WO2000079269A1 - Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population - Google Patents

Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population Download PDF

Info

Publication number
WO2000079269A1
WO2000079269A1 PCT/US2000/017391 US0017391W WO0079269A1 WO 2000079269 A1 WO2000079269 A1 WO 2000079269A1 US 0017391 W US0017391 W US 0017391W WO 0079269 A1 WO0079269 A1 WO 0079269A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
specimens
normal
type
tissue specimens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2000/017391
Other languages
English (en)
French (fr)
Inventor
Peter C. Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TissueInformatics Inc
Original Assignee
TissueInformatics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TissueInformatics Inc filed Critical TissueInformatics Inc
Priority to AU58880/00A priority Critical patent/AU5888000A/en
Priority to EP00944845A priority patent/EP1194775A4/en
Priority to JP2001505187A priority patent/JP2003502669A/ja
Priority to CA2389220A priority patent/CA2389220C/en
Publication of WO2000079269A1 publication Critical patent/WO2000079269A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics
    • Y10S128/923Computer assisted medical diagnostics by comparison of patient data to other data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99933Query processing, i.e. searching
    • Y10S707/99936Pattern matching access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99937Sorting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99941Database schema or data structure
    • Y10S707/99943Generating database or data structure, e.g. via user interface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99941Database schema or data structure
    • Y10S707/99944Object-oriented database structure
    • Y10S707/99945Object-oriented database structure processing

Definitions

  • the present invention relates to methods for profiling, engineering,
  • invention relates to the development and use of a novel tissue information database for
  • Tissue engineering is an emerging segment within the biotechnology industry.
  • tissue engineering In order for the rational tissue engineering approach discussed above to be successful, structural information at the tissue level, as well as mechanical and cell function information on tissue, will be required and such information must be made accessible to persons in the tissue engineering, drug design and genomics research fields. It is an object of the present invention to develop such tissue information and to provide this information to persons and entities in the tissue engineering/manufacturing, drug design and genomics research fields. It is a further object of the present invention to use this tissue information to evaluate, classify and/or perform quality control on living and manufactured tissue specimens provided by tissue suppliers.
  • tissue information that is the subject of the present invention to identify normal elements of such manufactured tissue specimens in cases where, for example, such manufactured tissue specimens do not appear normal in total but contain elements that appear and/or function normally.
  • the present invention is directed to the development of a database that includes indices representative of a tissue population, and the use of the database for classification and evaluation of tissue specimens.
  • a sample of normal tissue specimens obtained from a subset of a population of subjects with shared characteristics are profiled in order to generate a plurality of structural indices that correspond to statistically significant representations of characteristics of tissue associated with the population.
  • the structural indices include cell density, matrix density, blood vessel density and layer thickness.
  • the tissue specimens obtained from the subset of the population are profiled by imaging a plurality of sections of each tissue specimen from the subset. Distributions of cell density values, matrix density values and blood vessel density values associated with the plurality of sections are then determined in accordance with the results of the imaging.
  • a cell density index representative of tissue associated with the population is determined in accordance with the distribution of cell density values
  • a matrix density index representative of tissue associated with the population is determined in accordance with the distribution of matrix density values
  • a blood vessel density index representative of tissue associated with the population is determined in accordance with the distribution of blood vessel density values.
  • the cell density index is determined by calculating a statistical average of the distribution of cell density values
  • the matrix density index is determined by calculating a statistical average of the distribution of matrix density values
  • the blood vessel density index is determined by calculating a statistical average of the distribution of blood vessel density values.
  • Each statistical average of a distribution values represents, for example, a mean, median or mode of the distribution of values.
  • the structural indices include a further cell density index corresponding to an index of dispersion of the distribution of cell density values, a further matrix density index corresponding to an index of dispersion of the distribution of matrix density values, and a further blood vessel density index corresponding to an index of dispersion of the distribution of blood vessel density values.
  • Each index of dispersion of a distribution values represents, for example, a standard deviation, standard error of the mean or range of the distribution of values.
  • distributions of relative cell location values, relative matrix location values and relative blood vessel location values associated with the plurality of sections are also determined in accordance with the results of the imaging.
  • a relative cell location index representative of tissue associated with the population is determined in accordance with the distribution of relative cell location values
  • a relative matrix location index representative of tissue associated with the population is determined in accordance with the distribution of relative matrix location values
  • a relative blood vessel location index representative of tissue associated with the population is determined in accordance with the distribution of relative blood vessel location values.
  • the relative cell location index is determined by calculating a statistical average of the distribution of relative cell location values
  • the relative matrix location index is determined by calculating a statistical average of the distribution of relative matrix location values
  • the relative blood vessel location index is determined by calculating a statistical average of the distribution of relative blood vessel location values.
  • the structural indices include a further relative cell location index corresponding to an index of dispersion of the distribution of relative cell location values, a further relative matrix location index corresponding to an index of dispersion of the distribution of relative matrix location values, and a further relative blood vessel location index corresponding to an index of dispersion of the distribution of relative blood vessel location values.
  • each index of dispersion of a distribution values represents, for example, a standard deviation, standard error of the mean or range of the distribution of values.
  • imaging modalities may be used for profiling the tissue specimens and generating the structural indices described above.
  • light microscopy, fluorescent microscopy, spectral microscopy, hyper-spectral microscopy, electron microscopy, confocal microscopy and optical coherence tomography may be used for profiling the tissue specimens in accordance with the present invention.
  • a combination of such imaging modalities can also be used for profiling tissue specimens in accordance with the present invention.
  • one or more mechanical indices may be determined from the normal tissue specimens.
  • the sample of normal tissue specimens obtained from the subset of the population with shared characteristics is further profiled in order to generate one or more mechanical indices that correspond to statistically significant representations of characteristics of tissue associated with the population.
  • One of the mechanical indices may correspond to a modulus of elasticity associated with the normal tissue specimens.
  • the mechanical index corresponding to the modulus of elasticity is preferably determined by obtaining a distribution of elasticity values associated with the plurality of sections discussed above, and then determining an elasticity index representative of tissue associated with the population in accordance with the distribution of elasticity values.
  • the elasticity index preferably represents the statistical average (e.g., mean, median or mode) of the distribution of elasticity values.
  • a further elasticity index representative of the index of dispersion of the distribution of elasticity values is determined. This further elasticity index preferably represents the standard deviation, standard error of the mean or range of the distribution of elasticity values.
  • a further mechanical index corresponding to the mechanical strength (e.g., breaking or tensile strength) associated with the normal tissue specimens may also be determined.
  • the mechanical index corresponding to the breaking strength is preferably determined by obtaining a distribution of breaking strength values associated with the plurality of sections discussed above, and then determining a breaking strength index representative of tissue associated with the population in accordance with the distribution of breaking strength values.
  • the breaking strength index preferably represents the statistical average (e.g., mean, median or mode) of the distribution of breaking strength values.
  • a further breaking strength index representative of the index of dispersion of the distribution of breaking strength values is determined. This further breaking strength index preferably represents the standard deviation, standard error of the mean or range of the distribution of breaking strength values.
  • one or more cell function indices may be determined from the normal tissue specimens.
  • a plurality of cell function assays are performed on the sample of normal tissue specimens from the subset of the population of subjects with shared characteristics. The results of the cell function assays are used to generate a plurality of cell function indices that correspond to statistically significant representations of characteristics of tissue associated with the population.
  • the cell function indices are optionally used to form a cell function map that is stored in a tissue information database. In an alternate embodiment, only the cell function indices and/or the cell function map (and not the structural or mechanical indices) are determined.
  • the cell function indices used in connection with this aspect of the invention correspond, for example, to (i) location, type and amount of DNA in the normal tissue specimens from the subset, (ii) location, type and amount of mRNA in the normal tissue specimens from the subset, (iii) location, type and amount of cellular proteins in the normal tissue specimens from the subset, (iv) location, type and amount of cellular lipids in the normal tissue specimens from the subset, and/or (v) location, type and amount of cellular ion distributions in the normal tissue specimens from the subset.
  • the correlation between various one of the indices described above may also be determined.
  • a correlation between two structural indices, a correlation between two mechanical indices, a correlation between two cell function indices, a correlation between a structural index and a mechanical index, a correlation between a structural index and a cell function index, and/or a correlation between a mechanical index and a cell function index may also be determined.
  • the normal tissue specimens profiled to generate the structural, mechanical and/or cell function indices described above correspond, for example, to a set of either normal intestine tissue specimens, normal cartilage tissue specimens, normal eye tissue specimens, normal bone tissue specimens, normal fat tissue specimens, normal muscle tissue specimens, normal kidney tissue specimens, normal brain tissue specimens, normal heart tissue specimens, normal liver tissue specimens, normal skin tissue specimens, normal pleura tissue specimens, normal peritoneum tissue specimens, normal pericardium tissue specimens, normal dura-mater tissue specimens, normal oral-nasal mucus membrane tissue specimens, normal pancreas tissue specimens, normal spleen tissue specimens, normal gall bladder tissue specimens, normal blood vessel tissue specimens, normal bladder tissue specimens, normal uterus tissue specimens, normal ovarian tissue specimens, normal urethra tissue specimens, normal penile tissue specimens, normal vaginal tissue specimens, normal esophagus tissue specimens, normal anus tissue specimens, normal adrenal gland
  • the tissue specimens profiled correspond to plant or animal tissue types, composite tissue types, virtual tissue types or food tissue types.
  • the present invention is directed to a computer implemented method for providing information representative of a plurality of tissue types to a subscriber.
  • Tissue information representative of a plurality of tissue types e.g., the structural, mechanical and/or cell function indices described above for a plurality of tissue types and the correlation results described above for a plurality of tissue types
  • the database includes, for example, a plurality of structural indices generated from a sample of normal tissue specimens obtained from a subset of a population of subjects with shared characteristics.
  • the structural indices correspond to statistically significant representations of characteristics of tissue associated with the population.
  • the plurality of structural indices include cell density, matrix density, blood vessel density and layer thickness.
  • the database alternatively includes a plurality of the cell function and/or mechanical indices described above either alone, or in combination with the aforementioned structural indices.
  • Subscribers or users interested in engineering, classifying, manufacturing or analyzing tissue are provided access to the database in exchange for a subscription fee.
  • the subscribers may optionally measure parameters associated with subscriber-supplied tissue samples.
  • the subscriber-supplied tissue samples are then classified by comparing measured parameters associated with the subscriber-supplied tissue samples with the tissue information stored in the database (e.g., the structural, mechanical and/or cell function indices described above and/or the correlation results described above.)
  • the database optionally stores indices representative of one or more abnormal tissue types, and the subscriber-supplied tissue samples are classified as either normal or abnormal by comparing measured parameters associated with the subscriber-supplied tissue samples to the tissue information stored in the database.
  • the subscriber-supplied tissue specimens correspond to manufactured tissue specimens
  • measured parameters associated with the subscriber-supplied tissue samples correspond to manufactured tissue specimens
  • subscriber-supplied tissue samples may be compared to the tissue information stored in the
  • Figure 1 is a flow diagram of a method for profiling samples of normal tissue
  • each sample profiled is obtained from a subset of a
  • Figures 2A, 2B, 2C and 2D are a flow diagram of a method for profiling a
  • sample of normal tissue specimens obtained from a subset of a population of subjects with
  • Figure 3 is a flow diagram of a method for profiling a sample of normal tissue
  • Figures 4A and 4B are a flow diagram of a method for profiling a sample of
  • Figures 5 is a diagram of an exemplary data structure for storing structural
  • indices associated with a given tissue type (or population of tissue specimens) in a database are indices associated with a given tissue type (or population of tissue specimens) in a database.
  • Figure 6 is a diagram of an exemplary data structure for storing mechanical
  • indices associated with a given tissue type (or population of tissue specimens) in a database are indices associated with a given tissue type (or population of tissue specimens) in a database.
  • Figures 7A, 7B and 7C are a diagram of an exemplary data structure for
  • Figure 8 is a diagram of a database for storing structural, mechanical and cell
  • Figure 9 is an exemplary cell function map associated with a tissue population
  • Figure 10 is a flow diagram showing a method for designing and manufacturing engineered tissue, in accordance with a preferred embodiment of the present invention.
  • Figure 11 is a flow diagram showing a method for providing information representative of a plurality of tissue populations to a subscriber and for classifying a user-supplied tissue specimen using such information, in accordance with a preferred embodiment of the present invention.
  • a tissue type is selected for analysis.
  • the tissue type corresponds to a population of tissue subject having shared characteristics.
  • the tissue type corresponds to human lung tissue, intestine tissue, cartilage tissue, etc.
  • the tissue type may be further specified as a population of subjects having a common age bracket, race and/or gender.
  • the tissue type selected for analysis may correspond to a population of lung tissue subjects associated with Caucasian males between the ages of 18-35.
  • the tissue type selected for analysis can correspond to either a normal or an abnormal tissue type.
  • the tissue type selected for analysis may correspond to a tissue type associated with a particular plant or animal species, or a food product.
  • a sample of specimens is selected from the population selected for analysis in step 50.
  • the sample of specimens represents a subset of the selected population and includes a sufficient number of specimens to permit a statistically significant analysis of the population as a whole.
  • the sample includes a sufficient number of specimens such that the structural, mechanical and cell function indices generated from the sample correspond to a statistically significant representation of those indices for the population as a whole.
  • a plurality of structural indices representative of the selected population are measured from the sample and stored in a database.
  • the structural indices are parameters that are representative of the physical structure of the tissue specimens in the sample.
  • Exemplary structural indices measured and stored in step 200 include: the average density of each of a plurality of cell types in the specimens in the sample, an index of dispersion (e.g., standard deviation) associated with each measured average cell density, the average density of each of the matrix in the specimens in the sample, an index of dispersion associated with the measured average matrix density, the average layer thickness of each layer in the specimens in the sample, an index of dispersion associated with each measured average layer thickness, the average density of blood vessels in the specimens in the sample, an index of dispersion associated with the measured average blood vessel density, the average relative location of (or distance between) selected types of cells in the specimens in the sample, an index of dispersion associated with each measured average relative location of cell types, the average relative location between blood vessels and selected cell types in the specimens in
  • a plurality of mechanical indices representative of the selected population are measured from the sample and stored in the database.
  • the mechanical indices are parameters that are representative of the reaction of the tissue specimens in the sample to external forces.
  • Exemplary mechanical indices measured and stored in step 300 include: the average elasticity of specimens in the sample, an index of dispersion associated with the measured average elasticity, the average breaking strength of specimens in the sample, and an index of dispersion associated with the measured average breaking strength. It will be understood by those skilled in the art that mechanical indices other than those enumerated above may be measured and stored in step 300, and that the use of such other mechanical indices is within the scope of the present invention.
  • a set of exemplary steps that may be used to measure a sample of specimens and generate the mechanical indices enumerated above is shown in detail in Figure 3 and discussed more fully below.
  • a plurality of cell function indices representative of the selected population are measured from the sample, stored in a database and optionally used to form a cell function map representative of the selected population.
  • the cell function indices are parameters that represent the character and function of cells in the tissue specimens in the sample.
  • Exemplary cell function indices measured and stored in step 400 include: the average amount of a first type of DNA in the specimens in the sample and an index of dispersion associated with the measured average amount of the first type of DNA, the average amount of a second type of DNA in the specimens in the sample and an index of dispersion associated with the measured average amount of the second type of DNA, ...
  • the average amount of an nth type of DNA in the specimens in the sample and an index of dispersion associated with the measured average amount of the nth type of DNA the average amount of a first type of mRNA in the specimens in the sample and an index of dispersion associated with the measured average amount of the first type of mRNA, the average amount of a second type of mRNA in the specimens in the sample and an index of dispersion associated with the measured average amount of the second type of mRNA, ...
  • the average amount of an nth type of mRNA in the specimens in the sample and an index of dispersion associated with the measured average amount of the nth type of mRNA the average amount of a first type of cellular protein in the specimens in the sample and an index of dispersion associated with the measured average amount of the first type of cellular protein, the average amount of a second type of cellular protein in the specimens in the sample and an index of dispersion associated with the measured average amount of the second type of cellular protein, ...
  • the average amount of an nth type of cellular protein in the specimens in the sample and an index of dispersion associated with the measured average amount of the nth type of cellular protein the average amount of a first type of cellular lipid in the specimens in the sample and an index of dispersion associated with the measured average amount of the first type of cellular lipid, the average amount of a second type of cellular lipid in the specimens in the sample and an index of dispersion associated with the measured average amount of the second type of cellular lipid, ... , the average amount of an nth type of cellular lipid in the specimens in the sample and an index of dispersion associated with the measured average amount of the nth
  • step 500 correlation operations are performed on the various components
  • pairs of structural indices are correlated with each other, selected pairs of mechanical indices
  • selected structural indices may be correlated with selected mechanical or cell function
  • selected mechanical indices may be correlated with selected cell function indices.
  • correlations between the following pairs of indices are performed in step
  • step 500 may be measured and stored in step 500, and that the use of such other
  • step 600 the process described above may be repeated for
  • the present invention may be used to generate a data base such as that shown in Figure 8,
  • tissue population collectively represent a "blueprint" of the tissue in the population and may
  • given tissue population using the present invention preferably consists of Cartesian
  • the coordinates are preferably in two-dimensions or three- dimensions.
  • a fourth dimension (corresponding to time) may be included in the tissue design to account for changes to a particular tissue population as it ages over time.
  • the time dimension in the tissue design might reflect the differences among the lung tissue of Caucasian males falling in different age brackets (e.g., 18-25 years old, 26-35 years old, etc.).
  • each specimen from the sample selected in step 100 is imaged using, for example, light microscopy, fluorescent microscopy, spectral microscopy, hyper-spectral microscopy, electron microscopy, confocal microscopy and/or optical coherence tomography.
  • the specimens from the samples may be imaged using a combination of the above imaging modalities.
  • a plurality of sections in each tissue specimen in the sample is imaged using one or more of the above imaging modalities in step 202.
  • step 204 the imaging information from step 202 is analyzed in order to generate a distribution of density values associated with a particular cell type (i.e., cell type 1) in the specimens in the sample.
  • a particular cell type i.e., cell type 1
  • the imaging information corresponding to each imaged section of each specimen is analyzed in order to determine the density of the particular cell type (i.e., cell type 1) in the section.
  • a distribution of density values for the particular cell type may then be obtained.
  • an average cell density index representative of an average density of the particular cell type (i.e., cell type 1) in the population is calculated by taking the statistical average of the distribution of values generated in step 204.
  • the statistical average corresponds, for example, to a mean, median or mode of the distribution of values generated in step 204.
  • an index of dispersion about the average density of the particular cell type (i.e., cell type 1) in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of values generated in step 204.
  • the imaging information from step 202 may be further analyzed in order to generate a further distribution of density values associated with a different cell type (i.e., cell type 2) in the specimens in the sample.
  • the imaging information corresponding to each imaged section of each specimen is analyzed in order to determine the density of the particular cell type (i.e., cell type 2) in the section.
  • a distribution of density values for the particular cell type i.e., cell type 2 is then obtained.
  • an average cell density index representative of an average density of the particular cell type (i.e., cell type 2) in the population is calculated by taking the statistical average of the distribution of values generated in step 210.
  • the statistical average corresponds, for example, to a mean, median or mode of the distribution of values generated in step 210.
  • an index of dispersion about the average density of the particular cell type (i.e., cell type 2) in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of values generated in step 210.
  • 214 may be repeated further times for each other cell type of interest in order to generate an average cell density index and a corresponding index of dispersion for each cell type of interest in the population.
  • step 222 the imaging information from step 202 is analyzed in order to generate a distribution of density values associated with the matrix associated with the specimens in the sample.
  • the imaging information corresponding to each imaged section of each specimen is analyzed in order to determine the density of the matrix in the section.
  • This matrix density in a given specimen may correspond, for example, to the density of one or more proteins in the extra-cellular matrix of the specimen.
  • the statistical average corresponds, for example, to a mean, median or mode of the distribution of values generated in step 222.
  • an index of dispersion about the average density of the particular matrix associated with the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of values generated in step 222.
  • step 228, the imaging information from step 202 is analyzed in order to generate a distribution of layer thickness values associated with the specimens in the sample.
  • the imaging information corresponding to each imaged section of each specimen is analyzed in order to determine the thickness a particular tissue layer in the section.
  • a distribution of layer thickness values for the particular layer is obtained.
  • an average layer thickness index representative of an average thickness of the particular tissue layer associated with the population is calculated by taking the statistical average of the distribution of values generated in step 228.
  • the statistical average corresponds, for example, to a mean, median or mode of the distribution of values generated in step 228.
  • an index of dispersion about the average layer thickness of the particular layer associated with the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of values generated in step 228.
  • steps 228-232 are preferably repeated for each tissue layer of interest, and an average layer thickness index and an index of dispersion about such average are generated for each such layer.
  • the other structural, mechanical and cell function indices described herein may be determined separately for each tissue layer in the population.
  • step 240 the imaging information from step 202 is analyzed in order to generate a distribution of density values associated with blood vessels in the specimens in the sample.
  • the imaging information corresponding to each imaged section of each specimen is analyzed in order to determine the density of blood vessels in the section.
  • the blood vessels can be categorized by diameter, and the density of blood vessels in a given specimen can correspond to the density of blood vessels having one diameter. Alternatively, the density of blood vessels in a given specimen will correspond to the density of all blood vessels (regardless of their diameter) in the specimen.
  • an average blood vessel density index representative of an average density of blood vessels (i.e., blood vessels per unit area/unit volume) in the population is calculated by taking the statistical average (e.g., mean, median or mode) of the distribution of values generated in step 240.
  • an index of dispersion about the average blood vessel density is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of values generated in step 240.
  • the imaging information from step 202 is further analyzed in order to generate a distribution of relative cell location values representative of the relative proximity of two particular cell types (i.e., cell types 1 and 2) in the specimens in the sample.
  • the imaging information corresponding to each imaged section of each specimen is analyzed in order to determine the average proximity of the two particular cell types (i.e., cell types 1 and 2) in the section.
  • This process can be performed by using image analysis to determine the centers and boundaries of the cell types of interest, and then calculating the distances between the relevant cells in each image. For example, in cases where cells of type 1 are intermixed with cells of type 2, each occurrence of cell type 1 in a section can be identified and the distance to the closest cell of type 2 can then be measured.
  • the centroids of the respective spaces occupied by the cells of type 1 and the cells of type 2 can be determined, and the distance between the centroids can then be measured.
  • an average relative cell location index representative of an average proximity between the particular cell types of interest (i.e., cell types 1 and 2) in the population is calculated by taking the statistical average (e.g., mean, median or mode) of the distribution of values generated in step 246.
  • an index of dispersion about the average proximity between the particular cell types of interest (i.e., cell types 1 and 2) in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of values generated in step 246.
  • the imaging information from step 202 is further analyzed in order to generate a distribution of relative cell location values representative of the relative proximity of a further pair of particular cell types (i.e., cell types 1 and 3) in the specimens in the sample.
  • the imaging information corresponding to each imaged section of each specimen is analyzed (as discussed in connection with step 246) in order to determine the average proximity of the a different pair of particular cell types (i.e., cell types 1 and 3) in the section.
  • a distribution of relative cell location values for the particular cell types of interest may then be obtained.
  • an average relative cell location index representative of an average proximity between the particular cell types of interest (i.e., cell types 1 and 3) in the population is calculated by taking the statistical average (e.g., mean, median or mode) of the distribution of values generated in step 252.
  • an index of dispersion about the average proximity between the particular cell types of interest (i.e., cell types 1 and 3) in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of values generated in step 252.
  • steps 258, 260, 262, steps 246, 248, 250 and 252, 254, 256 may be repeated further times for each other pair of cell types of interest (i.e., cell types a and b) in order to generate an average relative cell location index and a corresponding index of dispersion for each pair of cell types of interest in the population.
  • the imaging information from step 202 is further analyzed in order to generate a distribution of relative blood vessel location values representative of the relative proximity of blood vessel to a particular type of cell (i.e., cell types 1) in the specimens in the sample.
  • the imaging information corresponding to each imaged section of each specimen is analyzed in order to determine the average proximity of blood vessels to the particular cell type (i.e., cell types 1) in the section.
  • This process can be performed by using image analysis to determine the centers and boundaries of the cell types of interest, and then calculating the distances between the relevant cells in each image and the closest blood vessels.
  • a distribution of relative blood vessel location values for the particular cell type of interest may then be obtained.
  • an average relative blood vessel location index representative of an average proximity between blood vessels and the particular cell type of interest (i.e., cell type 1) in the population is calculated by taking the statistical average (e.g., mean, median or mode) of the distribution of values generated in step 264.
  • an index of dispersion about the average proximity between blood vessels and the particular cell type of interest (i.e., cell type 1) in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of values generated in step 264.
  • the imaging information from step 202 is further analyzed in order to generate a distribution of relative blood vessel location values representative of the relative proximity between blood vessel of a further particular cell type of interest (i.e., cell type 2) in the specimens in the sample.
  • the imaging information corresponding to each imaged section of each specimen is analyzed in order to determine the average proximity of blood vessels to the further particular cell type (i.e., cell type 2) in the section.
  • This process can be performed by using image analysis to determine the centers and boundaries of the cell types of interest, and then calculating the distances between the relevant cells in each image and the closest blood vessels.
  • an average relative blood vessel location index representative of an average proximity between blood vessels and the cell type of interest (i.e., cell type 2) in the population is calculated by taking the statistical average (e.g., mean, median or mode) of the distribution of values generated in step 270.
  • an index of dispersion about the average proximity between blood vessel and the cell type of interest (i.e., cell type 2) in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of values generated in step 270.
  • steps 276, 278, 280 steps 264, 266, 268 and 270, 272, 274 may be repeated further times for other cell types of interest (i.e., up to cell type n) in order to generate an average relative blood vessel location index and a corresponding index of dispersion for each cell type of interest in the population.
  • step 282 all of the structural indices associated with the population of interest and described above are stored in a tissue data base using, for example, a data structure such as that shown in Figure 5.
  • a data structure such as that shown in Figure 5.
  • a separate data structure of the form shown in Figure 5 may be generated for each layer of interest.
  • FIG. 3 there is shown a flow diagram of method 300 for profiling a sample of normal tissue specimens obtained from a subset of a population of subjects with shared characteristics in order to generate a plurality of mechanical indices that correspond to statistically significant representations of characteristics of tissue associated with the population.
  • mechanical tests such as, for example, tensile strength and mechanical elasticity tests, are applied to each specimen from the sample selected in step 100.
  • the mechanical tests may be applied to a plurality of sections in each tissue specimen in the sample.
  • step 302 the information from the mechanical tests is analyzed in order to generate a distribution of elasticity values associated with the specimens in the sample.
  • the mechanical information corresponding to each analyzed section of each specimen is analyzed in order to determine the elasticity of the particular section.
  • a distribution of elasticity values for the population may then be obtained.
  • an average elasticity index representative of an average elasticity of the population is calculated by taking the statistical average (e.g., mean, median or mode) of the distribution of values generated in step 302.
  • an index of dispersion about the average elasticity of the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of values generated in step 302.
  • step 308 the information from the mechanical tests is analyzed in order to generate a distribution of breaking strength values associated with the specimens in the sample.
  • the mechanical information corresponding to each analyzed section of each specimen is analyzed in order to determine the breaking strength of the particular section.
  • a distribution of breaking strength values for the population may then be obtained.
  • an average breaking strength index representative of an average breaking strength of the population is calculated by taking the statistical average (e.g., mean, median or mode) of the distribution of values generated in step 308.
  • an index of dispersion about the average breaking strength of the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of values generated in step 308.
  • step 314 all of the mechanical indices associated with the population of interest and described above are stored in a tissue data base using, for example, a data structure such as that shown in Figure 6.
  • a data structure such as that shown in Figure 6.
  • a separate data structure of the form shown in Figure 6 may be generated for each layer of interest.
  • a cell function assay is applied to each specimen from the sample selected in step 100.
  • the cell function assay(s) that may be used for a given tissue population include, for example, DNA content, mRNA content, protein content, ion content, lipid content, and their respective individual elements such specific genes, specific mRNA, specific proteins, specific ions, and specific lipid content assays.
  • one or more assays are applied to a plurality of sections in each tissue specimen in the sample.
  • step 404 the cell function information from step 402 is analyzed in order to identify types of DNA that are present in the specimens in the sample.
  • the types of DNA identified for analysis preferably correspond to the types of DNA that distinguish the tissue population of interest from other tissue populations.
  • step 406 four cell function indices are determined for each type of DNA that was identified in step 404.
  • the following indices are determined in step 404: (i) the average amount of the particular type of DNA in the specimens in the sample, (ii) an index of dispersion associated with the measured average amount of the particular type of DNA, (iii) the average relative location of the particular type of DNA in the specimens in the sample, and (iv) an index of dispersion associated with the measured average relative location of the particular type of DNA.
  • the average amount of the particular type of DNA in the specimens in the sample and the index of dispersion associated with the measured average amount of the particular type of DNA are determined by first analyzing the cell function information corresponding to each section of each specimen in the sample in order to determine the average amount of the particular type of DNA in each such section. By performing such an analysis on each section of each specimen in the sample, a distribution of DNA amount values for the particular type of DNA may then be obtained. An average amount index representative of an average amount of the particular type of DNA in the population is then calculated by taking the statistical average of this distribution. Similarly, an index of dispersion about the average amount of the particular type of DNA in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of DNA amount values obtained for the particular type of DNA from the sample.
  • the average relative location of the particular type of DNA in the specimens in the sample and the index of dispersion associated with the measured average relative location of the particular type of DNA are determined by first analyzing the cell function information corresponding to each section of each specimen in the sample in order to determine the average relative location of the particular type of DNA in each such section. By performing such an analysis on each section of each specimen in the sample, a distribution of DNA relative location values for the particular type of DNA may then be obtained. An average relative location index representative of an average relative location of the particular type of DNA in the population is then calculated by taking the statistical average of this distribution. Similarly, an index of dispersion about the average relative location of the particular type of DNA in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of DNA relative location values obtained for the particular type of DNA from the sample.
  • step 408 the cell function information from step 402 is analyzed in order to identify types of mRNA that are present in the specimens in the sample.
  • the types of mRNA identified for analysis preferably correspond to the types of mRNA that distinguish the tissue population of interest from other tissue populations.
  • step 410 four cell function indices are determined for each type of mRNA that was identified in step 408.
  • the following indices are determined in step 410: (i) the average amount of the particular type of mRNA in the specimens in the sample, (ii) an index of dispersion associated with the measured average amount of the particular type of mRNA, (iii) the average relative location of the particular type of mRNA in the specimens in the sample, and (iv) an index of dispersion associated with the measured average relative location of the particular type of mRNA.
  • the average amount of the particular type of mRNA in the specimens in the sample and the index of dispersion associated with the measured average amount of the particular type of mRNA are determined by first analyzing the cell function information corresponding to each section of each specimen in the sample in order to determine the average amount of the particular type of mRNA in each such section. By performing such an analysis on each section of each specimen in the sample, a distribution of mRNA amount values for the particular type of mRNA may then be obtained. An average amount index representative of an average amount of the particular type of mRNA in the population is then calculated by taking the statistical average of this distribution.
  • an index of dispersion about the average amount of the particular type of mRNA in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of mRNA amount values obtained for the particular type of mRNA from the sample.
  • the average relative location of the particular type of mRNA in the specimens in the sample and the index of dispersion associated with the measured average relative location of the particular type of mRNA are determined by first analyzing the cell function information corresponding to each section of each specimen in the sample in order to determine the average relative location of the particular type of mRNA in each such section. By performing such an analysis on each section of each specimen in the sample, a distribution of mRNA relative location values for the particular type of mRNA may then be obtained. An average relative location index representative of an average relative location of the particular type of mRNA in the population is then calculated by taking the statistical average of this distribution.
  • an index of dispersion about the average relative location of the particular type of mRNA in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of mRNA relative location values obtained for the particular type of mRNA from the sample.
  • step 412 the cell function information from step 402 is analyzed in order to identify types of cellular proteins that are present in the specimens in the sample.
  • the types of cellular proteins identified for analysis preferably correspond to the types of cellular proteins that distinguish the tissue population of interest from other tissue populations.
  • step 414 four cell function indices are determined for each type of cellular protein that was identified in step 412.
  • the following indices are determined in step 414: (i) the average amount of the particular type of cellular protein in the specimens in the sample, (ii) an index of dispersion associated with the measured average amount of the particular type of cellular protein, (iii) the average relative location of the particular type of cellular protein in the specimens in the sample, and (iv) an index of dispersion associated with the measured average relative location of the particular type of cellular protein.
  • the average amount of the particular type of cellular protein in the specimens in the sample and the index of dispersion associated with the measured average amount of the particular type of cellular protein are determined by first analyzing the cell function information corresponding to each section of each specimen in the sample in order to determine the average amount of the particular type of cellular protein in each such section. By performing such an analysis on each section of each specimen in the sample, a distribution of cellular protein amount values for the particular type of cellular protein may then be obtained. An average amount index representative of an average amount of the particular type of cellular protein in the population is then calculated by taking the statistical average of this distribution.
  • an index of dispersion about the average amount of the particular type of cellular protein in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of cellular protein amount values obtained for the particular type of cellular protein from the sample.
  • the average relative location of the particular type of cellular protein in the specimens in the sample and the index of dispersion associated with the measured average relative location of the particular type of cellular protein are determined by first analyzing the cell function information corresponding to each section of each specimen in the sample in order to determine the average relative location of the particular type of cellular protein in each such section. By performing such an analysis on each section of each specimen in the sample, a distribution of cellular protein relative location values for the particular type of cellular protein may then be obtained. An average relative location index representative of an average relative location of the particular type of cellular protein in the population is then calculated by taking the statistical average of this distribution.
  • an index of dispersion about the average relative location of the particular type of cellular protein in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of cellular protein relative location values obtained for the particular type of cellular protein from the sample.
  • step 416 the cell function information from step 402 is analyzed in order to identify types of cellular lipids that are present in the specimens in the sample.
  • the types of cellular lipids identified for analysis preferably correspond to the types of cellular lipids that distinguish the tissue population of interest from other tissue populations.
  • step 418 four cell function indices are determined for each type of cellular lipid that was identified in step 416. More particularly, for each identified type of cellular lipid, the following indices are determined in step 418: (i) the average amount of the particular type of cellular lipid in the specimens in the sample, (ii) an index of dispersion associated with the measured average amount of the particular type of cellular lipid, (iii) the average relative location of the particular type of cellular lipid in the specimens in the sample, and (iv) an index of dispersion associated with the measured average relative location of the particular type of cellular lipid.
  • the average amount of the particular type of cellular lipid in the specimens in the sample and the index of dispersion associated with the measured average amount of the particular type of cellular lipid are determined by first analyzing the cell function information corresponding to each section of each specimen in the sample in order to determine the average amount of the particular type of cellular lipid in each such section. By performing such an analysis on each section of each specimen in the sample, a distribution of cellular lipid amount values for the particular type of cellular lipid may then be obtained. An average amount index representative of an average amount of the particular type of cellular lipid in the population is then calculated by taking the statistical average of this distribution.
  • an index of dispersion about the average amount of the particular type of cellular lipid in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of cellular lipid amount values obtained for the particular type of cellular lipid from the sample.
  • the average relative location of the particular type of cellular lipid in the specimens in the sample and the index of dispersion associated with the measured average relative location of the particular type of cellular lipid are determined by first analyzing the cell function information corresponding to each section of each specimen in the sample in order to determine the average relative location of the particular type of cellular lipid in each such section. By performing such an analysis on each section of each specimen in the sample, a distribution of cellular lipid relative location values for the particular type of cellular lipid may then be obtained. An average relative location index representative of an average relative location of the particular type of cellular lipid in the population is then calculated by taking the statistical average of this distribution.
  • an index of dispersion about the average relative location of the particular type of cellular lipid in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the distribution of cellular lipid relative location values obtained for the particular type of cellular lipid from the sample.
  • step 420 the cell function information from step 402 is analyzed in order to identify types of cellular ion distributions that are present in the specimens in the sample.
  • the types of cellular ion distributions identified for analysis preferably correspond to the types of cellular ion distributions that distinguish the tissue population of interest from other tissue populations.
  • step 422 four cell function indices are determined for each type of cellular ion distribution that was identified in step 420.
  • the following indices are determined in step 422: (i) the average amount of the particular type of cellular ion distribution in the specimens in the sample, (ii) an index of dispersion associated with the measured average amount of the particular type of cellular ion distribution, (iii) the average relative location of the particular type of cellular ion distribution in the specimens in the sample, and (iv) an index of dispersion associated with the measured average relative location of the particular type of cellular ion distribution.
  • the average amount of the particular type of cellular ion distribution in the specimens in the sample and the index of dispersion associated with the measured average amount of the particular type of cellular ion distribution are determined by first analyzing the cell function information corresponding to each section of each specimen in the sample in order to determine the average amount of the particular type of cellular ion distribution in each such section. By performing such an analysis on each section of each specimen in the sample, a sample distribution of cellular ion amount values for the particular type of cellular ion distribution may then be obtained. An average amount index representative of an average amount of the particular type of cellular ion distribution in the population is then calculated by taking the statistical average of the sample distribution. Similarly, an index of dispersion about the average amount of the particular type of cellular ion distribution in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the sample distribution.
  • the average relative location of the particular type of cellular ion distribution in the specimens in the sample and the index of dispersion associated with the measured average relative location of the particular type of cellular ion distribution are determined by first analyzing the cell function information corresponding to each section of each specimen in the sample in order to determine the average relative location of the particular type of cellular ion distribution in each such section. By performing such an analysis on each section of each specimen in the sample, a sample distribution of relative location values for the particular type of cellular ion distribution may then be obtained. An average relative location index representative of an average relative location of the particular type of cellular ion distribution in the population is then calculated by taking the statistical average of the sample distribution. Similarly, an index of dispersion about the average relative location of the particular type of cellular ion distribution in the population is calculated by, for example, taking the standard deviation, standard error, or standard error of the mean of the sample distribution.
  • step 424 the cell function indices associated with the population of interest and described above are optionally used to form a cell function map representative of the population of interest.
  • An exemplary cell function map formed using such cell function indices is shown in Figure 9.
  • the cell function map is also preferably stored in the data base with the structural, mechanical and cell function indices associated with the population of interest.
  • step 426 all of the cell function indices associated with the population of interest and described above are stored in a tissue data base using, for example, a data structure such as that shown in Figures 7A, 7B and 7C. Again, for tissue populations having multiple layers, a separate data structure of the form shown in Figures 7A, 7B and 7C may be generated for each layer of interest.
  • the cell function map is also preferably stored in the data base with the cell function indices associated with the population of interest.
  • process 1000 described above may be repeated for each tissue population of interest.
  • the present invention may be used to generate a data base such as that shown in Figure 8, which includes structural, mechanical and cell function indices for many different tissue populations.
  • the data base shown in Figure 8 also optionally includes correlation values (as discussed above) and a cell function map for each population of interest.
  • process 1000 is used to generate a database that includes structural, mechanical and cell function indices and optionally the correlation values and cell function map information discussed above for each of the following tissue populations: normal intestine tissue, normal cartilage tissue, normal eye tissue, normal bone tissue, normal fat tissue, normal muscle tissue, normal kidney tissue, normal brain tissue, normal heart tissue, normal liver tissue, normal skin tissue, normal pleura tissue, normal peritoneum tissue, normal pericardium tissue, normal dura-mater tissue, normal oral-nasal mucus membrane tissue, normal pancreas tissue, normal spleen tissue, normal gall bladder tissue, normal blood vessel tissue, normal bladder tissue, normal uterus tissue, normal ovarian tissue, normal urethra tissue, normal penile tissue, normal vaginal tissue, normal esophagus tissue, normal anus tissue, normal adrenal gland tissue, normal ligament tissue, normal intervertebral disk tissue, normal bursa tissue, normal meniscus tissue, normal fascia tissue, normal bone marrow tissue, normal tendon tissue, normal pulle
  • process 1000 is used to generate a database that includes multiple sets of structural, mechanical and cell function indices and optionally the correlation values and cell function map information discussed above for each of the tissue types set forth in the paragraph above.
  • tissue type e.g., normal lung tissue
  • multiple tissue populations are defined based on age bracket, race and/or gender.
  • a first normal lung tissue population will include lung tissue from Caucasian males between ages x-y;
  • a second normal lung tissue population will include lung tissue from Asian males between ages x-y;
  • a third normal lung tissue population will include lung tissue from Caucasian females between ages x-y; and so on.
  • a separate set of structural, mechanical and cell function indices and optionally the correlation values and cell function map information discussed above is determined using process 1000 for each of the different lung tissue populations and then stored in the tissue information database.
  • the different populations associated with a given tissue type may also be defined based on other criteria such as the physical fitness level, behavior, geographic location, nationality or disease(s) associated with the subjects having the given tissue type.
  • process 1000 is used to generate a database that includes structural, mechanical and cell function indices and optionally the correlation values and cell function map information discussed above for populations of abnormal tissue types, for population of tissue types associated with specific plant or animal species, for populations of non-living tissue types and for populations of virtual tissue types.
  • the present invention may be used to profile "composite" tissue types, i.e., tissue populations that consist of two or more normal tissue types.
  • the sample of normal tissue specimens profiled during process 1000 correspond to first and second groups of different normal tissue specimens, wherein the first and second groups each correspond, for example, to a set of either normal intestine tissue specimens, normal cartilage tissue specimens, normal eye tissue specimens, normal bone tissue specimens, normal fat tissue specimens, normal muscle tissue specimens, normal kidney tissue specimens, normal brain tissue specimens, normal heart tissue specimens, normal liver tissue specimens, normal skin tissue specimens, normal pleura tissue specimens, normal peritoneum tissue specimens, normal pericardium tissue specimens, normal dura-mater tissue specimens, normal oral-nasal mucus membrane tissue specimens, normal pancreas tissue specimens, normal spleen tissue specimens, normal gall bladder tissue specimens, normal blood vessel tissue specimens, normal bladder tissue specimens, normal uterus tissue specimens,
  • process 1000 is thus used to generate a database that includes structural, mechanical and cell function indices and optionally the correlation values and cell function map information discussed above for composite tissue types. Such information may then be used as a blueprint for design, engineering and manufacture of composite tissue designs.
  • process 1000 is used to generate structural, mechanical and cell function indices for each tissue population of interest. It will be understood by those skilled in the art that all such indices need not be generated for every tissue population of interest, and that the present invention can be used for rational design without the use of all of the indices described herein. For example, for a particular tissue population, only selected ones of the structural indices described herein may be generated and used for the design and manufacture of engineered tissue.
  • the tissue database described herein (e.g., Figure 8) is used to provide information representative of a plurality of tissue types to subscribers over a computer network, such as the internet. Subscribers to such information would include, for example, persons or businesses in the tissue engineering, drug design, gene discovery and genomics research fields. In this embodiment (shown in Figure 8)
  • each subscriber is granted access to all or part of the database (e.g., a subscriber may granted access to information corresponding to only a particular tissue type or a particular tissue population) based on a subscription fee paid by the user.
  • the subscribers may also use such information to classify tissue specimens (e.g., human tissue specimens, animal tissue specimens, plant tissue specimens, food tissue specimens, or manufactured tissue specimens) provided by the subscriber.
  • the user can measure parameters (e.g., structural, mechanical and/or cell function indices) associated with the subscriber's tissue specimens (using the techniques described above) and then compare this information to the corresponding parameters for normal tissue in the database in order to classify the subscriber's tissue specimens as either normal or abnormal.
  • parameters e.g., structural, mechanical and/or cell function indices
  • a subscriber can assess the normalcy of subscriber-supplied tissue specimens which are believed to correspond to normal lung tissue specimens by retrieving the structural, mechanical and/or cell function indices corresponding to normal lung tissue stored in the database, and then comparing these stored indices to corresponding parameters measured from the subscriber- supplied samples.
  • the subscriber-supplied specimen will be classified as abnormal.
  • measured parameters associated with the subscriber-supplied tissue samples may be compared to the tissue information stored in the database in order to identify normal elements of such manufactured tissue specimens in cases where, for example, such manufactured tissue
  • tissue specimens using the tissue information in the database is performed by a subscriber to
  • the classification process can also be performed by the party responsible for

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
PCT/US2000/017391 1999-06-23 2000-06-23 Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population Ceased WO2000079269A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU58880/00A AU5888000A (en) 1999-06-23 2000-06-23 Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population
EP00944845A EP1194775A4 (en) 1999-06-23 2000-06-23 METHOD FOR CREATING PROFILES AND CLASSIFYING FABRICS WITH THE AID OF DATABASES USING INDICES WHICH ARE REPRESENTATIVE FOR TISSUE POPULATINS
JP2001505187A JP2003502669A (ja) 1999-06-23 2000-06-23 組織の母集団を表わす指標を包含するデータベースを使用して組織をプロファイルし分類する方法
CA2389220A CA2389220C (en) 1999-06-23 2000-06-23 Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/338,909 1999-06-23
US09/338,909 US6611833B1 (en) 1999-06-23 1999-06-23 Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population

Publications (1)

Publication Number Publication Date
WO2000079269A1 true WO2000079269A1 (en) 2000-12-28

Family

ID=23326653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/017391 Ceased WO2000079269A1 (en) 1999-06-23 2000-06-23 Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population

Country Status (6)

Country Link
US (2) US6611833B1 (enExample)
EP (1) EP1194775A4 (enExample)
JP (1) JP2003502669A (enExample)
AU (1) AU5888000A (enExample)
CA (1) CA2389220C (enExample)
WO (1) WO2000079269A1 (enExample)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993170B2 (en) * 1999-06-23 2006-01-31 Icoria, Inc. Method for quantitative analysis of blood vessel structure
US20020087511A1 (en) * 1999-09-02 2002-07-04 Johnson Peter C. Methods for profiling and manufacturing tissue using a database that includes indices representative of a tissue population
US7613571B2 (en) * 2000-07-28 2009-11-03 Doyle Michael D Method and system for the multidimensional morphological reconstruction of genome expression activity
JP2002172117A (ja) * 2000-09-05 2002-06-18 Fuji Photo Film Co Ltd 光断層画像診断情報出力装置
AU2002230842A1 (en) 2000-10-30 2002-05-15 The General Hospital Corporation Optical methods and systems for tissue analysis
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
DE10297689B4 (de) 2001-05-01 2007-10-18 The General Hospital Corp., Boston Verfahren und Gerät zur Bestimmung von atherosklerotischem Belag durch Messung von optischen Gewebeeigenschaften
KR100452748B1 (ko) * 2001-05-08 2004-10-12 유닉스전자주식회사 전자 혈압계를 이용한 심전도 측정 방법
US20030149535A1 (en) * 2001-07-17 2003-08-07 Yukio Sudo Method for quantifying nucleic acid by cell counting
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
EP1596716B1 (en) 2003-01-24 2014-04-30 The General Hospital Corporation System and method for identifying tissue using low-coherence interferometry
US7643153B2 (en) 2003-01-24 2010-01-05 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
CA2519937C (en) 2003-03-31 2012-11-20 Guillermo J. Tearney Speckle reduction in optical coherence tomography by path length encoded angular compounding
EP2280257B1 (en) 2003-06-06 2017-04-05 The General Hospital Corporation Process and apparatus for a wavelength tuned light source
US20050014131A1 (en) * 2003-07-16 2005-01-20 Cytokinetics, Inc. Methods and apparatus for investigating side effects
US7467119B2 (en) * 2003-07-21 2008-12-16 Aureon Laboratories, Inc. Systems and methods for treating, diagnosing and predicting the occurrence of a medical condition
US7505948B2 (en) * 2003-11-18 2009-03-17 Aureon Laboratories, Inc. Support vector regression for censored data
EP3009815B1 (en) 2003-10-27 2022-09-07 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
WO2005050563A2 (en) * 2003-11-17 2005-06-02 Aureon Biosciences Corporation Pathological tissue mapping
WO2005086068A2 (en) * 2004-02-27 2005-09-15 Aureon Laboratories, Inc. Methods and systems for predicting occurrence of an event
AU2004320269B2 (en) 2004-05-29 2011-07-21 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (OCT) imaging
WO2006014392A1 (en) 2004-07-02 2006-02-09 The General Hospital Corporation Endoscopic imaging probe comprising dual clad fibre
US8081316B2 (en) 2004-08-06 2011-12-20 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
CA2575859A1 (en) * 2004-08-11 2006-02-23 Aureon Laboratories, Inc. Systems and methods for automated diagnosis and grading of tissue images
US8208995B2 (en) 2004-08-24 2012-06-26 The General Hospital Corporation Method and apparatus for imaging of vessel segments
JP5334415B2 (ja) 2004-08-24 2013-11-06 ザ ジェネラル ホスピタル コーポレイション 試料の機械的歪み及び弾性的性質を測定するプロセス、システム及びソフトウェア
JP5215664B2 (ja) 2004-09-10 2013-06-19 ザ ジェネラル ホスピタル コーポレイション 光学コヒーレンス撮像のシステムおよび方法
EP2329759B1 (en) 2004-09-29 2014-03-12 The General Hospital Corporation System and method for optical coherence imaging
EP2278266A3 (en) 2004-11-24 2011-06-29 The General Hospital Corporation Common-Path Interferometer for Endoscopic OCT
EP1816949A1 (en) 2004-11-29 2007-08-15 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
EP1875436B1 (en) * 2005-04-28 2009-12-09 The General Hospital Corporation Evaluation of image features of an anatomical structure in optical coherence tomography images
EP1889037A2 (en) 2005-06-01 2008-02-20 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
WO2007019574A2 (en) 2005-08-09 2007-02-15 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
JP4647442B2 (ja) * 2005-09-14 2011-03-09 独立行政法人情報通信研究機構 データ表示装置、データ表示方法およびデータ表示プログラム
WO2007041382A1 (en) 2005-09-29 2007-04-12 General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
JP5203951B2 (ja) 2005-10-14 2013-06-05 ザ ジェネラル ホスピタル コーポレイション スペクトル及び周波数符号化蛍光画像形成
CA2625775A1 (en) 2005-10-14 2007-04-19 Applied Research Associates Nz Limited A method of monitoring a surface feature and apparatus therefor
US7796270B2 (en) 2006-01-10 2010-09-14 The General Hospital Corporation Systems and methods for generating data based on one or more spectrally-encoded endoscopy techniques
US7783092B2 (en) * 2006-01-17 2010-08-24 Illinois Institute Of Technology Method for enhancing diagnostic images using vessel reconstruction
US8145018B2 (en) 2006-01-19 2012-03-27 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements
WO2007084995A2 (en) 2006-01-19 2007-07-26 The General Hospital Corporation Methods and systems for optical imaging of epithelial luminal organs by beam scanning thereof
EP1986545A2 (en) 2006-02-01 2008-11-05 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
EP1983921B1 (en) 2006-02-01 2016-05-25 The General Hospital Corporation Systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
EP3143926B1 (en) 2006-02-08 2020-07-01 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
JP2009527770A (ja) 2006-02-24 2009-07-30 ザ ジェネラル ホスピタル コーポレイション 角度分解型のフーリエドメイン光干渉断層撮影法を遂行する方法及びシステム
EP2015669A2 (en) 2006-05-10 2009-01-21 The General Hospital Corporation Processes, arrangements and systems for providing frequency domain imaging of a sample
JP2010501877A (ja) 2006-08-25 2010-01-21 ザ ジェネラル ホスピタル コーポレイション ボリュメトリック・フィルタリング法を使用して光コヒーレンス・トモグラフィ画像形成の機能を向上させる装置及び方法
US8838213B2 (en) 2006-10-19 2014-09-16 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
EP2662674A3 (en) 2007-01-19 2014-06-25 The General Hospital Corporation Rotating disk reflection for fast wavelength scanning of dispersed broadbend light
EP2132840A2 (en) 2007-03-23 2009-12-16 The General Hospital Corporation Methods, arrangements and apparatus for utlizing a wavelength-swept laser using angular scanning and dispersion procedures
WO2008121844A1 (en) 2007-03-30 2008-10-09 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
WO2008131082A1 (en) 2007-04-17 2008-10-30 The General Hospital Corporation Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy techniques
JP5917803B2 (ja) 2007-07-31 2016-05-18 ザ ジェネラル ホスピタル コーポレイション 高速ドップラー光周波数領域撮像法のためのビーム走査パターンを放射するシステムおよび方法
WO2009059034A1 (en) 2007-10-30 2009-05-07 The General Hospital Corporation System and method for cladding mode detection
US8249696B2 (en) 2007-12-19 2012-08-21 Depuy Spine, Inc. Smart pedicle tool
US7898656B2 (en) 2008-04-30 2011-03-01 The General Hospital Corporation Apparatus and method for cross axis parallel spectroscopy
EP2274572A4 (en) 2008-05-07 2013-08-28 Gen Hospital Corp SYSTEM, METHOD AND COMPUTER MEDIUM FOR TRACKING A VASCULAR MOVEMENT IN A THREE-DIMENSIONAL CORONARTERTERIC MICROSCOPY
KR100963689B1 (ko) 2008-05-13 2010-06-15 대한민국 인체조직 분류 방법
EP2288948A4 (en) 2008-06-20 2011-12-28 Gen Hospital Corp Fused fiber optic coupler arrangement and method for use thereof
US9254089B2 (en) 2008-07-14 2016-02-09 The General Hospital Corporation Apparatus and methods for facilitating at least partial overlap of dispersed ration on at least one sample
EP2348978B1 (en) * 2008-10-03 2017-12-06 HLZ Innovation, Llc Adjustable pneumatic supporting surface
ES2957932T3 (es) 2008-12-10 2024-01-30 Massachusetts Gen Hospital Sistemas, aparatos y procedimientos para ampliar el rango de profundidad de imagen de tomografía de coherencia óptica mediante submuestreo óptico
WO2010090837A2 (en) 2009-01-20 2010-08-12 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
WO2010085775A2 (en) 2009-01-26 2010-07-29 The General Hospital Corporation System, method and computer-accessible medium for providing wide-field superresolution microscopy
JP6053284B2 (ja) 2009-02-04 2016-12-27 ザ ジェネラル ホスピタル コーポレイション ハイスピード光学波長チューニング源の利用のための装置及び方法
EP2453791B1 (en) 2009-07-14 2023-09-06 The General Hospital Corporation Apparatus for measuring flow and pressure within a vessel
US8052622B2 (en) * 2009-09-02 2011-11-08 Artann Laboratories Inc Methods for characterizing vaginal tissue elasticity
WO2011100430A2 (en) 2010-02-10 2011-08-18 Kickstart International, Inc. Human-powered irrigation pump
US8896838B2 (en) 2010-03-05 2014-11-25 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
EP2575591A4 (en) 2010-06-03 2017-09-13 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
EP2632324A4 (en) 2010-10-27 2015-04-22 Gen Hospital Corp DEVICES, SYSTEMS AND METHOD FOR MEASURING BLOOD PRESSURE IN AT LEAST ONE VESSEL
US20120207360A1 (en) * 2011-02-11 2012-08-16 Courosh Mehanian Systems and Methods for Object Identification
JP2014523536A (ja) 2011-07-19 2014-09-11 ザ ジェネラル ホスピタル コーポレイション 光コヒーレンストモグラフィーにおいて偏波モード分散補償を提供するためのシステム、方法、装置およびコンピュータアクセス可能な媒体
EP2748587B1 (en) 2011-08-25 2021-01-13 The General Hospital Corporation Methods and arrangements for providing micro-optical coherence tomography procedures
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9179844B2 (en) 2011-11-28 2015-11-10 Aranz Healthcare Limited Handheld skin measuring or monitoring device
EP2833776A4 (en) 2012-03-30 2015-12-09 Gen Hospital Corp PICTURE SYSTEM, PROCESS AND DISTAL CONNECTION TO MULTIDIRECTIONAL VISION DOSCOPY
WO2013177154A1 (en) 2012-05-21 2013-11-28 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
WO2014117130A1 (en) 2013-01-28 2014-07-31 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
WO2014121082A1 (en) 2013-02-01 2014-08-07 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
JP6378311B2 (ja) 2013-03-15 2018-08-22 ザ ジェネラル ホスピタル コーポレイション 物体を特徴付ける方法とシステム
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
EP4349242A3 (en) 2013-07-19 2024-06-19 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
EP3025173B1 (en) 2013-07-26 2021-07-07 The General Hospital Corporation Apparatus with a laser arrangement utilizing optical dispersion for applications in fourier-domain optical coherence tomography
WO2015105870A1 (en) 2014-01-08 2015-07-16 The General Hospital Corporation Method and apparatus for microscopic imaging
WO2015116986A2 (en) 2014-01-31 2015-08-06 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
KR102513779B1 (ko) 2014-07-25 2023-03-24 더 제너럴 하스피탈 코포레이션 생체 내 이미징 및 진단을 위한 장치, 디바이스 및 방법
US10013527B2 (en) 2016-05-02 2018-07-03 Aranz Healthcare Limited Automatically assessing an anatomical surface feature and securely managing information related to the same
US11116407B2 (en) 2016-11-17 2021-09-14 Aranz Healthcare Limited Anatomical surface assessment methods, devices and systems
EP4183328A1 (en) 2017-04-04 2023-05-24 Aranz Healthcare Limited Anatomical surface assessment methods, devices and systems
WO2020234653A1 (en) 2019-05-20 2020-11-26 Aranz Healthcare Limited Automated or partially automated anatomical surface assessment methods, devices and systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713364A (en) * 1995-08-01 1998-02-03 Medispectra, Inc. Spectral volume microprobe analysis of materials
US5785663A (en) * 1992-12-21 1998-07-28 Artann Corporation Method and device for mechanical imaging of prostate

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016173A (en) * 1989-04-13 1991-05-14 Vanguard Imaging Ltd. Apparatus and method for monitoring visually accessible surfaces of the body
US5235522A (en) 1990-10-10 1993-08-10 Cell Analysis Systems, Inc. Method and apparatus for automated analysis of biological specimens
US5506098A (en) * 1991-09-04 1996-04-09 Daikin Industries, Ltd. In situ hybridization method
JP3139085B2 (ja) * 1991-11-07 2001-02-26 株式会社ニコン イオン濃度の定量装置および定量方法
US5293772A (en) * 1992-01-17 1994-03-15 Center For Innovative Technology Instrumentation and method for evaluating platelet performance during clotting and dissolution of blood clots and for evaluating erythrocyte flexibility
DE69321351T2 (de) * 1992-07-03 1999-05-12 Paul Bernard David Northlew Okehampton Newman System für die qualitätskontrolle und klassifizierung von fleisch
JPH0694706A (ja) * 1992-09-10 1994-04-08 Sumitomo Metal Ind Ltd 病理画像検査支援装置
US6026174A (en) * 1992-10-14 2000-02-15 Accumed International, Inc. System and method for automatically detecting malignant cells and cells having malignancy-associated changes
EP0592997A3 (en) * 1992-10-16 1994-11-17 Becton Dickinson Co Method and device for measuring the thickness of a tissue section.
US5987346A (en) * 1993-02-26 1999-11-16 Benaron; David A. Device and method for classification of tissue
US5685313A (en) * 1994-05-31 1997-11-11 Brain Monitor Ltd. Tissue monitor
US5640453A (en) * 1994-08-11 1997-06-17 Stanford Telecommunications, Inc. Universal interactive set-top controller for downloading and playback of information and entertainment services
AU3490695A (en) 1994-09-20 1996-04-09 Neopath, Inc. Cytological slide scoring apparatus
EP0805874A4 (en) * 1995-01-27 1998-05-20 Incyte Pharma Inc COMPUTER SYSTEM FOR STORING AND ANALYZING MICROBIOLOGICAL DATA
US5733739A (en) * 1995-06-07 1998-03-31 Inphocyte, Inc. System and method for diagnosis of disease by infrared analysis of human tissues and cells
DE19616997A1 (de) 1996-04-27 1997-10-30 Boehringer Mannheim Gmbh Verfahren zur automatisierten mikroskopunterstützten Untersuchung von Gewebeproben oder Körperflüssigkeitsproben
US5891619A (en) 1997-01-14 1999-04-06 Inphocyte, Inc. System and method for mapping the distribution of normal and abnormal cells in sections of tissue
US6081612A (en) * 1997-02-28 2000-06-27 Electro Optical Sciences Inc. Systems and methods for the multispectral imaging and characterization of skin tissue
US5837283A (en) * 1997-03-12 1998-11-17 The Regents Of The University Of California Cationic lipid compositions targeting angiogenic endothelial cells
US5993844A (en) * 1997-05-08 1999-11-30 Organogenesis, Inc. Chemical treatment, without detergents or enzymes, of tissue to form an acellular, collagenous matrix
US5840534A (en) * 1997-05-09 1998-11-24 Incyte Pharmaceuticals, Inc. Human SMT3-like protein
JPH1119077A (ja) * 1997-06-30 1999-01-26 Konica Corp 放射線画像における腫瘤影の検出方法及び装置
US6104835A (en) 1997-11-14 2000-08-15 Kla-Tencor Corporation Automatic knowledge database generation for classifying objects and systems therefor
US6238342B1 (en) 1998-05-26 2001-05-29 Riverside Research Institute Ultrasonic tissue-type classification and imaging methods and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785663A (en) * 1992-12-21 1998-07-28 Artann Corporation Method and device for mechanical imaging of prostate
US5713364A (en) * 1995-08-01 1998-02-03 Medispectra, Inc. Spectral volume microprobe analysis of materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1194775A4 *

Also Published As

Publication number Publication date
EP1194775A4 (en) 2004-09-15
CA2389220C (en) 2011-07-26
US6611833B1 (en) 2003-08-26
JP2003502669A (ja) 2003-01-21
CA2389220A1 (en) 2000-12-28
US20040117343A1 (en) 2004-06-17
EP1194775A1 (en) 2002-04-10
AU5888000A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
CA2389220C (en) Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population
US6581011B1 (en) Online database that includes indices representative of a tissue population
Kendziorski et al. The efficiency of pooling mRNA in microarray experiments
Michels et al. Progression of familial and non-familial dilated cardiomyopathy: long term follow up
US20020095260A1 (en) Methods for efficiently mining broad data sets for biological markers
JP7527071B2 (ja) 周期的にアップデートされる遺伝子変異検査結果レポート自動発行システム
Spang et al. Prediction and uncertainty in the analysis of gene expression profiles
Bruner The brain, the braincase, and the morphospace
Hopper The epidemiology of genetic epidemiology
Delmar et al. Mixture model on the variance for the differential analysis of gene expression data
CN113838519B (zh) 基于自适应基因交互正则化弹性网络模型的基因选择方法及系统
US20020087511A1 (en) Methods for profiling and manufacturing tissue using a database that includes indices representative of a tissue population
CN113192553A (zh) 基于单细胞转录组测序数据预测细胞空间关系的方法
Bolender et al. Quantitative morphology of the nervous system: expanding horizons
CN116790754B (zh) 一种用于甲状腺未分化癌预后预测的标志物组合及其应用
WO2000079270A1 (en) Methods for profiling and manufacturing tissue using a database that includes indices representative of a tissue population
CN119601240A (zh) 一种基于预测模型的直肠癌术后复发风险的预测方法
Tao et al. Benchmarking mapping algorithms for cell-type annotating in mouse brain by integrating single-nucleus RNA-seq and Stereo-seq data
WO2021142625A1 (zh) 基于单细胞转录组测序数据预测细胞空间关系的方法
JP2005038256A (ja) 有効因子情報選択装置、有効因子情報選択方法、プログラム、および、記録媒体
Luo et al. MAST-Decon: smooth cell-type deconvolution method for spatial transcriptomics data
US20240145035A1 (en) Analyzing per-cell co-expression of cellular constituents
Lu et al. Overlapping Indices for Dynamic Information Borrowing in Bayesian Hierarchical Modeling
Cremaschi et al. Bayesian modelling of response to therapy and drug-sensitivity in acute lymphoblastic leukemia
Zhao A liability theory of disease: the foundation of cell population pathology

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ IL IN IS JP KR MX NO NZ PL RU SG TR UA ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000944845

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000944845

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2389220

Country of ref document: CA

WWW Wipo information: withdrawn in national office

Ref document number: 2000944845

Country of ref document: EP