WO2000077581A1 - Electronic timepiece - Google Patents

Electronic timepiece Download PDF

Info

Publication number
WO2000077581A1
WO2000077581A1 PCT/JP2000/003833 JP0003833W WO0077581A1 WO 2000077581 A1 WO2000077581 A1 WO 2000077581A1 JP 0003833 W JP0003833 W JP 0003833W WO 0077581 A1 WO0077581 A1 WO 0077581A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
electronic timepiece
charging
driving
voltage
Prior art date
Application number
PCT/JP2000/003833
Other languages
French (fr)
Japanese (ja)
Inventor
Fumio Nakajima
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Publication of WO2000077581A1 publication Critical patent/WO2000077581A1/en

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G19/00Electric power supply circuits specially adapted for use in electronic time-pieces
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/14Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor

Definitions

  • the present invention relates to an analog electronic timepiece provided with a hand-operating pulse motor that operates using an oscillation signal of an oscillation circuit using a crystal oscillator as a reference signal.
  • an analog electronic timepiece has an oscillation circuit using a crystal oscillator that generates a reference signal, a frequency division circuit that divides the frequency of the reference signal of the oscillation circuit, and a drive pulse from the divided signal.
  • a waveform generation circuit to generate, a driving circuit to input the driving pulse to drive the pulse motor stepwise, and hands (second hand, minute hand, and hour hand) to be rotated by the pulse motor through a train of gears ) Etc.
  • the waveform generation circuit receives the frequency-divided signal from the frequency divider and generates and outputs multiple drive pulses with a frequency of 0.5 Hz, a wavelength of several milliseconds, and a phase difference of 180 degrees. .
  • the drive circuit consists of two sets of complementary MOS transistors (hereafter abbreviated as "CMOST").
  • the pulse motor includes a drive coil having both ends connected to an output terminal of a drive circuit, a rotor made of a permanent magnet, and a soft magnetic material provided for magnetically coupling the drive coil to the rotor. Consists of a stator.
  • the drive pulse output from the waveform generation circuit is alternately applied to each control terminal of the two sets of C MOSTs of the drive circuit, whereby the drive coil of the pulse motor is excited, and the rotor passes through the stator.
  • a driving force is magnetically applied to With this driving force, the pulse motor rotates the rotor 180 degrees for each pulse. With the rotation of the rotor, the second hand, minute hand, and hour hand operate via a train of gears to display the time.
  • the conventional electronic timepiece configured as described above has the following problems. There was a problem.
  • the pulse motor for moving the hands of an electronic timepiece has a fixed magnetic force (magnetic potential) as a holding force between the stator and the rotor, which applies a drive pulse to the drive circuit.
  • the rotor is prevented from rotating due to the rotating force (moment) generated on the hands, such as the second hand, even if an external impact is applied while it is not in operation.
  • the energy required for rotating the rotor itself is added to the energy required for rotating the rotor itself, and the energy required for rotating the train wheel connected to the rotor is added. Electricity must be supplied with energy that exceeds the amount of energy that overcomes the magnetic force (retention force) acting between the stator and the stator.
  • the amount of energy required for the rotation of the rotor itself and the rotation of the wheel train may be relatively small, such as about 0.05 microwatts in terms of electric energy.
  • the total value of the power consumption in the oscillation circuit, the frequency divider circuit, and the waveform generation circuit is only about 0.05 microwatt, and in comparison with this, 0.4 is necessary for rotating the rotor. Electric power of about 5 microwatts is a large value. Most of the power required to rotate this rotor is only consumed to overcome the magnetic forces between the rotor and the stator, and is required for substantial rotation of the rotor or wheel train. It does not contribute and is wasted as friction loss after the rotor rotates.
  • An object of the present invention is to solve such a problem, to effectively use electric power in an analog electronic timepiece and to recover consumed electric power, and to substantially reduce substantial electric power consumption. is there.
  • the present invention relates to an oscillation circuit, a frequency dividing circuit for dividing the oscillation signal, a waveform generating circuit for generating a plurality of driving pulses based on the divided signal, and a driving circuit for inputting the plurality of driving pulses.
  • an electronic timepiece comprising: a driving coil that is excited by a driving current output from the driving circuit to rotate the rotor stepwise; A charging circuit that is charged by a short-circuit current based on the back electromotive force generated in the drive coil when the child stops rotating, stores the charged power in the charging circuit, and divides the stored power into the oscillation It has a circuit, a frequency divider, a waveform generator, a drive circuit, and a power supply circuit for supplying a charge circuit.
  • the present invention after the rotor of the pulse motor in the electronic timepiece rotates by a predetermined angle step, the electric power converted into kinetic energy until it is stopped by the magnetic holding force is supplied to the power supply via the charging circuit.
  • the circuit can be efficiently recovered and reused, and the actual power consumption can be significantly reduced.
  • a switch that switches the charging circuit by a control pulse output from the waveform generation circuit when the short-circuit current occurs, and the switching of the switch causes a charging current to flow from an output terminal to an input terminal.
  • An operational amplifier connected to the switch; and a feedback capacitor connected between an input terminal and an output terminal of the operational amplifier and charged when a charging current flows from the output terminal to the input terminal. can do.
  • Each of the drive circuits is driven by a plurality of drive pulses output by the waveform generation circuit. After the drive current is applied to the drive coil of the pulse motor by the plurality of drive pulses to rotate the rotor stepwise, each switch is connected to both ends of the drive coil. It is preferable to make a short circuit so as to have substantially the same potential, and to connect so as to generate a short circuit current based on the back electromotive force generated in the driving coil.
  • the power supply circuit includes a backflow prevention diode and a secondary battery connected to the output side of the charging circuit, and the output voltage of the charging circuit decreases the forward voltage of the backflow prevention diode and the rechargeable battery. When the sum exceeds the terminal voltage, a charging current flows from the charging circuit to the secondary battery via the backflow prevention diode, and power is stored in the secondary battery.
  • the power supply circuit may include a booster circuit that boosts a terminal voltage of the secondary battery and supplies the terminal voltage to the charging circuit as a power supply voltage.
  • the charging circuit when the short circuit current occurs, the charging circuit is charged by a charging current corresponding to the short circuit current, and charged by a charging voltage of the first charging circuit. It may be composed of a second charging circuit.
  • a charging voltage of the charging circuit is detected, and when the detected voltage is equal to or lower than a predetermined value, a driving pulse having the same phase as the driving pulse output immediately before and having a higher driving power is loaded on the waveform generating circuit.
  • FIG. 1 is a block diagram showing an overall configuration of an electronic timepiece according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a specific example of a circuit diagram showing a drive circuit of the electronic timepiece, a pulse motor and a charging circuit.
  • FIG. 3 is a circuit diagram showing a specific example of a power supply circuit of the electronic timepiece.
  • FIG. 4 is a timing chart showing waveforms of a drive pulse, a control pulse, and the like generated from the waveform generation circuit of the electronic timepiece.
  • FIGS. 6A to 6C are explanatory diagrams in the second phase for explaining the operation of charging the charging circuit based on the back electromotive force of the pulse motor.
  • FIG. 7 is a block diagram showing an overall configuration of a second embodiment of an electronic timepiece according to the present invention.
  • FIG. 8 is a circuit diagram of a drive circuit, a pulse motor and a charging circuit of a third embodiment of the electronic timepiece according to the present invention.
  • FIG. 9 is a block diagram showing the overall configuration of an electronic timepiece according to a fourth embodiment of the present invention.
  • FIGS. 1 to 6C [First Embodiment: FIGS. 1 to 6C]
  • FIG. 1 is a block diagram showing an overall configuration of an electronic timepiece according to a first embodiment of the present invention
  • FIG. 2 is a circuit diagram showing an example of a drive circuit and a pulse motor and a charging circuit
  • FIG. It is a circuit diagram showing an example.
  • FIG. 4 is a timing chart showing waveforms of a drive pulse and a control pulse generated from the waveform generation circuit of the electronic timepiece.
  • FIG. 6C is an explanatory diagram in a first phase and a second phase for explaining an operation of charging the charging circuit based on the back electromotive force of the pulse motor.
  • the electronic timepiece includes an oscillation circuit 1, a frequency dividing circuit 2, a waveform generating circuit 3, a driving circuit and a pulse motor 4, a charging circuit 5, and a power supply circuit. Consists of six.
  • the oscillation circuit 1 oscillates a crystal oscillator (not shown) at a reference frequency, outputs a reference signal S 0 having the reference frequency, and inputs the reference signal S 0 to the frequency dividing circuit 2.
  • the frequency dividing circuit 2 is connected to the output terminal of the oscillation circuit 1, inputs the reference signal S0, divides the frequency to a frequency lower than the reference frequency, and outputs the frequency-divided signal S1.
  • the waveform generating circuit 3 is connected to the output terminal of the frequency dividing circuit 2 and receives the frequency-divided signal S1 and outputs four driving pulses ⁇ 1 to ⁇ 4, which will be described later, and first control pulses ⁇ 5 and ⁇ 6. And the second control pulses ⁇ 7 and ⁇ 8 are generated and output.
  • the drive circuit and the pulse motor 4 input four drive pulses ⁇ 1 to ⁇ 4 from the waveform generation circuit 3 and drive the pulse motor to move hands such as the second hand, minute hand, and hour hand.
  • the charging circuit 5 is connected to the drive circuit and the output side of the pulse motor 4, and receives the first control pulses ⁇ 5 and ⁇ 6 from the waveform generation circuit 3.
  • the power supply circuit 6 is connected to the output side of the charging circuit 5, receives the second control pulses ⁇ 7 and ⁇ 8 from the waveform generation circuit 3, and receives an oscillation circuit 1, a frequency division circuit 2, Power is supplied to the waveform generation circuit 3, the drive circuit and the pulse motor 4, and also to the charging circuit 5 via the power supply line 8.
  • PM ⁇ ST is an abbreviation for a P-channel type M ⁇ S transistor
  • NMOST is an abbreviation for an N-channel type MOS transistor.
  • the driving circuit 13 in the driving circuit and the pulse motor 4 is composed of PMOSTs 9 and 10 and NMOSTs 11 and 12 which constitute a first switch group.
  • the drains of the PMOST 9 and the NMO ST 11 are connected to each other to form a connection terminal A, and the drains of the PMO ST 10 and the NMO ST 12 are connected to each other as a connection terminal B.
  • the sources of PMO ST 9 and PMO ST 10 are both connected to the power supply line ⁇ , and the sources of NMO ST 11 and NMO ST 12 are both grounded. Then, four drive pulses ⁇ 1 to ⁇ 4 generated by the waveform generation circuit 3 are input to the drive circuit 13.
  • Drive pulse ⁇ 1 is applied to the control terminal (gate) of NM ⁇ ST 12 to drive NMO ST 12, and drive pulse ⁇ 2 is applied to the input control terminal (gate) of NM ⁇ ST 11 To drive NMO ST11.
  • Drive pulse # 3 is applied to the control terminal of PMO ST 10 to drive PMO ST 10 and drive pulse # 4 is applied to the input control terminal of PMO ST 9 to drive PMO ST 9.
  • the pulse motor 14 includes a drive coil 14c, a stator 14s, and a rotor 14r.
  • the drive coil 14 c has both ends connected to the connection terminal A and the connection terminal B of the drive circuit 13, respectively, and is excited by a signal input through these connection terminals A and B to form a rotor 14 r. To rotate.
  • the charging circuit 5 is composed of switches 18 and 19 made of MOS transistors constituting a second switch group, an operational amplifier 20 and a feedback capacitor 21.
  • connection line 16 connected to the connection terminal B is connected to the input terminal, and the output terminal is connected to the minus input terminal of the operational amplifier 20. Further, a first control pulse ⁇ 5 is input to the control terminal which is the gate.
  • connection line 17 similarly connected to the connection terminal A is connected to the input terminal, and the output terminal is connected to the minus input terminal of the operational amplifier 20. Further, the first control pulse ⁇ 6 is input to the control terminal which is the gate.
  • the output terminals of the switches 18 and 19 are connected to the minus input terminal, and the plus input terminal is grounded. Then, the output terminal is connected to the connection line 22. The negative input terminal and the output terminal of the operational amplifier 20 are connected via a feedback capacitor 21.
  • the power supply circuit 6 includes a diode 23 for preventing backflow, a secondary battery 24, and a booster circuit 25.
  • connection line 22 is connected to the anode of the diode 23, and the positive terminal of the secondary battery 24 and the power supply line 7 are connected to the power source.
  • the negative terminal of the secondary battery 24 is grounded. Therefore, the positive terminal of the secondary battery 24 is connected to each of the oscillation circuit 1, the frequency dividing circuit 2, the waveform generating circuit 3, the driving circuit and the pulse motor 4 via the power supply line 7, and the positive terminal is connected to these. Voltage is being applied.
  • the booster circuit 25 includes MOS transistors 26 to 29, a capacitor 30 and a capacitor 31.
  • the MOS transistor 26 has one terminal connected to the positive terminal of the secondary battery 24 and the other terminal connected to one terminal of the MOS transistor 27 via the capacitor 30. Further, the second control pulse # 7 is input to the control terminal which is a gate. The other terminal of the MOS transistor 27 is grounded. Then, a second control pulse ⁇ 8 is input to the control terminal that is a gate.
  • the MOS transistor 28 has one terminal connected to the positive terminal of the capacitor 31 and the other terminal connected to the positive terminal of the capacitor 30.
  • the MOS transistor 29 has one terminal connected to one terminal of the MOS transistor 26 and the negative terminal of the capacitor 31, and the other terminal connected to the negative terminal of the capacitor 30 and one terminal of the MOS transistor 27. Terminal.
  • the second control pulse # 8 is input to the control terminals that are the gates of the MOS transistors 28 and 29.
  • the positive terminal of the capacitor 31 is connected to the positive voltage terminal of the operational amplifier 20 constituting the charging circuit 5 shown in FIG. 2 via the power supply line 8, and the negative terminal is connected to the MOS transistors 29, 26. Are connected to one terminal.
  • the drive pulse ⁇ 1 shown in FIG. 4 is initially at a high level, and the input NMOST12 becomes conductive (hereinafter referred to as “on”). In this state, time t! From! Until ⁇ , the drive pulse ⁇ 4 is at the mouth level, so that PMOST 9 for inputting it is turned on.
  • the drive current id flows through the drive coil 14c of the noise motor 14 from the connection terminal A to the connection terminal B.
  • the stator current 14 s is excited by the flow of this drive current id, and the rotor 14 r is equivalent to the kinetic energy of the magnetic force (magnetic potential) which is the holding force between the stator 14 s and the stator 14 s. It rotates beyond 180 degrees due to the driving force. However, after being returned by the holding force and vibrating, it stops at a position rotated 180 degrees.
  • the voltage VA shown in FIG. 4 at the connection terminal ⁇ should be at the same potential as the power supply voltage is applied from the power supply line 7, but actually flows through the drive coil 14c.
  • the potential is obtained by subtracting the induced voltage E of the opposite polarity generated so as to impede the drive current i.
  • the rotor 14 r makes a rotary motion exceeding 180 degrees of the predetermined angle, but the rotor 14 r performs the rotary motion in the stator 14 s, thereby Back electromotive force is generated in coil 14c, and induced voltage F shown in Fig. 4 is generated at connection terminal A. I do.
  • This induced voltage F has the opposite polarity to the induced voltage E.
  • the drive pulse ⁇ 2 remains at the mouth-level
  • the NMOST 11 remains off
  • the drive pulse ⁇ 3 remains at the low level, so that the PMOST 10 remains off.
  • the connection state of the charging circuit 5 is as shown in FIG. 5B.
  • connection terminal A is also at the ground potential.
  • driving pulse ⁇ 1 remains at a high level
  • NMOST12 remains on
  • connection terminal B is at the ground potential. Therefore, both ends of the drive coil 14c of the pulse motor 14 connected between the connection terminals A and B are substantially short-circuited.
  • the drive coil 14 c When both ends of the drive coil 14 c are substantially short-circuited, the drive coil 14 c is induced by the rotational motion of the rotor 14 r with respect to the magnetic force between the rotor 14 r and the stator 14 s. Electric power is generated, and a short-circuit current i S l flows as shown in FIG. 5B.
  • the short-circuit current i S l causes a charging current i C l to flow from the output terminal of the operational amplifier 20 to the minus input terminal, The feedback capacitor 21 is charged.
  • the drive circuit 13 is as shown in Fig. 6 and the power supply voltage is input from the power supply line 7 to the connection terminal B, and the drive coil 14c is driven from the connection terminal B to the connection terminal A.
  • the current id 2 flows.
  • the drive current id 2 flows, the stator 14 s is excited, and the rotor 14 r is driven by a driving force corresponding to a kinetic energy equal to or greater than a magnetic potential which is a holding force between the stator 14 s and the stator 14 s. In response, it rotates beyond 180 degrees.
  • the voltage VB shown in FIG. 4 at the connection terminal B should be the same as the power supply voltage from the power supply line 7 since the power supply voltage is applied to the connection terminal B. It becomes a potential obtained by subtracting the induced voltage G of opposite polarity generated so as to prevent the driving current id 2.
  • the rotor 14 r overcame the magnetic potential, which is the holding force between the stator 14 s, and rotated beyond 180 degrees, so that the driving coil 14 r An electromotive force is generated at c, and an induced voltage H shown in FIG.
  • This induced voltage H has the opposite polarity to the induced voltage G.
  • the switch 18 conducts and the connection terminal B to the minus input terminal of the operational amplifier 20 are turned on, but the plus input terminal of the operational amplifier 20 is grounded and the minus terminal of the operational amplifier 20 is connected.
  • Input terminal is positive input terminal due to virtual short. It has the same potential as the child. Also, since the drive pulse ⁇ 2 remains at the high level, the NMOST 11 remains on, and the connection terminal A is at the ground potential. Therefore, both ends of the drive coil 14c connected between the connection terminals A and B are substantially short-circuited.
  • the 6 B is short-circuit current iS 2 flows as shown in the illustration connexion by this short-circuit current iS 2, a charging current ics 2 flows from the output terminal of the operational amplifier 2 0 to a minus input terminal, a feedback The capacitor 21 is charged again.
  • time t t,.
  • the drive pulse ⁇ 1 becomes high level, so that NMOST 12 for inputting it is turned on, and the drive circuit 13 is brought into the connection state shown in FIG. 6C.
  • both ends of the drive coil 14c are grounded.
  • the feedback capacitor 21 is repeatedly charged by the short-circuit current.
  • the output voltage of the charging circuit 5 eventually becomes higher than the voltage of the secondary battery 24 shown in FIG.
  • the booster circuit 25 in FIG. 3 charges the capacitor 30 and the capacitor 31 by the second control pulse ⁇ 7 and ⁇ 8. That is, when the second control pulse ⁇ 7 is input and the MOS transistor 26 is turned on, the output voltage of the charging circuit 5 is charged in the capacitor 30. When the second control pulse ⁇ 8 is also turned on, the MOST 2 7, 28, and 29 are turned on, and the capacitor 31 is charged with the output voltage of the charging circuit 5.
  • the booster circuit 25 boosts the output voltage of the power supply line 7 about twice as much as the output voltage of the power supply line 8, even if the charging voltage of the feedback capacitor 21 of the charging circuit 2 becomes higher, Then, a voltage higher than the voltage of the power supply line 7 is supplied from the booster circuit 25 to the operational amplifier 20 so that the operational amplifier 20 operates.
  • the charge due to the short-circuit current continues to be repeatedly charged in the feedback capacitor 21 in FIG. 2, and the sum of the output voltage of the operational amplifier 20 and the forward drop voltage of the diode 23 for backflow prevention in FIG.
  • the output voltage of the secondary battery 24 of the power supply circuit 6 exceeds the output voltage, a current flows from the feedback capacitor 21 to the secondary battery 24 through the diode 23 for preventing backflow, and as extra power,
  • the power stored in the feedback capacitor 21 is recovered by being stored in the secondary battery 24. Therefore, the power consumption of the entire electronic timepiece can be substantially reduced significantly, and the battery life of the electronic timepiece using the secondary battery can be extended.
  • FIG. 7 is a block diagram showing an overall configuration of a second embodiment of an electronic timepiece according to the present invention.
  • the electronic timepiece of this embodiment is provided with a load compensation loop including a detection circuit 40, load compensation lines 41 and 42, and a waveform generation circuit 3 'between the charging circuit 5 and the waveform death circuit 3.
  • the detection circuit 40 detects the charging voltage of the charging circuit 5, controls the waveform generation circuit 3 'according to the detection result, and has the same phase as the driving pulse ⁇ i> 1 to ⁇ 4 output immediately before.
  • the drive pulses ⁇ 1 to ⁇ 4 with load compensation are output continuously.
  • the detection circuit 40 outputs a load compensation signal to the waveform generation circuit 3 ′ when the voltage (charging voltage) charged in the feedback capacitor 21 of the charging circuit 5 is equal to or lower than a certain value.
  • the load compensation is performed as follows.
  • the driving current that passes the drive pulse phi 4 is applied to the drive circuit and the pulse motor 4,
  • the charging voltage at this time is detected by the detection circuit 40 via the load compensation line 41 for each drive, and when the detection voltage is equal to or lower than a certain voltage, the detection circuit 40 outputs the waveform generation circuit 3 'Outputs a load compensation signal to the waveform generation circuit 3', which has the same phase as the driving pulse output immediately before and has higher power than the normal (stationary) driving pulse (whether the pulse width is wider or the wave height is higher). High or shoving density is high.)
  • the driving circuit and the pulse motor 4 drive the pulse motor 14 with the driving pulse with a stronger driving force than the previous time. Thus, even if the driving force of the pulse motor 14 is insufficient and the stepping of the hands is not reliably performed, the hands can be driven again with a larger driving force to surely advance the hands.
  • the electronic timepiece differs from the charging circuit 5 in the first embodiment in that the charging circuit 45 is different from the charging circuit 5 in the first embodiment. Except that ⁇ 9 is input in addition to 55 and 66, this embodiment is the same as the first embodiment described above. Therefore, only the differences will be described, and description of the common points will be omitted.
  • the charging circuit 45 shown in FIG. 8 has a switch 46 composed of a MOS transistor, an operational amplifier 47 and a feedback capacitor 48 as compared with the charging circuit 5 in the first embodiment. They differ in that they have two sets of amplifiers and feedback capacitors.
  • the switch 46 has an input terminal connected to the output terminal of the operational amplifier 20, an output terminal connected to the negative input terminal of the operational amplifier 47, and a first control pulse ⁇ 9 applied to a control terminal serving as a gate. Input from the waveform generation circuit 3.
  • the output terminal of the switch 46 is connected to the negative input terminal, and the positive input terminal is grounded.
  • the output terminal is connected to a connection line 22 to the power supply circuit 6.
  • the feedback capacitor 48 is connected between the negative input terminal of the operational amplifier 47 and the output terminal.
  • the electronic timepiece according to the third embodiment is configured as described above, and the operation is as follows. Similarly to the electronic timepiece according to the first embodiment, the electronic timepiece according to this embodiment is also configured such that the feedback capacitor 21 is first activated by the short-circuit current caused by the induced power generated in the drive coil 14 c of the pulse motor 14. Charged.
  • the feedback capacitor 21 is charged each time a short-circuit current is generated and the first control pulse ⁇ 5, 06 is repeatedly turned on and off.
  • the first control pulse ⁇ > 9 Therefore, switch 46 is turned on. Then, the charge stored in the feedback capacitor 21 passes through the switch 46 and is charged in the feedback capacitor 48.
  • the electric charge stored in the feedback capacitor 20 may exceed the allowable amount. Even if there is, the excess amount can be recovered by the feedback capacitor 48, so that the power can be recovered more reliably and wasteful power consumption can be suppressed.
  • this electronic timepiece is provided with a charging circuit 45 instead of the charging circuit 5 in the second embodiment shown in FIG.
  • the only difference from the electronic timepiece of the second embodiment is that ⁇ 9 is input in addition to ⁇ 5 and ⁇ 6 from the circuit 3 "as the first control pulse. This is the same as the third embodiment described.
  • the functions of the detection circuit 40 forming the load compensation loop and the waveform generation circuit 3 ⁇ are the same as those of the second embodiment, but the waveform generation circuit 3 ⁇ has a function other than ⁇ 5 and 6 as the first control pulse. To output ⁇ 9. This is also the same as in the third embodiment.
  • the electronic timepiece according to the fourth embodiment has the configuration of both the electronic timepiece according to the second embodiment and the electronic timepiece according to the third embodiment. Therefore, power can be recovered more reliably, and wasteful power consumption can be significantly reduced. it can. In addition, it is possible to prevent the pointer from running poorly due to insufficient driving force of the pulse motor.
  • the booster circuit provided in the power supply circuit generates a voltage approximately twice that of the secondary battery by using the control pulse of the waveform generation circuit.
  • the present invention is not limited to this embodiment, and a booster circuit that does not require an external control pulse may be used. Also, since this booster circuit is not essential, it need not be provided.
  • the electronic timepiece according to the present invention is configured such that the energy generated by the back electromotive force generated in the drive coil due to the extra rotation of the rotor of the pulse motor after the application of the drive pulse is equivalent to the both ends of the drive coil
  • the charging circuit can be charged by the short-circuit current obtained by short-circuiting the battery, and it can be further recovered in the secondary battery of the power supply circuit. Therefore, of the electric power supplied from the power supply circuit to operate the pulse motor, the electric power converted into the kinetic energy of the rotor after the rotor has rotated by the predetermined angle is not wasted, and the power supply circuit is not used again. It can be efficiently collected in the secondary battery. As a result, not only can the actual power consumption of the electronic watch be significantly reduced, but also the battery life of the electronic watch using the secondary battery can be prolonged. A stop situation can be prevented.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromechanical Clocks (AREA)
  • Electric Clocks (AREA)

Abstract

After a driving circuit (13) excites a driving coil (14c) of a pulse motor (14) for hand drive to stepwise rotate a rotor (15r) by applying a plurality of driving pulses outputted from a waveform generating circuit, both ends of the driving coil (14c) are substantially short-circuited to generate a short-circuit current which is caused by the counter-electromotive force generated in the driving coil (14c) until the rotor (15r) stops, and a charging current corresponding to it is permitted to flow through a charging circuit (5) to charge the feedback capacitor (21) of an operational amplifier (20). The electric power stored in the charging circuit (5) is stored in a power source circuit (6), and the stored power is supplied to circuits that constitute the electronic timepiece such as the waveform generating circuit, the driving circuit (13), and the charging circuit (5).

Description

明 細 書 電 子 時 計  Document electronic clock
技 術 分 野  Technical field
この発明は、 水晶振動子を用いた発振回路の発振信号を規準信号として作動する 運針用のパルスモータを備えたアナログ式の電子時計に関する。 背 景 技 術  The present invention relates to an analog electronic timepiece provided with a hand-operating pulse motor that operates using an oscillation signal of an oscillation circuit using a crystal oscillator as a reference signal. Background technology
従来からアナログ式の電子時計は、 規準信号を発生する水晶振動子を用いた発振 回路と、 その発振回路の規準信号の周波数を分周する分周回路と、 その分周信号か ら駆動パルスを生成する波形生成回路と、 その駆動パルスを入力してパルスモータ をステップ駆動するる駆動回路と、 そのパルスモータによって複数の歯車からなる 輪列を介して回転される指針 (秒針, 分針, および時針) 等から構成されている。 波形生成回路は、 分周回路から分周信号を入力して、 周波数が 0 . 5 H zで波長 が数ミリ秒であり、 位相が 1 8 0度異なる複数の駆動パルスを生成して出力する。 駆動回路は、 2組のコンプリメンタリ型 MO S トランジスタ (以下 「C MO S T」 と略記する) からなつている。 また、 パルスモータは、 駆動回路の出力端子に両端 を接続された駆動コイルと、 永久磁石からなる回転子と、 この駆動コイルと回転子 とを磁気的に結合させるために設けられた軟磁性材の固定子とからなっている。 そして、 波形生成回路が出力する駆動パルスは、 駆動回路の 2組の C MO S Tの 各制御端子に交互に印加され、 それによつて、 パルスモータの駆動コイルが励磁さ れ、 固定子を通じて回転子に対して磁気的に駆動力が与えられる。 この駆動力によ り、 パルスモータは 1パルス毎に回転子を 1 8 0度回転させる。 この回転子の回転 によって、 複数の歯車からなる輪列を介して秒針, 分針, および時針が動作して時 刻を表示するようになっている。  Conventionally, an analog electronic timepiece has an oscillation circuit using a crystal oscillator that generates a reference signal, a frequency division circuit that divides the frequency of the reference signal of the oscillation circuit, and a drive pulse from the divided signal. A waveform generation circuit to generate, a driving circuit to input the driving pulse to drive the pulse motor stepwise, and hands (second hand, minute hand, and hour hand) to be rotated by the pulse motor through a train of gears ) Etc. The waveform generation circuit receives the frequency-divided signal from the frequency divider and generates and outputs multiple drive pulses with a frequency of 0.5 Hz, a wavelength of several milliseconds, and a phase difference of 180 degrees. . The drive circuit consists of two sets of complementary MOS transistors (hereafter abbreviated as "CMOST"). The pulse motor includes a drive coil having both ends connected to an output terminal of a drive circuit, a rotor made of a permanent magnet, and a soft magnetic material provided for magnetically coupling the drive coil to the rotor. Consists of a stator. The drive pulse output from the waveform generation circuit is alternately applied to each control terminal of the two sets of C MOSTs of the drive circuit, whereby the drive coil of the pulse motor is excited, and the rotor passes through the stator. A driving force is magnetically applied to With this driving force, the pulse motor rotates the rotor 180 degrees for each pulse. With the rotation of the rotor, the second hand, minute hand, and hour hand operate via a train of gears to display the time.
しかしながら、 このように構成された従来の電子時計には、 次に記载するような 問題があった。 However, the conventional electronic timepiece configured as described above has the following problems. There was a problem.
電子時計の運針用パルスモータは、 固定子と回転子との間に保持力として一定の 磁気的力 (磁気ポテンシャル) を持たせており、 これによつて、 駆動回路に駆動パ ルスが印加されていない間に外部から衝撃が加わっても、 秒針等の指針に生じる回 転力 (モーメント) によって回転子が回転されないようにしている。  The pulse motor for moving the hands of an electronic timepiece has a fixed magnetic force (magnetic potential) as a holding force between the stator and the rotor, which applies a drive pulse to the drive circuit. The rotor is prevented from rotating due to the rotating force (moment) generated on the hands, such as the second hand, even if an external impact is applied while it is not in operation.
したがって、 回転子を回転させるためには、 駆動パルスを印加することによって、 回転子自体の回転に必要なエネルギーに、 回転子に接続された輪列の回転に必要な エネルギーを加え、 さらに、 回転子と固定子との間に作用する磁気的力 (保持力) に打ち勝つエネルギーを加えた大きさを越える大きさのエネルギーを、 電気工ネル ギ一として供給しなければならない。  Therefore, in order to rotate the rotor, by applying a drive pulse, the energy required for rotating the rotor itself is added to the energy required for rotating the rotor itself, and the energy required for rotating the train wheel connected to the rotor is added. Electricity must be supplied with energy that exceeds the amount of energy that overcomes the magnetic force (retention force) acting between the stator and the stator.
この場合、 回転子自体の回転と輪列の回転に必要なエネルギーの大きさは、 電気 エネルギーに換算して 0 . 0 5マイクロワッ ト程度と比較的少なくてよいが、 回転 子と固定子との間の磁気的力 (保持力) に打ち勝つために必要なエネルギーは、 電 気エネルギ一に換算して 0 . 4マイクロワット程度と比較的大きな値である。 その ため、 回転子を回転させるのに必要な電力も、 0 . 4 + 0 . 0 5 = 0 . 4 5マイク ロワット程度というかなり大きな値になる。  In this case, the amount of energy required for the rotation of the rotor itself and the rotation of the wheel train may be relatively small, such as about 0.05 microwatts in terms of electric energy. The energy required to overcome the magnetic force (coercive force) during this time is a relatively large value of about 0.4 microwatt in terms of electrical energy. Therefore, the electric power required to rotate the rotor also becomes a considerably large value of about 0.4 + 0.05 = 0.45 microwatts.
また、 発振回路と分周回路および波形生成回路における消費電力の合計値は、 0 . 0 5マイクロワット程度にしか過ぎないから、 これに比べて、 回転子を回転させる ために必要な 0 . 4 5マイクロワッ ト程度の電力は大きな値である。 この回転子を 回転させるために必要な電力のうち、 大半は回転子と固定子間の磁気的力に打ち勝 つために消費されるだけであり、 回転子または輪列の実質的な回転に寄与すること はなく、 回転子が回転した後に摩擦損失として無駄に消費してしまう。  In addition, the total value of the power consumption in the oscillation circuit, the frequency divider circuit, and the waveform generation circuit is only about 0.05 microwatt, and in comparison with this, 0.4 is necessary for rotating the rotor. Electric power of about 5 microwatts is a large value. Most of the power required to rotate this rotor is only consumed to overcome the magnetic forces between the rotor and the stator, and is required for substantial rotation of the rotor or wheel train. It does not contribute and is wasted as friction loss after the rotor rotates.
したがって、 このような電子時計は、 その全体でみると消費電力が 0 . 5マイク 口ワット程度にもなり、 この消費電力をこの値より低くすることが困難であり、 し かも、 そのエネルギのうちの大半 (0 . 4マイクロワッ ト程度) 力 回転子の回転 後に摩擦損失として無駄に消費されているという問題があった。 発 明 の 開 示 Therefore, such an electronic watch has a total power consumption of about 0.5 microphone watts when viewed as a whole, and it is difficult to reduce the power consumption below this value. Most (approximately 0.4 microwatt) Force Rotor rotation There was a problem that it was wasted as friction loss later. Disclosure of the invention
この発明は、 このような問題を解決して、 アナログ式電子時計における電力の有 効利用と消費した電力の回収を計り、 実質的な消費電力を大幅に低減することを目 的とするものである。  An object of the present invention is to solve such a problem, to effectively use electric power in an analog electronic timepiece and to recover consumed electric power, and to substantially reduce substantial electric power consumption. is there.
この発明は、 発振回路と、 その発振信号を分周する分周回路と、 その分周信号に よつて複数の駆動パルスを発生する波形生成回路と、 その複数の駆動パルスを入力 する,駆動回路と、 その駆動回路が出力する駆動電流により駆動コイルが励磁されて、 回転子をステップ回転させる運針用のパルスモータとを備えた電子時計において、 上記の目的を達成するため、 上記パルスモータの回転子の回転運動の停止時に、 そ の駆動コイルに発生する逆起電力に基づく短絡電流により充電される充電回路と、 その充電回路に充電された電力を蓄積して、 その蓄積した電力を前記発振回路、 分 周回路、 波形生成回路、 駆動回路、 および充電回路に供給する電源回路とを設けた ものである。  The present invention relates to an oscillation circuit, a frequency dividing circuit for dividing the oscillation signal, a waveform generating circuit for generating a plurality of driving pulses based on the divided signal, and a driving circuit for inputting the plurality of driving pulses. In order to achieve the above object, in an electronic timepiece comprising: a driving coil that is excited by a driving current output from the driving circuit to rotate the rotor stepwise; A charging circuit that is charged by a short-circuit current based on the back electromotive force generated in the drive coil when the child stops rotating, stores the charged power in the charging circuit, and divides the stored power into the oscillation It has a circuit, a frequency divider, a waveform generator, a drive circuit, and a power supply circuit for supplying a charge circuit.
したがって、 この発明によれば、 電子時計におけるパルスモ一タの回転子が所定 角度ステップ回転した後、 磁気的保持力によって停止されるまでの運動エネルギに 変換された電力を、 充電回路を介して電源回路に効率的に回収して再び使用するこ とができ、 実質的な消費電力を著しく低減することがでる。  Therefore, according to the present invention, after the rotor of the pulse motor in the electronic timepiece rotates by a predetermined angle step, the electric power converted into kinetic energy until it is stopped by the magnetic holding force is supplied to the power supply via the charging circuit. The circuit can be efficiently recovered and reused, and the actual power consumption can be significantly reduced.
上記充電回路を、 上記短絡電流が発生したときに、 上記波形生成回路が出力する 制御パルスによって切り替わるスィツチと、 そのスィツチが切り替わることによつ て、 出力端子から入力端子に充電電流が流れるように該スィツチに接続された演算 増幅器と、 その演算増幅器の入力端子と出力端子の間に接続され、 その出力端子か ら入力端子に充電電流が流れたときに充電される帰還コンデンサとによつて構成す ることができる。  A switch that switches the charging circuit by a control pulse output from the waveform generation circuit when the short-circuit current occurs, and the switching of the switch causes a charging current to flow from an output terminal to an input terminal. An operational amplifier connected to the switch; and a feedback capacitor connected between an input terminal and an output terminal of the operational amplifier and charged when a charging current flows from the output terminal to the input terminal. can do.
上記駆動回路を、 上記波形生成回路が出力する複数の駆動パルスによってそれぞ れ切り替わる複数のスィッチから構成し、 その各スィ ッチを、 上記複数の駆動パル スによってパルスモータの駆動コイルに駆動電流を流して回転子をステップ回転さ せた後、 その駆動コイルの両端を同電位にするように実質的に短絡させて、 その駆 動コイルに発生する逆起電力に基づく短絡電流を発生させるように接続するとよい。 上記電源回路は、 上記充電回路の出力側に接続された逆流防止ダイォードと二次 電池とを備え、 上記充電回路の出力電圧がその逆流防止ダイォ一ドの順方向電圧降 下と二次電池の端子電圧との和を越えたときに、 充電回路から逆流防止ダイォード を介して二次電池に充電電流が流れ、 該二次電池に電力が蓄積されるように構成す るとよレ、。 Each of the drive circuits is driven by a plurality of drive pulses output by the waveform generation circuit. After the drive current is applied to the drive coil of the pulse motor by the plurality of drive pulses to rotate the rotor stepwise, each switch is connected to both ends of the drive coil. It is preferable to make a short circuit so as to have substantially the same potential, and to connect so as to generate a short circuit current based on the back electromotive force generated in the driving coil. The power supply circuit includes a backflow prevention diode and a secondary battery connected to the output side of the charging circuit, and the output voltage of the charging circuit decreases the forward voltage of the backflow prevention diode and the rechargeable battery. When the sum exceeds the terminal voltage, a charging current flows from the charging circuit to the secondary battery via the backflow prevention diode, and power is stored in the secondary battery.
また、 上記電源回路が、 上記二次電池の端子電圧を昇圧して上記充電回路に電源 電圧として供給する昇圧回路を有するようにしてもよい。  Further, the power supply circuit may include a booster circuit that boosts a terminal voltage of the secondary battery and supplies the terminal voltage to the charging circuit as a power supply voltage.
あるいはまた、 上記充電回路が、 前記短絡電流が発生したときに、 その短絡電流 に応じた充電電流によって充電される第 1の充電回路と、 その第 1の充電回路の充 電電圧によって充電される第 2の充電回路とからなるようにしてもよレ、。  Alternatively, when the short circuit current occurs, the charging circuit is charged by a charging current corresponding to the short circuit current, and charged by a charging voltage of the first charging circuit. It may be composed of a second charging circuit.
さらに、 上記充電回路の充電電圧を検出し、 その検出した電圧が所定値以下の場 合に、 上記波形生成回路に、 直前に出力した駆動パルスと同相でそれより駆動電力 の大きい駆動パルスを負荷補償パルスとして続けて出力させる負荷補償ループを設 けることにより、 パルスモータの駆動力不足による運針不良の発生を防ぐことがで さる。 図面の簡単な説明  Further, a charging voltage of the charging circuit is detected, and when the detected voltage is equal to or lower than a predetermined value, a driving pulse having the same phase as the driving pulse output immediately before and having a higher driving power is loaded on the waveform generating circuit. By providing a load compensation loop that continuously outputs compensation pulses, it is possible to prevent hand movement failure due to insufficient driving force of the pulse motor. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明による電子時計の第 1の実施形態の全体構成を示すプロック 図である。  FIG. 1 is a block diagram showing an overall configuration of an electronic timepiece according to a first embodiment of the present invention.
第 2図は、 その電子時計の駆動回路およびパルスモータと充電回路を示す回路図 の具体例を示す回路図である。  FIG. 2 is a circuit diagram showing a specific example of a circuit diagram showing a drive circuit of the electronic timepiece, a pulse motor and a charging circuit.
第 3図は、 その電子時計の電源回路の具体例を示す回路図である。 第 4図は、 その電子時計の波形生成回路から生成される駆動パルスと制御パルス 等の波形を示すタイミングチヤ一トである。 FIG. 3 is a circuit diagram showing a specific example of a power supply circuit of the electronic timepiece. FIG. 4 is a timing chart showing waveforms of a drive pulse, a control pulse, and the like generated from the waveform generation circuit of the electronic timepiece.
第 5 A図から第 5 C図は、 第 2図に示した回路によるパルスモータの逆起電力に 基づいて充電回路に充電する動作を説明するための第 1の位相での説明図ある。 第 6 A図から第 6 C図は、 同じくそのパルスモータの逆起電力に基づいて充電回 路に充電する動作を説明するための第 2の位相での説明図である。  5A to 5C are explanatory diagrams in a first phase for explaining an operation of charging the charging circuit based on the back electromotive force of the pulse motor by the circuit shown in FIG. FIGS. 6A to 6C are explanatory diagrams in the second phase for explaining the operation of charging the charging circuit based on the back electromotive force of the pulse motor.
第 7図は、 この発明による電子時計の第 2の実施形態の全体構成を示すプロック 図である。  FIG. 7 is a block diagram showing an overall configuration of a second embodiment of an electronic timepiece according to the present invention.
第 8図は、 この発明による電子時計の第 3の実施形態の駆動回路およびパルスモ ータと充電回路の回路図である。  FIG. 8 is a circuit diagram of a drive circuit, a pulse motor and a charging circuit of a third embodiment of the electronic timepiece according to the present invention.
第 9図は、 この発明による電子時計の第 4の実施形態の全体構成を示すプロック 図である。 発明を実施するための最良の形態  FIG. 9 is a block diagram showing the overall configuration of an electronic timepiece according to a fourth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明による電子時計を実施するための最良の形態を添付図面を用いて 詳細に説明する。  Hereinafter, the best mode for carrying out an electronic timepiece according to the present invention will be described in detail with reference to the accompanying drawings.
〔第 1の実施形態:第 1図から第 6 C図〕  [First Embodiment: FIGS. 1 to 6C]
第 1図はこの発明による電子時計の第 1の実施形態の全体構成を示すプロック図、 第 2図はその駆動回路およびパルスモータと充電回路の一例を示す回路図、 第 3図 は電源回路の一例を示す回路図である。 そして、 第 4図はその電子時計の波形生成 回路から生成される駆動パルスと制御パルス等の波形を示すタイミングチヤ一卜で あり、 第 5 A図乃至第 5 C図および第 6 A図乃至第 6 C図は、 パルスモータの逆起 電力に基づいて充電回路に充電する動作を説明するための、 第 1の位相および第 2 の位相での説明図である。  FIG. 1 is a block diagram showing an overall configuration of an electronic timepiece according to a first embodiment of the present invention, FIG. 2 is a circuit diagram showing an example of a drive circuit and a pulse motor and a charging circuit, and FIG. It is a circuit diagram showing an example. FIG. 4 is a timing chart showing waveforms of a drive pulse and a control pulse generated from the waveform generation circuit of the electronic timepiece. FIGS. 5A to 5C and FIGS. 6A to 6A FIG. 6C is an explanatory diagram in a first phase and a second phase for explaining an operation of charging the charging circuit based on the back electromotive force of the pulse motor.
この第 1の実施形態の電子時計は、 第 1図に示すように、 発振回路 1、 分周回路 2、 波形生成回路 3、 駆動回路及びパルスモータ 4、 充電回路 5、 および電源回路 6から構成されている。 As shown in FIG. 1, the electronic timepiece according to the first embodiment includes an oscillation circuit 1, a frequency dividing circuit 2, a waveform generating circuit 3, a driving circuit and a pulse motor 4, a charging circuit 5, and a power supply circuit. Consists of six.
発振回路 1は、 図示しない水晶振動子を規準周波数で発振させて、 その規準周波 数の規準信号 S 0を出力し、 それを分周回路 2に入力させる。  The oscillation circuit 1 oscillates a crystal oscillator (not shown) at a reference frequency, outputs a reference signal S 0 having the reference frequency, and inputs the reference signal S 0 to the frequency dividing circuit 2.
分周回路 2は、 発振回路 1の出力端子に接続され、 規準信号 S 0を入力して規準 周波数よりも低い周波数に分周し、 分周信号 S 1を出力する。  The frequency dividing circuit 2 is connected to the output terminal of the oscillation circuit 1, inputs the reference signal S0, divides the frequency to a frequency lower than the reference frequency, and outputs the frequency-divided signal S1.
波形生成回路 3は、 分周回路 2の出力端子に接続され、 分周信号 S 1を入力して、 後述する 4個の駆動パルス φ 1から Φ 4、 第 1の制御パルス Φ 5, ψ 6および第 2 の制御パルス ψ 7, φ 8とを生成して出力する。  The waveform generating circuit 3 is connected to the output terminal of the frequency dividing circuit 2 and receives the frequency-divided signal S1 and outputs four driving pulses φ1 to φ4, which will be described later, and first control pulses φ5 and ψ6. And the second control pulses ψ7 and φ8 are generated and output.
駆動回路及びパルスモータ 4は、 波形生成回路 3から 4個の駆動パルス φ 1から φ 4を入力し、 パルスモータを駆動して秒針, 分針, 時針等の指針を運針する。 充電回路 5は、 駆動回路およびパルスモータ 4の出力側に接続され、 波形生成回 路 3から第 1の制御パルス ψ 5, φ 6を入力する。  The drive circuit and the pulse motor 4 input four drive pulses φ 1 to φ 4 from the waveform generation circuit 3 and drive the pulse motor to move hands such as the second hand, minute hand, and hour hand. The charging circuit 5 is connected to the drive circuit and the output side of the pulse motor 4, and receives the first control pulses ψ5 and φ6 from the waveform generation circuit 3.
電源回路 6は、 充電回路 5の出力側に接続され、 波形生成回路 3から第 2の制御 パルス φ 7, φ 8を入力し、 電源ライン 7を介して、 発振回路 1、 分周回路 2、 波 形生成回路 3、 および駆動回路及びパルスモータ 4に電力を供給するとともに、 電 源ライン 8を介して、 充電回路 5にも電力を供給する。  The power supply circuit 6 is connected to the output side of the charging circuit 5, receives the second control pulses φ 7 and φ 8 from the waveform generation circuit 3, and receives an oscillation circuit 1, a frequency division circuit 2, Power is supplied to the waveform generation circuit 3, the drive circuit and the pulse motor 4, and also to the charging circuit 5 via the power supply line 8.
次に、 第 2図を参照して、 第 1図における駆動回路及びパルスモータ 4と、 充電 回路 5の具体的な構成例を説明する。  Next, a specific configuration example of the drive circuit and the pulse motor 4 and the charging circuit 5 in FIG. 1 will be described with reference to FIG.
なお、 以下の説明において、 「PM〇ST」 は、 Pチャンネル型 M〇 S トランジ スタを略記したものであり、 「NMOST」 は、 Nチャンネル型 MO S トランジス タを略記したものである。  In the following description, “PM〇ST” is an abbreviation for a P-channel type M〇S transistor, and “NMOST” is an abbreviation for an N-channel type MOS transistor.
駆動回路及びパルスモータ 4における駆動回路 1 3は、 第 1のスィツチ群を構成 する PMOST 9, 10と NMOST 1 1, 1 2とからなっている。 PMOST 9 と NMO S T 1 1は互いにドレインを接続して接続端子 Aとし、 PMO S T 10と NMO S T 12とは互いにドレインを接続して接続端子 Bとしている。 また、 PMO S T 9と PMO ST 1 0は共にソースが電源ライン Ίに接続され、 NMO S T 1 1 と NMO S T 1 2は共にソースが接地されている。 そして、 この 駆動回路 1 3に対しては、 波形生成回路 3で生成される φ 1から ψ 4の 4つの駆動 パルスが入力される。 駆動パルス ψ 1は NM〇 S T 1 2の制御端子 (ゲート) に印 加して NMO S T 1 2を駆動し、 駆動パルス φ 2は NM〇 S T 1 1の入力制御端子 (ゲー ト) に印加して NMO S T 1 1を駆動する。 また、 駆動パルス ψ 3は PMO S T 1 0の制御端子に印加して PMO S T 1 0を駆動し、 駆動パルス ψ 4は PMO S T 9の入力制御端子に印加して PMO S T 9を駆動する。 The driving circuit 13 in the driving circuit and the pulse motor 4 is composed of PMOSTs 9 and 10 and NMOSTs 11 and 12 which constitute a first switch group. The drains of the PMOST 9 and the NMO ST 11 are connected to each other to form a connection terminal A, and the drains of the PMO ST 10 and the NMO ST 12 are connected to each other as a connection terminal B. The sources of PMO ST 9 and PMO ST 10 are both connected to the power supply line 、, and the sources of NMO ST 11 and NMO ST 12 are both grounded. Then, four drive pulses φ 1 to φ 4 generated by the waveform generation circuit 3 are input to the drive circuit 13. Drive pulse ψ 1 is applied to the control terminal (gate) of NM〇 ST 12 to drive NMO ST 12, and drive pulse φ 2 is applied to the input control terminal (gate) of NM〇 ST 11 To drive NMO ST11. Drive pulse # 3 is applied to the control terminal of PMO ST 10 to drive PMO ST 10 and drive pulse # 4 is applied to the input control terminal of PMO ST 9 to drive PMO ST 9.
パルスモータ 1 4は、 駆動コイル 1 4 c、 固定子 1 4 sおよび回転子 1 4 rから 構成されている。 駆動コイル 1 4 cは、 その両端が駆動回路 1 3の接続端子 Aと接 続端子 Bにそれぞれ接続され、 これらの接続端子 A, Bを通じて入力される信号に よって励磁され、 回転子 1 4 rを回転させる。  The pulse motor 14 includes a drive coil 14c, a stator 14s, and a rotor 14r. The drive coil 14 c has both ends connected to the connection terminal A and the connection terminal B of the drive circuit 13, respectively, and is excited by a signal input through these connection terminals A and B to form a rotor 14 r. To rotate.
充電回路 5は、 第 2のスィツチ群を構成する MOS トランジスタからなるスィッ チ 1 8およびスィッチ 1 9と、 演算増幅器 2 0および帰還コンデンサ 2 1 とから構 成される。  The charging circuit 5 is composed of switches 18 and 19 made of MOS transistors constituting a second switch group, an operational amplifier 20 and a feedback capacitor 21.
スィ ッチ 1 8は、 接続端子 Bに接続される接続ライン 1 6が入力端子に接続され、 出力端子が演算増幅器 2 0のマイナス入力端子に接続されている。 さらに、 そのゲ ートである制御端子に第 1の制御パルス Φ 5が入力される。 スィッチ 1 9は、 同様 に接続端子 Aに接続される接続ライン 1 7が入力端子に接続され、 出力端子が演算 増幅器 20のマイナス入力端子に接続されている。 さらに、 そのゲートである制御 端子に第 1の制御パルス φ 6が入力される。  In the switch 18, the connection line 16 connected to the connection terminal B is connected to the input terminal, and the output terminal is connected to the minus input terminal of the operational amplifier 20. Further, a first control pulse Φ 5 is input to the control terminal which is the gate. In the switch 19, the connection line 17 similarly connected to the connection terminal A is connected to the input terminal, and the output terminal is connected to the minus input terminal of the operational amplifier 20. Further, the first control pulse φ 6 is input to the control terminal which is the gate.
演算増幅器 2 0は、 マイナス入力端子に、 スィ ッチ 1 8およびスィッチ 1 9の出 力端子が接続され、 プラス入力端子は接地される。 そして、 その出力端子が接続ラ イン 2 2に接続される。 演算増幅器 2 0のマイナス入力端子と出力端子とが帰還コ ンデンサ 2 1を介して接続されている。 次に、 第 3図を参照して、 第 1図における電源回路 6の具体例の構成を詳細に説 明する。 In the operational amplifier 20, the output terminals of the switches 18 and 19 are connected to the minus input terminal, and the plus input terminal is grounded. Then, the output terminal is connected to the connection line 22. The negative input terminal and the output terminal of the operational amplifier 20 are connected via a feedback capacitor 21. Next, the configuration of a specific example of the power supply circuit 6 in FIG. 1 will be described in detail with reference to FIG.
電源回路 6は、 第 3図に示すように、 逆流防止用のダイオード 2 3と、 二次電池 2 4と昇圧回路 2 5とから構成されている。  As shown in FIG. 3, the power supply circuit 6 includes a diode 23 for preventing backflow, a secondary battery 24, and a booster circuit 25.
ダイオード 2 3は、 アノードに接続ライン 2 2が接続され、 力ソードには二次電 池 2 4のプラス端子と電源ライン 7が接続されている。 また、 二次電池 2 4のマイ ナス端子は接地される。 したがって、 二次電池 2 4は、 プラス端子が電源ライン 7 を介して発振回路 1、 分周回路 2、 波形生成回路 3、 および駆動回路及びパルスモ —タ 4のそれぞれに接続され、 これらにプラスの電圧を印加している。  The connection line 22 is connected to the anode of the diode 23, and the positive terminal of the secondary battery 24 and the power supply line 7 are connected to the power source. The negative terminal of the secondary battery 24 is grounded. Therefore, the positive terminal of the secondary battery 24 is connected to each of the oscillation circuit 1, the frequency dividing circuit 2, the waveform generating circuit 3, the driving circuit and the pulse motor 4 via the power supply line 7, and the positive terminal is connected to these. Voltage is being applied.
昇圧回路 2 5は、 M O S トランジスタ 2 6〜 2 9と、 コンデンサ 3 0とコンデン サ 3 1 とからなっている。  The booster circuit 25 includes MOS transistors 26 to 29, a capacitor 30 and a capacitor 31.
MO S トランジスタ 2 6は、 一方の端子が二次電池 2 4のプラス端子に接続され、 他方の端子がコンデンサ 3 0を介して M O S トランジスタ 2 7の一方の端子と接続 されている。 また、 ゲートである制御端子には、 第 2の制御パルス ψ 7が入力され る。 MO S トランジスタ 2 7の他方の端子は接地されている。 そして、 ゲートであ る制御端子には、 第 2の制御パルス φ 8が入力される。  The MOS transistor 26 has one terminal connected to the positive terminal of the secondary battery 24 and the other terminal connected to one terminal of the MOS transistor 27 via the capacitor 30. Further, the second control pulse # 7 is input to the control terminal which is a gate. The other terminal of the MOS transistor 27 is grounded. Then, a second control pulse φ8 is input to the control terminal that is a gate.
M O S トランジスタ 2 8は、 一方の端子がコンデンサ 3 1のプラス端子に接続さ れ、 他方の端子がコンデンサ 3 0のプラス端子に接続される。 また、 MO S トラン ジスタ 2 9は、 一方の端子が M O S トランジスタ 2 6の一方の端子とコンデンサ 3 1のマイナス端子に接続され、 他方の端子がコンデンサ 3 0のマイナス端子と M O S トランジスタ 2 7の一方の端子とに接続されている。 さらに、 M O S トランジス タ 2 8, 2 9の各ゲートである制御端子には、 第 2の制御パルス ψ 8が入力される。 そして、 コンデンサ 3 1は、 プラス端子が電源ライン 8を介して第 2図に示した 充電回路 5を構成する演算増幅器 2 0のプラス電圧端子に接続され、 マイナス端子 が M O S トランジスタ 2 9 , 2 6の一方の端子に接続されている。 次に、 以上のように構成された電子時計の動作について、 第 4図、 第 5 A図から 第 5 C図、 第 6 A図から第 6 C図を参照して説明する。 なお、 以下の説明では、 第 4図に示された順序に沿って波形生成回路 3から出力される各パルスの波形を示し ながら説明する。 The MOS transistor 28 has one terminal connected to the positive terminal of the capacitor 31 and the other terminal connected to the positive terminal of the capacitor 30. The MOS transistor 29 has one terminal connected to one terminal of the MOS transistor 26 and the negative terminal of the capacitor 31, and the other terminal connected to the negative terminal of the capacitor 30 and one terminal of the MOS transistor 27. Terminal. Further, the second control pulse # 8 is input to the control terminals that are the gates of the MOS transistors 28 and 29. The positive terminal of the capacitor 31 is connected to the positive voltage terminal of the operational amplifier 20 constituting the charging circuit 5 shown in FIG. 2 via the power supply line 8, and the negative terminal is connected to the MOS transistors 29, 26. Are connected to one terminal. Next, the operation of the electronic timepiece configured as described above will be described with reference to FIGS. 4, 5A to 5C, and 6A to 6C. In the following description, the waveforms of the respective pulses output from the waveform generation circuit 3 will be described in the order shown in FIG.
まず、 第 2図に示した駆動回路及びパルスモータ 4の動作について説明する。 第 4図に示す駆動パルス ψ 1が始めはハイレベルの状態にあり、 これを入力する N M O S T 1 2が導通状態 (以下 「オン」 という) になる。 この状態において、 時刻 t !から!^までの間、 駆動パルス φ 4が口一レベルとなるため、 これを入力する P M O S T 9がオンとなる。  First, the operation of the drive circuit and the pulse motor 4 shown in FIG. 2 will be described. The drive pulse ψ1 shown in FIG. 4 is initially at a high level, and the input NMOST12 becomes conductive (hereinafter referred to as “on”). In this state, time t! From! Until ^, the drive pulse φ 4 is at the mouth level, so that PMOST 9 for inputting it is turned on.
このとき、 第 5 A図に示すように、 接続端子 Aから接続端子 Bに向かって、 ノ レ スモータ 1 4の駆動コイル 1 4 cに駆動電流 i d ,が流れる。 この駆動電流 i d ,が 流れることによって固定子 1 4 sが励磁され、 回転子 1 4 rは固定子 1 4 sとの間 の保持力である磁気的力 (磁気ポテンシャル) 以上の運動エネルギーに相当する駆 動力を受けて 1 8 0度を越えて回転する。 しかし、 保持力によって戻されて振動し た後、 1 8 0度回転した位置で停止する。  At this time, as shown in FIG. 5A, the drive current id flows through the drive coil 14c of the noise motor 14 from the connection terminal A to the connection terminal B. The stator current 14 s is excited by the flow of this drive current id, and the rotor 14 r is equivalent to the kinetic energy of the magnetic force (magnetic potential) which is the holding force between the stator 14 s and the stator 14 s. It rotates beyond 180 degrees due to the driving force. However, after being returned by the holding force and vibrating, it stops at a position rotated 180 degrees.
このとき、 接続端子 Αの第 4図に示す電圧 V A は、 電源ライン 7から電源電圧が 印加されているので、 それと同電位となるはずであるが、 実際には、 駆動コイル 1 4 cに流れる駆動電流 i を妨げるように発生する逆極性の誘起電圧 Eを差し引 いた電位になる。  At this time, the voltage VA shown in FIG. 4 at the connection terminal Α should be at the same potential as the power supply voltage is applied from the power supply line 7, but actually flows through the drive coil 14c. The potential is obtained by subtracting the induced voltage E of the opposite polarity generated so as to impede the drive current i.
次に、 時刻 t = t 2 を過ぎると、 駆動パルス φ 4がハイ レベルに戻るため、 P M O S T 9が非導通状態 (以下 「オフ」 という) に戻る。 すると、 駆動コイル 1 4 c には、 接続端子 Aから接続端子 Bに向かう駆動電流 i が流れなくなる。 Next, after time t = t 2, the drive pulse phi 4 is to return to a high level, PMOST 9 returns to the non-conducting state (hereinafter referred to as "off"). Then, the drive current i from the connection terminal A to the connection terminal B does not flow through the drive coil 14 c.
以上の場合において、 回転子 1 4 rは、 所定角度の 1 8 0度を越えて回転運動を 行なうが、 回転子 1 4 rが固定子 1 4 sの中で回転運動をすることによって、 駆動 コイル 1 4 cに逆起電力が発生し、 接続端子 Aには第 4図に示す誘起電圧 Fが発生 する。 この誘起電圧 Fは誘起電圧 Eとは逆極性になる。 また、 駆動パルス φ 2は口 —レベルのままであるから、 N M O S T 1 1はオフのままであり、 駆動パルス ψ 3 は、 ィレベルのままであるから、 P M O S T 1 0はオフのままである。 In the above case, the rotor 14 r makes a rotary motion exceeding 180 degrees of the predetermined angle, but the rotor 14 r performs the rotary motion in the stator 14 s, thereby Back electromotive force is generated in coil 14c, and induced voltage F shown in Fig. 4 is generated at connection terminal A. I do. This induced voltage F has the opposite polarity to the induced voltage E. Also, the drive pulse φ2 remains at the mouth-level, the NMOST 11 remains off, and the drive pulse ψ3 remains at the low level, so that the PMOST 10 remains off.
そして、 第 4図に示す第 1 の制御パルス φ 6が、 時刻 t = t 3から t 4の間でハイ レベルとなるため、 充電回路 5のスィッチ 1 9が導通する。 充電回路 5の接続状態 が第 5 B図に示すようになる。 The first control pulse phi 6 shown in FIG. 4 is, to become a high level in a period from time t = t 3 of t 4, which conducts switch 1 9 charging circuit 5. The connection state of the charging circuit 5 is as shown in FIG. 5B.
このとき、 スィッチ 1 9がオンになって、 接続端子 Aから演算増幅器 2 0のマイ ナス入力端子までが導通することになるが、 演算増幅器 2 0のプラス入力端子は接 地されており、 演算増幅器 2 0のマイナス入力端子はバ一チュアルショート (イン ピーダンスは高く、 内部に電流は流れない) により、 プラス入力端子と同じ接地電 位となるから、 接続端子 Aも接地電位になる。 また、 駆動パルス ψ 1は、 ハイレべ ルのままであるから、 N MO S T 1 2がオンのままであり、 接続端子 Bは、 接地電 位になる。 したがって、 接続端子 A、 B間に接続されるパルスモータ 1 4の駆動コ ィル 1 4 cは、 その両端が実質的に短絡されることになる。  At this time, the switch 19 is turned on, and the connection from the connection terminal A to the negative input terminal of the operational amplifier 20 is conducted, but the plus input terminal of the operational amplifier 20 is grounded and the The negative input terminal of the amplifier 20 has the same ground potential as the positive input terminal due to a virtual short (high impedance and no current flows inside), so the connection terminal A is also at the ground potential. Further, since the driving pulse ψ1 remains at a high level, NMOST12 remains on, and the connection terminal B is at the ground potential. Therefore, both ends of the drive coil 14c of the pulse motor 14 connected between the connection terminals A and B are substantially short-circuited.
駆動コイル 1 4 cの両端が実質的に短絡されると、 回転子 1 4 r と固定子 1 4 s との磁気的力に対する回転子 1 4 rの回転運動によって、 駆動コイル 1 4 cに誘起 電力が発生して、 第 5 B図に示すように短絡電流 i S lが流れ、 この短絡電流 i S l によって、 演算増幅器 2 0の出力端子からマイナス入力端子へ充電電流 i C l が 流れ、 帰還コンデンサ 2 1が充電される。 When both ends of the drive coil 14 c are substantially short-circuited, the drive coil 14 c is induced by the rotational motion of the rotor 14 r with respect to the magnetic force between the rotor 14 r and the stator 14 s. Electric power is generated, and a short-circuit current i S l flows as shown in FIG. 5B. The short-circuit current i S l causes a charging current i C l to flow from the output terminal of the operational amplifier 20 to the minus input terminal, The feedback capacitor 21 is charged.
続いて、 第 4図に示す時刻 t = t 4 になると、 第 1の制御パルス ψ 6がローレべ ルに戻るため、 スィッチ 1 9はオフになり、 充電回路 5が駆動回路 1 3 (第 2図) から切り離される。 Subsequently, at time t = t4 shown in FIG. 4 , the first control pulse ψ6 returns to the low level, so that the switch 19 is turned off, and the charging circuit 5 is turned off by the driving circuit 13 (the second (Fig.)
また、 時刻 t = t 5 になると、 駆動パルス φ 2がハイレベルになるから、 これを 入力する NMO S T 1 1がオンとなり、 駆動回路 1 3は第 5 C図に示す接続状態に なる。 このとき、 駆動コイル 1 3は両端とも接地状態になる。 さらに続いて、 時刻 t = t 6になると、 駆動パルス ψ 3が時刻 t = t 7になるまで の間口一レベルとなるので、 これを入力する P M O S T 1 0がオンになる。 また、 時刻 t = t s になった時点で、 駆動パルス φ 1が時刻 t = t ,。になるまでの間口一 レベルとなるので、 これを入力する NM O S Τ 1 2がオフになる。 Further, at time t = t 5, since the drive pulse phi 2 becomes high level, NMO ST 1 1 which receives the is turned on, the driving circuit 1 3 becomes the connected state shown in 5 C Figure. At this time, both ends of the drive coil 13 are grounded. Further subsequently, at time t = t 6, the drive pulse [psi 3 becomes frontage first level until a time t = t 7, PMOST 1 0 is turned on to enter it. Further, when it becomes a time t = t s, the drive pulse phi 1 the time t = t,. NM OS Τ 1 2 will be turned off.
したがって、 駆動回路 1 3は第 6 Α図に示すようになり、 接続端子 Bに電源ライ ン 7から電源電圧が入力されて、 接続端子 Bから接続端子 Aに向かって駆動コイル 1 4 cに駆動電流 i d 2が流れる。 この駆動電流 i d 2が流れることによって固定子 1 4 sが励磁されて、 回転子 1 4 rは固定子 1 4 sとの間の保持力である磁気ポテ ンシャル以上の運動エネルギーに相当する駆動力を受けて 1 8 0度を越えて回転す る。 このとき、 接続端子 Bの第 4図に示す電圧 V B は、 電源ライン 7から電源電圧 が印加されているので、 それと同電位となるはずであるが、 実際には、 駆動コイル 1 4 cに流れる駆動電流 i d 2 を妨げるように発生する逆極性の誘起電圧 Gを差し 引いた電位になる。 Therefore, the drive circuit 13 is as shown in Fig. 6 and the power supply voltage is input from the power supply line 7 to the connection terminal B, and the drive coil 14c is driven from the connection terminal B to the connection terminal A. The current id 2 flows. When the drive current id 2 flows, the stator 14 s is excited, and the rotor 14 r is driven by a driving force corresponding to a kinetic energy equal to or greater than a magnetic potential which is a holding force between the stator 14 s and the stator 14 s. In response, it rotates beyond 180 degrees. At this time, the voltage VB shown in FIG. 4 at the connection terminal B should be the same as the power supply voltage from the power supply line 7 since the power supply voltage is applied to the connection terminal B. It becomes a potential obtained by subtracting the induced voltage G of opposite polarity generated so as to prevent the driving current id 2.
そして、 時亥 ij t = t 7 を過ぎると、 駆動パルス φ 3がハイレベルに戻るため、 P M O S T 1 0がオフに戻る。 すると、 駆動電流 i d 2 が流れなくなる。 Then, past the Tokii ij t = t 7, the drive pulse phi 3 is to return to a high level, PMOST 1 0 returns to OFF. Then, the drive current id 2 stops flowing.
以上の場合において、 回転子 1 4 rは、 固定子 1 4 s との間の保持力である磁気 ポテンシャルに打ち勝って 1 8 0度を越えて回転運動をしたことによって、 駆動コ ィル 1 4 cに起電力が発生し、 接続端子 Bには第 4図に示す誘起電圧 Hが発生する。 この誘起電圧 Hは、 誘起電圧 Gとは逆極性になる。  In the above case, the rotor 14 r overcame the magnetic potential, which is the holding force between the stator 14 s, and rotated beyond 180 degrees, so that the driving coil 14 r An electromotive force is generated at c, and an induced voltage H shown in FIG. This induced voltage H has the opposite polarity to the induced voltage G.
その後、 時刻 t = t 8力 ら t 9までの間、 第 1の制御パルス φ 5がハイレベルとな るから、 充電回路 5のスィツチ 1 8がオンとなり、 駆動回路 1 3は第 6 B図に示す ようになる。 Thereafter, between times t = t 8 forces et t 9, because the first control pulse phi 5 ing the high level, Suitsuchi 1 8 of the charging circuit 5 is turned on, the driving circuit 1 3 the first 6 B Figure It becomes as shown in.
このとき、 スィッチ 1 8が導通して、 接続端子 Bから演算増幅器 2 0のマイナス 入力端子までがオンとなるが、 演算増幅器 2 0のプラス入力端子は接地してあり、 演算増幅器 2 0のマイナス入力端子はバ一チュアルショートにより、 プラス入力端 子と同じ電位となる。 また、 駆動パルス φ 2がハイ レベルのままであるから、 N M O S T 1 1がオンのままであり、 接続端子 Aは接地電位になる。 したがって、 接続 端子 A、 B間に接続される駆動コイル 1 4 cは、 その両端が実質的に短絡されるこ とになる。 At this time, the switch 18 conducts and the connection terminal B to the minus input terminal of the operational amplifier 20 are turned on, but the plus input terminal of the operational amplifier 20 is grounded and the minus terminal of the operational amplifier 20 is connected. Input terminal is positive input terminal due to virtual short. It has the same potential as the child. Also, since the drive pulse φ2 remains at the high level, the NMOST 11 remains on, and the connection terminal A is at the ground potential. Therefore, both ends of the drive coil 14c connected between the connection terminals A and B are substantially short-circuited.
駆動コイル 1 4 cの両端が実質的に短絡されると、 回転子 1 4 r と固定子 1 4 s との磁的力により、 回転子 1 4 rの回転運動によって駆動コイル 1 4 cに誘起電力 が発生して、 第 6 B図に示すように短絡電流 i s 2が流れ、 この短絡電流 i s 2によ つて、 演算増幅器 2 0の出力端子からマイナス入力端子へ充電電流 i c 2 が流れ、 帰還コンデンサ 2 1が再び充電される。 When both ends of the drive coil 14 c are substantially short-circuited, the magnetic force between the rotor 14 r and the stator 14 s induces the drive coil 14 c by the rotational motion of the rotor 14 r. and power is generated, the 6 B is short-circuit current iS 2 flows as shown in the illustration connexion by this short-circuit current iS 2, a charging current ics 2 flows from the output terminal of the operational amplifier 2 0 to a minus input terminal, a feedback The capacitor 21 is charged again.
続いて、 時亥' J t = t 9 になると、 第 1の制御パルス ψ 5が口一レベルに戻るため、 スィツチ 1 8はオフになり、 充電回路 5が駆動回路 1 3から切り離される。 Subsequently, at a Tokii 'J t = t 9, since the first control pulse [psi 5 returns to the mouth first level, Suitsuchi 1 8 is turned off, the charging circuit 5 is disconnected from the driving circuit 1 3.
また、 時刻 t = t ,。になると、 駆動パルス φ 1がハイレベルになるから、 これを 入力する NM O S T 1 2がオンになり、 駆動回路 1 3は第 6 C図に示す接続状態に なる。 このとき、 駆動コイル 1 4 cは両端とも接地状態になる。  Also, time t = t,. At this time, the drive pulse φ 1 becomes high level, so that NMOST 12 for inputting it is turned on, and the drive circuit 13 is brought into the connection state shown in FIG. 6C. At this time, both ends of the drive coil 14c are grounded.
これ以後は、 以上述べた動作が橾り返して行なわれる。 そして、 各駆動パルス ^) 1から φ 4が駆動回路 1 3に印加される度に、 電源ライン 7を通じて電源回路 6力 ら駆動回路 1 3に供給される電力によって、 パルスモータ 1 4の回転子 1 4 rが運 動エネルギーを得て回転する。 そして、 その電力のうち、 磁気的力 (磁気ポテンシ ャル) 相当分の運動エネルギーが、 回転子 1 4 rの回転によって駆動コイル 1 4 c に発生する起電力に変換され、 この起電力によって発生する短絡電流が充電回路 5 の帰還コンデンサ 2 1に充電される。  Thereafter, the above operation is repeated. Each time drive pulses ^) 1 to φ 4 are applied to the drive circuit 13, the power supplied from the power supply circuit 6 to the drive circuit 13 through the power supply line 7 causes the rotor of the pulse motor 14 to rotate. 14 r rotates with the kinetic energy. The kinetic energy corresponding to the magnetic force (magnetic potential) is converted into the electromotive force generated in the drive coil 14c by the rotation of the rotor 14r, and the electromotive force is generated by the electromotive force. The short-circuit current is charged in the feedback capacitor 21 of the charging circuit 5.
よって、 駆動パルス ψ 1から ψ 4が駆動回路に印加される度に充電が行なわれ、 電源回路 6から供給される電力が摩擦損失として無駄に消滅しないようにすること ができる。  Therefore, charging is performed each time the drive pulses # 1 to # 4 are applied to the drive circuit, and the power supplied from the power supply circuit 6 can be prevented from being wasted as friction loss.
このよ うに、 帰還コンデンサ 2 1には、 短絡電流による電荷が繰り返し充電され 続けるため、 やがて充電回路 5の出力電圧は電源回路 6の第 3図に示した二次電池 2 4の電圧以上になる。 In this way, the feedback capacitor 21 is repeatedly charged by the short-circuit current. In order to continue, the output voltage of the charging circuit 5 eventually becomes higher than the voltage of the secondary battery 24 shown in FIG.
このとき、 第 3図における昇圧回路 2 5は、 第 2の制御パルス ψ 7と φ 8とによ つて、 コンデンサ 3 0とコンデンサ 3 1を充電する。 すなわち、 第 2の制御パルス φ 7を入力して M O S トランジスタ 2 6をオンにすると、 充電回路 5の出力電圧が コンデンサ 3 0に充電され、 第 2の制御パルス ψ 8もオンにすると、 M O S T 2 7 , 2 8 , 2 9がオンになって、 コンデンサ 3 1に充電回路 5の出力電圧が充電される。 このように、 昇圧回路 2 5が電源ライン 7の出力電圧を約 2倍に昇圧して、 電源 ライン 8の出力電圧としているので、 充電回路 2の帰還コンデンサ 2 1の充電電圧 が高くなつても、 昇圧回路 2 5から演算増幅器 2 0に対して、 演算増幅器 2 0が動 作するように電源ライン 7の電圧よりも高い電圧が供給される。  At this time, the booster circuit 25 in FIG. 3 charges the capacitor 30 and the capacitor 31 by the second control pulse ψ7 and φ8. That is, when the second control pulse φ7 is input and the MOS transistor 26 is turned on, the output voltage of the charging circuit 5 is charged in the capacitor 30. When the second control pulse ψ8 is also turned on, the MOST 2 7, 28, and 29 are turned on, and the capacitor 31 is charged with the output voltage of the charging circuit 5. As described above, since the booster circuit 25 boosts the output voltage of the power supply line 7 about twice as much as the output voltage of the power supply line 8, even if the charging voltage of the feedback capacitor 21 of the charging circuit 2 becomes higher, Then, a voltage higher than the voltage of the power supply line 7 is supplied from the booster circuit 25 to the operational amplifier 20 so that the operational amplifier 20 operates.
また、 第 2図の帰還コンデンサ 2 1に短絡電流による電荷が繰り返し充電され続 けて、 演算増幅器 2 0の出力電圧と第 3図の逆流防止用のダイォード 2 3の順方向 降下電圧の和が、 電源回路 6の二次電池 2 4の出力電圧以上になると、 帰還コンデ ンサ 2 1から逆流防止用のダイォ一ド 2 3を通って二次電池 2 4へ電流が流れ、 余 分な電力として帰還コンデンサ 2 1に蓄積されていた電力が、 二次電池 2 4に蓄積 されることによって回収される。 このため、 電子時計全体での消費電力を実質的に 著しく低減することが可能になり、 二次電池を用いた電子時計の電池寿命を長くす ることができる。  In addition, the charge due to the short-circuit current continues to be repeatedly charged in the feedback capacitor 21 in FIG. 2, and the sum of the output voltage of the operational amplifier 20 and the forward drop voltage of the diode 23 for backflow prevention in FIG. When the output voltage of the secondary battery 24 of the power supply circuit 6 exceeds the output voltage, a current flows from the feedback capacitor 21 to the secondary battery 24 through the diode 23 for preventing backflow, and as extra power, The power stored in the feedback capacitor 21 is recovered by being stored in the secondary battery 24. Therefore, the power consumption of the entire electronic timepiece can be substantially reduced significantly, and the battery life of the electronic timepiece using the secondary battery can be extended.
〔第 2の実施形態:第 7図〕  [Second embodiment: Fig. 7]
次に、 この発明による電子時計の第 2の実施形態について説明する。  Next, a second embodiment of the electronic timepiece according to the present invention will be described.
第 7図は、 この発明による電子時計の第 2の実施形態の全体構成を示すブロック 図である。  FIG. 7 is a block diagram showing an overall configuration of a second embodiment of an electronic timepiece according to the present invention.
この電子時計は、 第 1の実施形態の電子時計と大体において共通しているので、 相違点のみを説明し、 共通点については説明を省略あるいは簡略化する。 この実施形態の電子時計は、 充電回路 5と波形生計回路 3との間に、 検出回路 4 0と負荷補償ライン 4 1および 4 2と波形生成回路 3 ' からなる負荷補償ループを 設けている点が第 1の実施形態の電子時計と異なり、 その他の構成は同じである。 その検出回路 4 0は、 充電回路 5の充電電圧を検出し、 その検出結果に応じて波 形生成回路 3 ' を制御して、 直前に出力した駆動パルス <i> 1〜 φ 4と同位相で負荷 補償した駆動パルス φ 1〜 φ 4を続けて出力させる。 Since the electronic timepiece is substantially common to the electronic timepiece of the first embodiment, only differences will be described, and description of common points will be omitted or simplified. The electronic timepiece of this embodiment is provided with a load compensation loop including a detection circuit 40, load compensation lines 41 and 42, and a waveform generation circuit 3 'between the charging circuit 5 and the waveform livelihood circuit 3. However, unlike the electronic timepiece of the first embodiment, other configurations are the same. The detection circuit 40 detects the charging voltage of the charging circuit 5, controls the waveform generation circuit 3 'according to the detection result, and has the same phase as the driving pulse <i> 1 to φ4 output immediately before. The drive pulses φ 1 to φ 4 with load compensation are output continuously.
さらに詳しく説明すると、 検出回路 4 0は、 充電回路 5の帰還コンデンサ 2 1に 充電された電圧 (充電電圧) が一定値以下の場合には、 波形生成回路 3 ' に負荷補 償信号を出力して負荷補償を実行させる。 その負荷補償は次のようにして行なわれ る。  More specifically, the detection circuit 40 outputs a load compensation signal to the waveform generation circuit 3 ′ when the voltage (charging voltage) charged in the feedback capacitor 21 of the charging circuit 5 is equal to or lower than a certain value. To perform load compensation. The load compensation is performed as follows.
第 1の実施形態の電子時計と同様に、 第 4図における時刻 t = t iから t 2までの 間に、 駆動パルス φ 4が印加されると駆動回路及びパルスモータ 4に駆動電流が流 れ、 時刻 t = t 3から t 4までの間に、 制御パルス ψ 6が印加されることによって 充電回路 5に充電される。 Like the electronic timepiece of the first embodiment, during the period from the time t = ti in Figure 4 until t 2, the driving current that passes the drive pulse phi 4 is applied to the drive circuit and the pulse motor 4, The charging circuit 5 is charged by applying the control pulse ψ6 from time t = t3 to t4.
そして、 このときの充電電圧を、 各駆動ごとに負荷補償ライン 4 1を介して検出 回路 4 0が検出し、 その検出電圧が一定電圧以下の場合には、 検出回路 4 0が波形 生成回路 3 ' に負荷補償信号を出力して、 波形生成回路 3 ' に、 直前に出力した駆 動パルスと同相で、 通常 (定常) の駆動パルスよ り も電力が大きい (パルス幅が広 いか、 あるいは波高が高いか、 チヨ ッビング密度が高い) 駆動パルスを出力させる。 駆動回路及びパルスモータ 4がその駆動パルスによって前回より も強い駆動力で パルスモータ 1 4を駆動する。 それによつて、 パルスモータ 1 4の駆動力が不足し て指針のステップ運針が確実になされなかった場合にも、 より大きな駆動力で再度 駆動して指針を確実に歩進させることができる。  The charging voltage at this time is detected by the detection circuit 40 via the load compensation line 41 for each drive, and when the detection voltage is equal to or lower than a certain voltage, the detection circuit 40 outputs the waveform generation circuit 3 'Outputs a load compensation signal to the waveform generation circuit 3', which has the same phase as the driving pulse output immediately before and has higher power than the normal (stationary) driving pulse (whether the pulse width is wider or the wave height is higher). High or shoving density is high.) The driving circuit and the pulse motor 4 drive the pulse motor 14 with the driving pulse with a stronger driving force than the previous time. Thus, even if the driving force of the pulse motor 14 is insufficient and the stepping of the hands is not reliably performed, the hands can be driven again with a larger driving force to surely advance the hands.
この場合にも、 パルスモータ 1 4を駆動した後に消費される電力を回収して、 電 力の無駄な消费を抑制することができる。 〔第 3の実施形態:第 8図〕 Also in this case, the power consumed after driving the pulse motor 14 can be recovered, and the unnecessary power consumption can be suppressed. [Third embodiment: Fig. 8]
次に、 この発明による電子時計の第 3の実施形態について説明する。  Next, a third embodiment of the electronic timepiece according to the present invention will be described.
その電子時計は第 8図に示すように、 充電回路 4 5が第 1の実施形態における充 電回路 5と異なる点と、 この充電回路 4 5に、 波形生成回路 3から第 1の制御パル ス Φ 5、 φ 6の他に ψ 9を入力している点が異なる他は、 前述した第 1の実施形態 と共通している。 そこで、 その相違点のみ説明し、 共通点については説明を省略す る。  As shown in FIG. 8, the electronic timepiece differs from the charging circuit 5 in the first embodiment in that the charging circuit 45 is different from the charging circuit 5 in the first embodiment. Except that ψ9 is input in addition to 55 and 66, this embodiment is the same as the first embodiment described above. Therefore, only the differences will be described, and description of the common points will be omitted.
第 8図に示す充電回路 4 5は、 第 1の実施形態における充電回路 5と比較して、 M O S トランジスタからなるスィツチ 4 6と、 演算増幅器 4 7および帰還コンデン サ 4 8とを有し、 演算増幅器および帰還コンデンサを 2組有している点で相違して いる。  The charging circuit 45 shown in FIG. 8 has a switch 46 composed of a MOS transistor, an operational amplifier 47 and a feedback capacitor 48 as compared with the charging circuit 5 in the first embodiment. They differ in that they have two sets of amplifiers and feedback capacitors.
スィッチ 4 6は、 入力端子が演算増幅器 2 0の出力端子に接続され、 出力端子が 演算増幅器 4 7のマイナス入力端子に接続されており、 ゲートである制御端子に第 1の制御パルス ψ 9が波形生成回路 3から入力される。 演算増幅器 4 7は、 マイナ ス入力端子にスィツチ 4 6の出力端子が接続され、 プラス入力端子は接地されてい る。 そして、 その出力端子が電源回路 6への接続ライン 2 2に接続されている。 帰還コンデンサ 4 8は、 演算増幅器 4 7のマイナス入力端子と、 出力端子との間 に接続されている。  The switch 46 has an input terminal connected to the output terminal of the operational amplifier 20, an output terminal connected to the negative input terminal of the operational amplifier 47, and a first control pulse ψ 9 applied to a control terminal serving as a gate. Input from the waveform generation circuit 3. In the operational amplifier 47, the output terminal of the switch 46 is connected to the negative input terminal, and the positive input terminal is grounded. The output terminal is connected to a connection line 22 to the power supply circuit 6. The feedback capacitor 48 is connected between the negative input terminal of the operational amplifier 47 and the output terminal.
この第 3の実施形態の電子時計は、 以上のように構成されており、 その動作は次 の通りである。 第 1の実施形態における電子時計と同様に、 この実施形態の電子時 計も、 パルスモータ 1 4の駆動コイル 1 4 cに発生する誘起電力がもたらす短絡電 流によって、 まず、 帰還コンデンサ 2 1が充電される。  The electronic timepiece according to the third embodiment is configured as described above, and the operation is as follows. Similarly to the electronic timepiece according to the first embodiment, the electronic timepiece according to this embodiment is also configured such that the feedback capacitor 21 is first activated by the short-circuit current caused by the induced power generated in the drive coil 14 c of the pulse motor 14. Charged.
この場合、 短絡電流の発生と第 1の制御パルス φ 5 , 0 6のオン 'オフを繰り返 す度に、 帰還コンデンサ 2 1に充電される。 そして、 帰還コンデンサ 2 1に充電さ れた電荷が所定の電荷量に達して充電が終了したときに、 第 1の制御パルス <ί> 9に よってスィッチ 4 6をオンにする。 すると、 帰還コンデンサ 2 1に蓄積されていた 充電電荷がスィツチ 4 6を通って帰還コンデンサ 4 8に充電される。 In this case, the feedback capacitor 21 is charged each time a short-circuit current is generated and the first control pulse φ 5, 06 is repeatedly turned on and off. When the charge stored in the feedback capacitor 21 reaches a predetermined charge amount and charging is completed, the first control pulse <ί> 9 Therefore, switch 46 is turned on. Then, the charge stored in the feedback capacitor 21 passes through the switch 46 and is charged in the feedback capacitor 48.
この帰還コンデンサ 4 8への充電を繰り返し行なうことによって、 演算増幅器 4 7の出力電圧と第 3図に示した逆流防止用のダイォ一ド 2 3の順方向電圧降下との 和が、 2次電池 2 4の出力電圧を越えると、 帰還コンデンサ 4 8に蓄積されていた 電荷が 2次電池 2 4に蓄積されるようになつて、 余分な電力として帰還コンデンサ 2 1に蓄積されていた電力が電源回路 6に回収される。  By repeatedly charging the feedback capacitor 48, the sum of the output voltage of the operational amplifier 47 and the forward voltage drop of the backflow prevention diode 23 shown in FIG. When the output voltage exceeds 24, the charge stored in the feedback capacitor 48 is stored in the secondary battery 24, and the power stored in the feedback capacitor 21 as extra power is supplied to the power supply. Collected in circuit 6.
このように、 第 3の実施形態の電子時計によれば、 帰還コンデンサ 2 0とともに、 帰還コンデンサ 4 8によっても電荷を蓄積できるので、 帰還コンテンサ 2 0に蓄積 される電荷が許容量を越える場合があっても、 その越えた分は、 帰還コンデンサ 4 8によって回収し得ることとなり、 電力の回収がより一層確実に行なわれ、 電力の 無駄な消費を抑制することができる。  As described above, according to the electronic timepiece of the third embodiment, since the electric charge can be stored not only by the feedback capacitor 20 but also by the feedback capacitor 48, the electric charge stored in the feedback capacitor 20 may exceed the allowable amount. Even if there is, the excess amount can be recovered by the feedback capacitor 48, so that the power can be recovered more reliably and wasteful power consumption can be suppressed.
〔第 4の実施形態:第 9図〕  [Fourth embodiment: Fig. 9]
次に、 この発明による電子時計の第 4の実施形態について説明する。  Next, a fourth embodiment of the electronic timepiece according to the present invention will be described.
この電子時計は第 9図に示すように、 第 7図に示した第 2の実施形態における充 電回路 5に代えて充電回路 4 5を設けた点と、 この充電回路 4 5に、 波形生成回路 3 " から第 1の制御パルスとして ψ 5, φ 6の他に φ 9を入力している点だけが、 第 2の実施形態の電子時計と相違する。 しかし、 この点は第 8図によって説明した 第 3の実施形態と同じである。  As shown in FIG. 9, this electronic timepiece is provided with a charging circuit 45 instead of the charging circuit 5 in the second embodiment shown in FIG. The only difference from the electronic timepiece of the second embodiment is that φ9 is input in addition to ψ5 and φ6 from the circuit 3 "as the first control pulse. This is the same as the third embodiment described.
負荷補償ループを形成する検出回路 4 0と波形生成回 3〃 の機能は、 第 2の実施 形態と同様であるが、 波形生成回 3〃 は、 第 1の制御パルスとして φ 5, 6の他 に Φ 9を出力する。 これも、 第 3の実施形態の場合と同じである。  The functions of the detection circuit 40 forming the load compensation loop and the waveform generation circuit 3〃 are the same as those of the second embodiment, but the waveform generation circuit 3〃 has a function other than φ5 and 6 as the first control pulse. To output Φ9. This is also the same as in the third embodiment.
この第 4の実施形態の電子時計は、 第 2の実施形態の電子時計と第 3の実施形態 の電子時計の双方の構成を備えているので、 両者の作用効果を奏する。 したがって、 電力の回収を一層確実に行なえるため、 電力の無駄な消費を大幅に抑制することが できる。 また、 パルスモータの駆動力不足による指針の歩進不良を防ぐこともでき る。 The electronic timepiece according to the fourth embodiment has the configuration of both the electronic timepiece according to the second embodiment and the electronic timepiece according to the third embodiment. Therefore, power can be recovered more reliably, and wasteful power consumption can be significantly reduced. it can. In addition, it is possible to prevent the pointer from running poorly due to insufficient driving force of the pulse motor.
なお、 以上の実施形態の説明では、 電源回路に設ける昇圧回路として、 波形生成 回路の制御パルスを用いて二次電池の約 2倍の電圧を発生するようにした例を説明 したが、 この発明は、 この実施形態に限定されることはなく、 外部からの制御パル スを必要としない昇圧回路を用いてもよい。 また、 この昇圧回路は必須ではないか ら、 設けなくてもよレ、。 産業上の利用可能性  In the above description of the embodiment, an example has been described in which the booster circuit provided in the power supply circuit generates a voltage approximately twice that of the secondary battery by using the control pulse of the waveform generation circuit. The present invention is not limited to this embodiment, and a booster circuit that does not require an external control pulse may be used. Also, since this booster circuit is not essential, it need not be provided. Industrial applicability
以上の説明から明らかな通り、 この発明による電子時計は、 駆動パルス印加後に パルスモータの回転子の余分な回転運動によって駆動コイルに発生する逆起電力を によるエネルギーを、 駆動コイルの両端を等価的に短絡して得られる短絡電流によ つて充電回路に充電し、 それをさらに電源回路の二次電池に回収することができる。 したがって、 電源回路からパルスモータを動作させるために投入した電力のうち、 回転子が所定角度回転した後の回転子の運動エネルギーに変換された電力を無駄に 消费することなく、 再び電源回路の二次電池に効率的に回収することができる。 その結果、 電子時計の実質的な消費電力を著しく下げることが可能になるばかり でなく、 二次電池を用いた電子時計の電池寿命を長くすることもできるため、 いわ ゆる電池切れによって電池時計が停止する事態を防止することができる。  As is apparent from the above description, the electronic timepiece according to the present invention is configured such that the energy generated by the back electromotive force generated in the drive coil due to the extra rotation of the rotor of the pulse motor after the application of the drive pulse is equivalent to the both ends of the drive coil The charging circuit can be charged by the short-circuit current obtained by short-circuiting the battery, and it can be further recovered in the secondary battery of the power supply circuit. Therefore, of the electric power supplied from the power supply circuit to operate the pulse motor, the electric power converted into the kinetic energy of the rotor after the rotor has rotated by the predetermined angle is not wasted, and the power supply circuit is not used again. It can be efficiently collected in the secondary battery. As a result, not only can the actual power consumption of the electronic watch be significantly reduced, but also the battery life of the electronic watch using the secondary battery can be prolonged. A stop situation can be prevented.
また、 従来より小さい二次電池を用い、 時計機構を小さく して外装形状等のデザ ィンに多様性をもたせることもできる。  It is also possible to use a smaller secondary battery and make the timepiece mechanism smaller to give a variety of designs such as exterior shapes.

Claims

請 求 の 範 囲 The scope of the claims
1 . 発振回路と、 その発振信号を分周する分周回路と、 その分周信号によって複数 の駆動パルスを発生する波形生成回路と、 その複数の駆動パルスを入力する駆動回 路と、 該駆動回路が出力する駆動電流により駆動コイルが励磁されて、 回転子をス テップ回転させる運針用のパルスモータとを備えた電子時計において、 1. Oscillator circuit, frequency dividing circuit for dividing the oscillation signal, waveform generating circuit for generating a plurality of driving pulses by the divided signal, driving circuit for inputting the plurality of driving pulses, and driving An electronic timepiece including a pulse motor for moving a hand that excites a driving coil by a driving current output from a circuit and rotates a rotor in steps.
前記パルスモータの回転子の回転運動の停止時に、 前記駆動コイルに発生する逆 起電力に基づく短絡電流により充電される充電回路と、  A charging circuit that is charged by a short-circuit current based on a back electromotive force generated in the drive coil when the rotation of the rotor of the pulse motor stops.
その充電回路に充電された電力を蓄積して、 その蓄積した電力を前記発振回路、 分周回路、 波形生成回路、 駆動回路、 および充電回路に供給する電源回路と を設けたことを特徴とする電子時計。  And a power supply circuit for storing the charged power in the charging circuit, and supplying the stored power to the oscillation circuit, the frequency dividing circuit, the waveform generating circuit, the driving circuit, and the charging circuit. Electronic clock.
2 . 請求の範囲第 1項記載の電子時計において、 2. In the electronic timepiece according to claim 1,
前記充電回路が、 前記短絡電流が発生したときに、 前記波形生成回路が出力する 制御パルスによって切り替わるスィ ツチと、  A switch that is switched by a control pulse output by the waveform generation circuit when the short-circuit current occurs,
該スィツチが切り替わることによって、 出力端子から入力端子に充電電流が流れ るように該スィツチに接続された演算増幅器と、  An operational amplifier connected to the switch so that a charge current flows from the output terminal to the input terminal when the switch is switched;
該演算増幅器の入力端子と出力端子の間に接続され、 その出力端子から入力端子 に充電電流が流れたときに充電される帰還コンデンサと  A feedback capacitor connected between an input terminal and an output terminal of the operational amplifier and charged when a charging current flows from the output terminal to the input terminal;
から構成されていることを特徴とする電子時計。  An electronic timepiece comprising:
3 . 請求の範囲第 1項記載の電子時計において、 3. In the electronic timepiece according to claim 1,
前記駆動回路が、 前記波形生成回路が出力する複数の駆動パルスによってそれぞ れ切り替わる複数のスィツチから構成され、  The drive circuit includes a plurality of switches each of which is switched by a plurality of drive pulses output by the waveform generation circuit,
その各スィツチが、 前記複数の駆動パルスによって前記パルスモータの駆動コィ ルに駆動電流を流して前記回転子をステップ回転させた後、 該駆動コイルの両端を 同電位にするように実質的に短絡させて、 該駆動コイルに発生する逆起電力に基づ く短絡電流を発生させるように接続されていることを特徴とする電子時計。 After each of the switches causes a drive current to flow through the drive coil of the pulse motor by the plurality of drive pulses to rotate the rotor stepwise, both ends of the drive coil are rotated. An electronic timepiece which is substantially short-circuited so as to have the same potential and is connected so as to generate a short-circuit current based on a back electromotive force generated in the drive coil.
4 . 請求の範囲第 2項記載の電子時計において、 4. In the electronic timepiece according to claim 2,
前記駆動回路が、 前記波形生成回路が出力する複数の駆動パルスによってそれぞ れ切り替わる複数のスィツチから構成され、  The drive circuit includes a plurality of switches each of which is switched by a plurality of drive pulses output by the waveform generation circuit,
その各スィツチが、 前記複数の駆動パルスによって前記パルスモータの駆動コィ ルに駆動電流を流して前記回転子をステップ回転させた後、 該駆動コイルの両端を 同電位にするように実質的に短絡させて、 該駆動コイルに発生する逆起電力に基づ く短絡電流を発生させるように接続されていることを特徴とする電子時計。  After each of the switches causes a drive current to flow through the drive coil of the pulse motor by the plurality of drive pulses to rotate the rotor stepwise, both ends of the drive coil are substantially short-circuited so as to have the same potential. An electronic timepiece connected to generate a short-circuit current based on a back electromotive force generated in the drive coil.
5 . 請求の範囲第 1項記載の電子時計において、 5. In the electronic timepiece according to claim 1,
前記電源回路が、 前記充電回路の出力側に接続された逆流防止ダイォ一ドと二次 電池とを備え、  The power supply circuit includes a backflow prevention diode connected to an output side of the charging circuit and a secondary battery,
前記充電回路の出力電圧が前記逆流防止ダイォ一ドの順方向電圧降下と前記二次 電池の端子電圧との和を越えたときに、 前記充電回路から前記逆流防止ダイォ一ド を介して前記二次電池に充電電流が流れ、 該二次電池に電力が蓄積されるように構 成されていることを特徴とする電子時計。  When the output voltage of the charging circuit exceeds the sum of the forward voltage drop of the backflow prevention diode and the terminal voltage of the secondary battery, the charging circuit sends the second signal through the backflow prevention diode. An electronic timepiece, wherein a charging current flows to a secondary battery and power is stored in the secondary battery.
6 . 請求の範囲第 2項記載の電子時計において、 6. In the electronic timepiece according to claim 2,
前記電源回路が、 前記充電回路の出力側に接続された逆流防止ダイォ一ドと二次 電池とを備え、  The power supply circuit includes a backflow prevention diode connected to an output side of the charging circuit and a secondary battery,
前記充電回路の出力電圧が前記逆流防止ダイォードの順方向電圧降下と前記二次 電池の端子電圧との和を越えたときに、 前記充電回路から前記逆流防止ダイォ一ド を介して前記二次電池に充電電流が流れ、 該二次電池に電力が蓄積されるように構 成されていることを特徴とする電子時計。 When the output voltage of the charging circuit exceeds the sum of the forward voltage drop of the backflow prevention diode and the terminal voltage of the secondary battery, the secondary battery is supplied from the charging circuit via the backflow prevention diode. An electronic timepiece, wherein a charging current flows through the secondary battery and power is stored in the secondary battery.
7 . 請求の範囲第 5項記載の電子時計において、 7. The electronic timepiece according to claim 5,
前記電源回路が、 前記二次電池の端子電圧を昇圧して前記充電回路に電源電圧と して供給する昇圧回路を有することを特徴とする電子時計。  An electronic timepiece, wherein the power supply circuit includes a booster circuit that boosts a terminal voltage of the secondary battery and supplies the terminal voltage to the charging circuit as a power supply voltage.
8 . 請求の範囲第 6項記載の電子時計において、 8. The electronic timepiece according to claim 6,
前記電源回路が、 前記二次電池の端子電圧を昇圧して前記充電回路に電源電圧と して供給する昇圧回路を有することを特徴とする電子時計。  An electronic timepiece, wherein the power supply circuit includes a booster circuit that boosts a terminal voltage of the secondary battery and supplies the terminal voltage to the charging circuit as a power supply voltage.
9 . 請求の範囲第 1項記載の電子時計において、 9. In the electronic timepiece according to claim 1,
前記充電回路が、 前記短絡電流が発生したときに、 その短絡電流に応じた充電電 流によって充電される第 1の充電回路と、 その第 1の充電回路の充電電圧によって 充電される第 2の充電回路とからなることを特徴とする電子時計。  A first charging circuit that is charged by a charging current corresponding to the short-circuit current when the short-circuit current occurs; and a second charging circuit that is charged by a charging voltage of the first charging circuit. An electronic timepiece comprising a charging circuit.
1 0 . 請求の範囲第 1項記載の電子時計において、 10. The electronic timepiece according to claim 1,
前記充電回路の充電電圧を検出し、 その検出した電圧が所定値以下の場合に、 前 記波形生成回路に、 直前に出力した駆動パルスと同相でそれより駆動電力の大きい 駆動パルスを負荷補償パルスとして続けて出力させる負荷補償ループを設けたこと を特徴とする電子時計。  When the charging voltage of the charging circuit is detected and the detected voltage is equal to or lower than a predetermined value, the waveform generating circuit outputs a driving pulse having the same phase as the driving pulse output immediately before and having a higher driving power to the load compensation pulse. An electronic timepiece provided with a load compensation loop for continuously outputting as follows.
1 1 . 請求の範囲第 2項記載の電子時計において、 1 1. In the electronic timepiece according to claim 2,
前記充電回路の充電電圧を検出し、 その検出した電圧が所定値以下の場合に、 前 記波形生成回路に、 直前に出力した駆動パルスと同相でそれより駆動電力の大きい 駆動パルスを負荷補償パルスとして続けて出力させる負荷補償ループを設けたこと を特徴とする電子時計。  When the charging voltage of the charging circuit is detected and the detected voltage is equal to or lower than a predetermined value, the waveform generating circuit outputs a driving pulse having the same phase as the driving pulse output immediately before and having a higher driving power to the load compensation pulse. An electronic timepiece provided with a load compensation loop for continuously outputting as follows.
1 2 . 請求の範囲第 9項記載の電子時計において、 1 2. In the electronic timepiece according to claim 9,
前記第 1の充電回路の充電電圧を検出し、 その検出した電圧が所定値以下の場合 に、 前記波形生成回路に、 直前に出力した駆動パルスと同相でそれより駆動電力の 大きい駆動パルスを負荷補償パルスとして続けて出力させる負荷補償ループを設け たことを特徴とする電子時計。 The charging voltage of the first charging circuit is detected, and when the detected voltage is equal to or lower than a predetermined value, the waveform generating circuit outputs the same driving phase as that of the driving pulse output immediately before, thereby reducing the driving power. An electronic timepiece provided with a load compensation loop for continuously outputting a large drive pulse as a load compensation pulse.
PCT/JP2000/003833 1999-06-14 2000-06-13 Electronic timepiece WO2000077581A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/166494 1999-06-14
JP16649499A JP2003130972A (en) 1999-06-14 1999-06-14 Electronic timepiece and method of driving the same

Publications (1)

Publication Number Publication Date
WO2000077581A1 true WO2000077581A1 (en) 2000-12-21

Family

ID=15832421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003833 WO2000077581A1 (en) 1999-06-14 2000-06-13 Electronic timepiece

Country Status (2)

Country Link
JP (1) JP2003130972A (en)
WO (1) WO2000077581A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8848492B2 (en) 2010-02-15 2014-09-30 Citizen Holdings Co., Ltd. Electronic watch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381268A (en) * 1976-12-27 1978-07-18 Seiko Epson Corp Electronic wrist watch
JPS53112781A (en) * 1977-03-14 1978-10-02 Citizen Watch Co Ltd Electronic watch
JPH03229193A (en) * 1990-02-02 1991-10-11 Seiko Instr Inc Electronic timepiece

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381268A (en) * 1976-12-27 1978-07-18 Seiko Epson Corp Electronic wrist watch
JPS53112781A (en) * 1977-03-14 1978-10-02 Citizen Watch Co Ltd Electronic watch
JPH03229193A (en) * 1990-02-02 1991-10-11 Seiko Instr Inc Electronic timepiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8848492B2 (en) 2010-02-15 2014-09-30 Citizen Holdings Co., Ltd. Electronic watch

Also Published As

Publication number Publication date
JP2003130972A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP3678075B2 (en) Power supply device and control method thereof, portable electronic device, timing device and control method thereof
JPS6115387B2 (en)
US6327225B1 (en) Electronic unit, and control method for electronic unit
JPH10206565A (en) Electric device supplied with electricity by photoelectric source, specifically timepiece
EP0905588B1 (en) Electronic device and method for controlling the same
JP3601375B2 (en) Portable electronic device and method of controlling portable electronic device
JPH11502024A (en) Clock operating mechanism
WO2000077581A1 (en) Electronic timepiece
JP3024482B2 (en) Analog electronic clock and charging method thereof
JP3653883B2 (en) Stepping motor control device and timing device
JP3718725B2 (en) Power supply for electronic watch
EP1117016B1 (en) Electronic apparatus and method of controlling electronic apparatus
JP3653850B2 (en) Step motor driving device, control method thereof, and timing device
JP3653881B2 (en) Stepping motor control method
JPS6130225B2 (en)
JP3601258B2 (en) Electronically controlled mechanical clock
JP4343353B2 (en) Electronic timepiece and control method thereof
JP4234472B2 (en) Electronic clock
JPH03148092A (en) Electronic clock
JP2004032980A (en) Overcharge-preventing method, circuit for charging, and electronic equipment and time-piece
JPH06225557A (en) Drive circuit of small-sized motor
JP3726543B2 (en) Electronically controlled electronic devices, electronically controlled mechanical watches
JP3707299B2 (en) Electronic device and control method of electronic device
JPS6334435B2 (en)
JP2002323578A (en) Timepiece device and control method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP