WO2000065330A1 - Procede d'analyse optique de milieu non homogene - Google Patents

Procede d'analyse optique de milieu non homogene Download PDF

Info

Publication number
WO2000065330A1
WO2000065330A1 PCT/JP2000/002638 JP0002638W WO0065330A1 WO 2000065330 A1 WO2000065330 A1 WO 2000065330A1 JP 0002638 W JP0002638 W JP 0002638W WO 0065330 A1 WO0065330 A1 WO 0065330A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
medium
function
scattering
equation
Prior art date
Application number
PCT/JP2000/002638
Other languages
English (en)
French (fr)
Inventor
Yoshihiko Mizushima
Kazuji Matsumoto
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to AU38422/00A priority Critical patent/AU3842200A/en
Priority to EP00917419A priority patent/EP1182444B1/en
Priority to DE60035983T priority patent/DE60035983T2/de
Publication of WO2000065330A1 publication Critical patent/WO2000065330A1/ja
Priority to US09/982,022 priority patent/US6643020B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Definitions

  • the present invention relates to a method for optically analyzing a heterogeneous medium.
  • Japanese Patent Application Laid-Open No. H4-297854 is known. This publication discloses a method for correcting a light diffusion effect in a medium, and uses an exponential function as an absorbance correction function.
  • the medium when the medium exhibits light scattering and has an inhomogeneous structure, in other words, when the medium is not uniform and is buried in a translucent or milky white medium, a physical quantity analysis method is known. Absent. Natural products and organisms are typical of heterogeneous and dispersive media. Of course, an inhomogeneous medium can be analyzed approximately assuming it is homogeneous. Cannot be described. Furthermore, if the refractive index is different, the light speed is also different, and the analysis method based on the assumption that light propagates at a constant light speed cannot be established. Analyzes such as the microscopic Monte Carlo method cannot be solved unless the heterogeneous structure distribution is precisely assumed, and are not generally applicable analyses. Thus, the conventional method cannot perform accurate physical quantity analysis.
  • the present invention enables accurate analysis of the physical quantity of a heterogeneous medium by separating the components of each constituent material and defining the relational expression with the light intensity for such a heterogeneous, multiphase, or mixed medium. It is intended to provide an optical analysis method for heterogeneous media.
  • the intensity of light emitted from the inhomogeneous medium is detected, the detected light intensity is substituted for a predetermined function, and based on this function, the
  • the solution of a system of differential equations that describes the situation in which light that meets light scattering between multiple tissues enters and exits is represented by a descriptive function.
  • This function is dependent on the physical quantity of the inhomogeneous medium, and is a function that defines the relationship between the light intensity and the linear sum of exponential functions of the depth of light penetration with the base e. In this case, the physical quantity of the heterogeneous medium can be accurately analyzed.
  • the physical quantity is defined by the absorption coefficient of the heterogeneous medium, the scattering coefficient of the heterogeneous medium, or the concentration of a predetermined component in the heterogeneous medium.
  • I (e- at + e Z 2, where I is the intensity, t is the penetration depth, and unknown is the physical quantity dependent unknown.
  • the light emitted by the reflection is the reflected light reflected by the inhomogeneous medium, and the amount (intensity) of the reflected light is represented by the linear sum of ( ⁇ +?) / ⁇ and 1 / ⁇ . It is a basic feature to be shown.
  • Figure 1A shows the transmitted light intensity I obtained when the sample to be measured SM is irradiated with light LT.
  • Figure 1B is a diagram for explaining the reflected light intensity u (e1), u (person 2), ..., u (person n) obtained when the sample SM to be measured is irradiated with light LT. is there.
  • FIG. 2 is a diagram illustrating a method for analyzing a heterogeneous medium according to the embodiment.
  • Fig. 1A is a basic example of transmission, and the continuous spectral intensities I (E1), I (People 2), ⁇ , I ( ⁇ ).
  • Fig. 1 ⁇ is a basic example of the case of reflected light.
  • the reflection obtained when the sample S ⁇ is irradiated with light L ⁇ It shows the continuous spectral intensity of light u (input 1), u (person 2), ⁇ , u ( ⁇ ).
  • FIG. 2 is a diagram illustrating a method for analyzing a heterogeneous medium according to the embodiment.
  • the continuous spectral data I input 1
  • I person 2)
  • ..., I
  • u ⁇ 1
  • u 2 u
  • u
  • the above is a physical quantity measurement algorithm based on the assumption that the medium is homogeneous. Measurement and analysis of physical quantities in a heterogeneous medium requires a more accurate one.
  • measurement and analysis of a physical quantity in a heterogeneous medium will be described.
  • the case where the medium is heterogeneous is considered.
  • the medium is a living tissue
  • X tissue indicates a set of capillaries
  • Y tissue indicates tissues other than blood vessels (such as fat and muscle tissue), and these are mixed.
  • x, y is the volume defined by the product of the total cross-sectional area of the relevant tissue X, Y and the unit depth when considering the total cross-sectional area of the luminous flux probe being measured. It corresponds to the number of photons present in it. Or you can think of it as the photon density multiplied by the cross-sectional area of X, Y, and so on. Since the individual values of X and y are deleted later, there is no need to specify the density or cross section here.
  • ⁇ a , ⁇ ax , ⁇ sx , i ay , sy,, E ⁇ P x , P y indicate the following.
  • P y the concentration of the target substance in the Y tissue
  • the light loss coefficient to other tissues is given by the product of the lateral light scattering coefficient // s ”and the structural coefficient E, s ” XE.
  • the structural coefficient E defines the situation where light flows from the X organization to the Y organization and from the Y organization to the X organization.
  • the mean free path of the photon is related to the sum of the absorption coefficient and the scattering coefficient. That is,
  • Equation 5 the coefficients a, b, c, and d are given by the following equation (Equation 5). It should be noted that b and c are added independently of a and d.
  • the suffix xy is related to each organization of X and Y It represents that.
  • the cross-sectional area of each actual tissue is often sufficiently smaller than the cross-sectional area of the probe, and the light quantity I actually measured is always the sum of the light quantity X and the light quantity y.
  • the measured light intensity I includes the effects of the X and Y tissues, and there is an interaction between the tissues. Therefore, assuming that the scattering is strong, the light amount is averaged between the two tissues.
  • Equation 10 A useful expression that does not include the light penetration depth t can also be used as a theorem. Assuming that components of the coefficients a and d that do not escape to other organizations are m and n, m and n are given by the following (Equation 11).
  • Equation 13 When the light quantity I is measured, the unknowns are two, and if the number of equations is two including (Equation 9), then Can be specified. This additional equation can be obtained, for example, by knowing the penetration depth t of light.
  • the physical quantity of the target heterogeneous medium can be identified.
  • all the information on heterogeneous media has been obtained from the above equation.
  • the physical quantities include absorption coefficients, scattering coefficients, structure coefficients, and the concentration of the target substance (, ⁇ sx , ⁇ ay , ⁇ sy , E x , E y , P x , P y ) are listed. If the number of equations obtained from the experiment is equal to or larger than the number of unknowns, various physical quantities can be specified.
  • the feature of this analysis method is that the properties such as the structure and interaction of the heterogeneous system are eliminated without being explicitly displayed, so that the solution can be obtained regardless of the values of b and c. Only Does not contain mathematical approximations, and can hold an exact solution representation. Therefore, a solution can be derived regardless of the inhomogeneous state without considering it. In other words, the present method can be applied to the case where the degree or cross-sectional area of each tissue fluctuates in the light traveling direction. The reason for this is that the structure and features (b, c) of the heterogeneous system are eventually eliminated without any constraints.
  • each tissue-specific // a , ⁇ is the standard value of the absorption or scattering coefficient per unit molar concentration. Then, unknowns at each wavelength, for example, P x and P y can be determined.
  • the measurement requires a minimum of three wavelengths, and preferably uses more wavelengths to reduce errors.
  • the subsequent steps may be the same as described above.
  • P x and P y to be obtained in the next stage may be directly used instead of hi and as unknowns.
  • K-M Kube lka-Munk
  • the reflected light that is, the intensity (u) of the return light
  • Equation 14 the intensity of the return light
  • Equation 14 L originally means the mean free path, but in the K-M method, it can be assumed that it corresponds to the normalized theoretical solution when returning in the opposite direction.
  • S K is the reverse (backward) scattering coefficient may be displayed with ⁇ SK two ⁇ s g. In the case of the present invention, this is an averaged number for tissue X, Y. If this value is known, treat it as a known coefficient. If this value is unknown, it can be treated as an undetermined coefficient in the optimization numerical calculation described later.
  • the reflected light is measured with light of at least three wavelengths, preferably with more wavelengths to reduce errors if possible.
  • unknowns and Shitehi instead of 3, may be used [rho chi and P y to be obtained in the next step directly.
  • the interaction term since the interaction term is included in a nonlinear display, it cannot be solved analytically until the end.
  • b and c are constants independent of wavelength, and the spectra of all wavelengths are measured. Numerical meter considering the mixing ratio as an undetermined coefficient It can be solved by arithmetic.
  • Equation 16 If the unknowns are P i and Pj and the undetermined coefficients are b and c, a solution can be obtained using at least four types of wavelength measurement values.
  • Equation 20 This right side is approximated by a straight line excluding the origin, with s as the horizontal axis. This clearly shows that the method of the present invention is different from a simple exponential function in the homogeneous phase.
  • u can be measured at a plurality of wavelengths, and these equations can be combined to solve.
  • the expression of the solution is long, it is not described here.
  • the method described has been applied to a steady state over time.
  • the present patent is not limited to this, and can be applied to a case that changes with time.
  • the time for light to travel from the input end to the output end itself is longer than the simple travel time due to the influence of multiple scattering. It is less than about a second. Therefore, particularly high-speed analysis corresponds to analysis of high-speed combustion reaction, explosion or destruction phenomenon. If the inside of the object is substantially at a low speed and the light source itself emits modulated light, all cases are applicable.
  • Equation 21 The second term in the katakana on the right-hand side is a case where the absorption-scattering coefficient or the concentration changes.
  • the b and c terms are almost constant, as mentioned above.
  • Equation 23 In general, it can be treated as a perturbation. In other words, if a solution of the criterion equation is obtained, it can be used as an initial value and repeated calculations can be performed to optimize the (3a / 3) SX 5 dr, and the desired reaction parameter SaZS r is determined. I do.
  • wavelength spectrum data may be used as needed to increase the calculation accuracy.
  • the target solution can be reached without explicitly treating them. It is extremely effective for practical use.
  • the heart pulsation status can be extracted by this optical property measurement, so that information on blood circulation can be obtained.
  • the flow can be monitored.
  • blood oxygen concentration is represented by the concentration of oxidized and reduced hemoglobin.
  • it can be applied to quantitative measurement of blood glucose, red blood cells, cholesterol, neutral fat, etc. in blood, and can replace conventional blood tests by blood sampling. Absorption spectra of these components are well known and range from the visible to the infrared.
  • the absorption coefficient and the scattering coefficient work in the medium in a linear additive manner.
  • the X tissue is the intravascular blood portion
  • the Y tissue is the other tissue portion
  • x and y are the light amounts contained therein.
  • the measurement light is emitted from the light source through the optical fiber and the wavelength filter to the inside of the living body.
  • a large number of receiving fibers are placed around the outgoing fiber, and the reflected output is measured collectively. This is so that a wide area of, for example, about 1 cm 2 can be received so that the sum of the outputs from the X and y tissues can be measured.
  • the signal-to-noise ratio can also be improved by intermittently intermitting the light at regular intervals as necessary and synchronously detecting the light receiving side.
  • the calculation can be simplified by measuring the oxygen saturation etc. by another method only in the first case and using it as a comparison standard thereafter. However, it is not required.
  • the portion to which the measurement probe is applied is the same for the measurement of required plural wavelengths. Since the above interaction terms are guaranteed to be common, the calculation accuracy and the like are improved. But it is not required. This is because the interaction term can be eliminated for each wavelength.
  • the output light quantity is measured for each wavelength, and the result is made into a data list as a normalized number and stored in the storage device.
  • Wavelength measurement is performed at multiple wavelengths, but for accurate measurement, the wavelength range is, for example, 450 to 150 nm, that is, it is accurate to perform measurement in the visible and near-infrared regions. Is preferred.
  • the absorption spectrum of the wavelength range is acquired, and from the plurality of measured values, To determine the concentrations P x and P y at each wavelength using the above method, assign the measurement spectrum by the least square method based on oxidized hemoglobin, hemoglobin, cytochrome, and other known absorption spectra. Obtain the concentrations P x and P y .
  • the concentration can be determined because the standard value of the absorption coefficient to be determined is known, but in general, the value at a certain wavelength is Since it is highly likely that the sum of the absorptions of a plurality of components is obtained, it is necessary to separate them. As described above, each component can be separated from the spectrum profile of the measured data, and then, at each wavelength, each beak value is compared with the expected absorption coefficient.
  • the calculation proceeds as follows.
  • the spectra of these light absorbers can be predicted in advance. For example, in the case of the human body, there are reduced and oxidized tissues such as cytochrome and hemoglobin. Since the light absorption coefficient and scattering coefficient for these single phases are known, they are stored in a storage device as a database, and this is used as a reference data to determine the matrix elements of the linear programming method. , Used for subsequent calculations.
  • Equation 24 Equation 24
  • z is the vector of the measured light amount for each wavelength
  • is the vector of the unknown concentration to be obtained. It is a kutor.
  • each element of the Jacobi matrix is the differential coefficient between the vectors, but Since it can handle, the differential element of each matrix element can also be displayed analytically, and calculation can be performed. This is a major feature of the method.
  • the absorption coefficient is obtained for each tissue at each wavelength, since the individual absorption spectrum is known, it is used as standard waveform data to match each component concentration measurement value. Apply linear programming to search for the ratio.
  • a well-known numerical calculation program may be installed in a computer to perform the calculation in order to optimize the solution by solving the inverse matrix. In the inverse matrix calculation at this time, since the number of rows and the number of columns generally do not match as described above, it is necessary to combine the transposed matrix.
  • the main composition is a single phase, it depends on the medium. Since it is generally known, it is easy to determine and subtract the background.
  • component analysis for each component is performed by the multivariable nonlinear optimization method, and then the optimal solution can be approximately converged to obtain unknowns for the target component. At this time, the convergence at a high speed can be achieved by starting from a value of t which is almost expected as a starting value.
  • the transmission thickness t is a position distant from the light incident point of the object to be measured.However, when measuring by emitting light from the same plane as the light incident surface, the principal ray path is not linear but significantly bent And a typical t value cannot be determined. In such a case, the method of assuming an average t-value in advance is that the attenuation is exponential to the path length, and the ray path is complicated. The route determination itself is also uncertain and should not be used because it introduces significant errors.
  • the most accurate value can be determined. Furthermore, as described in the previous section, taking advantage of the fact that the measured values can be decomposed from the spectrum into the expected components, P x and P y are adjusted to match the most probable component values. Can be determined.
  • the theory has an analytical expression.
  • the interaction terms b and c are eliminated by combining the expression of Z and the above theorems, and (hi, ⁇ ) or (a, d) is solved. Since these are the linear sums of the absorption coefficients of the constituents in each tissue, they can be solved by linear programming. Also in this case, the accuracy is higher when the least square method is applied to all the measured wavelengths.
  • the method of the present invention considers that the light quantity can be described by a linear combination of two exponential functions with power exponent and a function derived from those exponents. There is essence in using. Through this expression, it is possible to express the optical constant of a medium that exhibits inhomogeneous and strong scattering, and a structure related to inhomogeneity. There is an advantage that uncertain factors such as construction need not be dealt with explicitly.
  • Objects in living organisms, plants, leaves, fruits, wood, powders, solid-liquid mixtures, and emulsions, sewage, seawater, and fumes have strong scattering characteristics as well as non-uniformity, and are important in practical use. Note that many errors occur in these optical measurements. Since these heterogeneous internal structures show various and complicated situations, it is almost impossible to measure these situations while specifying them.
  • the method of the present invention proposes a mathematical method to reach the result without explicitly treating these complicated elements.
  • the method is based on completely mathematically rigorous principles and is suitable for dealing with complex problems. Therefore, the method of the present invention is suitable for the measurement of a material with inhomogeneous and strong scattering as exemplified above.
  • the method described above utilizes the fact that the amount of light is the sum of exponential functions due to the non-uniform structure.
  • the measurement result was corrected for the homogeneous phase
  • a correct value can be calculated from the above combination equation.
  • the intensity of light emitted from the heterogeneous medium is detected, and the intensity of the detected light depends on the physical quantity of the heterogeneous medium.
  • the physical quantity of the heterogeneous medium is determined based on a function represented by a linear sum of exponential functions of the penetration depth with base e and a relational expression derived from this function. In this case, the optical analysis of the heterogeneous medium can be accurately performed.
  • this method when the heterogeneous medium is heterogeneous or has a multiphase or multiphase-separated structure such as a mixture, this method is applied to separate each phase component in each tissue and calculate independently. be able to.
  • the system is reduced from the simultaneous equations including the number of mediating elements according to the number of tissue types, and this is applied to the above analysis method when there are two tissues X and Y. be able to.
  • the method according to the above-described embodiment is an optical analysis method for determining a physical quantity of a medium from the intensity of light transmitted or reflected through the medium, and particularly has optical characteristics different from those of the medium.
  • Light intensity A function defined as the solution of a system of differential equations describing distribution, which is dependent on the physical quantity of the inhomogeneous medium and is described by the linear sum of the exponential function of the depth of penetration of light with base e and the function derived from this It is characterized by that. According to this method, The physical quantity of the medium can be accurately analyzed.
  • the exponential function when the emitted light is transmitted light from the heterogeneous medium, the exponential function is: the intensity is I, the penetration depth is t, and the exponent of the exponential function is ⁇ .
  • the emitted light is reflected light reflected by the inhomogeneous medium, and when a function related to the amount of reflected light is composed of two tissues, (h + ⁇ ) / h and It is preferably a linear sum of 1 Z.
  • the physical quantity is preferably an absorption coefficient of the heterogeneous medium, a scattering coefficient of the heterogeneous medium, or a concentration of a predetermined component in the heterogeneous medium.
  • the method includes making use of the fact that the mutual scattering coefficient defining the light quantity redistribution is equal in many cases, and using a method that facilitates the calculation.
  • This invention can be utilized for the optical analysis method of a heterogeneous medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

曰 糸田 β
不均質媒質の光学的分析方法
技術分野
本発明は、 不均質媒質の光学的分析方法に関する。
背景技術
光による媒質 (物質) 内部の探査、 計測、 分析等の研究が行われている。 媒質 に光を照射すると、 その内部において光の吸収及び散乱が生じる。 これらは媒質 構成材料の物理量に応じて変化するため、 当該媒質からの透過光又は反射光を測 定すれば、 測定値に基づいて物理量を決定することができる。 例えば、 この測定 値に基づいて、 媒質中の含有成分の光吸収係数を決定できる。
特に、 媒質が吸収ばかりでなく光散乱を呈するときは、 物理量の決定にその散 乱係数を併せて考慮する。 単純な場合、 これらの基本式については公知である。 散乱係数がある場合の計測例は、特開平 2— 2 3 4 0 4 8号公報に示されている。 同公報においては、 時間変数を用いることにより、 測定された光強度の過渡波形 から、 散乱及び吸収の解析を行っている。
また、 本願と類似の指数関数を使った物理量の解析例としては、 特開平 4— 2 9 7 8 5 4号公報が知られている。 同公報は、 媒質における光拡散効果を補正す る方法について開示しており、 吸光度補正関数としては指数関数を用いる。
均一媒質においても、 光の拡散によって実効光路長が増大する。 実効光路長が 増大すると、光強度減衰が起こる。 したがって、 同公報の物理量解析においては、 吸光度変化の影響を補正するときに、 物理的内容の不明確な定数を有する指数関 数を経験的に導入し、 見かけ上の光強度を修正している。 なお、 不均質媒質にお いても、 同様の現象が生じるが、 同公報においては不均質媒質を対象としていな い。 このように、 媒質の物理量解析において、 吸収係数及び散乱係数を考慮する ものは多く知られている。
発明の開示 しかしながら、 従来、 当該媒質が光散乱を示し、 かつ不均一構造を持つ場合、 換言すれば、 媒質が均一でなく半透明、 乳白色媒体に埋もれている場合において は、 その物理量解析手法は知られていない。 天然物や生物体などは不均質かつ散 乱性媒質の代表的なものである。 勿論、 不均質媒質を均質と見なして近似的に解 析することはできるが、 各組織の光学特性が異なり、 組織間の相互散乱が起こる ときには、 従来の理論では媒質内部における光の減衰程度を記述することができ ない。 さらに、 屈折率が異なれば、 光速度も異なるので、 一定の光速度で伝播す るという仮定による解析方法も成立しない。 微視的なモンテカルロ法などの解析 は、 不均一構造分布を精密に仮定しなければ解けないため、 一般的に適用できる 分析ではない。 このように従来の方法では、 正確な物理量解析を行うことはでき ない。
本発明は、 このような不均一、 多相又は混合状態の媒質について、 各構成材料 の成分を分離して光強度との関係式を規定することにより、 不均質媒質の物理量 を正確に分析可能とした、 不均質媒質の光学的分析法を提供することを目的とす る。
本発明は、 不均質媒質中に光を入射させ、 不均質媒質から出射される光の強度 を検出し、 検出された光強度を所定の関数に代入し、 この関数に基づいて不均質 媒質の物理量を決定する不均質媒質の光学的分析方法において、 複数の組織相互 間の光散乱にあう光が出入りする状況を記述する連立微分方程式の解を記述関数 で表現する。 該関数は不均質媒質の物理量に依存し eを底とする光の侵入深さの 指数関数の線形和と光強度との関係を規定する関数である。 この場合、 不均質媒 質の物理量を正確に分析することができる。
上記物理量は不均質媒質の吸収係数、 不均質媒質の散乱係数、 又は不均質媒質 中の所定成分の濃度によって規定される。
この関数は、 強度を I、 侵入深さを t、 物理量に依存した未知数をひ及び/?と するとき、 I = ( e— at+ e Z 2で示されることを特徴とする。 また、 反射により上記出射される光は、 不均質媒質によって反射された反射光 であり、 反射光の光量 (強度) は、 (ひ + ?) /ひ ?及び 1/ひ ?の線形和によ つて示されることを基本的特徴とする。
図面の簡単な説明
図 1 Aは被測定試料 S Mに光 L Tを照射した場合に得られる透過光の強度 I
(入 1)、 I (人2)、 ···、 I (人 n) を説明するための図である。
図 1 Bは被測定試料 S Mに光 L Tを照射した場合に得られる反射光の強度 u (え 1)、 u (人 2)、 ···、 u (人 n) を説明するための図である。
図 2は実施形態に係る不均質媒質の分析方法について説明するためのダイヤグ ラムである。
発明を実施するための最良の形態
以下、 実施の形態に係る不均質媒質の光学的分析方法について説明する。 以下 の説明において、 基本的概念を手助けするために、 図 1A, 図 1B及び図 2を明 示する。
図 1 Aは透過の場合の基本的な例示例であり、 被測定試料 S Mに光 L Tを照射 した場合に得られる透過光の連続的な分光強度 I (え 1) 、 I (人 2) 、 ···、 I (λη) を示したものであり、 図 1 Βは反射光の場合の基本的な例示例であり、 同じく被測定試料 S Μに光 L Τを照射した場合に得られる反射光の連続的な分光 強度 u (入 1)、 u (人 2)、 ···、 u (Λη) を示したものである。
図 2は実施形態に係る不均質媒質の分析方法について説明するためのダイヤグ ラムである。本実施形態においては、上述のように、 まず、連続分光データ I (入 1) , I (人 2) , …, I (λη)、 u (λ 1) ,u 2) , …, u (λη) を求める (S 1) 。 得られたデ一夕から連立行列方程式 (連立方程式) をたてる (S2) 。 これについては下記本文中に示す式を用いる。 方程式で求いるパラメ 一夕は、 既知係数のデータベース (S3) 内のものを用いるか、 または測定計算 後、 既知係数データベース内の値を変更しながら求めることもあり得る。 最後に 最終的なパラメ一夕 (例えば、 ある特定物質の濃度) を決定する (S4) 。 図等 を用いて概略を説明すると以上の通りであるが、 以下実施の形態に係る不均質媒 質の光学的分析方法について述べる。
まず、 均一な媒質における一般的な光の吸収及び散乱現象について説明する。 一般に、媒質内部においては光の吸収及び散乱が起こる。以下の説明において、 μ.Ά, Us, x, t, Pは以下のものを示す。
(表 1) &:媒質の単位モル濃度当たりの吸収係数
j s:媒質の単位モル濃度当たりの散乱係数
X :光強度
t :光の侵入深さ
P :媒質の存在モル濃度 ―
吸収及び散乱が共存するとき、 両者は独立事象なので、 以下の微分方程式 (式 1) が良い近似として得られ、 その解が (式 2) に示される。
— = -(μα8)Ρχ (式 1ノ
at x = e-(^ s)Pt…… (式 2 ) また、 散乱現象には異方性が起こり得るので、 これを考慮するとき、 散乱係数 は通常 ^ではなく以下の方程式(式 3)で示される /s' を / sの代わりに用いる。 なお、 gは異方性係数で、 等方散乱のとき 0、 前方のみへの散乱の時 + 1、 後方 のみへの散乱のとき一 1である。 ' =〃 1— (式 3) 侵入深さ t、 媒質の吸収係数// a、 散乱係数〃 s及び媒質の存在モル濃度 (モル 濃度) Pのいずれか 3つが判明している状態で、 光強度 Xを測定すれば、 (式 2 ) から、 残りの 1つを特定することができる。
ところが、 上記は、 媒質が均一であると仮定してなされた物理量測定アルゴリ ズムであって、 不均質媒質における物理量の測定や分析には、 より正確なものが 必要である。 以下、 不均質媒質における物理量の測定や分析について説明する。 以下の説明においては、 媒質が不均質の場合を考える。 最も簡単な場合、 光の 進行方向に 2つの組織 X, Yが存在しているとする。 媒質が生体組織の場合、 X 組織は毛細血管の集合を、 Y組織は血管以外の組織 (脂肪や筋肉組織等) を示し ており、 これらは混在している。
組織 Xと組織 Yとの間には光の進行に伴う相互作用が生じ、 光の相互混合が発 生している。 光の散乱によって両組織相互間において光の再分配が起こる。 以下 の説明において、 x、 yは以下のものを示す。
(表 2 )
X :組織 Xにおける光強度 (光量)
y :組織 Yにおける光強度 (光量)
より正確には、 x, yは測定している光束プローブ全断面積について考えた場 合の、 そこに含まれる当該組織 X , Yの全断面積と単位深さの積で規定される体 積中に存在する光子数に相当する。 あるいは、 光子密度に X, Yそれそれの断面 積を掛けたものと考えても良い。 X , yの個々の値は後で消去されるので、 密度 や断面積をここで特定しておく必要はない。
両組織 X, Yにおける光強度 (光量) x、 yは、 以下の微分方程式 (式 4 ) に よって与えられる。 dx
= -ax + by
dt dy_
cx-dy
dt
(式 4)
なお、 係数 a, b, c, dは、 それそ
れ以下のものを示す。
(表 3) a : X組織における吸収及び散乱による損失係数
b : Y組織における散乱光のうち X組織に混入する成分の係数 c : X組織における散乱光のうち Y組織に混入する成分の係数 d : Y組織における吸収及び散乱による損失係数
ここで、 上記吸収、 散乱及び損失について説明しておく。 更に詳細に議論する ため、 上記の〃 a, 〃sの定義を改めて正確に記す。
説明において、 〃a, 〃ax, 〃sx, iay, sy, , Eヽ Px、 Pyは、 以下 のものを示す。
(表 4) :異方性係数 単位濃度当たり単位長当たりの基準吸収係数
単位濃度当たり単位長当たりの基準散乱係数
X組織における単位濃度当たり単位長当たり吸収係数
X組織における単位濃度当たり単位長当たり散乱係数
Y組織における単位濃度当たり単位長当たり吸収係数
sy Y組織における単位濃度当たり単位長当たり散乱係数
s :横方向の単位濃度当たり単位長当たり光散乱係数
E 散乱光が隣接組織に入るときの幾何学的な構造係数
P . : X組織内における目的物質の濃度
Py: Y組織内における目的物質の濃度 他組織への光損失係数は、 横方向光散乱係数// s" と構造係数 Eの積〃 s" X E で与えられる。 横方向散乱係数〃 s" は、 近似的に〃 s" = /sとなる。 また、 構造 係数 Eは、 光が X組織から Y組織へ、 Y組織から X組織へ流入する状況を規定す る。
吸収係数が散乱係数と共存する時、 光子の平均自由行程は吸収係数と散乱係数 との和に関係する。 すなわち、
Figure imgf000009_0001
μ
C oc sx sx
である。 もし散乱係数が大きいか、 一方の組織の断面積が小さいとき、 b (Y組織にお ける散乱光のうち X組織に混入する係数) =c (X組織における散乱光のうち Y 組織に混入する係数) である。
生体では、 吸収よりも散乱が非常に大きいので b = cが成立する。 また、 波長 に依存しない定数どなる。 これらのことは、 計算を簡略化するに有効である。 そ の理由は、 光が隣接組織に混入するためには、 もともと光子は境界面から光子平 均自由行程内に存在しなければならないが、 その平均自由行程は散乱物質濃度に 逆比例するからである。
上記係数〃 SX, ΜΆΪ, SJ, JL " , Ex, Ey, Px, Pyを用いると、 係数 a, b, c, dは、 以下の方程式 (式 5) で与えられる。 ここで、 b, cは、 それそ れ、 a, dとは独立して付加される点に注意が必要である。 なお、 添字 x yは、 それそれが X、 Yの各組織に関係していることを表す。
Figure imgf000010_0001
d = (μαγsy(l-g) + μΕγ )Py
…(式 5) なお、 上述のように目的媒質 (組織) 以外に余分な表皮層、 例えば皮膚があつ て、 これを通して目的媒質を計測しょうとする場合、 光が皮膚を透過した後、 内 部の組織に入射する位置を t = 0とする。 皮膚透過による光の減衰量を とす る。 また、 皮膚における吸収又は散乱を別途測定しておけば、 減衰量 ΚΊま特定 することができるので、 結果的な測定値を減衰量 K*の分だけ補正することがで ぎる。
減衰量 K*による補正は、必要な場合に毎回適用すれば良いことは自明である。 また、 後で示すように、 減衰量! ^を未知係数として処理することもできるから、 以下の関数表示ではこの補正については省略する。
以下の説明では、 t = 0における入射光量を基準にして、 測定光量を規格化し て示す。 上記連立微分方程式 (式 4 ) の一般解は、 A, B , C, Dを未知数とし て以下の (式 6 ) で与えられる。
X = Ae at + Be - β
y = Ce^ + De
…(式 6) この方程式を検討する際に、 各組織の断面が、 測定光プローブ断面より充分大 きければ、 X組織か Y組織かの均一相のみを選んで光照射できるから、 問題は単 純化できる。
しかしながら、 現実の各組識の断面積は、 プローブ断面積よりも充分に小さい 場合が多く、 実際に測定される光量 Iは、 常に光量 Xと光量 yの和となる。 換言 すれば、 実用的には光量 I ( = x + y ) のみが意味のある測定可能量である。 更に言えば、 このような場合には、 測定される光量 Iは、 X組織及び Y組織、 両者の影響を含み、 各組織間には相互作用がある。 従って、 散乱が強いものとす ると、 両組織間で光量の平均化が生じる。
ここで、 光入射時の初期条件として、 t = 0のとき、 一般に入射光量を以下の (式 7 ) のように規格化しておく。
I = x + V = 1 …(式 7) 深さ tにおける光量 Iは、 以下の (式 8) で表される。
I = x + y = A + C)e at + (B+ Ό)β …(式 8)
(式 7) による規格化によって、 (式 8) から直ちに次の (式 9) を導くこと ができる。
I = x + y= e +β …(式 9) すなわち、 出力光量 I ( = x + y)は、 ひ及び/?のみで規定することができる。 ここで示されるように、 均一相の場合の単一指数関数表示とは異なる。
ここで、 諸係数に関する定理を、 若干の演算によって導いておく。 ひ、 βヽ a + ?、 a— β、 cr ?は以下の式で与えられる。
(a + d) + ^a - d)2 + Abe
a =
2
Figure imgf000013_0001
a + β = a + d
Figure imgf000013_0002
αβ = ad— be
…(式 10) また、光の侵入深さ tを含まない有用な表現も定理として利用できる。係数 a、 dのうち他組織に逃亡しない成分を m、 nとすると、 m及び nは以下の(式 1 1 ) で与えられる。
m = a - c n = d— b
…(式 11) したがって、 以下の (式 1 2 ) も成立する。 t m2 + n2 + 2αβ - (a + 6)(m + n)
b - c = —— -^ - m—れ
…(式 12) b = cの時には、 m、 n、 ひ、 5は以下の関係式 (式 1 3 ) を満たす。 m2 + n2 + 2αβ - (a + βヽ(m + ή) = 0
…(式 13) ここで、 光量 Iが測定されると、 未知数はひ及び/?の 2つであるから、 式の数 が、 (式 9 ) を含めて 2つであれば、 ひ及び^を特定することができる。 この付 加的な式は、 例えば、 光の侵入深さ tを知ることによって得られる。
このように、 ひ及び/?が特定されると、 それから目的の不均質媒体に関する物 理量を特定することができる。 換言すれば、 上記の関係式から、 不均一媒質につ いてもすべての情報を入手したことになる。
この物理量としては、 ひ及び/?を構成する係数 a , b , c , dを規定する吸収 係数、 散乱係数、 構造係数及び目的物質の濃度 ( , 〃sx, 〃ay , 〃sy, Ex, Ey, Px, Py) 等が列挙される。 実験から得られる式数が上記の未知数の数以上にな れば、 種々の物理量を特定することが可能となる。
一般的には b≠cなので、 b, cを未定係数として扱い、 求める濃度 Px, Py にこれらを加えて連立方程式を解く。 未知数が多いので、 後述のように、 種々の 波長で測定を繰り返し、 その結果得られた式を連立させて最適化された解のセッ トを求めればよい。
本分析方法の特徴は、 不均一系の構造や相互作用などの性質は陽に表示される ことなく消去されるので、 b, cの値に依らず解を求められることである。 しか も数学的に近似を含まず、 厳密な解の表現を保持できる。 従って、 その不均一の 状態の如何なる場合にも、 それを考慮することなく解を導出できる。 すなわち、 本方法は、 光の進行方向に各組織の程度や断面積などが変動するような場合にも 適用可能である。 この理由は、 不均一系の構造や特徴 (b, c ) は、 何等の拘束 条件を受けないままで、 最終的に消去されるからである。
以上のように、 上記によれば、 それそれの組織固有の// a、 ^は単位モル濃度 あたりの吸収又は散乱係数の標準値であるから、 決定されたひ、 ?と前記諸定理 を組み合わせれば、 それそれの波長における未知数、 例えば Px, Pyを決定する ことができる。
方程式数を増やすために、 入射光の波長を変えて、 上記と同じ手法を繰り返せ ば、 所要の波長範囲における吸収スペクトルを得ることができるが、 こうして得 られた吸収スぺクトルは、 想定される成分が複数の時にはそれらの吸収係数の和 となっているので、 分離する必要がある。 このとき、 それそれの成分単独の吸収 スペクトルは通常文献等で知られているので、 それらを既知係数として、 多変数 の線形計画法により、 各成分濃度を計算により分離決定することができる。 実際の計測においては、 いろいろな手法がある。 例えば、 被測定試料の厚みを 数点変えて測定できる場合には、 透過出力光量を厚みの関数として表示し、 それ が 2つの指数関数の線形和であるようにひ、 ?を決定する。 この計算は他の未定 係数がないので容易である。
上述の未知数を決定する場合には、 未知数以上の数の方程式を得るために、 測 定条件を変えた測定が必要である。 その可変パラメ一夕の一つとしては例えば厚 み tがあるが、 厚み tが可変できないものもある。 そこで、 透過光量 Iを測る際 に、 厚み tを変えられない場合を考える。 このときは、 直接にひ、 ?を決定する ことはできないので、 全スペクトル領域の測定を行う。 こうして、 方程式の数を 増やすことができる。 まず、 各単独成分の単位モル当たりのスペクトルは既知で あるとする。 この場合、 各波長のデータについて、 これから各成分の存在量を決 定するために、 (式 9)及び前記諸定理 (例えば (式 10) ) で示される計算を 行い、 これらと組み合わせて用いられる最適化計算法によってひ、 ?を数値的に 収束させれば、 必ず解が得られる。
未知数がひ、 β tならば、 測定には最低 3波長が必要で、 望ましくは誤差を 減少させるために、 更に多くの波長を測定に用いる。 ひ、 ?が決定できれば、 そ れ以降の手法は前記と同様でよい。 勿論、 未知数としてひ、 の代わりに、 その 次段階で求めるべき Px及び Pyを直接用いてもよい。 複数物質を分離するために は、 波長測定点は更に多い方が良く、 行列計算を行うので、 その誤差を減らすた めには、 直接 Px, Pyを計算して、 計算の段階を減少させる方が好ましいからで める。
厚み tを変えることができない、 また特定の厚みと関係づけられない別の例と して、 反射法がある。 これは被検物質の内部に侵入した光が、 その内部の散乱に よって逆に入射面に戻ってくるので、 これを計測して内部の情報を解析しようと する方法である。 これを均一相に応用する場合には、 Kube lka— Munk (K-M) 法と呼ばれる方法が広く使われてきた。 しかしながら、 不均一相につ いては、 従来の K— M法は適用できないと考えられていた。 ここでは、 このよう な場合の計算法について説明する。
反射光、 すなわち、 戻り光の強度 (u) は、 規格化した形での係数を使って表 現すると、 以下の (式 14) で表される。
Figure imgf000017_0001
但し a + β 2
+
2αβ a + β
J 一
4
― 8Lad(a + d) - (a2 + 18ad + d2)
Figure imgf000017_0002
…(式 14) ここで、 Lは本来は平均自由工程を指すが、 K一 M法においては、 逆方向に戻 つてくる場合の規格化したときの理論解に相当すると仮定できる。
SKは、 逆方向 (後方)散乱係数であり、 〃SK二〃 s gと表示することができる。 本発明の場合には、 これは組織 X, Yに関して平均化された数字である。 この値 が判明しているときは既知係数として扱う。 この値が不明のときは、 後述の最適 化数値計算において、 未定係数として扱うこともできる。
この場合、 未知数がひ, β , /zSKならば、 それに応じて最低 3波長、 できれば 誤差を減らすために更に多くの波長の光で反射光の測定を行う。 勿論、 未知数と してひ、 3の代わりに、 その次段階で求めるべき Ρχ及び Pyを直接用いてもよい。 反射法では、 相互作用項を非線形表示で含む為、 最後までは解析的に解くこと ができない。 しかし、 既に説明したように、 b、 cは波長に無関係な定数である こと、 また全波長のスペクトルを測定し、 各波長について各単独成分スペクトル が既知であることを利用して、 各成分の配合比を未定係数として見なして数値計 算より解くことができる。 未定係数を含む多変数の線形計画法 (最小自乗法) は 公知であるから、 この条件で計算機により、 収束解を求めることができる。 上に例示したものは、 X、 Yの 2つの,組織が存在するときの扱いである。 この ときにはひ及び 5、 2つの媒介変数を使用すれば良いことを示した。 もし、 X Y Zの 3つの組織が存在するときは、 3変数の行列から出発し、 α、 β、 ァなどの 媒介変数を使用すれば良い。
また、 被分析目的物質が複数種含まれており、 そのスペクトルが同一波長で重 なるときは、 それそれを分離する必要がある。,これは上述の Ρχ又は Pyを複数種 が構成しているとして、 それそれの線形和が寄与しているのであるから、 それだ けの未知数及び未定係数が増えた分だけ測定波長の数を増やせば解くことができ る。 すなわち、 本方法では、 必ず数種 (最低 3種) の波長で、 好ましくは 1 0種 以上の波長で測定が同時になされる必要がある。
さらに次の応用形態についてのべる。 ひとつの組織に複数の目的物質が含まれ ている場合の、 別の解析方法に応用することも実用上重要である。 この例では X 組織に i物質と j物質が共存し、 Y組織には目的物質ではないが、 別の散乱物質 kが存在すると考える。 このとき各濃度を P i、 P j、 Pkとし、 //係数については それそれ、 i、 j、 kの添字で識別することとすれば、 (式 4 , 式 5 ) に相当す る式は次の (式 1 5 ) のようになる。
Figure imgf000018_0001
…(式 15) 簡単の為に、 ( a+〃 ) iを のように書くと、 上記方程式と演算を次の (式 1 6 ) のように縮約できる。 dx ,
—— = -αχ + by
dt
Figure imgf000019_0001
…(式 16) もし未知量は P i、 Pjであり、 未定係数は b、 cであるなら、 少なくとも 4種 の波長測定値を用いて解を求めることができる。
ただし表示式は長いので、 ここには記載しない。 もちろん、 さらには多くの波 長を用いて、 誤差を最小にすべく最適化計算法を適用することが望ましい。 すでに説明したように、 散乱が強いときや毛細血管などの場合には、 相互に散 乱する係数は等しいので、 これらを共通の eとすれば、 以下の (式 1 7 ) のよう に置くこともできる。 μ 、 P e
…(式 17) また簡単の為に、 i物質と j物質の総和が一定 (P。:) であり、 i物質の比を 飽和度 (S ) とすると、 Sは以下の (式 1 8 ) で与えられる。 p丄 i + Tp i j =p J- o
S
…(式 18) したがって、 上式は次の (式 19) のように見やすくなる。
Figure imgf000020_0001
dy
= οχ-μΐΡγ
dt
…(式 19) これを解く為に、 複数の波長で測定して演算すれば良いことは既に述べた。 こ こで、 状況を理解するための説明を加えておく。 上式と (式 9) とを組み合せて 近似展開すると、 以下の (式 20) のようになる。
x + y = (l/ 2) x exp[(-l/ 2){( . - μ^Ξ + μ] + } t χ [ΐ + (ί2 / 8) χ [ {( · -
Figure imgf000021_0001
…(式 20) この右辺は、 sを横軸にとって、原点を外した直線で近似される。このことは、 本案の手法が均一相における単純な指数関数とは異なっていることを端的に示す ものである。
K一 M法についても、 同様に、 複数の波長で uを測定し、 それらの式を組み合 わせて解くことができるが、 解の表示式は長いので、 ここに記載しない。
このように、 ひとつの組織に複数の物質が共存していても、 それに応じた方程 式を連立させて扱えば常に解を求めることができる。 上例では、 P i+ Ρ』= P。と いう関係がある場合を示したが、 これに限る必要はなく、 未知数を解く為に必要 な連立方程式を得る為に、 必要なだけの波長点において測定を行えばよい。
全波長域で誤差が最小となるような解を求めることは、 線形計画法の手段であ るが、 これによつて正確度は格段に向上する。 このとき、 相互作用項は消去され ているので、 相互散乱の波長依存性は誤差にならない。 測定の手間を省くための 別の手段例を述べる。
上記測定の場合、 一度だけ別の手段で比較標準を作っておいて利用することも 可能である。 こうすることで、 その後は同じ波長で測れば、 そのたびに Sの値の 変化を追跡することができる。
この方法の特徴は、 一度比較標準を決めておけば、 その後はこの値を記憶させ ておくことで、 毎回の測定は極めて簡単になるということである。 不均一組織の 性質は演算において消去されるからで、 本特許の特徴であり、 前記関数表示の原 理により得られたことである。 こうして若干の演算を付加するだけで、 均一の場 合と同様に目的の計算を達成することができる。
さらに、 別の応用について述べる。 これまで、 説明した方法は、 時間に対して 定常的な状態について適用された。 しかし本特許はこれに止まらず、 時間的に変 化するような場合についても応用されうるものである。 光量分布が平衡状態に達 するのは、 光が入射端から出射端まで走行する時間自体が多重散乱の影響を受け て単純な走行時間よりも長くなり、 通常の対象物の場合には、 マイクロ秒程度以 下である。 従って、 特に高速な場合とは高速燃焼反応、 爆発ないし破壊現象など の解析がこれに該当する。 また、 対象物内部が実質的に低速度であって、 光源自 体が変調光を出射する場合には、 すべての場合が適用の対象となる。
今、 (式 4) について時間 (て) 依存項に注目すれば、 以下の (式 2 1) が成 立する。 d^x , dx da 、 , dy
= -(a—— +—— x) + b^- dtdr dr θτ dr d^y dx , T dy dd 、
= c~ "一 (d^-+—y)
dtdr dr dて dr
…(式 21) 右辺カツコ内の第 2項は、吸収散乱係数または濃度などが変動する場合である。 b、 c項は、 既に述べたように、 ほとんど定数である。
ここで、 まず上記変調光の場合をとりあげる。 各物質物理量の時間的変化が遅 いとき、 d a dir、 3d/3てを無視すれば、 上記方程式は 3x/3r = x,、 dy/dr = y' と置いて、 以下の (式 22) で表わされ、 すでに述べた場合と 同様に解くことができる。 dx、
= -axy+by
dt
= cx,一 dy
dt
…(式 22) 変調光を使用するときには検出系において同期検波などの手段を適用して、 測 定感度を高めることができる利点があり、 本発明はこれらの応用にも適用される ものである。
次に、 高速反応などの場合について述べる。 簡単の為、 変動要素は aであると 考えると、 以下の (式 2 3 ) が成立する。
Figure imgf000023_0001
…(式 23) 一般には、摂動として扱うことができる。すなわち、基準式の解が得られれば、 それを初期値として、 (3a/3て) S X 5 d rを最適化するように繰り返し計 算を行うことができ、 求める反応パラメ一夕 SaZS rを決定する。
計算精度を高める為に、 必要によって波長スぺクトルデータを使用すれば良い ことは、 既に述べた。 ここに説明した解析方法は x、 yなど複数組織において、 組織の詳細な光学特 性の違い、 例えば屈折率の差があっても、 それらを陽に扱うことなく、 目的の解 に到達できるため、 実用に極めて有効である。 例えば、 この光学特性測定によつ て心臓脈動状況を抽出することができるので、 血液の循環に関する情報を得るこ とができる。 また有機合成工場において、 反応槽ないし配管中の流動液が不均質 の混液であっても、 その流動状況を監視することができる。 これらの技術も本特 許に含まれるものである。
具体実施例として、 生体における測定例を説明する。 例えば、 血中酸素濃度は 酸化型へモグロビンと還元型へモグロビンの濃度によって表される。 このほか血 液中の血糖、 赤血球、 コレステロール、 中性脂肪などの定量的濃度測定にも応用 できるので、 従来の採血による血液検査を代替しうるものである。 これら成分の 吸収スぺクトルは良く知られており、 可視領域から赤外領域にある。
これらの成分が血液中に存在する場合には、 その媒質中では吸収係数と散乱係数 とはそれそれ線形加算的に働くと考えて良い。
ここで、 現実の生体では、 血管とそれ以外の組織とが不均質な多相混合状態と して存在する。 この場合、 以下の 2点が問題となる。 すなわち、 散乱された光が 他の組織へ混入することと、 それを分離計測できたとしても定性的な検出にとど まり、 絶対値が不明確になることである。
この問題を解決する為、 従来パルスォキシメータのような別の手法を適用する ことが行われてきたが、 通常の分光計測だけでは絶対値を知ることは不可能であ つた。
ここでは光の透過 (または反射) のみによって、 問題を解決する新しい実施例 を示す。 上記の (式 4 ) において、 それそれ X組織は血管内血液部分、 Y組織は それ以外の組織部分であって、 x、 yはそれそれに含まれる光量とする。
組織 Xと組織 Yの間には、 拡散その他による光の授受が発生する。 一方、 媒質 が不均一である場合の正確な構造や光の授受の関数形は、 計算仮定で消去される ため、 正確な記述を必要としないことが特徴である。
本実施例の場合、 皮膚などの別の表面層を介して、 光を入射させることになる ので、 皮膚層における吸収係数などを考慮しなおす必要がある。 これは予め測定 部位について皮膚層の波長別減衰量 Γも測定又は予想しておき、既知係数として、 これによる損失を別途補正しておく。 あるいは未定係数として扱うことで、 この 計算を回避することができる。
計測光は、 光源から光ファイバ一および波長フィルターを介して、 生体内部に むけて出射する。 受光ファイバ一を出射ファイバ一の周辺に多数配置し、 反射出 力をまとめて測定するようになされる。 これは上記 X組織と y組織からの出力の 和が測定出来るように、 例えば 1 c m2程度の広がった面積を受光できるように なされる。
最初の測定では光を白板に当てて、 その反射を受光し、 規格化光量の基準値を 決めておく。 必要に応じて光を一定の周期で断続し、 受光側を同期検波すること により、 信号対雑音比を向上させることもできる。
もし、 必要があれば、 最初の場合だけは別の方法で酸素飽和度などを実測し、 以後の比較標準として使用することにより、 演算を簡略化することもできる。 し かし必須ではない。
また実際の測定においては、 測定プローブを当てる部位は、 所要の複数波長の 測定について同一であることが望ましい。 上記の相互作用項が共通であることが 保証されるので、 演算精度などが高くなる。 しかし必須ではない。 各波長ごとに 相互作用項を消去しておけるからである。
出力光量を波長別に測定し、 結果を規格化した数字としてデータリスト化して 記憶装置に格納しておく。 波長測定は複数波長とおいて行うが正確な測定の為に は、 波長範囲は例えば 4 5 0〜1 5 0 0 nm、 すなわち可視域と近赤外域にわたつ て行うことが正確な測定の為には好ましい。
上記のようにして、 波長範囲の吸収スペクトルを取得し、 複数の測定値から、 上記の手法によって、 各波長での濃度 Px, P yを決定するには 酸化へモグロビ ン、 ヘモグロビン、 チトクローム、 その他既知の吸収スペクトルを基準にして、 最小自乗法により測定スぺクトルを割り付けて濃度 P x, Pyを得る。
一つの吸収スぺクトルビークが単一の吸収物質によることが明らかな場合には、 求める吸収係数の標準値自体が既知なので、 濃度を求めることができるのである が、一般にはある波長での値は、複数成分の吸収の和である可能性が大きいので、 それらの分離も行う必要がある。 前述のように、 測定データのスペクトルプロフ アイルから、 各成分の分離ができるので、 その後にそれそれの波長において、 各 ビーク値と上記予定されるべき吸収係数とを比較する。
その為には、 以下のように計算を進める。 これらの光吸収物のスペクトルは予 め想定できる。たとえば人体の場合、 チトクローム、 ヘモグロビンなどの還元型、 酸化型の組織などである。 これらの単一相の時の光吸収係数、 散乱係数は既知で あるから、 これをデータベース化して記憶装置に格納しておき、 これを基準デ一 夕として、 線形計画法の行列要素を決定し、 以後の計算に使用する。
一般的な手法としては、 非線形関数の最適化手法を用いる。 すなわち、 未知数 の偏差ベクトルと、 各波長 え における測定値のベクトルとの間に Gauss— Newtonの関係式が成立する。 初期値から真値への偏差方程式 (式 2 4 ) は以下で 与えられる。
Figure imgf000026_0001
あるいは
Figure imgf000026_0002
…(式 24) ここで、 zは波長別測定光量のベクトル、 Δ ρは求めるべき未知数の濃度のベ クトルである。 また、 Jは未知数の行、 測定点の列をもつヤコビ行列である。 Z の関数形に従って、 それそれの組合せにおいて微係数を計算しておく。 逆行列を 作るため、 転置行列 J tを用いれば、 J = ( J t J ) —1 J 1となって、 新しい未 知数の偏差を計算できるので、 真値に向かって、 逐次近似を進めてゆくことがで ぎる。
このとき、 透過型にしても K— M方法においても、 光量の解析的表示がなされ ているため、ヤコビ行列の各要素は、それそれのべクトル間の微分係数であるが、 全て解析的に扱えるので、 各行列要素の微分要素もまた解析的に表示しておくこ とができ、 計算が可能である。 これは本方法の大きな特徴である。
各組織内では、 各成分の吸収が線形和をなすと考えて解析できる。 このとき、
X Y各組織間の相互散乱については、 必要によって未定係数として処理する。 得られた結果は、 各組織において、 構成物質の吸収係数の線形和であるから、 続いて線形の計画法によって解くことができる。 このときも全測定波長について 最小自乗法を適用するほうが、 精度は高くなる。
このように、 必要に応じて多数の測定波長値から多数の連立方程式を立てるこ とができる為、 未知数よりも多い連立方程式を用意できるので、 未定係数があつ ても処理できるのである。
それぞれの波長で各組識について吸収係数が得られた後は、 個別の吸収スぺク トルが既知であるから、 これを標準波形データとして、 各成分濃度測定値と一致 させるように、 各成分比を探索するように線形計画法を適用する。 これらの計算 には逆行列を解いて最適化するために、 公知の数値計算プログラムを計算機に搭 載して計算を行わせれば良い。 このときの逆行列計算には、 前記のように行数と 列数とが一般に一致しないので、 転置行列と組み合わせる必要がある。
このとき計算精度を高める為、 バックグランドをも未定係数に含めて考慮する と良い。 計算誤差として残る部分は、 迷光と光散乱によるもので、 一般には波長 に対して単調に変化する。 特に、 主たる組成については単一相の場合、 媒質によ つては一般に既知であるから、 バックグラウンドの決定と差引きは容易である。 上記のそれらを拘束条件として、 多変数の非線形最適化法によって各成分への 成分分析を行い、 次に目的成分について未知数を求めるべく、 最適解を近似収束 させることができる。このとき出発値として、ほぼ予定される tの値から出発し、 高速な収束をさせることもできる。
本理論では、 侵入深さ tや相互作用 b , c等のパラメ一夕を含むか、 これが予 め決められない場合について注意しておく。 たとえば透過厚み tと言っても被測 定物の光入射点から離れた位置ではあるが、 光入射面と同じ面から光出射させ測 定する場合は、 主光線経路は直線的ではなく著しく屈曲しており、 代表的な t値 を決めることができない。 このようなとき、 あらかじめ平均的な t値を仮定する 手法は、 減衰が経路長に対して指数関数的であり、 光線経路も複雑であり、 特に 不均質構造の場合にはモンテカルロ法などによる光線経路決定自体も不確実とな るため、 大きな誤差を招くので使用すべきでない。
このような場合にはパラメ一夕を未定係数として扱うことで、 もっとも確から しい 、 ?を決定することができる。 さらに、 前節で述べたように、 実測値のス ぺクトルから予想される各成分への分解ができることを利用して、 最も確からし い各成分値と一致するように、 P x、 P yを定めることができる。
また、 本理論が解析的な表示を持つことを利用する計算も可能である。 多波長 点において、 Zの表示式と前記諸定理とを組み合わせて相互作用項 b、 cを消去 し、 (ひ、 β ) ないし (a、 d ) について解く。 これらは、 各組織において、 構 成物質の吸収係数の線形和であるから、 線形の計画法にによって解くことができ る。このときも全測定波長について最小自乗法を適用するほうが精度が高くなる。 以上説明したように、 本願発明の手法は光量をひ、 をべき指数とする 2つの 指数関数の線形結合及びそれらの指数から誘導される関数で記述できると考え、 これを組合わせた解析的表現を用いるところに本質がある。 この表現を介して、 不均一かつ強い散乱を示す媒質の光学常数を表現でき、 かつ不均一に関係する構 造などの不確定要因を、 陽に扱わなくてすむ利点がある。
本発明の基本式を適用して数値計算するとき、 これに吸収係数散乱係数など既 知の係数をあてはめること、 および未定係数を仮定して解くことなどは計算上の 便宜により適当におこないうるものであって、 線形計画法などによって最適値を 導出することも、 数学上の公知の手段である。
以上、 説明したように不均質媒質において、 その不均一状態を陽に取り扱うこ となく、 計測したり、 解析できることは、 実用上、 重要な価値を有しており、 そ の例は既に若干述べた。
生体、 植物、 葉、 果実、 木材、 粉体、 固液混合物、 また、 乳液、 汚水、 海水、 霧煙中の物体は、 不均一性と同時に、 強い散乱特性を有しており、 実用上重要な これらの光計測には誤差が多く発生する。 これらの不均一な内部組織構造は種々 雑多な複雑な状況を示すので、 これらの状況をいちいち特定しながら計測するこ とは、 ほとんど不可能である。 本発明の手法は、 これら複雑な要素を陽に扱わず に結果に到達する数学的手法を提案するものである。
その本質は、 2つの指数関数の線形結合によって解が表示されることに基づい ており、 不均一性を考慮しながら解析的に解を求められることの発見にある。 そ の手法を具体的に適用するさいには、 透過光測定と反射光測定とでは詳細な数式 は異なるが、 基本的に解析表示媒介として、 必要な値、 例えば P x、 P yなど求 めることができる。
この際、 相互作用項を未定係数として取り込むことの仮定を必要とするが、 複 数波長で測定することにより、 解を求めることができる。
本方法は完全に数学的に厳密性を保証された原理に基づいているので、 複雑な 問題を扱うのに適している。 従って、 上記に例示した不均質で強い散乱を伴う物 質の計測には、 本発明の方法は適している。
以上、 説明した方法は、 不均一構造の故に、 光量が指数関数の和となることを 利用するものである。 上述した従来公知例では、 均一相について測定結果を修正 することを主張するが、 本方法では、 不均一相の場合、 前記の組合わせ方程式か ら正しい値を算出できることを、 主張するものである。
以上説明したように、 上記方法は、 不均質媒質中に光を入射させ、 不均質媒質 から出射される光の強度を検出し、 検出された光の強度を、 不均質媒質の物理量 に依存すると共に、 eを底とする侵入深さの指数関数の線形和で表される関数及 び又はこの関数から導出される関係式に基づいて不均質媒質の物理量を決定する ことを特徴とする。 この場合、 不均質媒質の光学的分析を正確に行うことができ る。
上記方法によれば、 不均質媒質が不均質または混合物のような多相又は多相分 離構造であるとき、 これに適用して、 各組織中の各相成分を分離して独立に算出 することができる。
また、 不均質媒質が多数区分組織から成る場合、 各組織種類数に応じた媒介要 素数を含む連立方程式から縮約し、 組織 X、 Yが 2つの場合の上記分析手法にこ れを適用することができる。
以上、 説明したように、 上記実施の形態に係る方法は、 媒質を透過又は反射す る光の強度から媒質の物理量を決定する光学的分析方法において、 特に前記媒質 とは、 異なる光学特性を有する複数の組織を含む吸収及び散乱性の媒質であり、 媒質に既知強度の光を入射する第 1工程と、 媒質から出射される光強度を計測す る第 2工程と、 これらの光強度数値をする第 3工程と、 該数値を組み合わた演算 によって不均質光散乱の影響を消去又は回避して演算に必要な係数を導出する第 4工程と、 これらによって求められる係数を記憶する第 5工程と、 複数波長にお ける光強度計測値を用いて当該波長範囲内における最適化を行うための線形代数 演算を行う第 6工程とを備え、 演算に用いる前記関数は、 各組織相互間の光散乱 による光量再分配を記述する連立微分方程式の解として定義される関数であって、 不均質媒質の物理量に依存し eを底とする光の侵入深さの指数関数の線形和及び これから導かれる関数で記述されることを特徴とする。 本方法によれば、 不均質 媒質の物理量を正確に分析することができる。
また、 上記方法においては、 前記出射される光が前記不均質媒質からの透過光 であるとき、 前記指数関数は、 前記強度を I、 前記侵入深さを t、 前記指数関数 のべき指数を α及び^などとするとき、 1 = ( e—at+ e t) / 2のように、 複 数の指数関数の線形和で示されることが好ましい。
前記方法においては、 前記出射される光は、 前記不均質媒質によって反射され た反射光であり、 前記反射光の光量に関する関数は 2つの組織から成り立つとき に、 (ひ + ^ ) /ひ ?及び 1 Zひ ?の線形和であることが好ましい。
前記物理量は前記不均質媒質の吸収係数、 前記不均質媒質の散乱係数、 又は前 記不均質媒質中の所定成分の濃度であることが好ましい。
前記光量再分配を規定する相互散乱係数は、 多くの場合に等しいことを利用し て、 演算を容易にする方法を用いることを含むことが好ましい。
産業上の利用可能性
本発明は、 不均質媒質の光学的分析方法に利用することができる。

Claims

言青求の範囲
1 . 媒質を透過又は反射する光の強度から媒質の物理量を決定する光学的 分析方法において、 特に前記媒質とは、 異なる光学特性を有する複数の組織を含 む吸収及び散乱性の媒質であり、 媒質に既知強度の光を入射する第 1工程と、 媒 質から出射される光強度を計測する第 2工程と、 これらの光強度数値をする第 3 工程と、 該数値を組み合わた演算によって不均質光散乱の影響を消去又は回避し て演算に必要な係数を導出する第 4工程と、 これらによって求められる係数を記 憶する第 5工程と、 複数波長における光強度計測値を用いて当該波長範囲内にお ける最適化を行うための線形代数演算を行う第 6工程とを備え、 演算に用いる前 記関数は、 各組織相互間の光散乱による光量再分配を記述する連立微分方程式の 解として定義される関数であって、 不均質媒質の物理量に依存し eを底とする光 の侵入深さの指数関数の線形和及びこれから導かれる関数で記述されることを特 徴とする不均質媒質の光学的分析方法。
2 . 前記出射される光が前記不均質媒質からの透過光であるとき、 前記指 数関数は、
前記強度を I、 前記侵入深さを t、 前記指数関数のべき指数をひ及び ?などと するとき、
-at
e + e —β
I =
2
のように、 複数の指数関数の線形和で示されることを特徴とする請求の範囲第 1 項に記載の不均質媒質の光学的分析方法。
3 . 前記出射される光は、 前記不均質媒質によって反射された反射光であ り、前記反射光の光量に関する関数は 2つの組織から成り立つときに、 (ひ + ? ) /ひ^及び 1 /ひ ?の線形和であることを特徴とする請求の範囲第 1項に記載の 不均質媒質の光学的分析方法。
4 . 前記物理量は前記不均質媒質の吸収係数、 前記不均質媒質の散乱係 数、 又は前記不均質媒質中の所定成分の濃度であることを特徴とする請求の範囲 第 1項に記載の不均質媒質の光学的分析方法。
5 . 前記光量再分配を規定する相互散乱係数は、 多くの場合に等しいこ とを利用して、 演算を容易にする方法を用いることを含むことを特徴とする請求 の範囲第 1項に記載の不均質媒質の光学的分析方法。
PCT/JP2000/002638 1999-04-21 2000-04-21 Procede d'analyse optique de milieu non homogene WO2000065330A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU38422/00A AU3842200A (en) 1999-04-21 2000-04-21 Method for optically analyzing inhomogeneous medium
EP00917419A EP1182444B1 (en) 1999-04-21 2000-04-21 Method for optically analyzing an inhomogeneous medium
DE60035983T DE60035983T2 (de) 1999-04-21 2000-04-21 Verfahren zur optischen analyse eines inhomogenen mediums
US09/982,022 US6643020B2 (en) 1999-04-21 2001-10-19 Optical analysis method for inhomogeneous turbid media

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11370899 1999-04-21
JP11/113708 1999-04-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/982,022 Continuation-In-Part US6643020B2 (en) 1999-04-21 2001-10-19 Optical analysis method for inhomogeneous turbid media

Publications (1)

Publication Number Publication Date
WO2000065330A1 true WO2000065330A1 (fr) 2000-11-02

Family

ID=14619160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002638 WO2000065330A1 (fr) 1999-04-21 2000-04-21 Procede d'analyse optique de milieu non homogene

Country Status (5)

Country Link
US (1) US6643020B2 (ja)
EP (1) EP1182444B1 (ja)
AU (1) AU3842200A (ja)
DE (1) DE60035983T2 (ja)
WO (1) WO2000065330A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056307A1 (fr) * 2001-12-26 2003-07-10 Hamamatsu Photonics K.K. Technique d'analyse optique pour milieu heterogene
JP2003202287A (ja) * 2002-01-08 2003-07-18 Hamamatsu Photonics Kk 散乱吸収体測定方法及び装置
JP2008157832A (ja) * 2006-12-26 2008-07-10 National Institute Of Advanced Industrial & Technology 生体光計測装置
JP2010266377A (ja) * 2009-05-15 2010-11-25 Yoshihiko Mizushima 不均一物質の光分析方法
WO2014087825A1 (ja) * 2012-12-06 2014-06-12 国立大学法人北海道大学 非侵襲型生体脂質濃度計測器、非侵襲型生体脂質代謝機能計測器、非侵襲による生体脂質濃度計測方法および非侵襲による生体脂質代謝機能検査方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119202A1 (en) * 2006-04-18 2007-10-25 Koninklijke Philips Electronics N.V. Optical measurement device
JP4858617B2 (ja) * 2007-11-29 2012-01-18 株式会社島津製作所 断層撮影装置
CN101292875B (zh) * 2008-06-06 2010-07-14 天津市先石光学技术有限公司 利用基准波长测量成分浓度的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343625A (ja) * 1993-06-10 1994-12-20 Hamamatsu Photonics Kk 散乱媒質内吸光物質の濃度測定方法および装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972331A (en) 1989-02-06 1990-11-20 Nim, Inc. Phase modulated spectrophotometry
JP2539707B2 (ja) 1991-03-27 1996-10-02 大塚電子株式会社 吸光スペクトルの補正方法およびその方法を用いた光拡散物質の分光測定装置
JP3577335B2 (ja) * 1993-06-02 2004-10-13 浜松ホトニクス株式会社 散乱吸収体計測方法及び装置
JP3844815B2 (ja) * 1996-08-30 2006-11-15 浜松ホトニクス株式会社 散乱体の吸収情報計測方法及び装置
JP3887486B2 (ja) * 1998-05-26 2007-02-28 浜松ホトニクス株式会社 散乱吸収体の内部特性分布の計測方法及び装置
DE19831424C2 (de) 1998-07-14 2000-12-28 Mbr Gmbh Spektroskopisches Verfahren zur Bestimmung der Konzentration eines in einem streuenden Medium verteilten Stoffes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343625A (ja) * 1993-06-10 1994-12-20 Hamamatsu Photonics Kk 散乱媒質内吸光物質の濃度測定方法および装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1182444A4 *
UEDA Y. ET AL.: "Progress in biomedical optics", THE INTERNATIONAL BIOMEDICAL OPTICS SOCIETY, vol. 2979, 1997, pages 795 - 806, XP002930761 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056307A1 (fr) * 2001-12-26 2003-07-10 Hamamatsu Photonics K.K. Technique d'analyse optique pour milieu heterogene
EP1460412A1 (en) * 2001-12-26 2004-09-22 Hamamatsu Photonics K. K. Optical analysis method for heterogeneous medium
EP1460412A4 (en) * 2001-12-26 2009-12-02 Hamamatsu Photonics Kk OPTICAL ANALYSIS METHOD FOR HETEROGENE MEDIUM
JP2003202287A (ja) * 2002-01-08 2003-07-18 Hamamatsu Photonics Kk 散乱吸収体測定方法及び装置
JP2008157832A (ja) * 2006-12-26 2008-07-10 National Institute Of Advanced Industrial & Technology 生体光計測装置
JP2010266377A (ja) * 2009-05-15 2010-11-25 Yoshihiko Mizushima 不均一物質の光分析方法
WO2014087825A1 (ja) * 2012-12-06 2014-06-12 国立大学法人北海道大学 非侵襲型生体脂質濃度計測器、非侵襲型生体脂質代謝機能計測器、非侵襲による生体脂質濃度計測方法および非侵襲による生体脂質代謝機能検査方法
JPWO2014087825A1 (ja) * 2012-12-06 2017-01-05 国立大学法人北海道大学 非侵襲型生体脂質濃度計測器、非侵襲型生体脂質代謝機能計測器、非侵襲による生体脂質濃度計測方法および非侵襲による生体脂質代謝機能検査方法
US10188328B2 (en) 2012-12-06 2019-01-29 National University Corporation Hokkaido University Non-invasive biolipid concentration meter, non-invasive biolipid metabolism measuring device, non-invasive method for measuring biolipid concentration, and non-invasive method for examining biolipid metabolism
US11331012B2 (en) 2012-12-06 2022-05-17 Medical Photonics Co., Ltd. Non-invasive biolipid concentration meter, non-invasive biolipid metabolism measuring device, non-invasive method for measuring biolipid concentration, and non-invasive method for examining biolipid metabolism

Also Published As

Publication number Publication date
EP1182444A4 (en) 2004-06-23
US6643020B2 (en) 2003-11-04
AU3842200A (en) 2000-11-10
EP1182444B1 (en) 2007-08-15
EP1182444A1 (en) 2002-02-27
DE60035983T2 (de) 2008-05-15
DE60035983D1 (de) 2007-09-27
US20020082504A1 (en) 2002-06-27

Similar Documents

Publication Publication Date Title
US11274967B2 (en) Method and apparatus for quantifying solutions comprised of multiple analytes
Matousek et al. Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy
CN104958075B (zh) 使用拉曼光谱非侵入性测量皮肤厚度和血糖浓度及其校准方法
CN105510238B (zh) 多位置漫射光谱数据的处理、建模、预测方法和处理装置
Xu et al. A calibration method free of optimum factor number selection for automated multivariate analysis. Experimental and theoretical study
Zhang et al. Discussion on the validity of NIR spectral data in non-invasive blood glucose sensing
Shih et al. Intrinsic Raman spectroscopy for quantitative biological spectroscopy part I: theory and simulations
Cécillon et al. Spectral fingerprinting of soil organic matter composition
Bricklemyer et al. Improved intact soil-core carbon determination applying regression shrinkage and variable selection techniques to complete spectrum laser-induced breakdown spectroscopy (LIBS)
WO2000065330A1 (fr) Procede d'analyse optique de milieu non homogene
Vogt et al. A UV spectroscopic method for monitoring aromatic hydrocarbons dissolved in water
Tian et al. WSPXY combined with BP-ANN method for hemoglobin determination based on near-infrared spectroscopy
Yang et al. Space-enhanced time-domain diffuse optics for determination of tissue optical properties in two-layered structures
Cano-Trujillo et al. Differentiation of blood and environmental interfering stains on substrates by Chemometrics-Assisted ATR FTIR spectroscopy
Mauricio-Iglesias et al. Application of FTIR and Raman microspectroscopy to the study of food/packaging interactions
Li et al. Reagent-free simultaneous determination of glucose and cholesterol in whole blood by FTIR-ATR
US9823185B1 (en) NDIR reflection sampling in liquids
Lübbers et al. Absolute reflection photometry at organ surfaces
US9726601B1 (en) NDIR interference control in liquids
JP4084307B2 (ja) 不均質媒質の光学的分析方法
Pereira et al. A flow system for generation of concentration perturbation in two-dimensional correlation near-infrared spectroscopy: application to variable selection in multivariate calibration
Yao et al. Wavelength selection method based on absorbance value optimization to near-infrared spectroscopic analysis
Lin et al. An improved system for noninvasive detection of lymphocytes by dynamic spectroscopy
Luo et al. Reducing collinearity by reforming spectral lines with two-dimensional variable selection method
Li et al. A combined multi-pathlength and wavelength optimization method for accurate detection of platelet count

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 614019

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09982022

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000917419

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2000917419

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000917419

Country of ref document: EP