性フィルムの透明導電性薄膜上にスクリーン印刷した。この後、 150°C で 60分間乾燥した。 乾燥後の厚さは 30 であった。 このとき、 透明導電性 薄膜の電極取出部は塗布せず残しておいた。 (Capsule type # 30, manufactured by OSRAM Sylvania) was dispersed. The emission wavelength of this phosphor powder is 520 nm. This was screen-printed on a transparent conductive thin film of a transparent conductive film using a 200-mesh printing plate. Thereafter, drying was performed at 150 ° C for 60 minutes. The thickness after drying was 30. At this time, the electrode extraction portion of the transparent conductive thin film was left uncoated.
さらに、 誘電層材料としてフッ素エラストマ一中にチタン酸バリウム粉体を分 散したペースト (藤倉化成 (株) 製: ドータイ ト FEL— 615) を用い、 2 00メッシュの刷版を用いて発光層上にスクリーン印刷した。 この後、 150°C で 60分間乾燥した。 乾燥後の厚さは 30 mであった。 さらに、 背面電極とし てカーボンペースト (東洋紡績 (株) 製: DY— 152H-30) を 250メッ シュの刷版を用いて誘電体層上にスクリーン印刷した。 この後、 150°Cで 30 分間乾燥した。 乾燥後の厚さは 20 mであった。 また絶縁層として、 レジスト Further, a paste (barrier titanate FEL-615, manufactured by Fujikura Kasei Co., Ltd.) dispersed in a fluoroelastomer as a dielectric layer material is used, and a 200-mesh printing plate is used to form a paste on the light emitting layer. Screen printed. Thereafter, drying was performed at 150 ° C for 60 minutes. The thickness after drying was 30 m. Further, as a back electrode, a carbon paste (DY-152H-30, manufactured by Toyobo Co., Ltd.) was screen-printed on the dielectric layer using a 250-mesh printing plate. Thereafter, drying was performed at 150 ° C for 30 minutes. The thickness after drying was 20 m. Also, as an insulating layer, resist
(藤倉化成 (株) 製: ド一タイ XB— 101 G) を 200メッシュの刷版を用 いて、 背面電極層上にスクリーン印刷した。 この後、 150°Cで 30分間乾燥し た。 乾燥後の厚さは 20 mであった。 以上のようにして、 5 cmx 10 cmの サイズの ELパネルを組み立てた。 実施例 2 (Fujikura Kasei Co., Ltd .: Dotaitai XB-101G) was screen-printed on the back electrode layer using a 200-mesh printing plate. Then dry at 150 ° C for 30 minutes Was. The thickness after drying was 20 m. As described above, an EL panel having a size of 5 cm × 10 cm was assembled. Example 2
塗布液の調整において、 粒子 Aと粒子 Bの含有量比を 20、 粒子 Bの含有量を 塗布層の樹脂組成物に対して 0. 17重量%とした以外は、 実施例 1と同様の方 法で片面に塗布層を有する二軸配向 PETフィルムを得た。 なお、 塗布液中の固 形分濃度は実施例 1と同様になるよう、 水及びイソプロピルアルコールの添加量 を両者の添加量比を一定にしながら調整した。 また、 実施例 1と同様にして透明 導電性薄膜を堆積して、 透明導電性フィルムを得た。 また、 実施例 1と同様にし て ELパネルを組み立てた。 実施例 3  In preparing the coating liquid, the same method as in Example 1 was performed except that the content ratio of the particles A and the particles B was 20 and the content of the particles B was 0.17% by weight based on the resin composition of the coating layer. A biaxially oriented PET film having a coating layer on one side was obtained by the method. The addition amounts of water and isopropyl alcohol were adjusted while keeping the addition amount ratio constant so that the solid concentration in the coating solution was the same as in Example 1. Further, a transparent conductive thin film was deposited in the same manner as in Example 1 to obtain a transparent conductive film. An EL panel was assembled in the same manner as in Example 1. Example 3
滞留時間が 12分であること以外は実施例 1と同様にして片面に塗布層を有す る二軸配向 PETフィルムを得た。 さらに、 実施例 1と同様に透明導電性薄膜層 を設けて、 透明導電性フィルムを得た。 また、 実施例 1と同様にして ELパネル を組み立てた。 実施例 4  A biaxially oriented PET film having a coating layer on one side was obtained in the same manner as in Example 1 except that the residence time was 12 minutes. Further, a transparent conductive thin film layer was provided in the same manner as in Example 1 to obtain a transparent conductive film. An EL panel was assembled in the same manner as in Example 1. Example 4
1. 1気圧の窒素気流下、 220°Cで 24時間熱処理した PET樹脂ペレッ ト の代わりに、 135°Cで 6時間減圧乾燥 (l To r r) 処理を行なった FET樹 脂ペレツ トを用いたこと以外は実施例 1と同様にして、 片面に塗布層を有する二 軸配向 PETフィルムを得た。  1. Instead of PET resin pellets heat-treated at 220 ° C for 24 hours under a nitrogen atmosphere at 1 atm, FET resin pellets dried under reduced pressure (l To rr) at 135 ° C for 6 hours were used. Except for this, a biaxially oriented PET film having a coating layer on one side was obtained in the same manner as in Example 1.
(架橋型樹脂塗液の作製)  (Preparation of cross-linked resin coating liquid)
3官能イソシァネート系樹脂 (日本ポリウレタン工業 (株) 製: コロネ一ト L) を用い、 架橋のための触媒としてジブチル錫ジラウレート (共同薬品 (株) 製: S - 1260) を用いた。 これらをメチルェチルケトン、 トルエン、 シクロへ キサノンからなる混合溶剤を表 1に記載の比率で溶解し、 固形分濃度 5重量%の 塗布液を作製した。 (架橋型樹脂からなる薄膜層の形成) A trifunctional isocyanate-based resin (manufactured by Nippon Polyurethane Industry Co., Ltd .: Coroneto L) was used, and dibutyltin dilaurate (manufactured by Kyodo Yakuhin Co., Ltd .: S-1260) was used as a catalyst for crosslinking. These were dissolved in a mixed solvent composed of methyl ethyl ketone, toluene and cyclohexanone at the ratios shown in Table 1 to prepare a coating solution having a solid content of 5% by weight. (Formation of thin film layer made of cross-linked resin)
実施例 1と同様にして作製した二軸延伸 F E Tフィルムの塗布面に、 上記の塗布 液を用い、 リバースコート法にて塗工した。 この際、 メタリングロールとアプリ ケ一ターロールとのギャップを 5 0〃mとし、 1 8 0 °Cで 3 0秒間加熱し、乾燥、 架橋を行なった。 このときのライン速度は 2 O mZ分とした。 形成した架橋型樹 脂からなる薄膜層の厚さは 0. 5〃mであった。 The coating surface of the biaxially stretched FET film produced in the same manner as in Example 1 was coated by the reverse coating method using the above coating solution. At this time, the gap between the metalling roll and the applicator roll was set to 50 μm, and heated at 180 ° C. for 30 seconds, followed by drying and crosslinking. The line speed at this time was set to 2 O mZ. The thickness of the formed thin film layer of the crosslinked resin was 0.5 μm.
架橋型樹脂からなる薄膜層を形成していない二軸延伸 P E Tフィルム面に、 実 施例 1と同様にして透明導電性薄膜を形成し、透明導電性フィルムを得た。 また、 この透明導電性フィルムを用いて、 実施例 1と同様にして、 E Lパネルを作製し た。 実施例 5  A transparent conductive thin film was formed on the surface of the biaxially stretched PET film on which no thin film layer made of a crosslinked resin was formed, in the same manner as in Example 1, to obtain a transparent conductive film. In addition, an EL panel was produced in the same manner as in Example 1 using this transparent conductive film. Example 5
3官能エポキシ系樹脂 (大日本インキ化学工業 (株) : C R— 5 L ) を用いて、 表 1のような固形分濃度 5重量%の塗布液を作製した。 この塗布液を実施例 4と 同様に塗工した。 また、 架橋型樹脂からなる薄膜層の厚さは 0 . 5 mとした。 架橋型樹脂からなる薄膜層を形成していない二軸延伸 P E Tフィルム面に、 実 施例 1と同様にして透明導電性薄膜を形成し、透明導電性フィルムを得た。 また、 この透明導電性フィルムを用いて、 実施例 1 と同様にして、 E Lパネルを作製し た。 実施例 6  Using trifunctional epoxy resin (Dainippon Ink & Chemicals, Inc .: CR-5L), coating solutions having a solid content concentration of 5% by weight as shown in Table 1 were prepared. This coating solution was applied in the same manner as in Example 4. The thickness of the thin film layer made of a crosslinked resin was set to 0.5 m. A transparent conductive thin film was formed on the surface of the biaxially stretched PET film on which no thin film layer made of a crosslinked resin was formed, in the same manner as in Example 1, to obtain a transparent conductive film. Further, an EL panel was produced in the same manner as in Example 1 using this transparent conductive film. Example 6
3官能イソシァネート系樹脂 (日本ポリウレタン工業 (株) 製:コロネート L) 及び共重合ポリエステル樹脂 (東洋紡績 (株) 製:バイロン 2 0 0 ) を用いて、 表 1のような固形分濃度 5重量%の塗布液を作製した。 この塗布液を実施例 4と 同様に塗工した。 また、 架橋型樹脂からなる薄膜層の厚さは 0. 5 mとした。 前記二軸延伸 P E Tフィルムの架橋型樹脂からなる薄膜層を形成していない面 に、実施例 1と同様にして透明導電性薄膜を形成し、透明導電性フィルムを得た。 また、 この透明導電性フィルムを用いて、 実施例 1と同様にして、 E Lパネルを 作製した。 実施例 7 Using a trifunctional isocyanate-based resin (manufactured by Nippon Polyurethane Industry Co., Ltd .: Coronate L) and a copolymerized polyester resin (manufactured by Toyobo Co., Ltd .: Byron 200), the solid content concentration as shown in Table 1 was 5% by weight. Was prepared. This coating solution was applied in the same manner as in Example 4. The thickness of the thin film layer made of cross-linked resin was 0.5 m. A transparent conductive thin film was formed on the surface of the biaxially stretched PET film on which the thin film layer made of the crosslinked resin was not formed in the same manner as in Example 1 to obtain a transparent conductive film. Further, an EL panel was manufactured in the same manner as in Example 1 using this transparent conductive film. Example 7
実施例 4と同様にして作製した、 架橋型樹脂からなる薄膜層 Z二軸延伸 PET フィルム (塗布層 Z基材 PET層) 透明導電性薄膜からなる積層体の透明導電 性薄膜上に、 誘電体薄膜として酸化チタン薄膜を製膜した。 このとき、 ターゲッ トとしてはチタンを用い、 印加電力を 8W/cm2とした。 また、 Arを 500 s c cm、 〇2を 80 s c cm流し、 0. 4 Paの雰囲気下で、 DCマグネトロ ンスパッタリング法で製膜した。 ただし、 通常の DCではなく、 アーク放電を防 止するために、 + 20 Vの 5 s幅のパルスを 100 kH z周期で印加した。 ま た、 一 10°Cの冷却ロールにフィルムを巻き、 フィルムの冷却を行いながらスパ ッタリングを行なった。 この時、 酸化チタンの膜厚は 10 nmとした。 A thin film layer made of a crosslinked resin produced in the same manner as in Example 4 Z biaxially stretched PET film (coating layer Z base PET layer) A dielectric material is formed on the transparent conductive thin film of the laminate made of the transparent conductive thin film. A titanium oxide thin film was formed as a thin film. At this time, titanium was used as a target, and the applied power was 8 W / cm 2 . Further, Ar and 500 sc cm, 〇 2 flushed 80 sc cm, under an atmosphere of 0. 4 Pa, and a film was formed by a DC magnetron emissions sputtering. However, instead of normal DC, a +20 V pulse of 5 s width was applied at a period of 100 kHz to prevent arc discharge. The film was wound around a cooling roll at 110 ° C, and sputtering was performed while cooling the film. At this time, the thickness of the titanium oxide was 10 nm.
さらに、 この透明導電性フィルムを用いて、 実施例 1と同様にして ELパネル を組み立てた。 比較例 1  Further, using this transparent conductive film, an EL panel was assembled in the same manner as in Example 1. Comparative Example 1
塗布液の調整において、 粒子 Aとして平均粒径 1400 nm (富士シリシァ社 製:サイリシァ 310) の凝集体シリカ粒子を用いた以外は、 実施例 1と同様の 方法で、 片面に塗布層を有する二軸配向 PETフィルムを得た。 この時の粒子 A と粒子 Bの含有量比は 8、 粒子 Bの含有量は塗布層の固形分に対して 0. 42重 量%であった。 なお、 塗布液中の固形分濃度は実施例 1と同様になるよう、 水及 びイソプロピルアルコールの添加量を両者の添加量比を一定にしながら調整した c さらに、 実施例 1と同様にして透明導電性薄膜を形成し、 透明導電性フィルムを 得た。 この透明導電性フィルムを用いて、 実施例 1と同様にして ELパネルを作 製した。 比較例 2 In the preparation of the coating solution, the same method as in Example 1 was used except that aggregated silica particles having an average particle size of 1400 nm (Fuji Silicia: Silica 310) were used as the particles A. An axially oriented PET film was obtained. At this time, the content ratio of the particles A and the particles B was 8, and the content of the particles B was 0.42% by weight based on the solid content of the coating layer. Incidentally, the solid content concentration in the coating liquid so that in the same manner as in Example 1, Mizu及Beauty isopropyl alcohol amount to a constant amount ratio therebetween while adjusted c further transparent in the same manner as in Example 1 A conductive thin film was formed to obtain a transparent conductive film. Using this transparent conductive film, an EL panel was produced in the same manner as in Example 1. Comparative Example 2
実施例 1において、 低ォリゴマ一処理 ( 1. 1気圧の窒素気流下、 220°Cで 24時間熱処理) した FET樹脂を使用せず、 135°Cで 6時間の減圧乾燥 (1 To r r) 処理を行なった PET樹脂を用いた以外は実施例 1と同様にして、 片 面に塗布層を有する二軸配向 P E Tフィルムを得た。 さらに、 実施例 1と同様に して透明導電性薄膜を形成し、 透明導電性フィルムを得た。 この透明導電性フィ ルムを用いて、 実施例 1と同様にしてエレクトロルミネッセンスパネルを作製し た。 比較例 3 In Example 1, low-pressure drying (1 To rr) treatment at 135 ° C for 6 hours without using FET resin that had been treated with low temperature (1.1 heat treatment at 220 ° C for 24 hours under a nitrogen stream). Except for using the PET resin subjected to A biaxially oriented PET film having a coating layer on the surface was obtained. Further, a transparent conductive thin film was formed in the same manner as in Example 1 to obtain a transparent conductive film. An electroluminescent panel was produced in the same manner as in Example 1 using this transparent conductive film. Comparative Example 3
滞留時間が 2 5分であること以外は実施例 1と同様にして、 片面に塗布層を有 する二軸配向 P E Tフィルムを得た。 さらに、 実施例 1と同様にして透明導電性 薄膜を形成し、 透明導電性フィルムを得た。 この透明導電性フィルムを用いて、 実施例 1と同様にして E Lパネルを作製した。 比較例 4  A biaxially oriented PET film having a coating layer on one side was obtained in the same manner as in Example 1 except that the residence time was 25 minutes. Further, a transparent conductive thin film was formed in the same manner as in Example 1 to obtain a transparent conductive film. Using this transparent conductive film, an EL panel was produced in the same manner as in Example 1. Comparative Example 4
3官能ィソシァネート系樹脂と共重合ポリエステル樹脂を表 1に示す比率に変 えた以外は実施例 6と同様にして、 透明導電性フィルムを作製した。 また、 この 透明導電性フィルムを用いて、 実施例 1と同様にして E Lパネルを作製した。 以上の実施例および比較例について、 二軸延伸 P E Tフィルムの特性を表 2に 示した。 また、 透明導電性フィルムの特性を表 3及び表 4に示した。 さらに、 こ れらの透明導電性フィルムを用いて作製した E Lパネルの特性を表 5に示した。 発明の効果  A transparent conductive film was produced in the same manner as in Example 6, except that the ratio of the trifunctional isocyanate-based resin and the copolymerized polyester resin was changed to the ratio shown in Table 1. Further, an EL panel was produced in the same manner as in Example 1 using this transparent conductive film. Table 2 shows the properties of the biaxially stretched PET film for the above Examples and Comparative Examples. Tables 3 and 4 show the properties of the transparent conductive film. Further, Table 5 shows the characteristics of EL panels manufactured using these transparent conductive films. The invention's effect
本発明の透明導電性フィルムは、 少なくとも片面に塗布層を有する透明性に優 れたニ軸配向ポリエステルフィルムを基材として使用し、 かつ後加工時の加熱処 理後も透明性の変化が小さいため、 E Lパネルに使用した際に、 白化などの外観 欠点が極めて少なく視認性に優れている。 また、 本発明の透明導電性フィルムを 1 5 0 °Cで 3時間加熱処理した際の反り値を 2 mm以下と小さくすることにより、 E Lパネル製造時の印刷ズレが極めて少なくなる。 さらに、 透明導電性フィルム を 4 5 0〜 6 0 0 n mの可視光領域で光線透過率が極大値を有し、 この波長での 光線透過率を 8 0〜9 7 %とし、 さらに表面抵折率を低くすることにより、 発光 輝度に優れた ELパネルが得られる, The transparent conductive film of the present invention uses a highly transparent biaxially oriented polyester film having a coating layer on at least one side as a base material, and has a small change in transparency even after heat treatment during post-processing. Therefore, when used for EL panels, there are very few external defects such as whitening and excellent visibility. Further, by making the warp value when the transparent conductive film of the present invention is subjected to heat treatment at 150 ° C. for 3 hours to 2 mm or less, printing deviation during EL panel production is extremely reduced. Furthermore, the light transmittance of the transparent conductive film has a maximum value in the visible light region of 450 to 600 nm, the light transmittance at this wavelength is set to 80 to 97%, and furthermore, the surface is broken. By lowering the rate, light emission An EL panel with excellent brightness can be obtained,
表 1 table 1
Figure imgf000040_0001
Figure imgf000040_0001
表 2 接着性 耐スク 全光線 ヘーズ SRa 環状 3量 ラツナ 透過率 値 ( m) 体含有量 性 (%) (%) (ppm) 実施例 1 99 ◎ 92.6 1.0 0.00356 3300 実施例 2 100 〇 91.7 0.9 0.00399 3300 実施例 3 99 ◎ 92.6 1.0 0.00356 4500 実施例 4 99 ◎ 92.6 1.0 0.00356 10000 実施例 5 99 ◎ 92.6 1.0 0.00356 10000 実施例 6 99 ◎ 92.6 1.0 0.00356 10000 実施例 7 99 ◎ 92.6 1.0 0.00356 10000 比較例 1 99 ◎ 86.4 5.2 0.0165 3300 比較例 2 99 ◎ 92.6 1.0 0.00356 10000 比較例 3 99 ◎ 92.6 1.0 0.00356 8000 比較例 4 99 ◎ 92.6 1.0 0.00356 10000 表 3 Table 2 Adhesion resistance Anti-scratch All-ray haze SRa Annular 3 level Ratuna Transmittance value (m) Body content (%) (%) (ppm) Example 1 99 ◎ 92.6 1.0 0.00356 3300 Example 2 100 〇 91.7 0.9 0.00399 3300 Example 3 99 ◎ 92.6 1.0 0.00356 4500 Example 4 99 ◎ 92.6 1.0 0.00356 10000 Example 5 99 ◎ 92.6 1.0 0.00356 10000 Example 6 99 ◎ 92.6 1.0 0.00356 10000 Example 7 99 ◎ 92.6 1.0 0.00356 10000 Comparative Example 1 99 ◎ 86.4 5.2 0.0165 3300 Comparative Example 2 99 ◎ 92.6 1.0 0.00356 10000 Comparative Example 3 99 ◎ 92.6 1.0 0.00356 8000 Comparative Example 4 99 ◎ 92.6 1.0 0.00356 10000 Table 3
Figure imgf000041_0001
Figure imgf000041_0001
表 4 熱処理後のヘーズ値上昇 熱収縮率 反り量Table 4 Haze value increase after heat treatment Heat shrinkage Warpage
150°C 2Hr 150°Cx3Hr [150°C 3Hr] [150°Cx3Hr] (%) (%) (%) (mm; 実施例 1 0.3 0.8 0.68 0.0 実施例 2 0.3 0.8 0.68 0.0 実施例 3 0.5 1.2 0.68 0.0 実施例 4 0.1 0.3 0.10 0.1 実施例 5 0.3 0.8 0.12 0.1 実施例 6 0.5 1.2 0.15 0.1 実施例 7 0.3 0.8 0.10 0.1 比較例 1 0.4 0.8 0.68 0.0 比較例 2 13.2 15.2 0.68 0.0 比較例 3 12.5 13.8 0.68 0.0 比較例 4 0.9 2.5 0.15 0.1 表 5 150 ° C 2Hr 150 ° Cx3Hr [150 ° C 3Hr] [150 ° Cx3Hr] (%) (%) (%) (mm; Example 1 0.3 0.8 0.68 0.0 Example 2 0.3 0.8 0.68 0.0 Example 3 0.5 1.2 0.68 0.0 Example 4 0.1 0.3 0.10 0.1 Example 5 0.3 0.8 0.12 0.1 Example 6 0.5 1.2 0.15 0.1 Example 7 0.3 0.8 0.10 0.1 Comparative example 1 0.4 0.8 0.68 0.0 Comparative example 2 13.2 15.2 0.68 0.0 Comparative example 3 12.5 13.8 0.68 0.0 Comparative Example 4 0.9 2.5 0.15 0.1 Table 5
E Lパネル E Lパネル E Lパネル E Lパネル の 麽 EL panel EL panel EL panel EL panel E
95ノし1 fe の J y y ιロ^卩τΒ M寸ί問 | J J E HTJI WfflJlプ、しレ95 ノ1 fe J yy ιι ^^ ττΒ M Dimensional Question | JJE HT J I WfflJl
(Cd/m2) (時間) (Cd / m 2 ) (hour)
実施例 1 45 100 〇 〇 実施例 2 45 100 〇 〇 実施例 3 45 100 〇 〇 実施例 4 75 210 〇 〇 実施例 5 75 210 〇 〇 実施例 6 75 220 〇 〇 実施例 7 75 700 〇 〇 比較例 1 31 80 〇 〇 比較例 2 45 90 〇 X 比較例 3 45 100 〇 X 比較例 4 75 120 〇 Δ Example 1 45 100 〇 〇 Example 2 45 100 〇 〇 Example 3 45 100 〇 〇 Example 4 75 210 〇 実 施 Example 5 75 210 〇 実 施 Example 6 75 220 〇 〇 Example 7 75 700 〇 比較 Compare Example 1 31 80 〇 〇 Comparative example 2 45 90 〇 X Comparative example 3 45 100 〇 X Comparative example 4 75 120 〇 Δ

Claims

請 求 の 範 囲 The scope of the claims
1 . 二軸配向ポリエステルフィルムの片面に透明導電性薄膜が積層された透明 導電性フィルムであって、 前記二軸配向ポリエステルフィルムの少なくとも片面 に塗布層が形成され、 全光線透過率が 9 0 %以上で、 かつ塗布層表面の三次元中 心面平均表面粗さ (S R a ) が 0. 0 0 2〜0. 0 1 0 mであり、 さらに透明 導電性フイルムを 1 5 0 °Cで 3時間加熱処理した時の加熱処理前後のヘイズ値上 昇が 2. 0 %以下であることを特徴とする透明導電性フィルム。 1. A transparent conductive film in which a transparent conductive thin film is laminated on one side of a biaxially oriented polyester film, wherein a coating layer is formed on at least one side of the biaxially oriented polyester film, and the total light transmittance is 90%. The three-dimensional center plane average surface roughness (SR a) of the coating layer surface is 0.02 to 0.010 m, and the transparent conductive film is 3 ° C at 150 ° C. A transparent conductive film, wherein a haze value before and after heat treatment after heat treatment for 2.0 hours is 2.0% or less.
2. 前記透明導電性フイルムを 1 5 0 °Cで 2時間加熱処理した時の加熱処理前 後のヘイズ値上昇が 0. 5 %以下であることを特徴とする請求項 1記載の透明導 電性フィルム。 2. The transparent conductive film according to claim 1, wherein when the transparent conductive film is heat-treated at 150 ° C. for 2 hours, a haze value before and after the heat treatment is 0.5% or less. Film.
3. 前記透明導電性フィルムの全光線透過率が 8 4 %以上であることを特徴と する請求項 1記載の透明導電性フィルム。 3. The transparent conductive film according to claim 1, wherein the total light transmittance of the transparent conductive film is 84% or more.
4. 前記塗布層を構成する樹脂組成物が共重合ポリエステル系樹脂及びポリゥ レタン系樹脂を含むことを特徴とする請求項 1記載の透明導電性フィルム。 4. The transparent conductive film according to claim 1, wherein the resin composition constituting the coating layer contains a copolymerized polyester resin and a polyurethane resin.
5. 前記塗布層を構成する樹脂組成物が分岐したダリコール成分を含有する共 重合ポリエステル樹脂及びプロック型イソシァネート基を含有する樹脂を含むこ とを特徴とする請求項 1記載の透明導電性フィルム。 5. The transparent conductive film according to claim 1, wherein the resin composition constituting the coating layer contains a copolymerized polyester resin containing a branched dalicol component and a resin containing a block-type isocyanate group.
6. 前記二軸延伸ポリエステルフィルム中の環状 3量体の含有量が 5 0 0 0 p P m以下であることを特徴とする請求項 1記載の透明導電性フィルム。 6. The transparent conductive film according to claim 1, wherein the content of the cyclic trimer in the biaxially stretched polyester film is 50,000 pPm or less.
7. 前記透明導電性フィルムの透明導電性薄膜を形成していない表面に、 架橋 型樹脂からなる薄膜層を設けることを特徴とする請求項 1記載のポリエステルフ ィルム。 7. The polyester film according to claim 1, wherein a thin film layer made of a cross-linkable resin is provided on a surface of the transparent conductive film on which the transparent conductive thin film is not formed.
8. 請求項 7記載の架橋型樹脂が、 イソシァネート系樹脂および またはェポ キシ系樹脂からなることを特徴とする透明導電性フィルム。 8. A transparent conductive film, wherein the cross-linkable resin according to claim 7 comprises an isocyanate-based resin and / or an epoxy-based resin.
9. 前記透明導電性薄膜の厚みが 80 nm以上であることを特徴とする請求項 1記載の透明導電性フイルム。 9. The transparent conductive film according to claim 1, wherein the thickness of the transparent conductive thin film is 80 nm or more.
10. 請求項 9記載の透明導電性フィルムを 150°C、 3時間加熱した際の 3 Ommx 3 Ommのサイズにおける反り量が 2mm以下であることを特徴とする 透明導電性フィルム。 10. A transparent conductive film, wherein the transparent conductive film according to claim 9 has a warpage of 2 mm or less in a size of 3 Omm x 3 Omm when heated at 150 ° C for 3 hours.
1 1. 150°Cで 3時間熱処理したときの熱収縮率が 1. 0%以下であること を特徴とする請求項 9記載の透明導電性フィルム。 11. The transparent conductive film according to claim 9, wherein a heat shrinkage ratio when heat-treated at 150 ° C. for 3 hours is 1.0% or less.
12. 前記透明導電性フィルムが 450〜600 nmの波長範囲内で光線透過 率が最高値を有し、 かっこの最高値が 80〜97%であることを特徴とする請求 項 9記載の透明導電性フィルム。 12. The transparent conductive film according to claim 9, wherein the transparent conductive film has a maximum light transmittance in a wavelength range of 450 to 600 nm, and a maximum value of brackets is 80 to 97%. Film.
13. 表面抵抗率が 10〜 100 ΩΖΕ]であることを特徴とする請求項 12記 載の透明導電性フィルム。 13. The transparent conductive film according to claim 12, wherein the surface resistivity is 10 to 100 ΩΖΕ].
14. 前記透明導電性薄膜の上に誘電体薄膜を積層したことを特徴とする請求 項 12記載の透明導電性フィルム。 14. The transparent conductive film according to claim 12, wherein a dielectric thin film is laminated on the transparent conductive thin film.
15. 請求項 1〜14記載の透明導電性フィルムの透明導電性薄膜上に、 発光 層、 誘電体層、 背面電極層、 絶縁層の順に積層したことを特徴とするエレクト口 ルミネッセンスパネル。 15. An electroluminescent panel, characterized in that a light-emitting layer, a dielectric layer, a back electrode layer, and an insulating layer are laminated in this order on the transparent conductive thin film of the transparent conductive film according to claim 1.
16. 前記発光層の発光波長/ 1E と請求項 12記載の透明導電性フィルムの光 線透過率が最高値を有する波長 i I が、 下記式を満足することを特徴とするエレ ク トロルミネッセンスパネル。 16. An element characterized in that the emission wavelength of the light-emitting layer / 1E and the wavelength i I at which the light transmittance of the transparent conductive film according to claim 12 has a maximum value satisfy the following expression. Control luminescence panel.
λ I - 50 nm ≤ ≤ ^ 1+ 50 nm  λ I-50 nm ≤ ≤ ^ 1+ 50 nm
PCT/JP2000/004045 1999-06-22 2000-06-21 Transparent conductive film and electroluminescence panel comprising the same WO2000079544A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001505023A JP3743560B2 (en) 1999-06-22 2000-06-21 Transparent conductive film and electroluminescence panel using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP17579299 1999-06-22
JP11/175792 1999-06-22
JP11/178942 1999-06-24
JP17894199 1999-06-24
JP17894299 1999-06-24
JP11/178941 1999-06-24

Publications (1)

Publication Number Publication Date
WO2000079544A1 true WO2000079544A1 (en) 2000-12-28

Family

ID=27324163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004045 WO2000079544A1 (en) 1999-06-22 2000-06-21 Transparent conductive film and electroluminescence panel comprising the same

Country Status (3)

Country Link
JP (1) JP3743560B2 (en)
TW (1) TW513731B (en)
WO (1) WO2000079544A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205365A (en) * 2001-01-10 2002-07-23 Toyobo Co Ltd Optical film of easy adhesion
JP2002219787A (en) * 2001-01-24 2002-08-06 Toyobo Co Ltd Coated film for optical use
JP2002313141A (en) * 2001-04-16 2002-10-25 Toyobo Co Ltd Transparent conductive film, transparent conductive sheet and touch panel
WO2003068854A1 (en) * 2002-02-18 2003-08-21 Mitsubishi Polyester Film Corporation Applied film
JP2005138365A (en) * 2003-11-05 2005-06-02 Reiko Co Ltd Transparent gas barrier film
JP2005521193A (en) * 2001-09-11 2005-07-14 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ Thermally stabilized poly (ethylene naphthalate) film for flexible electronic and optoelectronic devices
JP2007136987A (en) * 2005-11-22 2007-06-07 Toray Ind Inc Polyester film for display
JP2007320144A (en) * 2006-05-31 2007-12-13 Toyobo Co Ltd Laminated polyester film for conductive film
JP2007327065A (en) * 2007-07-31 2007-12-20 Mitsubishi Polyester Film Copp Laminated polyester film
JP2010006935A (en) * 2008-06-26 2010-01-14 Toyobo Co Ltd Coating film and vapor-deposited film
EP2293358A1 (en) * 2009-08-27 2011-03-09 Bayer MaterialScience AG Electroluminescence lamp with contact
US20120301737A1 (en) * 2011-05-23 2012-11-29 Carestream Health, Inc. Transparent conductive films, methods, and articles
WO2013118643A1 (en) * 2012-02-06 2013-08-15 コニカミノルタ株式会社 Conductive film and touch panel using same
JP2015104904A (en) * 2013-12-02 2015-06-08 株式会社カネカ Transparent laminate film, substrate using the same and having transparent electrode, and method for manufacturing substrate
JP2021017507A (en) * 2019-07-22 2021-02-15 東洋インキScホールディングス株式会社 Conductive composition of molding film, molding film and its manufacturing method, compact and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001492A1 (en) * 2008-07-02 2010-01-07 帝人デュポンフィルム株式会社 Anti-glare laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820734A (en) * 1994-07-06 1996-01-23 Sumitomo Osaka Cement Co Ltd Conductive coating material and transparent conductive film
JPH106436A (en) * 1996-06-21 1998-01-13 Toyobo Co Ltd Polyester film for metal laminate, its production, laminated metal panel using the film and laminated metal container
JPH1024516A (en) * 1996-07-10 1998-01-27 Teijin Ltd Transparent conductive laminate and transparent tablet
JPH11154593A (en) * 1997-11-21 1999-06-08 Alps Electric Co Ltd Electroluminescent element
JP2000246855A (en) * 1999-03-02 2000-09-12 Toyobo Co Ltd Optical easy-to-adhere film
JP2000246856A (en) * 1999-03-02 2000-09-12 Toyobo Co Ltd Optical easy-to-adhere film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820734A (en) * 1994-07-06 1996-01-23 Sumitomo Osaka Cement Co Ltd Conductive coating material and transparent conductive film
JPH106436A (en) * 1996-06-21 1998-01-13 Toyobo Co Ltd Polyester film for metal laminate, its production, laminated metal panel using the film and laminated metal container
JPH1024516A (en) * 1996-07-10 1998-01-27 Teijin Ltd Transparent conductive laminate and transparent tablet
JPH11154593A (en) * 1997-11-21 1999-06-08 Alps Electric Co Ltd Electroluminescent element
JP2000246855A (en) * 1999-03-02 2000-09-12 Toyobo Co Ltd Optical easy-to-adhere film
JP2000246856A (en) * 1999-03-02 2000-09-12 Toyobo Co Ltd Optical easy-to-adhere film

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205365A (en) * 2001-01-10 2002-07-23 Toyobo Co Ltd Optical film of easy adhesion
JP2002219787A (en) * 2001-01-24 2002-08-06 Toyobo Co Ltd Coated film for optical use
JP2002313141A (en) * 2001-04-16 2002-10-25 Toyobo Co Ltd Transparent conductive film, transparent conductive sheet and touch panel
JP2010114096A (en) * 2001-09-11 2010-05-20 Dupont Teijin Films Us Lp Heat-stabilized poly(ethylene naphthalate) film for flexible electronic and photoelectronic devices
JP2005521193A (en) * 2001-09-11 2005-07-14 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ Thermally stabilized poly (ethylene naphthalate) film for flexible electronic and optoelectronic devices
WO2003068854A1 (en) * 2002-02-18 2003-08-21 Mitsubishi Polyester Film Corporation Applied film
JP2005138365A (en) * 2003-11-05 2005-06-02 Reiko Co Ltd Transparent gas barrier film
JP2007136987A (en) * 2005-11-22 2007-06-07 Toray Ind Inc Polyester film for display
JP2007320144A (en) * 2006-05-31 2007-12-13 Toyobo Co Ltd Laminated polyester film for conductive film
JP2007327065A (en) * 2007-07-31 2007-12-20 Mitsubishi Polyester Film Copp Laminated polyester film
JP2010006935A (en) * 2008-06-26 2010-01-14 Toyobo Co Ltd Coating film and vapor-deposited film
WO2011023309A3 (en) * 2009-08-27 2011-04-28 Bayer Materialscience Ag Electroluminescent lamp comprising contact means
EP2293358A1 (en) * 2009-08-27 2011-03-09 Bayer MaterialScience AG Electroluminescence lamp with contact
US20120301737A1 (en) * 2011-05-23 2012-11-29 Carestream Health, Inc. Transparent conductive films, methods, and articles
US9175183B2 (en) * 2011-05-23 2015-11-03 Carestream Health, Inc. Transparent conductive films, methods, and articles
WO2013118643A1 (en) * 2012-02-06 2013-08-15 コニカミノルタ株式会社 Conductive film and touch panel using same
JPWO2013118643A1 (en) * 2012-02-06 2015-05-11 コニカミノルタ株式会社 Conductive film and touch panel using the same
JP2015104904A (en) * 2013-12-02 2015-06-08 株式会社カネカ Transparent laminate film, substrate using the same and having transparent electrode, and method for manufacturing substrate
JP2021017507A (en) * 2019-07-22 2021-02-15 東洋インキScホールディングス株式会社 Conductive composition of molding film, molding film and its manufacturing method, compact and its manufacturing method
JP7283284B2 (en) 2019-07-22 2023-05-30 東洋インキScホールディングス株式会社 Conductive composition for molded film, molded film and method for producing same, molded article and method for producing same

Also Published As

Publication number Publication date
TW513731B (en) 2002-12-11
JP3743560B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
JP5363206B2 (en) Optical polyester film
JP4961697B2 (en) Transparent conductive film, transparent conductive sheet and touch panel
JP5162054B2 (en) Optical laminated polyester film
WO2000079544A1 (en) Transparent conductive film and electroluminescence panel comprising the same
JP5048443B2 (en) Laminated polyester film for antireflection film
KR100332724B1 (en) Adhesive Polyester Film Laminate
JP4836549B2 (en) Laminated polyester film
JP2006175628A (en) Polyester film for antireflection film and antireflection film
JP5861266B2 (en) Laminated film for electronic device substrate
JP2007298963A (en) White polyester film for liquid crystal reflector, and surface light source using the film
JP2009214354A (en) Laminated optical polyester film
JP2004127820A (en) Transparent conductive film, transparent conductive sheet, and touch panel
JP2007047517A (en) Polyester film for antireflection film and antireflection film
JP2001264532A (en) Infrared ray absorbing filter
JP2007045024A (en) Laminated polyester film
JP4692819B2 (en) Laminated polyester film
JP5064683B2 (en) Laminated polyester film
JPWO2004000920A1 (en) Laminated film
JP2005263853A (en) High transparency optical laminated polyester film
JP4951158B2 (en) Laminated polyester film
JP4703179B2 (en) Laminated polyester film
JP5506133B2 (en) Laminated polyester film for antireflection film
JP5607520B2 (en) Optical polyester film
JP2001014951A (en) Transparent conductive film and touch panel
JP5064677B2 (en) Laminated polyester film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 505023

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase