WO2000065239A1 - Method and apparatus for controlling construction machine - Google Patents

Method and apparatus for controlling construction machine Download PDF

Info

Publication number
WO2000065239A1
WO2000065239A1 PCT/JP2000/002441 JP0002441W WO0065239A1 WO 2000065239 A1 WO2000065239 A1 WO 2000065239A1 JP 0002441 W JP0002441 W JP 0002441W WO 0065239 A1 WO0065239 A1 WO 0065239A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
hydraulic
hydraulic oil
stick
pump
Prior art date
Application number
PCT/JP2000/002441
Other languages
French (fr)
Japanese (ja)
Inventor
Kimimasa Onda
Original Assignee
Shin Caterpillar Mitsubishi Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Caterpillar Mitsubishi Ltd. filed Critical Shin Caterpillar Mitsubishi Ltd.
Publication of WO2000065239A1 publication Critical patent/WO2000065239A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5156Pressure control characterised by the connections of the pressure control means in the circuit being connected to a return line and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/55Pressure control for limiting a pressure up to a maximum pressure, e.g. by using a pressure relief valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups

Definitions

  • the present invention relates to a control device and a control method for a construction machine, which control the operation of a hydraulic machine such as a boom cylinder and a stick cylinder in the construction machine.
  • a construction machine such as a hydraulic excavator includes an upper rotating body 102, a lower traveling body 100, and a working device 118 as shown in FIG.
  • the undercarriage 100 has a right track 100R and a left track 100L that can be driven independently of each other, while the upper revolving structure 102 has a lower track 100 On the other hand, it is provided so as to be pivotable in a horizontal plane.
  • the working device 118 mainly includes a boom 103, a stick 104, a bucket 108, and the like, and the boom 103 rotates with respect to the upper rotating body 102. It is pivoted as much as possible.
  • a stick 104 is connected to the tip of the boom 103 so as to be rotatable in the same vertical plane.
  • a boom drive hydraulic cylinder (boom cylinder, hydraulic actuator) 105 for driving the boom 103 is provided between the upper swing body 102 and the boom 103.
  • a hydraulic cylinder (stick cylinder, hydraulic actuator) 106 for driving the stick 104 is provided between the boom 103 and the stick 104.
  • a bucket driving hydraulic cylinder (bucket) for driving the bucket 108. Cylinders and hydraulic actuators) 107 are provided.
  • Each of the cylinders 105 to 107 described above includes a hydraulic pump driven by an engine (mainly a diesel engine), a control valve for a boom, a control valve for a stick, a control valve for a bucket, and the like.
  • a hydraulic circuit (not shown) having a plurality of control valves is connected, and hydraulic oil of a predetermined hydraulic pressure is supplied from a hydraulic pump via each control valve, and according to the hydraulic pressure supplied in this manner. It is designed to be driven.
  • the boom 103 is in the directions a and b in the figure
  • the stick 104 is in the directions c and d in the figure
  • the bracket 107 is in the direction e in the figure.
  • f is rotatable.
  • the rotation of the boom 103 in the direction b in the figure is called boom down
  • the rotation of the stick 104 in the direction d in the figure is called stick-in.
  • the operating room 101 has left and right levers as operating members for controlling the operation of the hydraulic excavator (running, turning, boom turning, stick turning, and bucket turning). , Left pedal, right pedal, etc. are provided.
  • each control valve of the hydraulic circuit is controlled, and each cylinder 105 to 107 is driven.
  • 03, stick 104 and bucket 108 can be rotated.
  • a pilot hydraulic circuit is provided to control each control valve.
  • the pilot hydraulic pressure is applied to the boom through the pilot oil passage.
  • Control valve ⁇ Acts on the stick control valve to drive the boom control valve and the stick control valve to the required positions.
  • the boom drive hydraulic cylinder 1 0 5 Supply and discharge of hydraulic oil to and from the hydraulic cylinders 106 are controlled, and these cylinders 105 and 106 are driven to expand and contract to the required length.
  • the excavation work and the like are performed by driving the working devices 1 18 such as the booms 103 and the sticks 104 by driving the cylinders 105 to 107 to expand and contract. Of various operations.
  • the stick driving hydraulic cylinder 106 may be extended.
  • the pilot oil pressure is applied to the stick control valve through the pilot oil passage.
  • the spool position of the stick control valve becomes the stick lowered position, and the hydraulic oil from the hydraulic pump is supplied to one chamber of the stick driving hydraulic cylinder 106 through the oil passage.
  • the hydraulic oil in the other room of the stick driving hydraulic cylinder 106 is discharged to the tank through the oil passage.
  • the stick driving hydraulic cylinder 106 is extended, and the stick 104 is rotated downward as shown by the arrow d in FIG.
  • a throttle is interposed in the oil passage between the stick driving hydraulic cylinder 106 and the reservoir tank in order to prevent the stick driving hydraulic cylinder 106 from dropping sharply. Hydraulic oil discharged from the hydraulic cylinder 106 is prevented from being discharged to the reservoir tank more than necessary.
  • the diameter of these throttles is particularly low when the engine speed is low and the pump discharge flow rate is low, so that each cylinder communicates with the reservoir tank so that hydraulic oil is not excessively discharged from the cylinders 105 to 107.
  • the opening area of the oil passage (hydraulic oil discharge passage) is set to be small.
  • the stick drive hydraulic cylinder 106 and the reservoir tank When the stick drive hydraulic cylinder 106 is lowered using gravity when stick-in operation is performed, the diameter of the throttle interposed in the oil passage between The back pressure acting to push back the hesitic hydraulic cylinder 106 in the direction opposite to the direction of gravity drop of the cylinder 106 is about 40 kgf / under the specified reference load (load) condition. It is set to be about cm 2 .
  • a predetermined pressure (about 40 kgf Z cm 2 ) is applied to the stick drive hydraulic cylinder 106.
  • the oil passage between the hydraulic cylinder 106 for driving the stick and the reservoir tank increases.
  • back pressure (approximately 145 kgf Z cm 2 ) acts on the hydraulic cylinder 106 for the stick drive, causing the hydraulic cylinder 106 for the stick drive to gravity.
  • extra pressure from the hydraulic pump (pump discharge pressure) corresponding to the back pressure shown in the following equation is required.
  • Pressure from hydraulic pump (actual back pressure-predetermined pressure) X cylinder area ratio This is the same for the boom driving hydraulic cylinder 105 and the bucket driving hydraulic cylinder 107.
  • the present invention has been made in view of such a problem, and aims to improve the working efficiency at the time of controlling the self-weight drop of the hydraulic actuator, reduce power loss, improve fuel efficiency, reduce heat loss, and improve cooling performance. It is an object of the present invention to provide a control device and a control method for a construction machine, which can be improved. Disclosure of the invention
  • the control device for a construction machine of the present invention is driven by an operating member operated by an operator, a hydraulic pump driven by an engine to discharge hydraulic oil in a tank, and a hydraulic oil discharged by a hydraulic pump.
  • a control that controls the flow rate of hydraulic oil that is interposed in the hydraulic oil discharge passage, the hydraulic oil discharge passage that discharges hydraulic oil from the hydraulic oil pump to the tank, and the hydraulic oil discharge passage.
  • Detects valve and engine speed An engine speed sensor; and control means for controlling a control valve to adjust an opening area of the hydraulic oil discharge passage based on an operation amount of an operation member, wherein the control means is detected by the engine speed sensor.
  • the control valve is controlled in consideration of the engine speed.
  • a hydraulic oil supply passage for supplying hydraulic oil from the hydraulic pump to the hydraulic actuator is provided, and the opening area of the hydraulic oil discharge passage is detected by the engine rotation speed sensor with the maximum operation amount of the operating member. It is preferable that a setting is made such that when the engine rotation speed is at a maximum, a hydraulic oil having a flow rate corresponding to the maximum supply flow rate of the hydraulic oil supplied through the hydraulic oil supply passage is discharged through the hydraulic oil discharge passage.
  • control means may be configured to control the control valve so that the opening area of the hydraulic oil discharge passage decreases as the engine rotation speed detected by the engine rotation speed sensor decreases.
  • control means may be configured to correct the control amount for the control valve by a correction coefficient that decreases as the engine speed decreases.
  • control means may be configured to set the control amount of the control valve such that the opening area of the hydraulic oil discharge passage changes according to the engine speed.
  • a bypass passage is provided for returning hydraulic oil not supplied to the hydraulic actuator to the tank via the control valve to the tank, and the control valve is interposed in the bypass passage to adjust the opening area of the bypass passage.
  • the control means sets a basic tilt angle control amount for controlling a basic tilt angle control amount for controlling the discharge flow rate from the hydraulic pump based on a characteristic substantially inversely proportional to the flow rate of the hydraulic oil in the bypass passage.
  • a tilt angle control amount correction means for correcting the basic tilt angle control amount set by the basic tilt angle control amount setting means so that the discharge flow rate from the hydraulic pump is maximized. Is preferred.
  • the construction machine control method of the present invention includes an operation member operated by an operator, a hydraulic pump driven by an engine to discharge hydraulic oil in a tank, and a hydraulic pump discharged by a hydraulic pump.
  • Hydraulic oil pump a hydraulic oil discharge passage that discharges hydraulic oil from the hydraulic oil pump to the tank, and a hydraulic oil discharge passage that is interposed in the hydraulic oil discharge passage and controls the flow rate of hydraulic oil that is discharged through the hydraulic oil discharge passage.
  • a construction valve comprising: a control valve; an engine speed sensor for detecting an engine speed; and control means for controlling the control valve to adjust an opening area of the hydraulic oil discharge passage based on an operation amount of an operation member.
  • a control method comprising: a detection step for detecting an engine speed by an engine speed sensor; and an engine speed detected in the detection step. And a control step of controlling the control valve by the control means.
  • the hydraulic oil supply passage that supplies the hydraulic oil from the hydraulic pump to the hydraulic actuator.
  • the control valve is controlled such that the hydraulic oil at a flow rate corresponding to the maximum supply flow rate of the hydraulic oil supplied through the hydraulic oil discharge passage is discharged through the hydraulic oil discharge passage.
  • control valve is controlled such that the opening area of the hydraulic oil discharge passage decreases as the engine rotation speed detected in the detection step decreases.
  • control amount for the control valve is corrected by a correction coefficient that decreases as the engine rotation speed decreases. It is also preferable that in the control step, the control amount of the control valve is set such that the opening area of the hydraulic oil discharge passage changes in accordance with the engine speed.
  • a bypass passage is provided for returning hydraulic oil not supplied to the hydraulic actuator through the control valve to the tank, and the control valve is interposed in the bypass passage to adjust the opening area of the bypass passage.
  • a basic tilt angle control amount for controlling the discharge flow rate from the hydraulic pump is set based on a characteristic substantially inversely proportional to the flow rate of the hydraulic oil in the bypass passage, and the operation member is operated.
  • the amount is maximum and the engine rotation speed detected in the detection step is not maximum, it is also preferable to correct the basic tilt angle control amount so that the discharge flow rate from the hydraulic pump becomes maximum.
  • the excess horsepower consumption during the descent of the hydraulic actuator during its own weight reduction is reduced, so that power loss is reduced, fuel consumption is improved, and heat The loss can be reduced. Also, since the pressure in the hydraulic actuator does not increase and the temperature in the hydraulic actuator does not increase, the heat balance can be improved and the cooling performance can be improved. Furthermore, there is no need for extra horsepower because no extra back pressure is generated when the deadweight of Hydraulic Factory is lowered. Work efficiency is improved.
  • FIG. 1 is a control block diagram for explaining the self-weight drop control of a stick in the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 2 is an overall configuration diagram of a control device for a construction machine according to one embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining a control valve of the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 4 is a diagram showing a map associating an operation amount of an operation member and a basic control signal of a proportional pressure reducing valve in the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 5 is a diagram showing a map in which the engine rotation speed and the control signal rate of the proportional pressure reducing valve are related in the control device for the construction machine according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing a map in which the correction control signal and the spool stroke are related in the control device for the construction machine according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing the relationship between the spool stroke amount and the opening areas of the PC passage, the CT passage, and the bypass passage in the control device for the construction machine according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing control characteristics of the CT opening area according to the engine rotation speed in the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a modification of the control characteristic of the CIT opening area according to the engine rotation speed in the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 10 is a diagram showing a relationship between a required flow rate of negative flow control and a negative control pressure in the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 11 is a diagram showing the relationship between the allowable flow rate of the negative flow control and the pump discharge pressure in the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 12 is a flowchart for explaining the tilt angle control by the basic tilt angle control amount setting means of the control device for the construction machine according to one embodiment of the present invention. It is.
  • FIG. 13 is a flowchart for explaining the tilt angle correction control by the tilt angle control amount correction means of the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 14 is a diagram showing a relationship between an engine rotation speed and a C-T opening area in the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 15 is a diagram illustrating a relationship between an engine rotation speed and a back pressure in the control device for a construction machine according to one embodiment of the present invention.
  • FIG. 16 is a schematic perspective view showing a conventional construction machine.
  • FIG. 17 is a diagram showing the relationship between the engine rotation speed and the C-T opening area in a conventional construction machine control device.
  • FIG. 18 is a diagram showing the relationship between the engine rotation speed and the back pressure in a conventional construction machine control device.
  • This construction machine is a construction machine (working machine) such as a hydraulic shovel, as described in the related art (see FIG. 16), and includes an upper revolving unit 102, a lower traveling unit 100, and a working device. Consists of 1 1 8
  • the undercarriage 100 has a right track 100R and a left track 100L that can be driven independently of each other, while the upper revolving structure 102 has a lower track 100 On the other hand, it is provided so as to be pivotable in a horizontal plane.
  • the working device 118 mainly includes a boom 103, a stick 104, a socket 108, and the like.
  • the boom 103 rotates with respect to the upper rotating body 102. It is pivoted as much as possible.
  • a stick 104 is rotatably connected in the vertical plane.
  • a boom drive hydraulic cylinder (boom cylinder, hydraulic actuator) 105 for driving the boom 103 is provided between the upper rotating body 102 and the boom 103.
  • a stick driving hydraulic cylinder (stick cylinder, hydraulic actuator) 106 for driving the stick 104 is provided between the boom 103 and the stick 104.
  • a bucket driving hydraulic cylinder (bucket cylinder, hydraulic actuator) 107 for driving the bucket 108 is provided between the stick 104 and the bucket 108.
  • the boom 103 is in the directions a and b in the figure
  • the stick 104 is in the directions c and d in the figure
  • the baggage 108 is the direction e and f in the figure. It is configured to be rotatable in the direction.
  • FIG. 2 is a diagram schematically showing a main part of a hydraulic circuit of such a hydraulic shovel.
  • the left track 100 L and the right track 100 are identical as shown in FIG. 2, the left track 100 L and the right track 100
  • R is provided with a driving motor 109 L and 109 R as independent power sources, and the upper revolving unit 102 is provided with an upper revolving unit with respect to the lower traveling unit 100.
  • a turning motor 110 for turning the 102 is turned is provided.
  • These traveling motors 110 L and 109 R and turning motors 110 are configured as hydraulic motors that are operated by hydraulic pressure.
  • engines mainly diesel engines
  • Hydraulic oil from a plurality (here, two) of hydraulic pumps 51, 52 driven by 50 is supplied at a predetermined pressure via a hydraulic circuit 53, and the operation supplied in this manner is performed.
  • Each hydraulic motor 109L, 109R, 110 is driven according to the hydraulic pressure.
  • the hydraulic pumps 51 and 52 discharge the hydraulic oil in the reservoir tank 70 as a predetermined oil pressure.
  • a swash plate rotary piston pump piston type variable displacement pump, variable discharge amount type piston
  • Pump can adjust the pump discharge flow rate by changing the stroke amount of a piston (not shown) provided in the hydraulic pump.
  • one end of the piston is configured to abut on a swash plate (cleave plate: not shown), and the inclination (tilt angle) of the swash plate will be described later.
  • the inclination of the swash plate can be changed based on the operation signal from the controller 1.
  • each operation member 5 by the operator is changed. Because the amount of operation in 4 can also be taken into account, the operating feeling during operation can be improved compared to the conventional method in which the pressure of the hydraulic oil in the oil passage is guided to change the inclination of the swash plate. Can be done.
  • the engine 50 allows the operator to set the engine speed by switching the engine speed setting dial.
  • the maximum engine speed for example, about 200 rpm
  • the minimum engine speed are set. It can be switched in multiple stages between the engine rotation speed (for example, about 1000 rpm).
  • the engine speed is not limited to such a stepwise switching, but may be a type that can be changed smoothly.
  • the total horsepower of the engine 50 is consumed for driving these hydraulic pumps 51 and 52 and a later-described pilot pump 83.
  • the operation room 101 has a left lever, a right lever, a left pedal, and a left lever for controlling the operation of the hydraulic excavator (running, turning, boom turning, stick turning, and baguette turning).
  • a plurality of operating members 54 such as a right pedal are provided. These operation members 54 are configured as electric operation members (for example, electric operation levers), and output an electric signal corresponding to the operation amount to a controller (control means) 1 described later.
  • the hydraulic circuit 53 includes a first circuit unit 55 and a second circuit unit 56.
  • the first circuit section 55 is an oil passage connected to the first hydraulic pump 51.
  • the hydraulic oil from the first hydraulic pump 51 is supplied to the right traveling motor 110 R via the oil passage 61, the right traveling motor evening control valve 57, and the right traveling motor 110 R is driven.
  • the first hydraulic pump 5 1 These hydraulic oils are supplied to the packet driving hydraulic cylinder 107 via the oil passage 61 and the baguette control valve 58, and the oil passage 61 and the first boom control valve 59 To the boom drive hydraulic cylinder 105 through the oil passage 61 and the second stick control valve 60 to the stick drive hydraulic cylinder 106. Each cylinder 105, 106, 107 is driven.
  • a throttle (throttle with a relief valve) 81 is provided downstream of the oil passage 61 of the first circuit portion 55, and hydraulic fluid from the first hydraulic pump 51 is supplied to the reservoir through the throttle 81. It returns to tank 70.
  • the second circuit portion 56 includes an oil passage 66 connected to the second hydraulic pump 52, a left traveling motor control valve 62 interposed in the oil passage 66, and a turning motor evening control valve 6. 3, a control valve such as a first stick control valve 64, a second boom control valve 65, etc., and a throttle 82.
  • the hydraulic oil from the second hydraulic pump 52 is supplied to the left traveling motor 109 L via the oil passage 66 and the left traveling motor control valve 62, whereby the left traveling motor 90 109 L is driven.
  • Hydraulic oil from the second hydraulic pump 52 is supplied to the turning motor 110 via the oil passage 66 and the turning motor control valve 63, whereby the turning motor 110 Are driven.
  • the hydraulic oil from the second hydraulic pump 52 is supplied to the hydraulic cylinder 106 for driving the stick via the oil passage 66 and the control valve 64 for the first stick.
  • a throttle (a throttle with a relief valve) 82 is provided on the downstream side of the oil passage 66 of the second circuit portion 56, and the hydraulic oil from the second hydraulic pump 52 is provided through the throttle 82. It returns to the reservoir tank 70.
  • the control valves 57 to 60 and 62 to 65 are housed in a control unit (not shown).
  • the second stick is set so that a sufficient hydraulic oil is supplied to the important stick 104 in the operation of the construction machine even at the same time when the other work machine 118 is operated simultaneously.
  • the hydraulic oil from the first hydraulic pump 51 in the first circuit section 55 is also supplied to the stick driving hydraulic cylinder 106. It has become.
  • the first stick control valve 64 is interposed in the oil passage 66 of the second circuit portion 56, and the second stick control valve 60 is interposed in the oil passage 61 of the first circuit portion 55. Is equipped. Then, the first stick control valve 64 is controlled by the proportional control valves 64 a and 64 b, and the second stick control valve 60 is controlled by the proportional control valves 60 a and 60 b.
  • hydraulic oil can be supplied to and discharged from the hydraulic cylinder 106 for driving the stick.
  • sufficient operation for the boom In order to supply hydraulic oil, in addition to the hydraulic oil from the first hydraulic pump 51 in the first circuit section 55, the hydraulic oil from the second hydraulic pump 52 in the second circuit section 56 is also boom driven.
  • the first boom control valve 5 9 is via instrumentation to the oil passage 61 of the first circuit portion 5 5, the second circuit section 5 6
  • the second boom control valve 65 is interposed in the oil passage 66 of the second boom.
  • the first boom control valve 59 is controlled by the proportional control valves 59a and 59b
  • the second boom control valve 65 is controlled by the proportional control valves 65a and 65b.
  • the hydraulic oil can be supplied to and discharged from the boom drive hydraulic cylinder 105.
  • a stick regeneration valve 76 is interposed in the oil passages 67, 68 for supplying and discharging hydraulic oil to and from the hydraulic cylinder 106 for driving the stick.
  • a predetermined amount of hydraulic oil from the side oil passage to the hydraulic oil supply side oil passage Can be played.
  • boom regeneration valves 77 are also interposed in the oil passages 78, 799 that supply and discharge hydraulic oil to the boom drive hydraulic cylinder 105, and operate from the hydraulic oil discharge side oil passage. A predetermined amount of hydraulic oil can be regenerated to the oil supply side oil passage.
  • each of the control valves 57 to 60 and 62 to 65 is configured as a spool valve as shown in Fig. 3, and each is configured with a plurality of (here, five) throttles. .
  • control valves 57 to 60 and 62 to 65 are connected to the first hydraulic pump 51, the second hydraulic pump 52, and the stick driving hydraulic cylinder 106, respectively.
  • the stick control valves 60 and 64 are in the stick lowered position, but the stick control valves 60 and 64 are moved upward in FIG.
  • the stick control valves 60 and 64 can be set to the neutral position.
  • the P-C throttle 8 of the stick control valves 60 and 64 passes through the P-C passages 61a and 66a.
  • the C-T throttle 9 of the stick control valves 60 and 64 is interposed in the C-T passages 66 b and 69 to control the stick control valves 60 and 64.
  • the pump flow rate becomes maximum at the maximum engine rotation speed, and even when the operating member is fully operated, the pump is not excessively throttled by the C-T throttle 9 and is adjusted according to the maximum pump flow rate.
  • the diameter of the C-T throttle 9 is set to be sufficiently larger than that of the conventional one so that the hydraulic oil with the adjusted flow rate can be smoothly and surely discharged through the C_T passages 66b and 69. You.
  • the C-T opening area depends on the flow rate of the hydraulic oil supplied through the P-C passages 6 la and 66 a when the operation amount of the operation member 54 is the maximum and the engine rotation speed is the maximum. It is set so that the hydraulic fluid with the reduced flow rate is discharged through the C-T passages 66b and 69.
  • the cross-sectional area ratio is taken into account.
  • the flow rate of hydraulic oil supplied from the P_C passages 61 a and 66 a into the head-side oil chamber of the hydraulic cylinder 106 for stick drive, and the rod of hydraulic cylinder 106 for stick drive The ratio of the flow rate of the hydraulic oil discharged from the side oil chamber to the C-T passages 66 b and 69 depends on the cross-sectional area of the head side oil chamber of the hydraulic cylinder 106 for stick drive and the lock. It is obtained by taking into account the ratio to the cross-sectional area of the oil chamber on the pressure side, and the CT opening area, that is, the diameter of the CT throttle 9, is set accordingly.
  • the cross-sectional area (ie, volume) of each oil chamber is different, and the volume of hydraulic oil in the oil chamber on the rod side is smaller than the volume of hydraulic oil in the oil chamber on the head side.
  • each operating member When setting the diameters of the apertures 8, 9, and 10, each operating member is fully operated to ensure the interlocking of the working devices 118 such as the boom 103 and the stick 104. In this case, all working devices 1 18 are taken into account.
  • the opening area of the oil passages 6 1 a and 66 a communicating the first hydraulic pump 51 and the second hydraulic pump 52 and the hydraulic cylinder 106 for driving the stick is controlled by the PC throttle 8.
  • the oil supply passage opening area and PC opening area are adjusted.
  • the opening area of the oil passages 66 b and 69 communicating the stick drive hydraulic cylinder 106 and the reservoir tank 70 with the C_T throttle 9 (opening area of the hydraulic oil discharge passage, C-T Opening area) is adjusted.
  • the opening area of the oil passages 6 1 b and 66 c communicating the first hydraulic pump 51 and the second hydraulic pump 52 and the reservoir tank 70 by the bypass passage throttle 10 (opening area of the bypass passage) ) Is adjusted.
  • each of the control valves 57 to 60 each of the control valves 57 to 60,
  • Pilot pump 83 to control 6 2 to 65 and proportional pressure reducing valve 5 A pilot hydraulic circuit including 7a to 60a, 57b to 60b, 62a to 65a, and 62b to 65b is provided. In Fig. 2, the pilot pump 83 and the proportional pressure reducing valves 57a to 60a, 57b to 60b, 62a to 65a, 62b are provided in the pilot port hydraulic circuit. Only ⁇ 65b is shown, and the pilot oil pressure is indicated by the symbol P, omitting the pilot oil passage.
  • the proportional pressure reducing valves 57 a to 60 a, 57 b to 60 b, 62 a to 65 a, 62 b to 65 b are solenoid valves, and are operated by the controller 1 described later. It is activated by a signal.
  • the pilot oil pressure from the pilot pump 83 is applied to each of the control valves 57 to 60 and 62 to 65 as a predetermined pressure based on the operation signal from the controller 1.
  • the stick control valves 60 and 64 are driven to the required positions.
  • the supply and discharge of the hydraulic oil for the stick driving hydraulic cylinder 106 is adjusted, and these cylinders 105, 106 are driven to expand and contract to the required length, whereby the stick 104 is operated. .
  • the stick driving hydraulic cylinder 106 may be extended.
  • the pilot oil pressure is made to act on the second stick control valve 60 through the pilot oil passage.
  • the spool position of the second stick control valve 60 becomes the stick inner rotation position (stick position)
  • the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 Is supplied to one chamber of the stick driving hydraulic cylinder 106 through the oil passages 61 and 67.
  • the hydraulic oil in the other chamber of the stick driving hydraulic cylinder 106 is discharged to the reservoir tank 70 via the oil passages 68 and 69.
  • the stick driving hydraulic cylinder 106 is extended, and the stick 104 is rotated inward as shown by the arrow d in FIG.
  • the stick driving hydraulic cylinder 106 may be contracted.
  • the pilot oil pressure is applied to the second stick control valve 60 through the pilot oil passage.
  • the spool position of the second stick control valve 60 becomes the stick outside rotation position (stick out position), and the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 flows through the oil passage. It is supplied to the other chamber of the stick driving hydraulic cylinder 106 via 61 and 68.
  • the hydraulic oil in one chamber of the stick driving hydraulic cylinder 106 is discharged to the reservoir tank 70 through the oil passages 67 and 69.
  • the stick driving hydraulic cylinder 106 is contracted, and the stick 104 is rotated outward as shown by the arrow c in FIG.
  • each spool may be set to the neutral position (the hydraulic supply / discharge path shutoff position). As a result, the supply and discharge of the hydraulic oil in each oil chamber of the stick driving hydraulic cylinder 106 is stopped, and the stick 104 is held at the current position.
  • various sensors are attached to the construction machine configured as described above, and a detection signal from each sensor is sent to a controller 1 described later.
  • an engine 50 for driving the hydraulic pumps 51 and 52 is provided with an engine speed sensor 71.
  • the detection signal from the sensor 71 is sent to the controller 1 described later.
  • the controller 1 performs feedback control so that the actual engine speed becomes the target engine speed set by the engine speed setting dial during the operation.
  • a pressure sensor (PZS-P1) 72 and a pressure sensor (PZS-P2) 73 are provided to detect the pump discharge pressure. Detection signals from the sensors 72 and 73 are sent to a controller 1 described later.
  • pressure valves are provided downstream of the control valves 57 to 60 of the oil passage 61 of the first circuit unit 55 and the control valves 62 to 65 of the oil passage 66 of the second circuit unit 56, respectively.
  • the sensor (PZS-N1) 74 and the pressure sensor (PZS-N2) 75 are provided, and the detection signals from these pressure sensors 74 and 75 are sent to the controller 1 described later. It has become.
  • a pressure sensor (PZS-BMd) 80 is provided in an oil passage for supplying and discharging hydraulic oil to and from the boom drive hydraulic cylinder 105.
  • the boom drive hydraulic cylinder 100 is provided by the pressure sensor 80.
  • the rod side pressure (load pressure) of 5 can be detected.
  • the detection signal from the pressure sensor 80 is sent to a controller 1 described later.
  • a controller 1 is provided to control the construction machine configured as described above.
  • the controller 1 controls the first hydraulic pump 51, the second hydraulic pump 52, and the regeneration valve 76 based on the detection signals from the sensors 71 to 75 and 80 and the electric signal from the operation member 54. , 7 7, By outputting operation signals to the control valves 57 to 60, 62 to 65, the first hydraulic pump 51 and the second hydraulic The tilt angle control of the pump 52, the position control of the control valves 57 to 60 and 62 to 65, and the position control of the regeneration valves 76 and 77 are performed.
  • the tilt angle control of the first hydraulic pump 51 and the second hydraulic pump 52 by the controller 1 is performed on the downstream side of the bypass passage 61 b of the first circuit section 55 and the second circuit section 56.
  • Negative flow control is performed based on detection signals from the respective pressure sensors 74 and 75 provided downstream of the bypass passage 66c. Since the negative flow control is performed based on the pressures detected by the pressure sensors 74 and 75, the pressure detected by the pressure sensors 74 and 75 is also referred to as a negative control pressure.
  • the negative flow control is a pump flow control with a negative characteristic that reduces the pump discharge flow rate when the pressure downstream of the bypass passages 61b and 66c increases.
  • the negative flow control is based on the operation amount of the operation member 54, that is, the flow control in which the pump discharge flow rate is controlled according to the negative control pressure, and the load pressure applied to the actuator, that is, the pump discharge pressure. It is divided into horsepower control where the pump discharge flow rate is controlled.
  • the flow control can control the speed of the actuator (each cylinder) within the allowable horsepower.
  • the pump discharge flow rate can be controlled in accordance with the operation amount of the operation member 54, that is, the negative control pressure, whereby the speed of the actuator can be controlled.
  • the pump discharge flow rate (that is, the speed of the actuator) is determined by the following equation. Is done.
  • Pump discharge flow Q Allowable horsepower WZ Pump discharge pressure P
  • the pump discharge pressure P also changes, and the pump discharge flow rate Q also changes according to the above equation, so that the speed of the actuator changes as well. Will be.
  • the pump discharge flow rate Q is not controlled according to the operation amount of the operation member 54, but is controlled according to the load pressure applied to the actuator, that is, the pump discharge pressure P.
  • the control in a state where the magnitude of the flow rate Q depends on the allowable horsepower W of the engine 50 that drives the first hydraulic pump 51 and the second hydraulic pump 52 is called horsepower control.
  • the operation member 54 when the operation member 54 is in the neutral position, that is, when the operator does not operate the operation member 54, the work machine 118 does not work at all, and each actuator (cylinder, etc.) is operated. Since there is no need to drive the pump, the pump discharge flow rate from the hydraulic pumps 51 and 52 is desirably set to zero.
  • each of the control valves 57 to 60 and 62 to 65 is arranged so that the bypass passages 6 lb and 66 c are open at the spool neutral position. That is, when the operating member 54 is in the neutral position, the hydraulic oil supplied from the hydraulic pumps 51 and 52 returns to the reservoir tank 70 through the bypass passages 61b and 66c. I have. As a result, when the operation member 54 is in the neutral position, the pressure immediately upstream of the throttles 81, 82 provided downstream of the bypass passages 61b, 66c increases, and the negative flow control is performed. Thus, the pump discharge flow rate from the variable displacement hydraulic pumps 51 and 52 is controlled to decrease.
  • the throttle (orifice) 8 1 is located downstream of the bypass passages 6 lb and 66 c for returning the hydraulic oil not supplied to the hydraulic actuator through the respective control valves to the reservoir tank 70.
  • 82 are provided.
  • Pressure sensors 74 and 75 are interposed in the bypass passages 6 1 b and 66 c immediately upstream of the throttles 8 1 and 82, and the throttles detected by the pressure sensors 74 and 75 are provided.
  • the tilt angles of the hydraulic pumps 51 and 52 are controlled based on the pressures immediately upstream of the pumps 81 and 82.
  • the control valves 57 to 60 and 62 to 65 move according to the operation amount of the operation member 54, and the bypass passages 61b and 66c are moved. And the flow rate of hydraulic oil flowing through the bypass passages 6 1 b and 66 c decreases, but the diameter of the throttles 8 1 and 8 2 is constant, so the throttles 8 1 and 8 are reduced by the reduced flow rate.
  • the pressure immediately upstream of 2 that is, the pressure detected by the pressure sensors 74 and 75 decreases, and the variable displacement hydraulic pumps 51 and 52 increase the pump discharge flow rate in accordance with the reduced pressure.
  • the tilt angle control is performed.
  • the pump discharge flow rate is controlled to increase according to the operator's request, that is, the operation amount of the operation member 54 by the operator, This means that by operating the operating member 54, the operator can control the pump discharge flow rate from the hydraulic pumps 51 and 52 to control the speed of each actuator (each cylinder and the like).
  • the control valves 57 to 60 and 62 to 65 by the controller 1, the control valves 57 to 60 and 60 according to the operation of the operation member 54 by the operator are used. In addition to the position control of 62 to 65, the position control of each control valve 57 to 60 and 62 to 65 according to the engine speed is also performed.
  • the controller 1 is a proportional pressure reducing valve (a pilot pressure) that adjusts the pilot oil pressure applied to each of the control valves 57 to 60 and 62 to 65 based on the electric signal from the operation member 54.
  • Control valve) 57a to 60a, 57b to 60b, 62a to 65a, 62b to 65b I have.
  • controller 1 controls each of the control valves 57 to 7 based on a detection signal from an engine speed sensor 71 attached to an engine 50 that drives the first hydraulic pump 51 and the second hydraulic pump 52.
  • Proportional pressure reducing valve for adjusting pilot oil pressure acting on 60, 62 to 65 57 a to 60 a, 57 b to 60 b, 62 a to 65
  • An operation signal is output to control the operation of a, 62b to 65b.
  • 57 b to 60 b, 62 a to 65 a, 62 b to 65 b are operated, and by this, the pressure of the pilot hydraulic pressure supplied from the pilot pump 83 is adjusted, and The spool stroke amount (spool movement amount) of the control valves 57 to 60 and 62 to 65 is adjusted.
  • the control device for a construction machine is configured as described above, and various controls are performed by the controller 1. In order to lower the weight of the stick in the direction in which gravity acts, the self-weight lowering control of the stick 104 is performed.
  • FIG. 1 is a control block diagram for explaining the self-weight drop control of the stick by the control device of the construction machine according to the present embodiment.
  • the controller 1 includes a proportional pressure reducing valve control means 2 and a pump tilt angle control means 3 in order to perform the self-weight drop control of the stick 104. Have been.
  • the proportional pressure reducing valve control means 2 includes a basic control amount setting means 4 and a correction means 5 among them.
  • the basic control amount setting means 4 calculates a basic control amount of the proportional pressure reducing valves 60a, 60b, 64a, 64b based on an electric signal corresponding to the operation amount from the operation member 54. This basic control amount is output to the correction means 5.
  • the basic control amount relates the operation amount of the operating member 54 as shown in FIG. 4 to the basic control signals of the proportional pressure reducing valves 60a, 60b, 64a, and 64b. Required by map.
  • the operation amount of the operation member 54 is set so that the larger the operation amount of the operation member 54, the larger the movement amount of the proportional pressure reducing valves 60a, 60b, 64a, and 64b.
  • the basic control signal is set to increase as the number increases. Note that in FIG. 4, the basic control signal is constant above the predetermined operation amount because the movement of the proportional pressure reducing valves 60a, 60b, 64a, and 64b at the predetermined operation amount is the maximum.
  • the correction means 5 calculates the control signal rates (correction coefficients) of the proportional pressure reducing valves 60 a, 60 b, 64 a, and 64 b based on the detection signal from the engine speed sensor 71.
  • the signal rate is calculated based on the basic control amount By multiplying this control amount, the basic control amount of the proportional pressure reducing valves 60a, 60b, 64a, and 64b is corrected to calculate a correction control amount. a, 60, 64a, 64b.
  • control signal rate is obtained from a map as shown in FIG. 5, which associates the engine speed with the control signal rate of the proportional pressure reducing valve.
  • the control signal rate is calculated so that the control signal rate of the proportional pressure reducing valves 60a, 60b, 64a, 64b decreases as the engine speed detected by the engine speed sensor 71 decreases. It is set as shown by NZNmax.
  • the control signal rate is set so that the stroke amount of the spool constituting the first stick control valve 60 and the second stick control valve 64 decreases as the engine rotation speed decreases.
  • the control signal rates of the proportional pressure reducing valves 60a, 60b, 64a, 64b become Nmin / Nmax.
  • the correction means 5 outputs a control signal corresponding to the correction control amount to the proportional pressure reducing valves 60a, 60b, 64a, 64b.
  • the proportional pressure reducing valves 60a, 60b, 64a, 64b are operated in accordance with the control amount calculated by the proportional pressure reducing valve control means 2, and the pilot oil pressure from the pilot pump 83 is proportionally reduced.
  • the pressure is reduced to a predetermined pressure by the valves 60 a, 60 b, 64 a, 64 b and acts on the first stick control valve 60 and the second stick control valve 64, and the first stick control valve 60
  • the spool constituting the second stick control valve 64 moves.
  • FIG. 6 is a map in which the correction control signal is related to the stroke amounts of the first stick control valve 60 and the second stick control valve 64.
  • the spools constituting the first stick control valve 60 and the second stick control valve 64 increase as the correction control signal (basic control signal X control signal rate) increases. It is controlled so as to be the stroke amount.
  • the opening area of the oil passage (PC opening area) that connects the first hydraulic pump 51 or the second hydraulic pump 52 to the stick driving hydraulic cylinder 106, the stick driving hydraulic cylinder 10 6
  • the opening area of the oil passage that connects the reservoir and the reservoir 70 (C—T opening area), the oil passage that connects the first hydraulic pump 51 or the second hydraulic pump 52 to the reservoir 70
  • the opening area changes accordingly.
  • the negative control pressure changes according to the bypass passage opening area which is adjusted according to the operation amount of the operation member 54, and the hydraulic pumps 51 and 52 change according to the changed negative control pressure.
  • the tilt angle control of 52 is performed, and the pump flow rate is controlled.
  • the control characteristics of the C-T opening area when the operating member 54 is fully operated may differ depending on the engine rotation speed.
  • the CT opening area is controlled in accordance with the operation amount of the operation member 54.
  • the control characteristics of the CT opening area at the maximum engine speed are indicated by solid line A
  • the control characteristics of the CT opening area at the minimum engine speed are indicated by solid line B. Is shown.
  • a broken line C indicates a conventional control characteristic of the CT opening area.
  • the setting of the engine speed is not limited to the maximum and minimum, but can be set arbitrarily. If possible, the control characteristics of the C-T opening area when the operation member 54 is fully operated may be set according to the engine speed.
  • the C-T opening area is controlled in proportion to the operation amount of the operation member 54 and the engine rotation speed, but when the operation amount of the operation member 54 is the maximum ( In the case of full operation), the C-T opening area when the engine speed is the minimum is larger than the C-T opening area when the engine speed is the maximum, regardless of the operation of the operating members 54 by the operator.
  • the spool stroke amount (spool movement amount) constituting the first stick control valve 60 and the second stick control valve 64 is controlled so as to be small.
  • the control characteristic indicated by the solid line A in FIG. The amount of spool stroke constituting the control valve 60 for the first stick and the control valve 64 for the second stick is set so that the area is maximized. Pressure is not generated to improve work efficiency.
  • the operating member 54 is fully operated by the operator to make the spool the maximum stroke S max, and the maximum pump flow rate as the maximum PC opening area is set to the hydraulic cylinder for stick drive.
  • the stick 104 is to be lowered by its own weight while maintaining the maximum descent speed of the stick drive hydraulic cylinder 106, the spool stroke is reduced and the spool position is adjusted. Is controlled so as to return from the most moved position to the neutral position side in accordance with the operation amount of the operation member 54 during the operation.
  • control is performed such that the spool stroke amount is reduced and the spool position is returned to the neutral position side when the engine rotation speed is the maximum.
  • the return amount of the spool to the neutral position is set to zero, the spool position is not controlled to return the spool position to the neutral position, and the spool stroke amount is It may be kept controlled according to the operation amount.
  • the hydraulic oil supply side pressure in the stake driving hydraulic cylinder 106 should be a positive pressure (pressure in the direction of its own weight descent) and a predetermined pressure (for example, it is necessary to ensure the order of about 5 kgf / cm 2).
  • the spool stroke amount is set so that the CT opening area is maximized when the engine speed is the maximum, when the engine speed is the minimum (when the pump flow rate is Set the spool stroke amount so that the C-T opening area is maximized at the minimum, and the cavitation is applied to the hydraulic oil supply side to each cylinder (that is, the oil passage between the pump and each cylinder).
  • the diameter of the C-T throttle 9 is set so that the cylinder descends at a speed that does not cause the occurrence of excessive throttling, when the engine speed is high (when the pump flow rate increases) due to the C-T throttle 9, This is because work efficiency is reduced.
  • the CT opening area is maximized by the control characteristic indicated by the solid line B in FIG.
  • the spools constituting the first stick control valve 60 and the second stick control valve 64 are controlled so as to return to the neutral direction.
  • the CT opening area is reduced compared to when the engine speed is high.
  • C _ Controller 1 has a data sheet (map) relating spool stroke amount S corresponding to T opening area A. The details will be described later.
  • the CT opening area is adjusted by changing the stroke amount of the spool constituting the first stick control valve 60 and the second stick control valve 64.
  • C—T opening area is
  • the engine rotational speed is adjusted to a predetermined rotational speed (approximately 1 0 0 0 rpm) in back pressure Jo Tokoro pressure (approximately 4 0 kgf Z cm 2 or so).
  • the PC opening area becomes the maximum, but also in this case, the pressure loss should be prevented.
  • the diameter of the P_C aperture 8 for adjusting the P_C opening area is set to be sufficiently large.
  • the first stick control is performed as described above.
  • the spool constituting the valve 60 and the second stick control valve 64 is controlled so as to return to the neutral direction in accordance with the engine speed, and even if the PC opening area is reduced, the PC throttle is provided. 8 does not cause pressure loss, etc., and does not affect the performance of construction machinery.
  • bypass passage opening area is the largest when the engine speed is the maximum (pump flow rate is the largest) and the operating member 54 is not operated, and the bypass passage opening area is the largest.
  • the diameter of the bypass passage restrictor 10 for adjusting the bypass passage opening area is set so as not to cause the occurrence.
  • the first stick control valve 60 and the second stick control valve 6 are used to reduce the C-T opening area. 4 is controlled to return to the neutral direction, the opening area of the bypass passage increases, the negative control pressure increases, and the pump flow rate decreases. Will have an effect.
  • the tilt angle control amount correcting means 7 tilts the maximum tilt angle control amount instead of the basic tilt angle control amount in the negative flow control. Set as angle control amount It is like that.
  • the spool stroke amount is maximized, the spool is moved most, and the C—T opening area reduced by the C—T aperture 9 is the force that maximizes the aperture.
  • the spool at the position where the spool stroke amount is maximized by the full operation of the operation member 54 by the operator and is the most moved is set so that the C-T opening area becomes small. Control is performed so that the spool is returned to the neutral position more (the return amount of the spool is large)
  • the spool at the most moved position is neutral so that the C-T opening area is large. It is controlled to return slightly to the position side (spool return amount is small or zero).
  • the opening area of the oil passage between the stick driving hydraulic cylinder 106 and the reservoir tank 70 according to the engine rotation speed is determined.
  • C_T opening area That is, in the present embodiment, the first stick control valve 60 and the second stick control valve 64 are configured such that the C_T opening area increases as the engine rotation speed increases. The amount of stroke of the spool is controlled. C By this, for example, control is performed so that the engine speed is at a predetermined rotation speed (about 100 rpm) and the back pressure is at a predetermined pressure (about 40 kgf Z cm 2 ).
  • the predetermined pressure approximately 40 kgf / cm 2
  • the predetermined pressure approximately 40 kgf / cm 2
  • the control characteristic of the C-T opening area when the operation amount of the operation member 54 is the maximum is set according to the engine speed.
  • the present invention is not limited to this. As shown in FIG. 9, not only when the operation amount of the operation member 54 is the maximum, but also when the control characteristic of the C-T opening area according to the operation amount of the operation member 54 is set for each engine speed. good.
  • the case where the engine speed is maximum and the case where the engine speed is minimum are shown.
  • the case where the engine speed is maximum is indicated by a solid line A
  • the case where the engine speed is minimum is indicated by a solid line B.
  • the P_C opening area, the C-T opening area, and the bypass passage opening area are all provided in the first stick control valve 64 and the second stick control valve 60 configured as one spool valve. Because it is determined by the P-C throttle 8, the C-T throttle 9, and the bypass passage throttle 10, the first stick is used to adjust the C-T opening area when controlling the self-weight drop of the stick 104.
  • the control valve 64 or the second stick control valve 60 is moved, the bypass passage opening area is also adjusted, and the bypass flow rate of the hydraulic oil flowing through the bypass passages 6 1 b and 66 c also changes. To be lost Therefore, the pressure of the hydraulic oil downstream of the bypass passage used in the negative flow control will change.
  • the pump tilt angle control means As will be described later, the pump tilt angle control means
  • the pump tilt angle control amount is corrected by the tilt angle control amount correction means 7 of 3.
  • the pump tilt angle control means 3 includes basic tilt angle control amount setting means 6 and tilt angle control amount correction means 7.
  • the basic tilt angle control amount setting means 6 and the tilt angle control amount correction means 7 perform pump tilt angle control as shown in the flowcharts of FIGS. 12 and 13 described later.
  • the basic tilt angle control amount setting means 6 determines the basic tilt angle control amount of the first hydraulic pump 51 and the second hydraulic pump 52 based on the detection signals from the pressure sensors 74 and 75.
  • the basic tilt angle control amount is output to the tilt angle control amount correction means 7.
  • the basic tilt angle control amount is a negative valve control that controls the discharge flow rate from the hydraulic pump based on a characteristic that is substantially inversely proportional to the flow rate of the hydraulic oil in the bypass passages 6 lb and 66 c. It is set, specifically, as follows.
  • the basic tilt angle control amount setting means 6 sets the bypass passages 6 1 b and 66 c of the first circuit portion 55 and the second circuit portion 56 detected by the pressure sensors 74 and 75.
  • the operating hydraulic pressure (negative control pressure) P N1 , P N2 on the downstream side is read, and the negative control pressure P N1 is read from the map as shown in Fig. 10 in which the negative control pressure P N and the required flow rate Q N are related. It is adapted to set the required flow rate Q N1, Q N2 corresponding to P N2 (specifically required flow rate Q N1, the pump tilting angle corresponding to Q N2 V N1, V N2) .
  • the required flow rate is the flow rate required in negative flow control. Also, in Figure 10 (Specifically required flow pump tilting angle V N1 to equivalent to Q N1) required flow rate Q N1 corresponding to the negative control pressure P N1 are shown only.
  • the basic tilt angle control amount setting means 6 calculates the pump discharge pressures P P1 and P P2 of the first hydraulic pump 51 and the second hydraulic pump 52 detected by the pressure sensors 72 and 73. Loading, from the map shown in the pump discharge pressure P P and allowable flow Q 1 1 and P digits relationship Dzu, corresponding to the pump discharge pressure read P P1, P P2 allowable flow Q P1, Q P2 ( Specifically, the pump tilt angles V P1 and V P2 ) corresponding to the allowable flow rates Q P1 and Q P2 are set.
  • the allowable flow rate refers to a pump discharge flow rate according to the allowable horsepower of the engine 50 that drives the first hydraulic pump 51 and the second hydraulic pump 52. Further, in FIG. 1 1 shows only allowable flow Q P1 corresponding to the pump discharge pressure P P1 (pump tilting angle V P1 specifically corresponding to allowable flow Q P1).
  • the basic tilt angle control amount setting means 6 compares the required flow rate Q N1, Q N2 above the allowable flow Q P1, Q P2, the smaller the pump flow rate (requested flow Q N1, Q N2 or acceptable
  • the pump tilt angles (pump tilt angles V N1 , V N2 or pump tilt angles VP 1 , V P2 ) are set so that the flow rates Q P1 and Q P2 ), and this is used as the first tilt angle control signal.
  • Output is provided to the hydraulic pump 51 and the second hydraulic pump 52.
  • the basic tilt angle control amount setting means 6 is configured as described above, and operates as shown in the flowchart of FIG.
  • step S10 the negative control pressures P N1 and P N2 are read, and in step S20, the pump discharge pressures P P1 and P P2 are read.
  • step S in step 4 0 Calculate the permissible flow rates Q P1 and Q P2 corresponding to the pump discharge pressures P P1 and P P2 read in 20 from the map in Fig. 11. You.
  • step S 5 allowed the required flow rate Q N1, Q N2 in Step S 5 0 flow rate Q P1, Q less whether determined than P2, the result of this determination, required flow rate Q N1, Q N2 is allowable flow Q P1, If it is determined that the flow rate is smaller than Q P2 , the process proceeds to step S60, where the required flow rates Q N1 and Q N2 are set as the pump flow rates, and the routine returns.
  • the tilt angles of the first hydraulic pump 51 and the second hydraulic pump 52 are set to be the tilt angles corresponding to the required flow rates Q N1 and Q N2 .
  • step S70 the allowable flow rates Q P1 and Q P2 are set as the pump flow rates and the return is performed. I do.
  • the tilt angles of the first hydraulic pump 51 and the second hydraulic pump 52 are set to be the tilt angles according to the allowable flow rates Q P1 and Q P2 .
  • the tilt angle control amount correction means 7 sets the basic tilt angle control amount set by the basic tilt angle control amount setting means 6. Instead of the signal, the first hydraulic pump 5 is used as a corrected tilt angle control signal with a maximum tilt angle control signal that maximizes the pump tilt angle of both the first hydraulic pump 51 and the second hydraulic pump 52. 1, and output to the second hydraulic pump 52.
  • the operation amount signal from the operation member 54 and the detection signal from the engine speed sensor 71 are input to the tilt angle control amount correction means 7, and the operation member 54 is fully operated based on these signals. It is determined whether the operating member 54 is fully operated and the engine speed is not the maximum. If the result of this determination is that the operation member 54 is fully operated and the engine speed is not the maximum, the first A maximum tilt angle control signal that maximizes the tilt angle of the hydraulic pumps 51 and 52 is output to the first hydraulic pump 51 and the second hydraulic pump 52 as a tilt angle control signal. It has become.
  • the tilt angle control amount correcting means 7 is configured as described above, and operates as shown in the flowchart of FIG.
  • step A10 the operation amount signal from the operation member 54 is read, and in step A20, the detection signal from the engine speed sensor 71 is read. Then, in step A30, it is determined whether or not the operating member 54 is fully operated. If the result of this determination is that the operating member 54 is fully operated, the flow proceeds to step A40.
  • the basic tilt angle control signal set by the basic tilt angle control amount setting means 6 is used as the tilt angle control signal for the first hydraulic pumps 51 and 2. Return to output to hydraulic pump 52.
  • step A40 it is determined whether or not the engine rotation speed is the maximum. If it is determined that the engine rotation speed is the maximum, the correction by the tilt angle control amount correction means 7 is not performed.
  • step 60 the basic tilt angle control signal set by the basic tilt angle control amount setting means 6 is output to the first hydraulic pump 51 and the second hydraulic pump 52 as a tilt angle control signal. .
  • the process proceeds to step A50, and the first hydraulic pump 5 is used instead of the basic tilt angle control signal set by the basic tilt angle control amount setting means 6. 1, Set the maximum tilt angle control signal that maximizes the tilt angle of the second hydraulic pump 5 2 as the tilt angle control signal, and in step A 60, set the tilt angle control signal to the first hydraulic pump 5. 1, Output to the second hydraulic pump 52.
  • the pump displacement angle control means 3 controls the displacement of the first hydraulic pump 51 and the second hydraulic pump 52 based on the detection signals from the pressure sensors 72, 73, 74, 75.
  • a control signal corresponding to the angle control amount is calculated, and this control signal is used as an operation amount signal from the operating member 54 and an engine speed sensor 71 Correction is performed based on the detection signal to calculate a corrected tilt angle control amount. Then, a control signal corresponding to the corrected tilt angle control amount is output to the first hydraulic pump 51 and the second hydraulic pump 52.
  • the tilt angles of the first hydraulic pump 51 and the second hydraulic pump 52 are controlled to the control amount calculated by the pump tilt angle control means 3, and set to a predetermined pump displacement.
  • the pump flow rates from the first hydraulic pump 51 and the second hydraulic pump 52 are adjusted.
  • the self-weight drop control of the stick 104 has been described.
  • the present invention is not limited to this.
  • the same weight drop control can be performed for the bucket and the bucket 108 as well.
  • the diameter of the C_T throttle 9 is set to be larger than that of the conventional one so as to be able to cope with the case where the engine speed is maximum.
  • the stroke amount of the spools constituting the control valves 60 and 64 can be changed according to the engine speed.
  • the C—T opening area is adjusted.
  • the method of adjusting the C ⁇ opening area is not limited to this.
  • the control valve 6 instead of changing the diameter of the C ⁇ throttle 9, the control valve 6 may be used.
  • the position of the C-throttle 9 formed on the spools constituting the control valves 60 and 64 may be changed. Only one stroke may be changed.
  • a spool is provided separately from the control valves 60 and 64 in the oil passage between the stick driving hydraulic cylinder 106 and the reservoir tank 70 and downstream of the position where the control valves 60 and 64 are disposed.
  • a control valve configured as a valve is provided, and as the engine speed increases, the opening area of the oil passage between the stick driving hydraulic cylinder 106 and the reservoir tank 70 (C ⁇ opening area) increases.
  • the stroke amount of the spool constituting the control valve may be controlled so as to be smaller.
  • the opening area of the bypass passage is adjusted during the self-weight drop control of the stick 104, and the bypass flow rate of the hydraulic oil flowing through the bypass passages 6 1b and 66 c may change. Therefore, it is possible to prevent the pressure of the hydraulic oil downstream of the bypass passage used in the negative flow control from being changed.
  • the spool is moved by the pilot pressure.
  • the present invention is not limited to this, and the spool may be moved by an electromagnet or the like.
  • a control device and a control method for a construction machine according to the present invention include a construction machine having a stick or the like and performing an operation of lowering the work machine by its own weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

An apparatus for controlling a construction machine is provided for improving work efficiency when a hydraulic actuator is free-falling, so that it decreases power loss, improves fuel economy, decreases thermal loss and improves cooling performance. The apparatus comprises hydraulic pumps (51, 52) driven by an engine to remove hydraulic fluid from a tank, a hydraulic actuator driven by the hydraulic fluid discharged by the hydraulic pumps, a channel through which hydraulic fluid is sent from the hydraulic actuator to the tank, a control valve (60, 64) arranged in the channel to control the flow rate of the hydraulic fluid running through the channel, an engine speed sensor (71) for detecting rotational speed of an engine, and control means (1) for controlling the control valve to adjust the opening of the channel based on the input from a manipulator (54). The control means controls the control valve in accordance with the engine speed detected by the engine speed sensor.

Description

明 細 書 建設機械の制御装置及び制御方法 技術分野  Description Control device and control method for construction machinery
本発明は、 建設機械におけるブームシリンダゃスティックシリンダ等 の油圧ァクチユエ一夕の作動を制御する、 建設機械の制御装置及び制御 方法に関する。 背景技術  The present invention relates to a control device and a control method for a construction machine, which control the operation of a hydraulic machine such as a boom cylinder and a stick cylinder in the construction machine. Background art
一般に、 油圧ショベル等の建設機械は、 図 1 6に示すように、 上部旋 回体 1 0 2と下部走行体 1 0 0と作業装置 1 1 8とからなっている。 下部走行体 1 0 0は、 互いに独立して駆動しうる右トラック 1 0 0 R 及び左トラック 1 0 0 Lをそなえており、 一方、 上部旋回体 1 0 2は、 下部走行体 1 0 0に対して水平面内で旋回可能に設けられている。  In general, a construction machine such as a hydraulic excavator includes an upper rotating body 102, a lower traveling body 100, and a working device 118 as shown in FIG. The undercarriage 100 has a right track 100R and a left track 100L that can be driven independently of each other, while the upper revolving structure 102 has a lower track 100 On the other hand, it is provided so as to be pivotable in a horizontal plane.
また、 作業装置 1 1 8は、 主にブーム 1 0 3, スティック 1 0 4, バ ケッ ト 1 0 8等からなっており、 ブーム 1 0 3は、 上部旋回体 1 0 2に 対して回動可能に枢着されている。 また、 ブーム 1 0 3の先端には、 同 じく鉛直面内に回動可能にスティ ック 1 0 4が接続されている。  The working device 118 mainly includes a boom 103, a stick 104, a bucket 108, and the like, and the boom 103 rotates with respect to the upper rotating body 102. It is pivoted as much as possible. A stick 104 is connected to the tip of the boom 103 so as to be rotatable in the same vertical plane.
また、 上部旋回体 1 0 2とブーム 1 0 3との間には、 ブーム 1 0 3を 駆動するためのブーム駆動用油圧シリンダ (ブームシリンダ, 油圧ァク チユエ一夕) 1 0 5が設けられるとともに、 ブーム 1 0 3とスティック 1 0 4との間には、 スティック 1 0 4を駆動するためのスティック駆動 用油圧シリンダ (スティックシリンダ, 油圧ァクチユエ一夕) 1 0 6が 設けられている。 また、 スティック 1 0 4とバケツ ト 1 0 8との間には、 バケツ ト 1 0 8を駆動するためのバケツ 卜駆動用油圧シリンダ (バケツ トシリンダ, 油圧ァクチユエ一夕) 1 0 7が設けられている。 A boom drive hydraulic cylinder (boom cylinder, hydraulic actuator) 105 for driving the boom 103 is provided between the upper swing body 102 and the boom 103. At the same time, a hydraulic cylinder (stick cylinder, hydraulic actuator) 106 for driving the stick 104 is provided between the boom 103 and the stick 104. Also, between the stick 104 and the bucket 108, there is a bucket driving hydraulic cylinder (bucket) for driving the bucket 108. Cylinders and hydraulic actuators) 107 are provided.
また、 上述の各シリンダ 1 0 5〜 1 0 7には、 エンジン (主に、 ディ ーゼルエンジン) により駆動される油圧ポンプ、 ブーム用制御弁, ステ ィ ック用制御弁, バケツ ト用制御弁等の複数の制御弁を備える油圧回路 (図示せず) が接続されており、 油圧ポンプから各制御弁を介して所定 の油圧の作動油が供給され、 このようにして供給された作動油圧に応じ て駆動されるようになっている。  Each of the cylinders 105 to 107 described above includes a hydraulic pump driven by an engine (mainly a diesel engine), a control valve for a boom, a control valve for a stick, a control valve for a bucket, and the like. A hydraulic circuit (not shown) having a plurality of control valves is connected, and hydraulic oil of a predetermined hydraulic pressure is supplied from a hydraulic pump via each control valve, and according to the hydraulic pressure supplied in this manner. It is designed to be driven.
このような構成により、 ブーム 1 0 3は図中 a方向及び b方向に、 ス ティ ック 1 0 4は図中 c方向及び d方向に、 ノ 'ケッ ト 1 0 7は図中 e方 向及び f 方向に回動可能に構成されている。 なお、 ブーム 1 0 3の図中 b方向への回動をブームダウンといい、 スティック 1 0 4の図中 d方向 への回動をスティックインという。  With such a configuration, the boom 103 is in the directions a and b in the figure, the stick 104 is in the directions c and d in the figure, and the bracket 107 is in the direction e in the figure. And f is rotatable. The rotation of the boom 103 in the direction b in the figure is called boom down, and the rotation of the stick 104 in the direction d in the figure is called stick-in.
また、 運転操作室 1 0 1には、 油圧ショベルの作動 (走行, 旋回, ブ ーム回動, スティック回動及びバケツ 卜回動) を制御するための操作部 材として、 左レバー, 右レバー, 左ペダル及び右ペダル等がそなえられ ている。  The operating room 101 has left and right levers as operating members for controlling the operation of the hydraulic excavator (running, turning, boom turning, stick turning, and bucket turning). , Left pedal, right pedal, etc. are provided.
そして、 例えばオペレー夕がこれらのレバーやペダル等の操作部材を 操作することにより、 油圧回路の各制御弁が制御されて、 各シリンダ 1 0 5〜 1 0 7が駆動され、 これにより、 ブーム 1 0 3, スティック 1 0 4及びバケツ 卜 1 0 8等を回動させうるようになつている。  Then, for example, when the operator operates these operating members such as levers and pedals, each control valve of the hydraulic circuit is controlled, and each cylinder 105 to 107 is driven. 03, stick 104 and bucket 108 can be rotated.
また、 各制御弁を制御するために、 パイロッ ト油圧回路が設けられて いる。 これにより、 ブーム 1 0 3やスティック 1 0 4を作動させるには、 運転操作室 1 0 1内のブーム操作部材ゃスティック操作部材を操作して. パイロッ ト油圧が、 パイロッ ト油路を通じて、 ブーム用制御弁ゃスティ ック用制御弁に作用させて、 ブーム用制御弁やスティック用制御弁を所 要の位置に駆動させる。 これにより、 ブーム駆動用油圧シリンダ 1 0 5 ック駆動用油圧シリンダ 1 0 6への作動油が給排調整され、 こ れらのシリンダ 1 0 5, 1 0 6が所要の長さに伸縮駆動されることにな る。 In addition, a pilot hydraulic circuit is provided to control each control valve. As a result, to operate the boom 103 and the stick 104, operate the boom operating member ゃ stick operating member in the operator's cab 101. The pilot hydraulic pressure is applied to the boom through the pilot oil passage. Control valve ゃ Acts on the stick control valve to drive the boom control valve and the stick control valve to the required positions. As a result, the boom drive hydraulic cylinder 1 0 5 Supply and discharge of hydraulic oil to and from the hydraulic cylinders 106 are controlled, and these cylinders 105 and 106 are driven to expand and contract to the required length.
上述のように、 油圧ショベルでは、 各シリンダ 1 0 5〜 1 0 7を伸縮 駆動させ、 ブーム 1 0 3, スティ ック 1 0 4等の作業装置 1 1 8を駆動 させることで、 掘削作業等の各種作業を行なうようになっている。  As described above, in the hydraulic excavator, the excavation work and the like are performed by driving the working devices 1 18 such as the booms 103 and the sticks 104 by driving the cylinders 105 to 107 to expand and contract. Of various operations.
ところで、 このような各種作業における一動作として、 例えば図 1 6 中 d方向へのスティ ックインが行なわれる場合があり、 この場合、 ステ イツク 1 0 4は、 以下のようにして駆動される。  By the way, as one operation in such various operations, for example, there is a case where a stick-in in the direction d in FIG. 16 is performed. In this case, the stick 104 is driven as follows.
つまり、 スティックイン操作が行なわれ、 スティック 1 0 4を下降さ せるには、 スティ ック駆動用油圧シリンダ 1 0 6を伸長させればよい。 この場合には、 パイ口ッ ト油路を通じてパイ口ッ 卜油圧をスティック用 制御弁に作用させる。 これにより、 スティック用制御弁のスプール位置 がスティック下げ位置となって、 油圧ポンプからの作動油が油路を通じ てスティック駆動用油圧シリンダ 1 0 6の一室へ供給される。 この一方 で、 スティック駆動用油圧シリンダ 1 0 6の他室内の作動油が、 油路を 通じてタンクへ排出される。 これにより、 スティック駆動用油圧シリン ダ 1 0 6が伸長しながら、 スティ ック 1 0 4を図 1 6中、 矢印 dで示す ように下側へ回動させる。  In other words, when the stick-in operation is performed and the stick 104 is lowered, the stick driving hydraulic cylinder 106 may be extended. In this case, the pilot oil pressure is applied to the stick control valve through the pilot oil passage. As a result, the spool position of the stick control valve becomes the stick lowered position, and the hydraulic oil from the hydraulic pump is supplied to one chamber of the stick driving hydraulic cylinder 106 through the oil passage. On the other hand, the hydraulic oil in the other room of the stick driving hydraulic cylinder 106 is discharged to the tank through the oil passage. As a result, the stick driving hydraulic cylinder 106 is extended, and the stick 104 is rotated downward as shown by the arrow d in FIG.
このようにして、 スティックイン操作が行なわれるとスティック駆動 用油圧シリンダ 1 0 6への作動油の供給が行なわれるが、 スティ ック 1 0 4を下降させる場合にはこれを駆動するスティック駆動用油圧シリン ダ 1 0 6に重力が作用するため、 スティック駆動用油圧シリンダ 1 0 6 から作動油が過剰に排出されてしまい、 スティック駆動用油圧シリンダ 1 0 6が必要以上に降下してしまうことが考えられる。  In this way, when the stick-in operation is performed, hydraulic oil is supplied to the stick driving hydraulic cylinder 106, but when the stick 104 is lowered, the stick driving hydraulic cylinder 106 is driven. Due to the gravity acting on the hydraulic cylinder 106, hydraulic oil is excessively discharged from the stick driving hydraulic cylinder 106, and the stick driving hydraulic cylinder 106 may drop more than necessary. Conceivable.
ここで、 スティ ック 1 0 4を下降させる場合、 スティック駆動用油圧 シリンダ 1 0 6は重力の作用する方向へ自重降下することになるが、 そ のスピードはスティック駆動用油圧シリンダ 1 0 6に作用する重量 (ス ティ ック 1 0 4, パケッ ト 1 0 8の重量及びパケッ ト積載荷重) とステ ィ ック駆動用油圧シリンダ 1 0 6からの作動油の排出量とによって決ま る。 つまり、 スティック 1 0 4の下降スピードは、 スティック駆動用油 圧シリンダ 1 0 6とリザーバタンクとの間の油路 (作動油排出通路) の 開口面積の大きさによって決まる。 When lowering stick 104, stick drive hydraulic pressure Cylinder 106 drops its own weight in the direction of gravity, but its speed depends on the weight (stick 104, packet 108) acting on the hydraulic cylinder 106 for driving the stick. Weight and packet loading) and the amount of hydraulic oil discharged from the hydraulic cylinder 106 for stick drive. That is, the lowering speed of the stick 104 is determined by the size of the opening area of the oil passage (hydraulic oil discharge passage) between the stick driving hydraulic cylinder 106 and the reservoir tank.
このため、 スティック駆動用油圧シリンダ 1 0 6の急激な降下を防止 すべく、 スティック駆動用油圧シリンダ 1 0 6とリザーバタンクとの間 の油路には絞りが介装されており、 スティック駆動用油圧シリンダ 1 0 6から排出された作動油が必要以上にリザーバタンクへ排出されないよ うになっている。  For this reason, a throttle is interposed in the oil passage between the stick driving hydraulic cylinder 106 and the reservoir tank in order to prevent the stick driving hydraulic cylinder 106 from dropping sharply. Hydraulic oil discharged from the hydraulic cylinder 106 is prevented from being discharged to the reservoir tank more than necessary.
また、 同様に、 ブーム 1 0 3を下降させる場合やバケツ ト 1 0 8を下 降させる場合についても、 ブーム駆動用油圧シリンダ 1 0 5やバケツ ト 駆動用油圧シリンダ 1 0 7に重力が作用し、 ブーム駆動用油圧シリンダ 1 0 5やバケツ ト駆動用油圧シリンダ 1 0 7が必要以上に降下してしま うことになるため、 ブーム駆動用油圧シリンダ 1 0 5とリザーバタンク との間の油路ゃバケツ ト駆動用油圧シリンダ 1 0 7とリザ一バタンクと の間の油路にも同様に絞りが介装されており、 ブーム駆動用油圧シリン ダ 1 0 5やバケツ ト駆動用油圧シリンダ 1 0 7から排出された作動油が 必要以上にリザーバタンクへ排出されないようになっている。  Similarly, when the boom 103 is lowered or the bucket 108 is lowered, gravity acts on the boom drive hydraulic cylinder 105 and the bucket drive hydraulic cylinder 107. The hydraulic cylinder between the boom drive hydraulic cylinder 105 and the reservoir tank will be unnecessarily lowered because the boom drive hydraulic cylinder 105 and the bucket drive hydraulic cylinder 107 will drop more than necessary.絞 り Similarly, a throttle is interposed in the oil passage between the bucket driving hydraulic cylinder 107 and the reservoir tank, and the boom driving hydraulic cylinder 105 and the bucket driving hydraulic cylinder 107 are also provided. The hydraulic oil discharged from 7 is not discharged to the reservoir tank more than necessary.
これらの絞りの径は、 特にエンジン回転速度が低く、 ポンプ吐出流量 が少ない場合に各シリンダ 1 0 5〜1 0 7から過剰に作動油が排出され ないように各シリンダからリザ一バタンクへと通じる油路の開口面積 (作動油排出通路) が小さくなるように設定されている。  The diameter of these throttles is particularly low when the engine speed is low and the pump discharge flow rate is low, so that each cylinder communicates with the reservoir tank so that hydraulic oil is not excessively discharged from the cylinders 105 to 107. The opening area of the oil passage (hydraulic oil discharge passage) is set to be small.
例えば、 スティック駆動用油圧シリンダ 1 0 6とリザ一バタンクとの 間の油路に介装される絞りの径は、 スティ ックイン操作時にスティック 駆動用油圧シリンダ 1 0 6を重力を利用しながら下降させる場合、 図 1 8に示すように、 スティ ック駆動用油圧シリンダ 1 0 6の重力降下方向 とは逆の方向ヘスティ ック駆動用油圧シリンダ 1 0 6を押し戻すように 作用する背圧 (バックプレッシャー) が所定の基準負荷 (積み荷) 条件 で約 4 0 k g f / c m2程度となるように設定されている。 For example, the stick drive hydraulic cylinder 106 and the reservoir tank When the stick drive hydraulic cylinder 106 is lowered using gravity when stick-in operation is performed, the diameter of the throttle interposed in the oil passage between The back pressure acting to push back the hesitic hydraulic cylinder 106 in the direction opposite to the direction of gravity drop of the cylinder 106 is about 40 kgf / under the specified reference load (load) condition. It is set to be about cm 2 .
これにより、 エンジン回転速度が低く、 ポンプ吐出流量が少ない場合 であっても、 各シリンダが必要以上に下降してしまい、 各シリンダ内に 負圧 (バキューム) が生じ、 これにより、 キヤビテーシヨンが発生し、 異音や振動が発生するのを防止するようにしている。  As a result, even when the engine speed is low and the pump discharge flow rate is low, each cylinder descends more than necessary, creating a negative pressure (vacuum) in each cylinder, thereby causing cavitation. However, noise and vibration are prevented from being generated.
しかしながら、 これらの絞りの径は固定であり、 図 1 7に示すよう に、 エンジン回転速度にかかわらず、 スティ ック駆動用油圧シリンダ 1 0 6とリザーバタンクとの間の油路等の作動油排出通路の開口面積は一 定である。  However, the diameters of these throttles are fixed and, as shown in Fig. 17, regardless of the engine speed, the hydraulic oil in the oil passage between the stick drive hydraulic cylinder 106 and the reservoir tank The opening area of the discharge passage is constant.
このため、 エンジン回転速度が高くなり、 ポンプ吐出流量が多くなる と、 これらの絞りによって抵抗損失が生じ、 各シリンダに作用する背圧 が次第に高くなつてしまい、 スティ ック 1 0 4等のスムーズな下降が妨 げられることになり、 作業効率が悪化するという課題がある。  For this reason, when the engine rotation speed increases and the pump discharge flow rate increases, these throttles cause resistance loss, and the back pressure acting on each cylinder gradually increases, resulting in a smooth stick 104 There is a problem that the work efficiency is deteriorated because a stable descent is prevented.
また、 一般にスティ ックイン操作時にスティック駆動用油圧シリンダ 1 0 6を重力を利用しながら下降させるには所定圧力 (約 4 0 k g f Z c m2) をスティ ック駆動用油圧シリンダ 1 0 6に作用させれば十分で あるのに、 図 1 8に示すように、 エンジン回転速度が高くなり、 ポンプ 吐出流量が多くなると、 スティック駆動用油圧シリンダ 1 0 6とリザ一 バタンクとの間の油路に介装された絞りによって抵抗損失が生じ、 ステ イツク駆動用油圧シリンダ 1 0 6に背圧 (約 1 4 5 k g f Z c m2) が 作用することになるため、 スティック駆動用油圧シリンダ 1 0 6を重力 を利用しながら下降させるのに、 次式で示す背圧分に相当する余計な油 圧ポンプからの圧力 (ポンプ吐出圧) が必要になる。 In general, in order to lower the stick drive hydraulic cylinder 106 using gravity during stick-in operation, a predetermined pressure (about 40 kgf Z cm 2 ) is applied to the stick drive hydraulic cylinder 106. However, as shown in Fig. 18, when the engine rotation speed increases and the pump discharge flow rate increases, the oil passage between the hydraulic cylinder 106 for driving the stick and the reservoir tank increases. A resistance loss occurs due to the installed throttle, and back pressure (approximately 145 kgf Z cm 2 ) acts on the hydraulic cylinder 106 for the stick drive, causing the hydraulic cylinder 106 for the stick drive to gravity. In order to lower the pressure while utilizing the pressure, extra pressure from the hydraulic pump (pump discharge pressure) corresponding to the back pressure shown in the following equation is required.
油圧ポンプからの圧力 = (実背圧一所定圧力) Xシリンダ面積比率 これについては、 ブーム駆動用油圧シリンダ 1 0 5やバケツ 卜駆動用 油圧シリンダ 1 0 7についても同様である。  Pressure from hydraulic pump = (actual back pressure-predetermined pressure) X cylinder area ratio This is the same for the boom driving hydraulic cylinder 105 and the bucket driving hydraulic cylinder 107.
このため、 このようなポンプ吐出圧を確保すべく、 余分なエンジン馬 力が必要となり、 パワーロス, 燃費の悪化, 熱損失が生じることになる。 また、 各シリンダ内の圧力が高くなると各シリンダの温度も高まってし まうため、 クーリング性能も低下することになる。  For this reason, extra engine horsepower is required to secure such pump discharge pressure, resulting in power loss, deterioration of fuel consumption, and heat loss. In addition, when the pressure in each cylinder increases, the temperature of each cylinder also increases, so that the cooling performance also decreases.
また、 実際の作業では、 作業機 1 1 8の持ち上げ操作や旋回操作が伴 い、 これらのスピードを確保するために、 通常運転は最大エンジン回転 速度で行なわれるため、 スティック 1 0 4等の自重降下制御時に余分な エンジン馬力の消費が生じると作業効率の悪化につながり、 燃費も悪く なり、 ヒートバランスも悪化することになる。  Also, in actual work, lifting and turning operations of the work implement 118 are involved, and in order to secure these speeds, normal operation is performed at the maximum engine speed, so the weight of the stick 104 etc. Excessive consumption of engine horsepower during the descent control will lead to a decrease in work efficiency, fuel consumption and heat balance.
本発明は、 このような課題に鑑み創案されたもので、 油圧ァクチユエ 一夕の自重降下制御時の作業効率の向上を図るとともに、 パワーロスの 低減, 燃費の改善, 熱損失の低減, クーリング性能の向上を図れるよう にした、建設機械の制御装置及び制御方法を提供することを目的とする。 発明の開示  The present invention has been made in view of such a problem, and aims to improve the working efficiency at the time of controlling the self-weight drop of the hydraulic actuator, reduce power loss, improve fuel efficiency, reduce heat loss, and improve cooling performance. It is an object of the present invention to provide a control device and a control method for a construction machine, which can be improved. Disclosure of the invention
本発明の建設機械の制御装置は、 オペレータにより操作される操作部 材と、 エンジンにより駆動され、 タンク内の作動油を吐出する油圧ボン プと、 油圧ポンプにより吐出される作動油により駆動される油圧ァクチ ユエ一夕と、 油圧ァクチユエ一夕からタンクへ作動油を排出する作動油 排出通路と、 作動油排出通路に介装され、 作動油排出通路を通じて排出 される作動油の流量を制御する制御弁と、 エンジンの回転数を検出する エンジン回転速度センサと、 操作部材の操作量に基づいて作動油排出通 路の開口面積を調整すべく制御弁を制御する制御手段とを備え、 制御手 段が、 エンジン回転速度センサにより検出されるエンジン回転速度を加 味して制御弁を制御するように構成する。 The control device for a construction machine of the present invention is driven by an operating member operated by an operator, a hydraulic pump driven by an engine to discharge hydraulic oil in a tank, and a hydraulic oil discharged by a hydraulic pump. A control that controls the flow rate of hydraulic oil that is interposed in the hydraulic oil discharge passage, the hydraulic oil discharge passage that discharges hydraulic oil from the hydraulic oil pump to the tank, and the hydraulic oil discharge passage. Detects valve and engine speed An engine speed sensor; and control means for controlling a control valve to adjust an opening area of the hydraulic oil discharge passage based on an operation amount of an operation member, wherein the control means is detected by the engine speed sensor. The control valve is controlled in consideration of the engine speed.
また、 油圧ポンプから油圧ァクチユエ一夕へ作動油を供給する作動油 供給通路を備え、 作動油排出通路の開口面積を、 操作部材の操作量が最 大で、 かつエンジン回転速度センサにより検出されるエンジン回転速度 が最大の場合に作動油供給通路を通じて供給される作動油の最大供給流 量に応じた流量の作動油が作動油排出通路を通じて排出されるように設 定するのが好ましい。  In addition, a hydraulic oil supply passage for supplying hydraulic oil from the hydraulic pump to the hydraulic actuator is provided, and the opening area of the hydraulic oil discharge passage is detected by the engine rotation speed sensor with the maximum operation amount of the operating member. It is preferable that a setting is made such that when the engine rotation speed is at a maximum, a hydraulic oil having a flow rate corresponding to the maximum supply flow rate of the hydraulic oil supplied through the hydraulic oil supply passage is discharged through the hydraulic oil discharge passage.
また、 制御手段を、 エンジン回転速度センサにより検出されるェンジ ン回転速度が低くなるにつれて作動油排出通路の開口面積が小さくなる ように制御弁を制御するものとして構成することもできる。  Further, the control means may be configured to control the control valve so that the opening area of the hydraulic oil discharge passage decreases as the engine rotation speed detected by the engine rotation speed sensor decreases.
より好ましくは、 制御手段を、 エンジン回転速度が低くなるにつれて 小さくなる補正係数により制御弁に対する制御量を補正するものとして 構成しても良い。  More preferably, the control means may be configured to correct the control amount for the control valve by a correction coefficient that decreases as the engine speed decreases.
また、 制御手段を、 作動油排出通路の開口面積がエンジン回転速度に 応じて変化するように制御弁の制御量を設定するように構成することも できる。  Further, the control means may be configured to set the control amount of the control valve such that the opening area of the hydraulic oil discharge passage changes according to the engine speed.
また、 制御弁を介して油圧ァクチユエ一夕へ供給されなかった作動油 をタンクへ戻すバイパス通路を備え、 制御弁が、 バイパス通路に介装さ れ、 バイパス通路の開口面積を調整するものとして構成され、 制御手段 を、 バイパス通路内の作動油の流量に略逆比例する特性に基づいて油圧 ポンプからの吐出流量を制御するための基本傾転角制御量を設定する基 本傾転角制御量設定手段と、 操作部材の操作量が最大で、 かつ、 ェンジ ン回転速度センサにより検出されるエンジン回転速度が最大でない場合 に、 油圧ポンプからの吐出流量が最大となるように基本傾転角制御量設 定手段により設定される基本傾転角制御量を補正する傾転角制御量補正 手段とを備えるものとして構成するのが好ましい。 In addition, a bypass passage is provided for returning hydraulic oil not supplied to the hydraulic actuator to the tank via the control valve to the tank, and the control valve is interposed in the bypass passage to adjust the opening area of the bypass passage. The control means sets a basic tilt angle control amount for controlling a basic tilt angle control amount for controlling the discharge flow rate from the hydraulic pump based on a characteristic substantially inversely proportional to the flow rate of the hydraulic oil in the bypass passage. When the operation amount of the setting means and the operation member is the maximum and the engine speed detected by the engine speed sensor is not the maximum And a tilt angle control amount correction means for correcting the basic tilt angle control amount set by the basic tilt angle control amount setting means so that the discharge flow rate from the hydraulic pump is maximized. Is preferred.
また、 本発明の建設機械の制御方法は、 オペレータにより操作される 操作部材と、 エンジンにより駆動され、 タンク内の作動油を吐出する油 圧ポンプと、 油圧ポンプにより吐出される作動油により駆動される油圧 ァクチユエ一夕と、 油圧ァクチユエ一夕からタンクへ作動油を排出する 作動油排出通路と、 作動油排出通路に介装され、 作動油排出通路を通じ て排出される作動油の流量を制御する制御弁と、 エンジンの回転数を検 出するエンジン回転速度センサと、 操作部材の操作量に基づいて作動油 排出通路の開口面積を調整すべく制御弁を制御する制御手段とを備える 建設機械の制御方法であって、 エンジン回転速度センサによってェンジ ンの回転数を検出する検出ステツプと、 検出ステップで検出されたェン ジン回転速度を加味して制御手段によって制御弁を制御する制御ステツ プとを備える。  Also, the construction machine control method of the present invention includes an operation member operated by an operator, a hydraulic pump driven by an engine to discharge hydraulic oil in a tank, and a hydraulic pump discharged by a hydraulic pump. Hydraulic oil pump, a hydraulic oil discharge passage that discharges hydraulic oil from the hydraulic oil pump to the tank, and a hydraulic oil discharge passage that is interposed in the hydraulic oil discharge passage and controls the flow rate of hydraulic oil that is discharged through the hydraulic oil discharge passage. A construction valve comprising: a control valve; an engine speed sensor for detecting an engine speed; and control means for controlling the control valve to adjust an opening area of the hydraulic oil discharge passage based on an operation amount of an operation member. A control method, comprising: a detection step for detecting an engine speed by an engine speed sensor; and an engine speed detected in the detection step. And a control step of controlling the control valve by the control means.
好ましくは、 制御ステップでは、 操作部材の操作量が最大で、 かつ検 出ステツプで検出されたエンジン回転速度が最大の場合に、 油圧ポンプ から油圧ァクチユエ一夕へ作動油を供給する作動油供給通路を通じて供 給される作動油の最大供給流量に応じた流量の作動油が作動油排出通路 を通じて排出されるように制御弁が制御されるようにする。  Preferably, in the control step, when the operation amount of the operation member is the maximum and the engine rotation speed detected in the detection step is the maximum, the hydraulic oil supply passage that supplies the hydraulic oil from the hydraulic pump to the hydraulic actuator. The control valve is controlled such that the hydraulic oil at a flow rate corresponding to the maximum supply flow rate of the hydraulic oil supplied through the hydraulic oil discharge passage is discharged through the hydraulic oil discharge passage.
また、 制御ステップでは、 検出ステップで検出されたエンジン回転速 度が低くなるにつれて作動油排出通路の開口面積が小さくなるように制 御弁が制御されるようにするのも好ましい。  In the control step, it is also preferable that the control valve is controlled such that the opening area of the hydraulic oil discharge passage decreases as the engine rotation speed detected in the detection step decreases.
さらに、 制御ステップでは、 エンジン回転速度が低くなるにつれて小 さくなる補正係数により制御弁に対する制御量が補正されるように構成 するのも好ましい。 また、 制御ステップでは、 作動油排出通路の開口面積がエンジン回転 速度に応じて変化するように制御弁の制御量が設定されるように構成す るのも好ましい。 Further, in the control step, it is preferable that the control amount for the control valve is corrected by a correction coefficient that decreases as the engine rotation speed decreases. It is also preferable that in the control step, the control amount of the control valve is set such that the opening area of the hydraulic oil discharge passage changes in accordance with the engine speed.
また、 制御弁を介して油圧ァクチユエ一夕へ供給されなかった作動油 を該タンクへ戻すバイパス通路を備え、 制御弁を、 バイパス通路に介装 し、 バイパス通路の開口面積を調整するものとして構成し、 制御ステツ プで、 バイパス通路内の作動油の流量に略逆比例する特性に基づいて油 圧ポンプからの吐出流量を制御するための基本傾転角制御量を設定し、 操作部材の操作量が最大で、 かつ、 検出ステップで検出されたエンジン 回転速度が最大でない場合に、 油圧ポンプからの吐出流量が最大となる ように基本傾転角制御量を補正するようにするのも好ましい。  In addition, a bypass passage is provided for returning hydraulic oil not supplied to the hydraulic actuator through the control valve to the tank, and the control valve is interposed in the bypass passage to adjust the opening area of the bypass passage. In the control step, a basic tilt angle control amount for controlling the discharge flow rate from the hydraulic pump is set based on a characteristic substantially inversely proportional to the flow rate of the hydraulic oil in the bypass passage, and the operation member is operated. When the amount is maximum and the engine rotation speed detected in the detection step is not maximum, it is also preferable to correct the basic tilt angle control amount so that the discharge flow rate from the hydraulic pump becomes maximum.
このように構成される本発明の建設機械の制御装置及び制御方法によ れば、 油圧ァクチユエ一夕の自重降下時の余分な馬力消費が低減される ため、 パワーロスの低減, 燃費の改善, 熱損失の低減を図ることができ る。 また、 油圧ァクチユエ一夕内の圧力が高くならず、 油圧ァクチユエ 一夕の温度も高まることがないため、 ヒートバランスの改善, クーリン グ性能の向上を図ることもできる。 さらに、 油圧ァクチユエ一夕の自重 降下時に余分な背圧が生じないため余分な馬力が必要となることがなく . 作業効率が改善される。 図面の簡単な説明  According to the control device and the control method for a construction machine of the present invention configured as described above, the excess horsepower consumption during the descent of the hydraulic actuator during its own weight reduction is reduced, so that power loss is reduced, fuel consumption is improved, and heat The loss can be reduced. Also, since the pressure in the hydraulic actuator does not increase and the temperature in the hydraulic actuator does not increase, the heat balance can be improved and the cooling performance can be improved. Furthermore, there is no need for extra horsepower because no extra back pressure is generated when the deadweight of Hydraulic Factory is lowered. Work efficiency is improved. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態にかかる建設機械の制御装置におけるス ティックの自重降下制御を説明するための制御ブロック図である。  FIG. 1 is a control block diagram for explaining the self-weight drop control of a stick in the control device for a construction machine according to one embodiment of the present invention.
図 2は、 本発明の一実施形態にかかる建設機械の制御装置の全体構成 図である。 図 3は、 本発明の一実施形態にかかる建設機械の制御装置の制御弁を 説明するための模式図である。 FIG. 2 is an overall configuration diagram of a control device for a construction machine according to one embodiment of the present invention. FIG. 3 is a schematic diagram for explaining a control valve of the control device for a construction machine according to one embodiment of the present invention.
図 4は、 本発明の一実施形態にかかる建設機械の制御装置における操 作部材の操作量と比例減圧弁の基本制御信号とを関係づけたマップを示 す図である。  FIG. 4 is a diagram showing a map associating an operation amount of an operation member and a basic control signal of a proportional pressure reducing valve in the control device for a construction machine according to one embodiment of the present invention.
図 5は、 本発明の一実施形態にかかる建設機械の制御装置におけるェ ンジン回転速度と比例減圧弁の制御信号率とを関係づけたマップを示す 図である。  FIG. 5 is a diagram showing a map in which the engine rotation speed and the control signal rate of the proportional pressure reducing valve are related in the control device for the construction machine according to the embodiment of the present invention.
図 6は、 本発明の一実施形態にかかる建設機械の制御装置における補 正制御信号とスプールストロークとを関係づけたマップを示す図である。 図 7は、 本発明の一実施形態にかかる建設機械の制御装置におけるス プールストローク量と P _ C通路, C— T通路, バイパス通路の開口面 積との関係を示す図である。  FIG. 6 is a diagram showing a map in which the correction control signal and the spool stroke are related in the control device for the construction machine according to the embodiment of the present invention. FIG. 7 is a diagram showing the relationship between the spool stroke amount and the opening areas of the PC passage, the CT passage, and the bypass passage in the control device for the construction machine according to the embodiment of the present invention.
図 8は、 本発明の一実施形態にかかる建設機械の制御装置におけるェ ンジン回転速度に応じた C— T開口面積の制御特性を示す図である。 図 9は、 本発明の一実施形態にかかる建設機械の制御装置におけるェ ンジン回転速度に応じた C一 T開口面積の制御特性の変形例を示す図で ある。  FIG. 8 is a diagram showing control characteristics of the CT opening area according to the engine rotation speed in the control device for a construction machine according to one embodiment of the present invention. FIG. 9 is a diagram illustrating a modification of the control characteristic of the CIT opening area according to the engine rotation speed in the control device for a construction machine according to one embodiment of the present invention.
図 1 0は、 本発明の一実施形態にかかる建設機械の制御装置における ネガティブフローコントロールの要求流量とネガコン圧との関係を示す 図である。  FIG. 10 is a diagram showing a relationship between a required flow rate of negative flow control and a negative control pressure in the control device for a construction machine according to one embodiment of the present invention.
図 1 1は、 本発明の一実施形態にかかる建設機械の制御装置における ネガティブフローコントロールの許容流量とポンプ吐出圧との関係を示 す図である。  FIG. 11 is a diagram showing the relationship between the allowable flow rate of the negative flow control and the pump discharge pressure in the control device for a construction machine according to one embodiment of the present invention.
図 1 2は、 本発明の一実施形態にかかる建設機械の制御装置の基本傾 転角制御量設定手段による傾転角制御を説明するためのフローチャート である。 FIG. 12 is a flowchart for explaining the tilt angle control by the basic tilt angle control amount setting means of the control device for the construction machine according to one embodiment of the present invention. It is.
図 1 3は、 本発明の一実施形態にかかる建設機械の制御装置の傾転角 制御量補正手段における傾転角の補正制御を説明するためのフローチヤ —トである。  FIG. 13 is a flowchart for explaining the tilt angle correction control by the tilt angle control amount correction means of the control device for a construction machine according to one embodiment of the present invention.
図 1 4は、 本発明の一実施形態にかかる建設機械の制御装置における エンジン回転速度と C一 T開口面積との関係を示す図である。  FIG. 14 is a diagram showing a relationship between an engine rotation speed and a C-T opening area in the control device for a construction machine according to one embodiment of the present invention.
図 1 5は、 本発明の一実施形態にかかる建設機械の制御装置における エンジン回転速度と背圧との関係を示す図である。  FIG. 15 is a diagram illustrating a relationship between an engine rotation speed and a back pressure in the control device for a construction machine according to one embodiment of the present invention.
図 1 6は、 従来の建設機械を示す模式的斜視図である。  FIG. 16 is a schematic perspective view showing a conventional construction machine.
図 1 7は、 従来の建設機械の制御装置におけるエンジン回転速度と C 一 T開口面積との関係を示す図である。  FIG. 17 is a diagram showing the relationship between the engine rotation speed and the C-T opening area in a conventional construction machine control device.
図 1 8は、 従来の建設機械の制御装置におけるエンジン回転速度と背 圧との関係を示す図である。 発明を実施するための最良の形態  FIG. 18 is a diagram showing the relationship between the engine rotation speed and the back pressure in a conventional construction machine control device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面により、 本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
まず、 本実施形態にかかる建設機械について説明する。  First, a construction machine according to the present embodiment will be described.
本建設機械は、 従来技術 (図 1 6参照) で既に説明したように、 油圧 ショベル等の建設機械 (作業機械) であって、 上部旋回体 1 0 2と下部 走行体 1 0 0と作業装置 1 1 8とからなっている。  This construction machine is a construction machine (working machine) such as a hydraulic shovel, as described in the related art (see FIG. 16), and includes an upper revolving unit 102, a lower traveling unit 100, and a working device. Consists of 1 1 8
下部走行体 1 0 0は、 互いに独立して駆動しうる右トラック 1 0 0 R 及び左トラック 1 0 0 Lをそなえており、 一方、 上部旋回体 1 0 2は、 下部走行体 1 0 0に対して水平面内で旋回可能に設けられている。 また、 作業装置 1 1 8は、 主にブーム 1 0 3, スティック 1 0 4, ノ ケッ ト 1 0 8等からなっており、 ブーム 1 0 3は、 上部旋回体 1 0 2に 対して回動可能に枢着されている。 また、 ブーム 1 0 3の先端には、 同 じく鉛直面内に回動可能にスティック 1 04が接続されている。 The undercarriage 100 has a right track 100R and a left track 100L that can be driven independently of each other, while the upper revolving structure 102 has a lower track 100 On the other hand, it is provided so as to be pivotable in a horizontal plane. The working device 118 mainly includes a boom 103, a stick 104, a socket 108, and the like. The boom 103 rotates with respect to the upper rotating body 102. It is pivoted as much as possible. Also, at the end of the boom 103, A stick 104 is rotatably connected in the vertical plane.
また、 上部旋 Θ体 1 0 2とブーム 1 0 3との間には、 ブーム 1 0 3を 駆動するためのブーム駆動用油圧シリンダ (ブームシリンダ, 油圧ァク チユエ一夕) 1 0 5が設けられるとともに、 ブーム 1 0 3とスティック 1 0 4との間には、 スティ ック 1 0 4を駆動するためのスティック駆動 用油圧シリンダ (スティックシリンダ, 油圧ァクチユエ一夕) 1 0 6が 設けられている。 また、 スティック 1 04とバケツ ト 1 0 8との間には、 バケツ ト 1 0 8を駆動するためのバケツ ト駆動用油圧シリンダ (バケツ トシリンダ, 油圧ァクチユエ一夕) 1 0 7が設けられている。  A boom drive hydraulic cylinder (boom cylinder, hydraulic actuator) 105 for driving the boom 103 is provided between the upper rotating body 102 and the boom 103. In addition, between the boom 103 and the stick 104, a stick driving hydraulic cylinder (stick cylinder, hydraulic actuator) 106 for driving the stick 104 is provided. I have. Also, between the stick 104 and the bucket 108, a bucket driving hydraulic cylinder (bucket cylinder, hydraulic actuator) 107 for driving the bucket 108 is provided. .
そして、 このような構成により、 ブーム 1 0 3は図中 a方向及び b方 向に、 スティ ック 1 04は図中 c方向及び d方向に、 バゲッ ト 1 0 8は 図中 e方向及び f 方向に回動可能に構成されている。  With such a configuration, the boom 103 is in the directions a and b in the figure, the stick 104 is in the directions c and d in the figure, and the baggage 108 is the direction e and f in the figure. It is configured to be rotatable in the direction.
ここで、 図 2はこのような油圧ショベルの油圧回路の要部を模式的に 示す図である。  Here, FIG. 2 is a diagram schematically showing a main part of a hydraulic circuit of such a hydraulic shovel.
図 2に示すように、 上述の左トラック 1 0 0 L及び右トラック 1 0 0 As shown in FIG. 2, the left track 100 L and the right track 100
Rには、 それぞれ独立した動力源としての走行モー夕 1 0 9 L, 1 0 9 Rが設けられ、 また、 上部旋回体 1 0 2には、 下部走行体 1 0 0に対し て上部旋回体 1 0 2を旋回駆動させるための旋回モー夕 1 1 0が設けら れている。 R is provided with a driving motor 109 L and 109 R as independent power sources, and the upper revolving unit 102 is provided with an upper revolving unit with respect to the lower traveling unit 100. A turning motor 110 for turning the 102 is turned is provided.
これらの走行モー夕 1 0 9 L, 1 0 9 Rや旋回モー夕 1 1 0は、 油圧 により作動する油圧モー夕として構成されており、 後述するようにェン ジン (主に、 ディーゼルエンジン) 5 0により駆動される複数 (ここで は 2つ) の油圧ポンプ 5 1 , 5 2からの作動油が油圧回路 5 3を介して 所定圧力とされて供給され、 このようにして供給される作動油圧に応じ て各油圧モー夕 1 0 9 L, 1 0 9 R, 1 1 0が駆動されるようになって いる。 ここで、 油圧ポンプ 5 1 , 5 2は、 リザーバタンク 7 0内の作動油を 所定油圧として吐出するもので、 ここでは、 斜板回転式ピストンポンプ (ピストン型可変容量ポンプ, 可変吐出量形ピストンポンプ) として構 成されている。 これらの油圧ポンプ 5 1 , 5 2は、 油圧ポンプ内に設け られたピストン (図示略) のストローク量を変更することでポンプ吐出 流量を調整しうるようになっている。 These traveling motors 110 L and 109 R and turning motors 110 are configured as hydraulic motors that are operated by hydraulic pressure. As described later, engines (mainly diesel engines) are used. Hydraulic oil from a plurality (here, two) of hydraulic pumps 51, 52 driven by 50 is supplied at a predetermined pressure via a hydraulic circuit 53, and the operation supplied in this manner is performed. Each hydraulic motor 109L, 109R, 110 is driven according to the hydraulic pressure. Here, the hydraulic pumps 51 and 52 discharge the hydraulic oil in the reservoir tank 70 as a predetermined oil pressure. Here, a swash plate rotary piston pump (piston type variable displacement pump, variable discharge amount type piston) is used. Pump). These hydraulic pumps 51 and 52 can adjust the pump discharge flow rate by changing the stroke amount of a piston (not shown) provided in the hydraulic pump.
つまり、 これらの油圧ポンプ 5 1, 5 2では、 上記ピストンの一端が 斜板 (クリーブプレート : 図示略) に当接するように構成されており、 この斜板の傾き (傾転角) を後述するコントローラ 1.からの作動信号に 基づいて変更することでピストンのストロ一ク量を変更してポンプ吐出 流量を調整しうるようになっている。  That is, in these hydraulic pumps 51 and 52, one end of the piston is configured to abut on a swash plate (cleave plate: not shown), and the inclination (tilt angle) of the swash plate will be described later. By changing the stroke based on the operation signal from controller 1, the stroke of the piston can be changed and the pump discharge flow can be adjusted.
このようにコントローラ 1からの作動信号に基づいて斜板の傾きを変 更しうるようになつており、 油圧回路を構成する油路内の作動油の圧力 のほかに、 オペレータによる各操作部材 5 4の操作量をも加味すること ができるため、 従来のように油路内の作動油の圧力を導いて斜板の傾き を変更するものに比べ、 オペレー夕の運転フィーリングを向上させるこ とができることになる。  As described above, the inclination of the swash plate can be changed based on the operation signal from the controller 1. In addition to the pressure of the hydraulic oil in the oil passages constituting the hydraulic circuit, each operation member 5 by the operator is changed. Because the amount of operation in 4 can also be taken into account, the operating feeling during operation can be improved compared to the conventional method in which the pressure of the hydraulic oil in the oil passage is guided to change the inclination of the swash plate. Can be done.
また、 エンジン 5 0は、 ォペレ一夕がエンジン回転速度設定ダイヤル を切り替えることでエンジン回転速度を設定できるようになつており、 ここでは、 最大エンジン回転速度 (例えば約 2 0 0 0 r p m) と最小ェ ンジン回転速度 (例えば約 1 0 0 0 r p m) との間で複数段階に切り換 えられるようになつている。 なお、 エンジン回転速度はこのように段階 的に切り換えるものに限られず、 滑らかに変更しうるものであっても良 い。 また、 エンジン 5 0の全馬力はこれらの油圧ポンプ 5 1, 5 2及び 後述するパイ口ッ 卜ポンプ 8 3を駆動するために消費される。  In addition, the engine 50 allows the operator to set the engine speed by switching the engine speed setting dial. Here, the maximum engine speed (for example, about 200 rpm) and the minimum engine speed are set. It can be switched in multiple stages between the engine rotation speed (for example, about 1000 rpm). Note that the engine speed is not limited to such a stepwise switching, but may be a type that can be changed smoothly. The total horsepower of the engine 50 is consumed for driving these hydraulic pumps 51 and 52 and a later-described pilot pump 83.
また、 各シリンダ 1 0 5〜 1 0 7についても、 これらの走行モー夕 1 0 9 L , 1 0 9 Rや旋回モ一夕 1 1 0と同様に、 エンジン 5 0により駆 動される複数 (ここでは 2つ) の油圧ポンプ 5 1, 5 2から供給される 作動油の油圧により駆動されるようになっている。 In addition, for each cylinder 105 to 107, As in the case of 09 L, 109 R and turning motor 110, the hydraulic oil supplied from multiple (here, two) hydraulic pumps 51, 52 driven by engine 50 It is designed to be driven by hydraulic pressure.
また、 運転操作室 1 0 1には、 油圧ショベルの作動 (走行, 旋回, ブ ーム回動, スティック回動及びバゲッ ト回動) を制御するために左レバ 一, 右レバー, 左ペダル及び右ペダル等の複数の操作部材 5 4が備えら れている。 これらの操作部材 5 4は電気式操作部材 (例えば電気式操作 レバー) として構成され、 その操作量に応じた電気信号を後述するコン トローラ (制御手段) 1へ出力するようになっている。  The operation room 101 has a left lever, a right lever, a left pedal, and a left lever for controlling the operation of the hydraulic excavator (running, turning, boom turning, stick turning, and baguette turning). A plurality of operating members 54 such as a right pedal are provided. These operation members 54 are configured as electric operation members (for example, electric operation levers), and output an electric signal corresponding to the operation amount to a controller (control means) 1 described later.
そして、 例えばオペレータがこれらの操作部材 5 4を操作することに より、 油圧回路 5 3に介装される各制御弁 5 7〜 6 0 , 6 2〜6 5が制 御されて、 各シリンダ 1 0 5〜 1 0 7や油圧モ一夕 1 0 9 L, 1 0 9 R, 1 1 0が駆動される。 これにより、 上部旋回体 1 0 2を旋回させたり、 ブーム 1 0 3,スティック 1 0 4及びバケツ ト 1 0 8等を回動させたり、 油圧ショベルを走行させることができるのである。  Then, for example, when the operator operates these operating members 54, the control valves 57 to 60 and 62 to 65 interposed in the hydraulic circuit 53 are controlled, and each cylinder 1 05 to 107 and hydraulic motors 109 L, 109 R, 110 are driven. As a result, the upper swing body 102 can be turned, the boom 103, the stick 104, the bucket 108, and the like can be turned, and the hydraulic shovel can be run.
次に、 これらの各シリンダ等を制御するための油圧回路 5 3について 説明する。  Next, a hydraulic circuit 53 for controlling these cylinders and the like will be described.
油圧回路 5 3は、 図 2に示すように、 第 1回路部 5 5と、 第 2回路部 5 6とを備える。  As shown in FIG. 2, the hydraulic circuit 53 includes a first circuit unit 55 and a second circuit unit 56.
このうち、 第 1回路部 5 5は、 第 1油圧ポンプ 5 1に接続される油路 Among them, the first circuit section 55 is an oil passage connected to the first hydraulic pump 51.
6 1 と、 油路 6 1に介装される右走行モータ用制御弁 5 7, パケッ ト用 制御弁 5 8, 第 1ブーム用制御弁 5 9 , 第 2スティック用制御弁 6 0等 の制御弁とを備えて構成される。 Control of the control valve 57 for the right running motor, the control valve 58 for the packet, the control valve 59 for the first boom, the control valve 60 for the second stick, etc. And a valve.
そして、 第 1油圧ポンプ 5 1からの作動油が、 油路 6 1 , 右走行モー 夕用制御弁 5 7を介して右走行モー夕 1 0 9 Rへ供給され、 右走行モー 夕 1 0 9 Rを駆動するようになっている。 また、 第 1油圧ポンプ 5 1か らの作動油は、 油路 6 1, バゲッ ト用制御弁 5 8を介してパケッ ト駆動 用油圧シリンダ 1 0 7へ供給されるとともに、 油路 6 1 , 第 1ブーム用 制御弁 5 9を介してブーム駆動用油圧シリンダ 1 0 5へ供給され、 さら に油路 6 1 , 第 2スティック用制御弁 6 0を介してスティ ック駆動用油 圧シリンダ 1 0 6へ供給され、 これにより、 各シリンダ 1 0 5, 1 0 6, 1 0 7が駆動されるようになっている。 Then, the hydraulic oil from the first hydraulic pump 51 is supplied to the right traveling motor 110 R via the oil passage 61, the right traveling motor evening control valve 57, and the right traveling motor 110 R is driven. Also, the first hydraulic pump 5 1 These hydraulic oils are supplied to the packet driving hydraulic cylinder 107 via the oil passage 61 and the baguette control valve 58, and the oil passage 61 and the first boom control valve 59 To the boom drive hydraulic cylinder 105 through the oil passage 61 and the second stick control valve 60 to the stick drive hydraulic cylinder 106. Each cylinder 105, 106, 107 is driven.
また、 第 1回路部 5 5の油路 6 1の下流側には絞り (リリーフ弁付き 絞り) 8 1が備えられており、 この絞り 8 1を通じて第 1油圧ポンプ 5 1からの作動油をリザーバタンク 7 0へ戻すようになつている。  A throttle (throttle with a relief valve) 81 is provided downstream of the oil passage 61 of the first circuit portion 55, and hydraulic fluid from the first hydraulic pump 51 is supplied to the reservoir through the throttle 81. It returns to tank 70.
第 2回路部 5 6は、 第 2油圧ポンプ 5 2に接続される油路 6 6と、 油 路 6 6に介装される左走行モー夕用制御弁 6 2 , 旋回モー夕用制御弁 6 3, 第 1スティック用制御弁 6 4, 第 2ブーム用制御弁 6 5等の制御弁 と、 絞り 8 2とを備えて構成される。  The second circuit portion 56 includes an oil passage 66 connected to the second hydraulic pump 52, a left traveling motor control valve 62 interposed in the oil passage 66, and a turning motor evening control valve 6. 3, a control valve such as a first stick control valve 64, a second boom control valve 65, etc., and a throttle 82.
そして、 第 2油圧ポンプ 5 2からの作動油が、 油路 6 6, 左走行モー 夕用制御弁 6 2を介して左走行モー夕 1 0 9 Lへ供給され、これにより、 左走行モー夕 1 0 9 Lが駆動されるようになっている。 また、 第 2油圧 ポンプ 5 2からの作動油は、 油路 6 6 , 旋回モー夕用制御弁 6 3を介し て旋回モ一夕 1 1 0へ供給され、 これにより、 旋回モー夕 1 1 0が駆動 されるようになつている。 さらに、 第 2油圧ポンプ 5 2からの作動油は、 油路 6 6 , 第 1スティ ック用制御弁 6 4を介してスティック駆動用油圧 シリンダ 1 0 6へ供給されるとともに、 油路 6 6, 第 2ブーム用制御弁 6 5を介してブーム駆動用油圧シリンダ 1 0 5へ供給され、これにより、 各シリンダ 1 0 5 , 1 0 6が駆動されるようになっている。  Then, the hydraulic oil from the second hydraulic pump 52 is supplied to the left traveling motor 109 L via the oil passage 66 and the left traveling motor control valve 62, whereby the left traveling motor 90 109 L is driven. Hydraulic oil from the second hydraulic pump 52 is supplied to the turning motor 110 via the oil passage 66 and the turning motor control valve 63, whereby the turning motor 110 Are driven. Further, the hydraulic oil from the second hydraulic pump 52 is supplied to the hydraulic cylinder 106 for driving the stick via the oil passage 66 and the control valve 64 for the first stick. , Is supplied to the boom driving hydraulic cylinder 105 via the second boom control valve 65, whereby the respective cylinders 105, 106 are driven.
また、 第 2回路部 5 6の油路 6 6の下流側には絞り (リ リーフ弁付き 絞り) 8 2が備えられており、 この絞り 8 2を通じて第 2油圧ポンプ 5 2からの作動油をリザーバタンク 7 0へ戻すようになつている。 なお、 各制御弁 5 7〜 6 0 , 6 2〜6 5は、 図示しないコントロール ュニッ ト内に収納されている。 A throttle (a throttle with a relief valve) 82 is provided on the downstream side of the oil passage 66 of the second circuit portion 56, and the hydraulic oil from the second hydraulic pump 52 is provided through the throttle 82. It returns to the reservoir tank 70. The control valves 57 to 60 and 62 to 65 are housed in a control unit (not shown).
このように、 本実施形態では、 建設機械の作業において重要なスティ ック 1 0 4に他の作業機 1 1 8との同時操作時においても十分な作動油 が供給されるように、 第 2回路部 5 6の第 2油圧ポンプ 5 2からの作動 油に加え、 第 1回路部 5 5の第 1油圧ポンプ 5 1からの作動油もスティ ック駆動用油圧シリンダ 1 0 6へ供給されるようになっている。  As described above, in the present embodiment, the second stick is set so that a sufficient hydraulic oil is supplied to the important stick 104 in the operation of the construction machine even at the same time when the other work machine 118 is operated simultaneously. In addition to the hydraulic oil from the second hydraulic pump 52 in the circuit section 56, the hydraulic oil from the first hydraulic pump 51 in the first circuit section 55 is also supplied to the stick driving hydraulic cylinder 106. It has become.
このため、 第 2回路部 5 6の油路 6 6に第 1スティック用制御弁 6 4 が介装され、 第 1回路部 5 5の油路 6 1に第 2スティック用制御弁 6 0 が介装されている。 そして、 第 1スティック用制御弁 6 4を比例制御弁 6 4 a , 6 4 bにより制御するとともに、 第 2スティ ック用制御弁 6 0 を比例制御弁 6 0 a , 6 0 bにより制御することにより、 スティック駆 動用油圧シリンダ 1 0 6への作動油の給排を行なえるようになつている 同様に、 他の作業機 1 1 8との同時操作時においてもブーム 1 0 3に 十分な作動油が供給されるように、 第 1回路部 5 5の第 1油圧ポンプ 5 1からの作動油に加え、 第 2回路部 5 6の第 2油圧ポンプ 5 2からの作 動油もブーム駆動用油圧シリンダ 1 0 5へ供給されるようになっている t このため、 第 1回路部 5 5の油路 6 1に第 1ブーム用制御弁 5 9が介 装され、 第 2回路部 5 6の油路 6 6に第 2ブーム用制御弁 6 5が介装さ れている。 そして、 第 1ブーム用制御弁 5 9を比例制御弁 5 9 a, 5 9 bにより制御するとともに、 第 2ブーム用制御弁 6 5を比例制御弁 6 5 a , 6 5 bにより制御することにより、 ブーム駆動用油圧シリンダ 1 0 5への作動油の給排を行なえるようになつている。 For this reason, the first stick control valve 64 is interposed in the oil passage 66 of the second circuit portion 56, and the second stick control valve 60 is interposed in the oil passage 61 of the first circuit portion 55. Is equipped. Then, the first stick control valve 64 is controlled by the proportional control valves 64 a and 64 b, and the second stick control valve 60 is controlled by the proportional control valves 60 a and 60 b. As a result, hydraulic oil can be supplied to and discharged from the hydraulic cylinder 106 for driving the stick.Similarly, sufficient operation for the boom In order to supply hydraulic oil, in addition to the hydraulic oil from the first hydraulic pump 51 in the first circuit section 55, the hydraulic oil from the second hydraulic pump 52 in the second circuit section 56 is also boom driven. t Therefore, adapted to be supplied to use the hydraulic cylinder 1 0 5, the first boom control valve 5 9 is via instrumentation to the oil passage 61 of the first circuit portion 5 5, the second circuit section 5 6 The second boom control valve 65 is interposed in the oil passage 66 of the second boom. The first boom control valve 59 is controlled by the proportional control valves 59a and 59b, and the second boom control valve 65 is controlled by the proportional control valves 65a and 65b. The hydraulic oil can be supplied to and discharged from the boom drive hydraulic cylinder 105.
また、 本実施形態では、 スティック駆動用油圧シリンダ 1 0 6への作 動油の給排を行なう油路 6 7, 6 8にはスティック用再生弁 7 6が介装 されており、 作動油排出側油路から作動油供給側油路へ所定量の作動油 を再生できるようになつている。 In this embodiment, a stick regeneration valve 76 is interposed in the oil passages 67, 68 for supplying and discharging hydraulic oil to and from the hydraulic cylinder 106 for driving the stick. A predetermined amount of hydraulic oil from the side oil passage to the hydraulic oil supply side oil passage Can be played.
同様に、 ブーム駆動用油圧シリンダ 1 0 5への作動油の給排を行なう 油路 7 8, 7 9にもブーム用再生弁 7 7が介装されており、 作動油排出 側油路から作動油供給側油路へ所定量の作動油を再生できるようになつ ている。  Similarly, boom regeneration valves 77 are also interposed in the oil passages 78, 799 that supply and discharge hydraulic oil to the boom drive hydraulic cylinder 105, and operate from the hydraulic oil discharge side oil passage. A predetermined amount of hydraulic oil can be regenerated to the oil supply side oil passage.
ここで、 各制御弁 5 7〜6 0, 6 2〜6 5は、 図 3に示すように、 ス プール弁として構成され、 いずれも複数 (ここでは 5つ) の絞りを備え て構成される。  Here, each of the control valves 57 to 60 and 62 to 65 is configured as a spool valve as shown in Fig. 3, and each is configured with a plurality of (here, five) throttles. .
つまり、 各制御弁 5 7〜6 0, 6 2〜 6 5は、 図 3.に示すように、 第 1油圧ポンプ 5 1, 第 2油圧ポンプ 5 2とスティック駆動用油圧シリン ダ 1 0 6とを連通する油路 (作動油供給通路, P— C通路) 6 1 a, 6 6 aに介装される P— C絞り 8と、 スティ ック駆動用油圧シリンダ 1 0 6とリザーバタンク 7 0とを連通する油路 (作動油排出通路, C — T通 路) 6 6 b, 6 9に介装される C 一 T絞り 9と、 第 1油圧ポンプ 5 1 , 第 2油圧ポンプ 5 2とリザーバタンク 7 0とを連通する油路 (バイパス 通路) 6 1 b, 6 6 cに介装されるバイパス通路絞り 1 0とを備えて構 成される。  That is, as shown in FIG. 3, the control valves 57 to 60 and 62 to 65 are connected to the first hydraulic pump 51, the second hydraulic pump 52, and the stick driving hydraulic cylinder 106, respectively. (Hydraulic oil supply passage, P-C passage) 6 1a, P-C restrictor 8 interposed in 66a, stick drive hydraulic cylinder 106 and reservoir tank 70 Oil passage (hydraulic oil discharge passage, C-T passage) 66 C, T throttle 9 interposed in 69 b, 69, 1st hydraulic pump 51, 2nd hydraulic pump 52 It is configured to include a bypass passage restrictor 10 interposed in oil passages (bypass passages) 61b and 66c communicating with the reservoir tank 70.
なお、 図 3ではスティック用制御弁 6 0, 6 4はスティック下げ位置 になっているが、 スティック用制御弁 6 0 , 6 4を、 図 3中、 上方向へ 移動させて、 スティック用制御弁 6 0, 6 4のバイパス通路絞り 1 0を バイパス通路 6 1 b, 6 6 cに介装させることで、 スティック用制御弁 6 0 , 6 4を中立位置とすることができ、 また、 スティック用制御弁 6 0, 6 4を、 図 3中、 最も上方向へ移動させて、 スティック用制御弁 6 0, 6 4の P— C絞り 8を P— C通路 6 1 a, 6 6 aに介装させるとと もに、 スティック用制御弁 6 0, 6 4の C — T絞り 9を C — T通路 6 6 b, 6 9に介装させることで、 スティック用制御弁 6 0, 6 4をスティ ック上げ位置にすることができる。 In FIG. 3, the stick control valves 60 and 64 are in the stick lowered position, but the stick control valves 60 and 64 are moved upward in FIG. By interposing the bypass passage restrictors 10 of 60 and 64 in the bypass passages 6 1b and 66c, the stick control valves 60 and 64 can be set to the neutral position. By moving the control valves 60 and 64 upward in Fig. 3, the P-C throttle 8 of the stick control valves 60 and 64 passes through the P-C passages 61a and 66a. At the same time, the C-T throttle 9 of the stick control valves 60 and 64 is interposed in the C-T passages 66 b and 69 to control the stick control valves 60 and 64. Stay Can be in the raised position.
ここで、 本実施形態では、 最大エンジン回転速度でポンプ流量が最大 となり、 操作部材がフル操作された場合にも、 C一 T絞り 9によって過 剰に絞られることなく、 その最大ポンプ流量に応じた流量の作動油がス ムーズに、 かつ確実に C _ T通路 6 6 b , 6 9を通じて排出されるよう に、 C一 T絞り 9の径の大きさを従来のものに比べ十分に大きく設定す る。  Here, in the present embodiment, the pump flow rate becomes maximum at the maximum engine rotation speed, and even when the operating member is fully operated, the pump is not excessively throttled by the C-T throttle 9 and is adjusted according to the maximum pump flow rate. The diameter of the C-T throttle 9 is set to be sufficiently larger than that of the conventional one so that the hydraulic oil with the adjusted flow rate can be smoothly and surely discharged through the C_T passages 66b and 69. You.
つまり、 C— T開口面積は、 操作部材 5 4の操作量が最大で、 かつェ ンジン回転速度が最大の場合に P— C通路 6 l a , 6 6 aを通じて供給 される作動油の流量に応じた流量の作動油が C一 T通路 6 6 b, 6 9を 通じて排出されるように設定されることになる。  In other words, the C-T opening area depends on the flow rate of the hydraulic oil supplied through the P-C passages 6 la and 66 a when the operation amount of the operation member 54 is the maximum and the engine rotation speed is the maximum. It is set so that the hydraulic fluid with the reduced flow rate is discharged through the C-T passages 66b and 69.
この C— T開口面積の設定に際しては、 スティ ック駆動用油圧シリン ダ 1 0 6のへッ ド側油室とロッ ド側油室とで断面積差があるため、 これ らの油室の断面積の比率が加味される。 つまり、 P _ C通路 6 1 a, 6 6 aからスティック駆動用油圧シリンダ 1 0 6のへッ ド側油室内へ供給 される作動油の流量と、 スティック駆動用油圧シリンダ 1 0 6のロッ ド 側油室内から C一 T通路 6 6 b, 6 9へ排出される作動油の流量との比 率が、 スティ ック駆動用油圧シリンダ 1 0 6のへッ ド側油室の断面積と ロッ ド側油室の断面積との比率を加味して求められ、 これに応じて、 C — T開口面積、 即ち C— T絞り 9の径の大きさが設定される。  When setting the CT opening area, since there is a difference in cross-sectional area between the head-side oil chamber and the rod-side oil chamber of the hydraulic cylinder 106 for stick drive, The cross-sectional area ratio is taken into account. In other words, the flow rate of hydraulic oil supplied from the P_C passages 61 a and 66 a into the head-side oil chamber of the hydraulic cylinder 106 for stick drive, and the rod of hydraulic cylinder 106 for stick drive The ratio of the flow rate of the hydraulic oil discharged from the side oil chamber to the C-T passages 66 b and 69 depends on the cross-sectional area of the head side oil chamber of the hydraulic cylinder 106 for stick drive and the lock. It is obtained by taking into account the ratio to the cross-sectional area of the oil chamber on the pressure side, and the CT opening area, that is, the diameter of the CT throttle 9, is set accordingly.
なお、 各油室の断面積 (即ち、 容積) が異なり、 ヘッ ド側の油室内の 作動油の体積に対してロッ ド側の油室内の作動油の体積は少ないため、 P— C通路 6 1 a , 6 6 aからへッ ド側油室内へ作動油が供給されてス ティ ック駆動用油圧シリンダ 1 0 6を構成するビストンが移動した場合 にロッ ド側油室内から C— T通路 6 6 b , 6 9へ排出される作動油の流 量は P— C通路 6 l a , 6 6 aからへッ ド側油室内へ供給される作動油 の流量に対して減ることになるが、 供給される作動油の流量と排出され る作動油の流量は同一圧力下では略同量となる。 The cross-sectional area (ie, volume) of each oil chamber is different, and the volume of hydraulic oil in the oil chamber on the rod side is smaller than the volume of hydraulic oil in the oil chamber on the head side. When hydraulic oil is supplied from 1a and 66a to the head-side oil chamber and the piston that constitutes the stick drive hydraulic cylinder 106 moves, the CT passage from the rod-side oil chamber moves. The flow rate of the hydraulic oil discharged to 66 b and 69 is the hydraulic oil supplied to the head-side oil chamber from the P-C passage 6 la and 66 a. However, the flow rate of supplied hydraulic oil and the flow rate of discharged hydraulic oil are almost the same under the same pressure.
なお、 スティック駆動用油圧シリンダ 1 0 6のへッ ド側油室と口ッ ド 側油室とで断面積差があるため、 これらの油室の断面積の比率に応じた 流量の作動油がスティック駆動用油圧シリンダ 1 0 6のロッ ド側油室内 から。—丁通路6 6 13 , 6 9へ排出されることになる力 油圧ァクチュ エー夕の作動油供給側と作動油排出側とで断面積差 (例えばシリンダ等 の断面積差) がない油圧ァクチユエ一夕の場合は、 P— C通路 6 1 a, 6 6 aを介して供給される作動油の流量と略同量の作動油が C 一 T通路 6 6 b , 6 9から排出されることになる。  Since there is a difference in cross-sectional area between the head-side oil chamber and the mouth-side oil chamber of the hydraulic cylinder 106 for driving the stick, the hydraulic oil with a flow rate corresponding to the ratio of the cross-sectional area of these oil chambers From the hydraulic chamber on the rod side of the hydraulic cylinder 106 for driving the stick. —The force that will be discharged to the passages 6 6 13 and 6 9 Hydraulic factor that has no cross-sectional area difference between the hydraulic oil supply side and hydraulic oil discharge side of the hydraulic actuator In the evening, approximately the same amount of hydraulic oil as the flow rate of the hydraulic oil supplied through the P-C passages 61a and 66a is discharged from the C-T passages 66b and 69. Become.
なお、 絞り 8 , 9 , 1 0の径の設定においては、 ブーム 1 0 3ゃステ イツク 1 0 4等の作業装置 1 1 8の連動性を確保すべく、 各操作部材が フル操作されている場合に全ての作業装置 1 1 8が動くように考慮され る。  When setting the diameters of the apertures 8, 9, and 10, each operating member is fully operated to ensure the interlocking of the working devices 118 such as the boom 103 and the stick 104. In this case, all working devices 1 18 are taken into account.
そして、 P— C絞り 8によって、 第 1油圧ポンプ 5 1 , 第 2油圧ボン プ 5 2とスティック駆動用油圧シリンダ 1 0 6とを連通する油路 6 1 a , 6 6 aの開口面積 (作動油供給通路の開口面積, P— C開口面積) が調 整される。  The opening area of the oil passages 6 1 a and 66 a communicating the first hydraulic pump 51 and the second hydraulic pump 52 and the hydraulic cylinder 106 for driving the stick is controlled by the PC throttle 8. The oil supply passage opening area and PC opening area are adjusted.
C _ T絞り 9によって、 スティ ック駆動用油圧シリンダ 1 0 6とリザ —バタンク 7 0とを連通する油路 6 6 b, 6 9の開口面積 (作動油排出 通路の開口面積, C 一 T開口面積) が調整される。  The opening area of the oil passages 66 b and 69 communicating the stick drive hydraulic cylinder 106 and the reservoir tank 70 with the C_T throttle 9 (opening area of the hydraulic oil discharge passage, C-T Opening area) is adjusted.
バイパス通路絞り 1 0によって、 第 1油圧ポンプ 5 1 , 第 2油圧ボン プ 5 2とリザ一バタンク 7 0とを連通する油路 6 1 b, 6 6 cの開口面 積 (バイパス通路の開口面積) が調整される。  The opening area of the oil passages 6 1 b and 66 c communicating the first hydraulic pump 51 and the second hydraulic pump 52 and the reservoir tank 70 by the bypass passage throttle 10 (opening area of the bypass passage) ) Is adjusted.
ところで、 本実施形態では、 図 2に示すように、 各制御弁 5 7〜 6 0 , By the way, in this embodiment, as shown in FIG. 2, each of the control valves 57 to 60,
6 2〜 6 5を制御するために、 パイロッ トポンプ 8 3と、 比例減圧弁 5 7 a〜6 0 a, 5 7 b〜 6 0 b, 6 2 a〜 6 5 a, 6 2 b〜 6 5 bとを 備えるパイロッ ト油圧回路が設けられている。 なお、 図 2では、 パイ口 ッ ト油圧回路に備えられるパイロッ トポンプ 8 3及び比例減圧弁 5 7 a 〜6 0 a, 5 7 b〜6 0 b, 6 2 a〜6 5 a, 6 2 b〜6 5 bのみを図 示し、パイ口ッ ト油路を省略してパイ口ッ ト油圧を符号 Pで示している。 Pilot pump 83 to control 6 2 to 65 and proportional pressure reducing valve 5 A pilot hydraulic circuit including 7a to 60a, 57b to 60b, 62a to 65a, and 62b to 65b is provided. In Fig. 2, the pilot pump 83 and the proportional pressure reducing valves 57a to 60a, 57b to 60b, 62a to 65a, 62b are provided in the pilot port hydraulic circuit. Only ~ 65b is shown, and the pilot oil pressure is indicated by the symbol P, omitting the pilot oil passage.
ここで、 比例減圧弁 5 7 a〜 6 0 a, 5 7 b〜 6 0 b, 62 a〜6 5 a, 62 b〜6 5 bは、 電磁弁であって、 後述するコントローラ 1から の作動信号により作動されるようになっている。 これにより、 パイロッ トポンプ 83からのパイ口ッ ト油圧をコントローラ 1からの作動信号に 基づいて所定圧として各制御弁 5 7〜 60 , 6 2〜6 5に作用させるよ うになっている。  Here, the proportional pressure reducing valves 57 a to 60 a, 57 b to 60 b, 62 a to 65 a, 62 b to 65 b are solenoid valves, and are operated by the controller 1 described later. It is activated by a signal. Thus, the pilot oil pressure from the pilot pump 83 is applied to each of the control valves 57 to 60 and 62 to 65 as a predetermined pressure based on the operation signal from the controller 1.
このような構成により、 例えばスティック 1 04を作動させるには、 運転操作室 1 0 1内の操作部材 54を操作して、 パイロッ トポンプ 83 からのパイ口ッ 卜油圧 Pを図示しないパイ口ッ ト油路を通じて、 スティ ック用制御弁 6 0, 64に作用させて、 スティック用制御弁 60, 64 を所要の位置に駆動させるようにする。 これにより、 スティック駆動用 油圧シリンダ 1 0 6の作動油が給排調整され、これらのシリンダ 1 0 5, 1 0 6が所要の長さに伸縮駆動され、 これにより、 スティック 1 04が 作動される。  With such a configuration, for example, in order to operate the stick 104, the operating member 54 in the operation room 101 is operated, and the pipe hydraulic pressure P from the pilot pump 83 is applied to the pipe By acting on the stick control valves 60 and 64 through the oil passage, the stick control valves 60 and 64 are driven to the required positions. As a result, the supply and discharge of the hydraulic oil for the stick driving hydraulic cylinder 106 is adjusted, and these cylinders 105, 106 are driven to expand and contract to the required length, whereby the stick 104 is operated. .
例えば、 スティ ック 1 04を内側へ回動させる (スティ ックイン) に は、 スティック駆動用油圧シリンダ 1 0 6を伸長させればよい。 この場 合には、 パイロッ ト油路を通じてパイロッ ト油圧を第 2スティック用制 御弁 60に作用させる。 これにより、 第 2スティ ック用制御弁 6 0のス プール位置がスティック内側回動位置(スティックィン位置) となって、 第 1回路部 5 5の第 1油圧ポンプ 5 1からの作動油が油路 6 1, 6 7を 経て、 スティ ック駆動用油圧シリンダ 1 0 6の一室へ供給される。 この 一方で、 スティック駆動用油圧シリンダ 1 0 6の他室内の作動油が、 油 路 6 8, 6 9を経てリザ一バタンク 7 0へ排出される。 これにより、 ス ティック駆動用油圧シリンダ 1 0 6が伸長しながら、 スティック 1 0 4 を図 1 6中、 矢印 dで示すように内側へ回動させる。 For example, to rotate the stick 104 inward (stick-in), the stick driving hydraulic cylinder 106 may be extended. In this case, the pilot oil pressure is made to act on the second stick control valve 60 through the pilot oil passage. As a result, the spool position of the second stick control valve 60 becomes the stick inner rotation position (stick position), and the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 Is supplied to one chamber of the stick driving hydraulic cylinder 106 through the oil passages 61 and 67. this On the other hand, the hydraulic oil in the other chamber of the stick driving hydraulic cylinder 106 is discharged to the reservoir tank 70 via the oil passages 68 and 69. As a result, the stick driving hydraulic cylinder 106 is extended, and the stick 104 is rotated inward as shown by the arrow d in FIG.
逆に、 スティック 1 0 4を外側へ回動させる (スティ ックアウト) に は、 スティック駆動用油圧シリンダ 1 0 6を収縮させればよい。 この場 合には、 パイロッ ト油路を通じてパイロッ ト油圧を第 2スティック用制 御弁 6 0に作用させる。 これにより、 第 2スティック用制御弁 6 0のス プール位置がスティック外側回動位置 (スティックアウト位置) となつ て、 第 1回路部 5 5の第 1油圧ポンプ 5 1からの作動油が油路 6 1, 6 8を経て、 スティック駆動用油圧シリンダ 1 0 6の他室へ供給される。 この一方で、スティック駆動用油圧シリンダ 1 0 6の一室内の作動油が、 油路 6 7, 6 9を経てリザ一バタンク 7 0へ排出される。 これにより、 スティック駆動用油圧シリンダ 1 0 6が収縮しながら、 スティック 1 0 4を図 1 6中、 矢印 cで示すように外側へ回動させる。  Conversely, to rotate the stick 104 outward (stick-out), the stick driving hydraulic cylinder 106 may be contracted. In this case, the pilot oil pressure is applied to the second stick control valve 60 through the pilot oil passage. As a result, the spool position of the second stick control valve 60 becomes the stick outside rotation position (stick out position), and the hydraulic oil from the first hydraulic pump 51 of the first circuit portion 55 flows through the oil passage. It is supplied to the other chamber of the stick driving hydraulic cylinder 106 via 61 and 68. On the other hand, the hydraulic oil in one chamber of the stick driving hydraulic cylinder 106 is discharged to the reservoir tank 70 through the oil passages 67 and 69. As a result, the stick driving hydraulic cylinder 106 is contracted, and the stick 104 is rotated outward as shown by the arrow c in FIG.
さらに、 スティ ック駆動用油圧シリンダ 1 0 6の現状態を保持する には、パイロッ ト油圧を第 2スティ ック用制御弁 6 0に適宜作用させて、 第 2スティック用制御弁 6 0の各スプールの位置を中立位置 (油圧給排 路遮断位置) にすればよい。 これにより、 スティック駆動用油圧シリン ダ 1 0 6の各油室における作動油の給排が停止され、 スティック 1 0 4 が現位置に保持される。  Further, in order to maintain the current state of the stick driving hydraulic cylinder 106, the pilot hydraulic pressure is applied to the second stick control valve 60 as appropriate, and the second stick control valve 60 is operated. The position of each spool may be set to the neutral position (the hydraulic supply / discharge path shutoff position). As a result, the supply and discharge of the hydraulic oil in each oil chamber of the stick driving hydraulic cylinder 106 is stopped, and the stick 104 is held at the current position.
ところで、 このように構成される建設機械には、 種々のセンサが取り 付けられており、 各センサからの検出信号は後述するコントローラ 1へ 送られるようになつている。  By the way, various sensors are attached to the construction machine configured as described above, and a detection signal from each sensor is sent to a controller 1 described later.
例えば、 油圧ポンプ 5 1, 5 2を駆動するエンジン 5 0にはエンジン 回転速度センサ 7 1が取り付けられており、 このエンジン回転速度セン サ 7 1からの検出信号は後述するコントローラ 1へ送られるようになつ ている。 そして、 コントローラ 1は、 実際のエンジン回転速度がォペレ 一夕によりエンジン回転速度設定ダイヤルで設定された目標エンジン回 転速度になるようにフィードバック制御するようになっている。 For example, an engine 50 for driving the hydraulic pumps 51 and 52 is provided with an engine speed sensor 71. The detection signal from the sensor 71 is sent to the controller 1 described later. The controller 1 performs feedback control so that the actual engine speed becomes the target engine speed set by the engine speed setting dial during the operation.
また、 第 1回路部 5 5の第 1油圧ポンプ 5 1及び第 2回路部 5 6の第 Also, the first hydraulic pump 51 of the first circuit section 55 and the first hydraulic pump 51 of the second circuit section 56
2油圧ポンプ 5 2の吐出側には、 ポンプ吐出圧を検出すべくそれぞれ圧 力センサ (PZS— P 1 ) 72, 圧力センサ (PZS— P 2) 7 3が備 えられており、 これらの圧力センサ 7 2, 7 3からの検出信号は後述す るコントローラ 1へ送られるようになつている。 (2) On the discharge side of the hydraulic pump 52, a pressure sensor (PZS-P1) 72 and a pressure sensor (PZS-P2) 73 are provided to detect the pump discharge pressure. Detection signals from the sensors 72 and 73 are sent to a controller 1 described later.
また、 第 1回路部 5 5の油路 6 1の各制御弁 5 7〜60及び第 2回路 部 5 6の油路 66の各制御弁 6 2〜 6 5の下流側には、 それぞれ圧力セ ンサ (PZS— N 1 ) 74, 圧力センサ (PZS— N 2) 7 5が備えら れており、 これらの圧力センサ 74, 7 5からの検出信号は後述するコ ントロ一ラ 1へ送られるようになつている。  In addition, pressure valves are provided downstream of the control valves 57 to 60 of the oil passage 61 of the first circuit unit 55 and the control valves 62 to 65 of the oil passage 66 of the second circuit unit 56, respectively. The sensor (PZS-N1) 74 and the pressure sensor (PZS-N2) 75 are provided, and the detection signals from these pressure sensors 74 and 75 are sent to the controller 1 described later. It has become.
また、 ブーム駆動用油圧シリンダ 1 0 5への作動油の給排を行なう油 路には圧力センサ (PZS— BMd) 80が設けられており、 この圧力 センサ 8 0によってブーム駆動用油圧シリンダ 1 0 5のロッ ド側圧力 (負荷圧力) を検出できるようになつている。 そして、 この圧力センサ 8 0からの検出信号は後述するコン卜ローラ 1へ送られるようになって いる。  Further, a pressure sensor (PZS-BMd) 80 is provided in an oil passage for supplying and discharging hydraulic oil to and from the boom drive hydraulic cylinder 105. The boom drive hydraulic cylinder 100 is provided by the pressure sensor 80. The rod side pressure (load pressure) of 5 can be detected. The detection signal from the pressure sensor 80 is sent to a controller 1 described later.
そして、 本実施形態では、 上述のように構成される建設機械を制御す ベく、 コントローラ 1が備えられている。  In the present embodiment, a controller 1 is provided to control the construction machine configured as described above.
コントローラ 1は、 上述の各センサ 7 1〜 7 5, 8 0からの検出信号 や操作部材 54からの電気信号に基づいて、 第 1油圧ポンプ 5 1, 第 2 油圧ポンプ 5 2, 各再生弁 76, 7 7, 各制御弁 5 7〜 6 0, 6 2〜6 5へ作動信号を出力することにより、 第 1油圧ポンプ 5 1, 第 2油圧ポ ンプ 5 2の傾転角制御, 各制御弁 5 7〜6 0, 6 2〜6 5の位置制御, 各再生弁 7 6 , 7 7の位置制御等を行なうようになっている。 The controller 1 controls the first hydraulic pump 51, the second hydraulic pump 52, and the regeneration valve 76 based on the detection signals from the sensors 71 to 75 and 80 and the electric signal from the operation member 54. , 7 7, By outputting operation signals to the control valves 57 to 60, 62 to 65, the first hydraulic pump 51 and the second hydraulic The tilt angle control of the pump 52, the position control of the control valves 57 to 60 and 62 to 65, and the position control of the regeneration valves 76 and 77 are performed.
このうち、 コントローラ 1による第 1油圧ポンプ 5 1, 第 2油圧ボン プ 5 2の傾転角制御は、 第 1回路部 5 5のバイパス通路 6 1 bの下流側 及び第 2回路部 5 6のバイパス通路 6 6 cの下流側に設けられたそれぞ れの圧力センサ 7 4, 7 5からの検出信号に基づいてネガティブフロー コントロールにより行なわれるようになつている。 なお、 圧力センサ 7 4, 7 5により検出される圧力に基づいてネガティブフローコント口一 ルが行なわれるため、 圧力センサ 7 4, 7 5により検出される圧力をネ ガコン圧ともいう。  Of these, the tilt angle control of the first hydraulic pump 51 and the second hydraulic pump 52 by the controller 1 is performed on the downstream side of the bypass passage 61 b of the first circuit section 55 and the second circuit section 56. Negative flow control is performed based on detection signals from the respective pressure sensors 74 and 75 provided downstream of the bypass passage 66c. Since the negative flow control is performed based on the pressures detected by the pressure sensors 74 and 75, the pressure detected by the pressure sensors 74 and 75 is also referred to as a negative control pressure.
ここで、 ネガティブフローコントロール (電子式ネガティブフローコ ントロ一システム) とは、 バイパス通路 6 1 b, 6 6 cの下流側の圧力 が上がったらポンプ吐出流量を減らすようなネガティブな特性のポンプ 流量制御をいう。  Here, the negative flow control (electronic negative flow control system) is a pump flow control with a negative characteristic that reduces the pump discharge flow rate when the pressure downstream of the bypass passages 61b and 66c increases. Say.
ここで、 ネガティブフローコントロールは、 操作部材 5 4の操作量、 即ちネガコン圧に応じてポンプ吐出流量が制御される流量制御と、 ァク チユエ一夕にかかる負荷圧力、 即ちポンプ吐出圧力に応じてポンプ吐出 流量が制御される馬力制御とに分けられる。  Here, the negative flow control is based on the operation amount of the operation member 54, that is, the flow control in which the pump discharge flow rate is controlled according to the negative control pressure, and the load pressure applied to the actuator, that is, the pump discharge pressure. It is divided into horsepower control where the pump discharge flow rate is controlled.
このうち、 流量制御は、 許容馬力内でァクチユエ一夕 (各シリンダ) のスピードを制御しうるものである。 つまり、 ポンプ吐出流量を操作部 材 5 4の操作量、 即ちネガコン圧に応じて制御でき、 これにより、 ァク チユエ一夕のスピードを制御できるものである。  Among them, the flow control can control the speed of the actuator (each cylinder) within the allowable horsepower. In other words, the pump discharge flow rate can be controlled in accordance with the operation amount of the operation member 54, that is, the negative control pressure, whereby the speed of the actuator can be controlled.
ところで、 操作部材 5 4がフル操作され、 ポンプ吐出流量が最大とな り、 ァクチユエ一夕のスピードが最大となる場合、 ポンプ吐出流量 (即 ち、 ァクチユエ一夕のスピード) は、 次式により決定される。  By the way, when the operation member 54 is fully operated and the pump discharge flow rate is maximized and the speed of the actuator is maximized, the pump discharge flow rate (that is, the speed of the actuator) is determined by the following equation. Is done.
ポンプ吐出流量 Q =許容馬力 WZポンプ吐出圧力 P この状態で、 ァクチユエ一夕にかかる負荷圧力が変動するとポンプ吐 出圧力 Pも変動し、 上式より、 ポンプ吐出流量 Qも変動することになる ため、 これにより、 ァクチユエ一夕のスピードも変動することになる。 このように、 ポンプ吐出流量 Qが、 操作部材 5 4の操作量に応じて制 御されるのではなく、 ァクチユエ一夕にかかる負荷圧力、 即ちポンプ吐 出圧力 Pに応じて制御され、 ポンプ吐出流量 Qの大小は第 1油圧ポンプ 5 1, 第 2油圧ポンプ 5 2を駆動するエンジン 5 0の許容馬力 Wに依存 するような状態における制御を馬力制御という。 Pump discharge flow Q = Allowable horsepower WZ Pump discharge pressure P In this state, if the load pressure applied to the actuator changes, the pump discharge pressure P also changes, and the pump discharge flow rate Q also changes according to the above equation, so that the speed of the actuator changes as well. Will be. As described above, the pump discharge flow rate Q is not controlled according to the operation amount of the operation member 54, but is controlled according to the load pressure applied to the actuator, that is, the pump discharge pressure P. The control in a state where the magnitude of the flow rate Q depends on the allowable horsepower W of the engine 50 that drives the first hydraulic pump 51 and the second hydraulic pump 52 is called horsepower control.
このような馬力制御が行なわれる場合には、 オペレータが操作部材 5 4をフル操作し、 ァクチユエ一夕の最大スピードを要求しても、 実際の ァクチユエ一夕のスピードは負荷圧力の大きさによって決まることにな る。 この場合、 エンジン 5 0の馬力は許容最大値となる。  When such horsepower control is performed, even if the operator fully operates the operating member 54 and requests the maximum speed of the actuator, the actual speed of the actuator is determined by the magnitude of the load pressure. It will be. In this case, the horsepower of the engine 50 becomes the maximum allowable value.
また、 例えば複数のァクチユエ一夕を同時操作するような場合、 各々 の操作部材 5 4がフル操作されていない状態であっても、 それぞれのァ クチユエ一夕へ作動油が供給されてネガコン圧が低下し、 要求流量が許 容馬力によって決定される許容流量を超えているときは馬力制御におけ る許容流量になるようにボンプ傾転角制御が行なわれる。  Also, for example, in the case of operating a plurality of actuators simultaneously, even if each operating member 54 is not fully operated, hydraulic oil is supplied to each actuator and the negative control pressure is reduced. If the required flow rate falls below the allowable flow rate determined by the allowable horsepower, the pump tilt angle control is performed so that the required flow rate in the horsepower control is achieved.
ところで、 操作部材 5 4が中立位置の場合、 即ちオペレータが操作部 材 5 4を操作していない場合は、 作業機 1 1 8は何ら仕事せず、 各ァク チユエ一夕 (シリンダ等) を駆動させる必要がないため、 油圧ポンプ 5 1, 5 2からのポンプ吐出流量は望ましくはゼロにしたい。  By the way, when the operation member 54 is in the neutral position, that is, when the operator does not operate the operation member 54, the work machine 118 does not work at all, and each actuator (cylinder, etc.) is operated. Since there is no need to drive the pump, the pump discharge flow rate from the hydraulic pumps 51 and 52 is desirably set to zero.
このため、 本実施形態では、 各制御弁 5 7〜6 0, 6 2 ~ 6 5はォ一 プンセン夕 (スプール中立位置でバイパス通路 6 l b , 6 6 cがオーブ ンになるように配設すること) にして、 操作部材 5 4が中立位置の場合 は、 油圧ポンプ 5 1, 5 2から供給される作動油はバイパス通路 6 1 b, 6 6 cを通じてリザーバタンク 7 0へ戻るようになつている。 これにより、 操作部材 5 4が中立位置の場合は、 バイパス通路 6 1 b, 6 6 cの下流側に介装された絞り 8 1 , 8 2の直上流側の圧力が大きく なり、 ネガティブフローコントロールによって、 可変容量油圧ポンプ 5 1 , 5 2からのポンプ吐出流量が減少するように制御されるようになつ ている。 For this reason, in the present embodiment, each of the control valves 57 to 60 and 62 to 65 is arranged so that the bypass passages 6 lb and 66 c are open at the spool neutral position. That is, when the operating member 54 is in the neutral position, the hydraulic oil supplied from the hydraulic pumps 51 and 52 returns to the reservoir tank 70 through the bypass passages 61b and 66c. I have. As a result, when the operation member 54 is in the neutral position, the pressure immediately upstream of the throttles 81, 82 provided downstream of the bypass passages 61b, 66c increases, and the negative flow control is performed. Thus, the pump discharge flow rate from the variable displacement hydraulic pumps 51 and 52 is controlled to decrease.
一方、 操作部材 54が操作された場合には、 その操作量に応じた量の 作動油が各ァクチユエ一夕 (シリンダ等) へ供給され、 残りの作動油が バイパス通路 6 1 b, 6 6 cを通じてリザーバタンク 7 0へ戻るように なっている。  On the other hand, when the operation member 54 is operated, an amount of hydraulic oil corresponding to the operation amount is supplied to each actuator (cylinder and the like), and the remaining hydraulic oil is supplied to the bypass passages 6 1 b and 66 c. Through the reservoir tank 70.
また、 各制御弁を介して油圧ァクチユエ一夕へ供給されなかった作動 油をリザーバタンク 7 0へ戻すバイパス通路 6 l b, 6 6 cの下流側に は、 上述したように絞り (オリフィス) 8 1, 8 2が設けられている。 そして、 これらの絞り 8 1 , 8 2の直上流側のバイパス通路 6 1 b, 6 6 cに圧力センサ 74, 7 5が介装され、 これらの圧力センサ 7 4, 7 5により検出される絞り 8 1, 8 2の直上流側の圧力に基づいて油圧ポ ンプ 5 1, 5 2の傾転角制御が行なわれるようになつている。  As described above, the throttle (orifice) 8 1 is located downstream of the bypass passages 6 lb and 66 c for returning the hydraulic oil not supplied to the hydraulic actuator through the respective control valves to the reservoir tank 70. , 82 are provided. Pressure sensors 74 and 75 are interposed in the bypass passages 6 1 b and 66 c immediately upstream of the throttles 8 1 and 82, and the throttles detected by the pressure sensors 74 and 75 are provided. The tilt angles of the hydraulic pumps 51 and 52 are controlled based on the pressures immediately upstream of the pumps 81 and 82.
そして、 オペレー夕が操作部材 5 4を操作すると、 操作部材 5 4の操 作量に応じて制御弁 5 7〜 6 0, 6 2〜 6 5が移動してバイパス通路 6 1 b , 6 6 cが絞られ、 バイパス通路 6 1 b, 6 6 cを流れる作動油の 流量が減少するが、 絞り 8 1 , 8 2の径は一定であるため、 流量が減つ た分だけ絞り 8 1, 8 2の直上流側の圧力、 即ち圧力センサ 7 4, 7 5 により検出される圧力が低下し、 この低下した圧力に応じてポンプ吐出 流量が多くなるように可変容量油圧ポンプ 5 1, 5 2の傾転角制御が行 なわれることになる。  When the operator operates the operation member 54, the control valves 57 to 60 and 62 to 65 move according to the operation amount of the operation member 54, and the bypass passages 61b and 66c are moved. And the flow rate of hydraulic oil flowing through the bypass passages 6 1 b and 66 c decreases, but the diameter of the throttles 8 1 and 8 2 is constant, so the throttles 8 1 and 8 are reduced by the reduced flow rate. The pressure immediately upstream of 2, that is, the pressure detected by the pressure sensors 74 and 75 decreases, and the variable displacement hydraulic pumps 51 and 52 increase the pump discharge flow rate in accordance with the reduced pressure. The tilt angle control is performed.
これは、 オペレー夕の要求、 即ちオペレータによる操作部材 5 4の操 作量に応じてポンプ吐出流量が多くなるように制御されることを意味し, これはオペレー夕が操作部材 54を操作することで油圧ポンプ 5 1 , 5 2からのポンプ吐出流量を制御して各ァクチユエ一夕 (各シリンダ等) のスピ一ドを制御できることを意味する。 This means that the pump discharge flow rate is controlled to increase according to the operator's request, that is, the operation amount of the operation member 54 by the operator, This means that by operating the operating member 54, the operator can control the pump discharge flow rate from the hydraulic pumps 51 and 52 to control the speed of each actuator (each cylinder and the like).
ところで、 本実施形態では、 コントローラ 1による各制御弁 5 7〜 6 0, 6 2〜 6 5の位置制御として、 オペレータによる操作部材 5 4の操 作に応じた各制御弁 5 7〜 6 0, 6 2〜 6 5の位置制御に加え、 ェンジ ン回転速度に応じた各制御弁 5 7〜 6 0, 6 2〜 6 5の位置制御も行な われるようになっている。  By the way, in the present embodiment, as the position control of the control valves 57 to 60 and 62 to 65 by the controller 1, the control valves 57 to 60 and 60 according to the operation of the operation member 54 by the operator are used. In addition to the position control of 62 to 65, the position control of each control valve 57 to 60 and 62 to 65 according to the engine speed is also performed.
つまり、 コントロ一ラ 1は、 操作部材 54からの電気信号に基づいて、 各制御弁 5 7〜 6 0, 6 2〜 6 5へ作用させるパイロッ ト油圧を調整す る比例減圧弁 (パイロッ ト圧力制御弁) 5 7 a〜 6 0 a, 5 7 b〜 6 0 b , 6 2 a〜 6 5 a, 6 2 b〜 6 5 bの作動を制御すべく作動信号を出 力するようになっている。  That is, the controller 1 is a proportional pressure reducing valve (a pilot pressure) that adjusts the pilot oil pressure applied to each of the control valves 57 to 60 and 62 to 65 based on the electric signal from the operation member 54. Control valve) 57a to 60a, 57b to 60b, 62a to 65a, 62b to 65b I have.
さらに、 コントローラ 1は、 第 1油圧ポンプ 5 1, 第 2油圧ポンプ 5 2を駆動するエンジン 5 0に付設されたエンジン回転速度センサ 7 1か らの検出信号に基づいて、 各制御弁 5 7〜 6 0 , 6 2〜6 5へ作用させ るパイロッ ト油圧を調整する比例減圧弁 (パイロッ ト圧力制御弁) 5 7 a〜6 0 a, 5 7 b〜 6 0 b, 6 2 a〜 6 5 a, 6 2 b〜 6 5 bの作動 を制御すべく作動信号を出力するようになっている。  Further, the controller 1 controls each of the control valves 57 to 7 based on a detection signal from an engine speed sensor 71 attached to an engine 50 that drives the first hydraulic pump 51 and the second hydraulic pump 52. Proportional pressure reducing valve (pilot pressure control valve) for adjusting pilot oil pressure acting on 60, 62 to 65 57 a to 60 a, 57 b to 60 b, 62 a to 65 An operation signal is output to control the operation of a, 62b to 65b.
そして、 このような作動信号に基づいて比例減圧弁 5 7 a〜 6 0 a, Then, based on such an operation signal, the proportional pressure reducing valves 57a to 60a,
5 7 b〜 6 0 b, 6 2 a〜 6 5 a, 6 2 b〜 6 5 bが作動され、 これに より、 パイロッ トポンプ 8 3から供給されるパイロッ ト油圧の圧力が調 整されて各制御弁 5 7〜 6 0, 6 2〜 6 5のスプールストロ一ク量 (ス プール移動量) が調整されるようになっている。 57 b to 60 b, 62 a to 65 a, 62 b to 65 b are operated, and by this, the pressure of the pilot hydraulic pressure supplied from the pilot pump 83 is adjusted, and The spool stroke amount (spool movement amount) of the control valves 57 to 60 and 62 to 65 is adjusted.
本実施形態にかかる建設機械の制御装置は、 上述のように構成され、 コントローラ 1による各種の制御が行なわれ、 例えばスティック 1 04 を重力の作用する方向へ自重降下させる場合はスティック 1 0 4の自重 降下制御が行なわれる。 The control device for a construction machine according to the present embodiment is configured as described above, and various controls are performed by the controller 1. In order to lower the weight of the stick in the direction in which gravity acts, the self-weight lowering control of the stick 104 is performed.
次に、 本実施形態にかかる建設機械の制御装置及び制御方法において 特徴となるスティ ックの自重降下制御について説明する。  Next, the self-weight drop control of the stick, which is a feature of the control device and the control method of the construction machine according to the present embodiment, will be described.
ここで、 図 1は本実施形態にかかる建設機械の制御装置によるステ イツクの自重降下制御を説明するための制御ブロック図である。  Here, FIG. 1 is a control block diagram for explaining the self-weight drop control of the stick by the control device of the construction machine according to the present embodiment.
本実施形態では、 スティ ック 1 0 4の自重降下制御を行なうべく、 図 1に示すように、 コントローラ 1には、 比例減圧弁制御手段 2と、 ボン プ傾転角制御手段 3とが備えられている。  In this embodiment, as shown in FIG. 1, the controller 1 includes a proportional pressure reducing valve control means 2 and a pump tilt angle control means 3 in order to perform the self-weight drop control of the stick 104. Have been.
このうち、 比例減圧弁制御手段 2は、 基本制御量設定手段 4と、 補正 手段 5とを備えて構成される。  The proportional pressure reducing valve control means 2 includes a basic control amount setting means 4 and a correction means 5 among them.
基本制御量設定手段 4は、 操作部材 5 4からの操作量に応じた電気信 号に基づいて比例減圧弁 6 0 a, 6 0 b , 6 4 a , 6 4 bの基本制御量 を算出し、 この基本制御量を補正手段 5へ出力するものである。  The basic control amount setting means 4 calculates a basic control amount of the proportional pressure reducing valves 60a, 60b, 64a, 64b based on an electric signal corresponding to the operation amount from the operation member 54. This basic control amount is output to the correction means 5.
ここで、 基本制御量は、 図 4に示すような操作部材 5 4の操作量と比 例減圧弁 6 0 a, 6 0 b , 6 4 a , 6 4 bの基本制御信号とを関係づけ たマップにより求められる。  Here, the basic control amount relates the operation amount of the operating member 54 as shown in FIG. 4 to the basic control signals of the proportional pressure reducing valves 60a, 60b, 64a, and 64b. Required by map.
このマップでは、操作部材 5 4の操作量が多いほど比例減圧弁 6 0 a, 6 0 b , 6 4 a , 6 4 bの移動量が多くなるようにすべく、 操作部材 5 4の操作量が多くなるほど基本制御信号が大きくなるように設定されて いる。 なお、 図 4中、 所定操作量以上では基本制御信号が一定になって いるのは、 所定操作量で比例減圧弁 6 0 a, 6 0 b , 6 4 a , 6 4 bの 移動量が最大になることを示している。  In this map, the operation amount of the operation member 54 is set so that the larger the operation amount of the operation member 54, the larger the movement amount of the proportional pressure reducing valves 60a, 60b, 64a, and 64b. The basic control signal is set to increase as the number increases. Note that in FIG. 4, the basic control signal is constant above the predetermined operation amount because the movement of the proportional pressure reducing valves 60a, 60b, 64a, and 64b at the predetermined operation amount is the maximum. Indicates that
補正手段 5は、 エンジン回転速度センサ 7 1からの検出信号に基づい て比例減圧弁 6 0 a, 6 0 b , 6 4 a , 6 4 bの制御信号率 (補正係数) を算出し、 この制御信号率を基本制御量設定手段 4により算出された基 本制御量に乗算することにより比例減圧弁 6 0 a, 6 0 b, 64 a, 6 4 bの基本制御量を補正して補正制御量を算出し、 この補正制御量を比 例減圧弁 60 a, 60 , 64 a, 64 bへ出力するものである。 The correction means 5 calculates the control signal rates (correction coefficients) of the proportional pressure reducing valves 60 a, 60 b, 64 a, and 64 b based on the detection signal from the engine speed sensor 71. The signal rate is calculated based on the basic control amount By multiplying this control amount, the basic control amount of the proportional pressure reducing valves 60a, 60b, 64a, and 64b is corrected to calculate a correction control amount. a, 60, 64a, 64b.
ここで、 制御信号率は、 図 5に示すようなエンジン回転速度と比例減 圧弁の制御信号率とを関係づけたマップにより求められる。  Here, the control signal rate is obtained from a map as shown in FIG. 5, which associates the engine speed with the control signal rate of the proportional pressure reducing valve.
このマップでは、 制御信号率はエンジン回転速度センサ 7 1により検 出されるエンジン回転速度が小さくなるほど比例減圧弁 6 0 a, 6 0 b, 64 a, 64 bの制御信号率が小さくなるように式 NZNmax で示す ように設定されている。 つまり、 制御信号率は、 エンジン回転速度が小 さくなるほど第 1スティック用制御弁 60及び第 2スティック用制御弁 64を構成するスプールのストローク量が小さくなるように設定されて いる。 なお、 エンジン回転速度が最大の場合には比例減圧弁 6 0 a, 6 O b, 64 a, 64 bの制御信号率が 1. 0 ( = NmaxZ Nmax) にな り、 エンジン回転速度が最小の場合には比例減圧弁 60 a, 60 b, 6 4 a, 64 bの制御信号率が Nmin/Nmaxになる。  In this map, the control signal rate is calculated so that the control signal rate of the proportional pressure reducing valves 60a, 60b, 64a, 64b decreases as the engine speed detected by the engine speed sensor 71 decreases. It is set as shown by NZNmax. In other words, the control signal rate is set so that the stroke amount of the spool constituting the first stick control valve 60 and the second stick control valve 64 decreases as the engine rotation speed decreases. When the engine speed is the maximum, the control signal rate of the proportional pressure reducing valves 60a, 60b, 64a, 64b becomes 1.0 (= NmaxZNmax), and the engine speed becomes the minimum. In this case, the control signal rates of the proportional pressure reducing valves 60a, 60b, 64a, 64b become Nmin / Nmax.
そして、 補正手段 5は、 補正制御量に応じた制御信号を比例減圧弁 6 0 a , 6 0 b, 64 a, 64 bへ出力するようになっている。  The correction means 5 outputs a control signal corresponding to the correction control amount to the proportional pressure reducing valves 60a, 60b, 64a, 64b.
これにより、 比例減圧弁制御手段 2により算出された制御量に応じて 比例減圧弁 6 0 a, 6 0 b, 64 a, 64 bが作動され、 パイロッ トポ ンプ 83からのパイロッ ト油圧が比例減圧弁 6 0 a, 6 0 b, 64 a, 64 bによって所定圧力に減圧されて第 1スティ ック用制御弁 6 0及び 第 2スティック用制御弁 64に作用し、 第 1スティック用制御弁 60及 び第 2スティック用制御弁 64を構成するスプールが移動することにな る。  As a result, the proportional pressure reducing valves 60a, 60b, 64a, 64b are operated in accordance with the control amount calculated by the proportional pressure reducing valve control means 2, and the pilot oil pressure from the pilot pump 83 is proportionally reduced. The pressure is reduced to a predetermined pressure by the valves 60 a, 60 b, 64 a, 64 b and acts on the first stick control valve 60 and the second stick control valve 64, and the first stick control valve 60 The spool constituting the second stick control valve 64 moves.
ここで、 図 6は補正制御信号と第 1スティ ック用制御弁 6 0及び第 2 スティック用制御弁 64のス卜ローク量とを関係づけたマップであり、 図 6に示すように、 第 1スティ ック用制御弁 6 0及び第 2スティ ック用 制御弁 6 4を構成するスプールは、 補正制御信号 (基本制御信号 X制御 信号率)が大きくなるほど大きいストローク量になるように制御される。 Here, FIG. 6 is a map in which the correction control signal is related to the stroke amounts of the first stick control valve 60 and the second stick control valve 64. As shown in FIG. 6, the spools constituting the first stick control valve 60 and the second stick control valve 64 increase as the correction control signal (basic control signal X control signal rate) increases. It is controlled so as to be the stroke amount.
このようにして第 1スティック用制御弁 6 0及び第 2スティ ック用制 御弁 6 4を構成するスプールが移動し、 この結果、 図 7に示すように、 スプールストロ一ク量に応じて、 第 1油圧ポンプ 5 1又は第 2油圧ボン プ 5 2とスティック駆動用油圧シリンダ 1 0 6とを連通する油路の開口 面積 (P— C開口面積), スティ ック駆動用油圧シリンダ 1 0 6 とリザ —バタンク 7 0とを連通する油路の開口面積 (C— T開口面積), 第 1 油圧ポンプ 5 1又は第 2油圧ポンプ 5 2とリザ一バタンク 7 0とを連通 する油路の開口面積 (バイパス通路開口面積) がそれぞれ変化すること になる。  In this way, the spools constituting the first stick control valve 60 and the second stick control valve 64 move, and as a result, as shown in FIG. The opening area of the oil passage (PC opening area) that connects the first hydraulic pump 51 or the second hydraulic pump 52 to the stick driving hydraulic cylinder 106, the stick driving hydraulic cylinder 10 6 The opening area of the oil passage that connects the reservoir and the reservoir 70 (C—T opening area), the oil passage that connects the first hydraulic pump 51 or the second hydraulic pump 52 to the reservoir 70 The opening area (bypass passage opening area) changes accordingly.
ところで、 本実施形態にかかるネガティブフローコントロールでは、 操作部材 5 4の操作量に応じて調整されるバイパス通路開口面積に応じ てネガコン圧が変化し、 変化したネガコン圧に応じて油圧ポンプ 5 1, 5 2の傾転角制御が行なわれ、 ポンプ流量が制御されるようになってい る。  By the way, in the negative flow control according to the present embodiment, the negative control pressure changes according to the bypass passage opening area which is adjusted according to the operation amount of the operation member 54, and the hydraulic pumps 51 and 52 change according to the changed negative control pressure. The tilt angle control of 52 is performed, and the pump flow rate is controlled.
このため、 スティック 1 0 4の自重降下制御を行なう場合、 図 8に示 すように操作部材 5 4のフル操作時の C一 T開口面積の制御特性がェン ジン回転速度に応じて異なるように設定された制御特性に基づいて、 操 作部材 5 4の操作量に応じて C一 T開口面積が制御されることになる。 なお、 図 8では、 エンジン回転速度が最大の場合の C— T開口面積の制 御特性を実線 Aで示し、 エンジン回転速度が最小の場合の C— T開口面 積の制御特性を実線 Bで示している。 また、 図 8中、 破線 Cは従来の C _ T開口面積の制御特性を示している。  For this reason, when performing the self-weight descent control of the stick 104, as shown in Fig. 8, the control characteristics of the C-T opening area when the operating member 54 is fully operated may differ depending on the engine rotation speed. Based on the control characteristics set in (1), the CT opening area is controlled in accordance with the operation amount of the operation member 54. In Fig. 8, the control characteristics of the CT opening area at the maximum engine speed are indicated by solid line A, and the control characteristics of the CT opening area at the minimum engine speed are indicated by solid line B. Is shown. Also, in FIG. 8, a broken line C indicates a conventional control characteristic of the CT opening area.
なお、 エンジン回転速度の設定が最大, 最小のみならず、 任意に設定 できるのであれば、 操作部材 5 4のフル操作時の C一 T開口面積の制御 特性をエンジン回転速度に応じてそれぞれ設定すれば良い。 The setting of the engine speed is not limited to the maximum and minimum, but can be set arbitrarily. If possible, the control characteristics of the C-T opening area when the operation member 54 is fully operated may be set according to the engine speed.
図 8に示すように、 本実施形態では、 C一 T開口面積は操作部材 5 4 の操作量及びエンジン回転速度に比例して制御されるが、 操作部材 5 4 の操作量が最大の場合 (フル操作の場合) に、 オペレータによる操作部 材 5 4の操作にかかわらず、 エンジン回転速度が最小の場合の C一 T開 口面積がエンジン回転速度が最大の場合の C一 T開口面積よりも小さく なるように第 1スティ ック用制御弁 6 0及び第 2スティック用制御弁 6 4を構成するスプールストローク量 (スプール移動量) を制御するよう になっている。  As shown in FIG. 8, in the present embodiment, the C-T opening area is controlled in proportion to the operation amount of the operation member 54 and the engine rotation speed, but when the operation amount of the operation member 54 is the maximum ( In the case of full operation), the C-T opening area when the engine speed is the minimum is larger than the C-T opening area when the engine speed is the maximum, regardless of the operation of the operating members 54 by the operator. The spool stroke amount (spool movement amount) constituting the first stick control valve 60 and the second stick control valve 64 is controlled so as to be small.
つまり、 本実施形態では、 エンジン回転速度が最大の場合 (ポンプ流 量が最大の場合) に操作部材 5 4がフル操作されると、 図 8中、 実線 A で示す制御特性で C一 T開口面積が最大になるように第 1スティック用 制御弁 6 0及び第 2スティ ック用制御弁 6 4を構成するスプールストロ —ク量を設定し、 これにより、 C一 T絞り 9により過剰な背圧が生じな いようにして作業効率の改善を図るようにしている。  In other words, in the present embodiment, when the operating member 54 is fully operated when the engine rotation speed is the maximum (when the pump flow rate is the maximum), the control characteristic indicated by the solid line A in FIG. The amount of spool stroke constituting the control valve 60 for the first stick and the control valve 64 for the second stick is set so that the area is maximized. Pressure is not generated to improve work efficiency.
具体的には、 最大エンジン回転速度 N max で、 オペレータにより操 作部材 5 4がフル操作されてスプールを最大ストローク S max させ、 最大 P— C開口面積として最大ポンプ流量をスティック駆動用油圧シリ ンダ 1 0 6に供給し、 スティック駆動用油圧シリンダ 1 0 6の最大降下 スピードが得られるようにしながらスティ ック 1 0 4を自重降下させよ うとする場合、 スプールストローク量を小さくして、 スプール位置がォ ペレ一夕による操作部材 5 4の操作量に応じて最も移動した位置から中 立位置側へ少し戻された位置になるように制御される。  Specifically, at the maximum engine speed N max, the operating member 54 is fully operated by the operator to make the spool the maximum stroke S max, and the maximum pump flow rate as the maximum PC opening area is set to the hydraulic cylinder for stick drive. When the stick 104 is to be lowered by its own weight while maintaining the maximum descent speed of the stick drive hydraulic cylinder 106, the spool stroke is reduced and the spool position is adjusted. Is controlled so as to return from the most moved position to the neutral position side in accordance with the operation amount of the operation member 54 during the operation.
なお、 ここでは、 エンジン回転速度が最大の場合にスプールストロー ク量を小さく してスプール位置が中立位置側へ戻されるように制御を行 なっているが、 スプールの中立位置側への戻し量がゼロになるように設 定し、 スプール位置が中立位置側へ戻されるような制御を行なわず、 ス プールストローク量を操作部材 5 4の操作量に応じて制御されたままと しても良い。 Here, the control is performed such that the spool stroke amount is reduced and the spool position is returned to the neutral position side when the engine rotation speed is the maximum. However, the return amount of the spool to the neutral position is set to zero, the spool position is not controlled to return the spool position to the neutral position, and the spool stroke amount is It may be kept controlled according to the operation amount.
この場合、 スプールは最大ス トローク S max であるため、 C— T開 口面積は最大となるが、 最大 C一 T開口面積 A max は C— T絞り 9に よって絞られることによって、 スティック駆動用油圧シリンダ 1 0 6の 作動油排出側から過剰に作動油が排出されないようになっており、 これ により、 スティック駆動用油圧シリンダ 1 0 6の作動油供給側にキヤビ テ一シヨンが発生しないようになっている。  In this case, since the spool has the maximum stroke S max, the C-T opening area is the maximum, but the maximum C-T opening area A max is reduced by the C-T aperture 9, so that the stick drive Excessive hydraulic oil is prevented from being discharged from the hydraulic oil discharge side of the hydraulic cylinder 106, thereby preventing the occurrence of cavitation on the hydraulic oil supply side of the stick driving hydraulic cylinder 106. Has become.
なお、 キヤビテ一シヨンが発生しないようにするためには、 ステイツ ク駆動用油圧シリンダ 1 0 6内の作動油供給側圧力は、 正の圧力 (自重 降下方向への圧力) で、 所定圧力 (例えば約 5 k g f / c m2程度) を 確保する必要がある。 In order to prevent the occurrence of cavitation, the hydraulic oil supply side pressure in the stake driving hydraulic cylinder 106 should be a positive pressure (pressure in the direction of its own weight descent) and a predetermined pressure (for example, it is necessary to ensure the order of about 5 kgf / cm 2).
上述のように、 エンジン回転速度が最大の場合に C— T開口面積が最 大になるようにスプ一ルストローク量を設定しているのは、 エンジン回 転速度が最小の場合 (ポンプ流量が最小の場合) に C一 T開口面積が最 大になるようにスプールストロ一ク量を設定し、 各シリンダへの作動油 供給側 (即ち、 ポンプと各シリンダとの間の油路) にキヤビテーシヨン が発生しない程度のシリンダ下降スピードになるように C一 T絞り 9の 径を設定すると、 C一 T絞り 9によりエンジン回転速度が高い場合 (ポ ンプ流量が増加した場合) に過剰絞りの状態となって作業効率が低下し てしまうからである。  As described above, the spool stroke amount is set so that the CT opening area is maximized when the engine speed is the maximum, when the engine speed is the minimum (when the pump flow rate is Set the spool stroke amount so that the C-T opening area is maximized at the minimum, and the cavitation is applied to the hydraulic oil supply side to each cylinder (that is, the oil passage between the pump and each cylinder). When the diameter of the C-T throttle 9 is set so that the cylinder descends at a speed that does not cause the occurrence of excessive throttling, when the engine speed is high (when the pump flow rate increases) due to the C-T throttle 9, This is because work efficiency is reduced.
一方、 エンジン回転速度が低い場合 (ポンプ流量が減少した場合) に、 オペレータにより操作部材 5 4がフル操作されたら、 図 8中、 実線 Bで 示す制御特性で C— T開口面積が最大になるようにスプールストローク 量が設定されることで、 第 1スティ ック用制御弁 6 0及び第 2スティッ ク用制御弁 6 4を構成するスプールが中立方向へ戻されるように制御さ れ、 これにより、 エンジン回転速度が低い場合にエンジン回転速度が高 い場合に比べて C— T開口面積を減少させるようになつている。 On the other hand, when the operating speed of the operating member 54 is fully operated by the operator when the engine speed is low (when the pump flow rate is reduced), the CT opening area is maximized by the control characteristic indicated by the solid line B in FIG. As spool stroke By setting the amount, the spools constituting the first stick control valve 60 and the second stick control valve 64 are controlled so as to return to the neutral direction. When the engine speed is low, the CT opening area is reduced compared to when the engine speed is high.
すなわち、 最小エンジン回転速度 (エンジンアイ ドル回転数) N min で、 オペレータにより操作部材 5 4がフル操作され、 スティ ック駆動用 油圧シリンダ 1 0 6の最大降下スピ一ドが得られるようにしながらステ イツク 1 0 4を自重降下させようとする場合、 ォペレ一夕による操作部 材 5 4の操作量にかかわらず、 スプールストローク量を図 8中、 実線 B で示すような制御特性に基づいて設定してスプールが中立方向へ戻され るように制御し、 スティック駆動用油圧シリンダ 1 0 6の作動油供給側 にキヤビテーションが発生しないように最小エンジン回転速度 N min (ポンプ流量が最小) に応じた最小 C— T開口面積 A min とする。 な お、 この最小 C一 T開口面積 A min が得られるときのスプ一ルス ト口 一ク量を S minとする。  That is, at the minimum engine speed (engine idle speed) Nmin, the operator fully operates the operation member 54 to obtain the maximum descent speed of the hydraulic cylinder 106 for stick drive. When attempting to lower the stick 104 under its own weight, set the spool stroke amount based on the control characteristics as shown by the solid line B in Fig. 8 regardless of the operation amount of the operation member 54 during operation. Control to return the spool to the neutral direction, and to the minimum engine speed N min (minimum pump flow) to prevent cavitation on the hydraulic oil supply side of the stick drive hydraulic cylinder 106. Corresponding minimum C—T opening area A min. Here, let S min be the amount of the spark outlet opening when the minimum C-T opening area A min is obtained.
これにより、 エンジン回転速度が最大の場合は、 余分な馬力消費や燃 費の悪化、 ク一リング性能の低下を招かないようにすることができると ともに、 エンジン回転速度が最小の場合であっても、 キヤビテ一シヨン の発生を防止することができるのである。  As a result, when the engine speed is at the maximum, it is possible to prevent extra horsepower consumption, deterioration of fuel consumption, and deterioration of the cooling performance, and at the same time, when the engine speed is at the minimum. In addition, the occurrence of cavitation can be prevented.
このため、 エンジン回転速度 N , キヤビテ一シヨン限界に対応した C For this reason, the engine rotation speed N and C corresponding to the
— T開口面積 A , C _ T開口面積 Aに対応したスプールストロ一ク量 S を関係付けたデータシート (マップ) がコントローラ 1に備えられてい る。 なお、 詳細については後述する。 — T opening area A, C _ Controller 1 has a data sheet (map) relating spool stroke amount S corresponding to T opening area A. The details will be described later.
このように、 本実施形態では、 第 1スティック用制御弁 6 0及び第 2 スティック用制御弁 6 4を構成するスプールのストローク量を変化させ ることによって C— T開口面積を調整しているが、 C— T開口面積は、 例えばエンジン回転速度が所定回転数 (約 1 0 0 0 r p m) で背圧が所 定圧力 (約 4 0 k g f Z c m2程度) になるように調整される。 As described above, in the present embodiment, the CT opening area is adjusted by changing the stroke amount of the spool constituting the first stick control valve 60 and the second stick control valve 64. , C—T opening area is For example, the engine rotational speed is adjusted to a predetermined rotational speed (approximately 1 0 0 0 rpm) in back pressure Jo Tokoro pressure (approximately 4 0 kgf Z cm 2 or so).
ところで、 エンジン回転速度が最大の場合(ポンプ流量が最大の場合) に操作部材 5 4がフル操作されると、 P— C開口面積は最大となるが、 この場合にも圧損が生じないように P _ C開口面積を調整する P _ C絞 り 8の径は十分大きく設定される。  By the way, when the operating member 54 is fully operated when the engine speed is the maximum (when the pump flow rate is the maximum), the PC opening area becomes the maximum, but also in this case, the pressure loss should be prevented. The diameter of the P_C aperture 8 for adjusting the P_C opening area is set to be sufficiently large.
このように、 P— C開口面積はポンプ流量に対して十分大きく設定さ れるため、 エンジン回転速度が低い場合 (ポンプ流量が減少した場合) に、 上述のように、 第 1スティ ック用制御弁 6 0及び第 2スティ ック用 制御弁 6 4を構成するスプールがエンジン回転速度に応じて中立方向へ 戻されるように制御され、 P— C開口面積が減少したとしても、 P— C 絞り 8によって圧損等が生じることはなく、 建設機械の性能に影響を及 ぼすことはない。  As described above, since the PC opening area is set sufficiently large with respect to the pump flow rate, when the engine rotation speed is low (when the pump flow rate decreases), the first stick control is performed as described above. The spool constituting the valve 60 and the second stick control valve 64 is controlled so as to return to the neutral direction in accordance with the engine speed, and even if the PC opening area is reduced, the PC throttle is provided. 8 does not cause pressure loss, etc., and does not affect the performance of construction machinery.
また、 バイパス通路開口面積は、 エンジン回転速度が最大 (ポンプ流 量が最大) で、 操作部材 5 4が操作されていない状態で、 バイパス通路 開口面積は最大となるが、 この場合にも圧損等が生じないようにバイパ ス通路開口面積を調整するバイパス通路絞り 1 0の径が設定される。 しかし、 エンジン回転速度が最大でない場合に操作部材 5 4がフル操 作されると、 C 一 T開口面積を減少させるために第 1スティック用制御 弁 6 0及び第 2スティ ック用制御弁 6 4を構成するスプールが中立方向 へ戻されるように制御され、 バイパス通路開口面積が増加するため、 ネ ガコン圧が上昇し、 これにより、 ポンプ流量が減少することになるので、 建設機械の性能に影響を及ぼすことになる。  In addition, the bypass passage opening area is the largest when the engine speed is the maximum (pump flow rate is the largest) and the operating member 54 is not operated, and the bypass passage opening area is the largest. The diameter of the bypass passage restrictor 10 for adjusting the bypass passage opening area is set so as not to cause the occurrence. However, when the operating member 54 is fully operated when the engine rotation speed is not at the maximum, the first stick control valve 60 and the second stick control valve 6 are used to reduce the C-T opening area. 4 is controlled to return to the neutral direction, the opening area of the bypass passage increases, the negative control pressure increases, and the pump flow rate decreases. Will have an effect.
このため、 本実施形態では、 後述 (図 1 3参照) するように、 傾転角 制御量補正手段 7によってネガティブフローコントロールにおける基本 傾転角制御量に代えて最大傾転角制御量を傾転角制御量として設定する ようになつている。 For this reason, in the present embodiment, as will be described later (see FIG. 13), the tilt angle control amount correcting means 7 tilts the maximum tilt angle control amount instead of the basic tilt angle control amount in the negative flow control. Set as angle control amount It is like that.
このようにして制御される第 1スティック用制御弁 6 0及び第 2ステ イツク用制御弁 6 4の動作は、 以下のようになる。  The operations of the first stick control valve 60 and the second stick control valve 64 controlled as described above are as follows.
つまり、 オペレータにより操作部材 5 4がフル操作されると、 スプ一 ルストローク量は最大となり、 スプールは最も移動させられ、 C一 T絞 り 9により絞られる C— T開口面積は最大になる力 本実施形態では、 エンジン回転速度が低い場合、 オペレータによる操作部材 5 4のフル操 作によりスプールストローク量を最大とされて最も移動した位置にある スプールは、 C一 T開口面積が小さくなるように中立位置側へ多く戻さ れるように制御される (スプールの戻り量は大) 一方、 エンジン回転速 度が高い場合は、 最も移動した位置にあるスプールは C一 T開口面積が 大きくなるように中立位置側へ少し戻されるように制御される (スプ一 ルの戻り量は小又はゼロ)。  In other words, when the operating member 54 is fully operated by the operator, the spool stroke amount is maximized, the spool is moved most, and the C—T opening area reduced by the C—T aperture 9 is the force that maximizes the aperture. In the present embodiment, when the engine rotation speed is low, the spool at the position where the spool stroke amount is maximized by the full operation of the operation member 54 by the operator and is the most moved is set so that the C-T opening area becomes small. Control is performed so that the spool is returned to the neutral position more (the return amount of the spool is large) On the other hand, when the engine speed is high, the spool at the most moved position is neutral so that the C-T opening area is large. It is controlled to return slightly to the position side (spool return amount is small or zero).
このようにして、 本実施形態では、 図 1 4に示すように、 エンジン 回転速度に応じてスティ ック駆動用油圧シリンダ 1 0 6とリザ一バタン ク 7 0との間の油路の開口面積 (C _ T開口面積) を変化させる。 つま り、 本実施形態では、 エンジン回転速度が高くなるにしたがって C _ T 開口面積が大きくなるように、 第 1スティ ック用制御弁 6 0及び第 2ス ティック用制御弁 6 4を構成するスプールのストロ一ク量が制御される c これにより、 例えばエンジン回転速度が所定回転数 (約 1 0 0 0 r p m) で背圧が所定圧力 (約 4 0 k g f Z c m2) になるように制御され るので、 エンジン回転速度が高くなり、 ポンプ吐出流量が多くなつたと しても、 従来技術のように C— T絞り 9によって抵抗損失が生じてステ ィック駆動用油圧シリンダ 1 0 6に作用する背圧が例えば約 1 4 5 k g f ノ c m2程度の圧力まで次第に高くなつてしまうのを防止することが でき、 圧損の低減を図ることができ、 クーリング性能を高めることもで きる。 また、 背圧によりスティック 1 0 4の下降が妨げられ、 作業効率 が悪化するのを防止することもできる。 In this manner, in the present embodiment, as shown in FIG. 14, the opening area of the oil passage between the stick driving hydraulic cylinder 106 and the reservoir tank 70 according to the engine rotation speed is determined. (C_T opening area). That is, in the present embodiment, the first stick control valve 60 and the second stick control valve 64 are configured such that the C_T opening area increases as the engine rotation speed increases. The amount of stroke of the spool is controlled. C By this, for example, control is performed so that the engine speed is at a predetermined rotation speed (about 100 rpm) and the back pressure is at a predetermined pressure (about 40 kgf Z cm 2 ). Therefore, even if the engine rotation speed increases and the pump discharge flow rate increases, a resistance loss occurs due to the CT throttle 9 and acts on the hydraulic cylinder 106 for the stick drive as in the conventional technology. It is possible to prevent the back pressure from gradually increasing to, for example, a pressure of about 14.5 kgf / cm 2 , reduce pressure loss, and improve cooling performance. Wear. In addition, it is possible to prevent the stick 104 from lowering due to the back pressure, thereby preventing the work efficiency from deteriorating.
また、 本実施形態によれば、 エンジン回転速度が高くなり、 ポンプ吐 出流量が多くなつても、 C一 T絞り 9によって抵抗損失が生じることが なく、 図 1 5に示すように、 エンジン回転速度にかかわらず背圧が一定 となるため、 スティックイン操作時にスティ ック駆動用油圧シリンダ 1 0 6を重力を利用しながら下降させるのに必要な所定圧力 (約 4 0 k g f / c m2) をスティ ック駆動用油圧シリンダ 1 0 6に作用させれば良 く、 従来技術のように背圧分に相当する余分の圧力を作用させる必要が ないため、 パワーロスを低減することができる。 Further, according to the present embodiment, even if the engine rotation speed increases and the pump discharge flow rate increases, no resistance loss occurs due to the C-T throttle 9, and as shown in FIG. Since the back pressure is constant irrespective of the speed, the predetermined pressure (approximately 40 kgf / cm 2 ) required to lower the hydraulic cylinder 106 for stick drive during stick-in operation while utilizing gravity is used. It suffices to act on the hydraulic cylinder 106 for stick drive, and it is not necessary to apply an extra pressure corresponding to the back pressure unlike the prior art, so that power loss can be reduced.
なお、 本実施形態では、 操作部材 5 4の操作量が最大の場合の C一 T開口面積の制御特性をエンジン回転速度に応じて設定するようにして いるが、 これに限られるものではなく、 図 9に示すように、 操作部材 5 4の操作量が最大の場合だけでなく、 操作部材 5 4の操作量に応じた C 一 T開口面積の制御特性をエンジン回転速度毎に設定しても良い。 ここ では、 エンジン回転速度が最大の場合と最小の場合とを示しており、 ェ ンジン回転速度が最大の場合を実線 Aで示し、 エンジン回転速度が最小 の場合を実線 Bで示している。  In the present embodiment, the control characteristic of the C-T opening area when the operation amount of the operation member 54 is the maximum is set according to the engine speed. However, the present invention is not limited to this. As shown in FIG. 9, not only when the operation amount of the operation member 54 is the maximum, but also when the control characteristic of the C-T opening area according to the operation amount of the operation member 54 is set for each engine speed. good. Here, the case where the engine speed is maximum and the case where the engine speed is minimum are shown. The case where the engine speed is maximum is indicated by a solid line A, and the case where the engine speed is minimum is indicated by a solid line B.
ところで、 P _ C開口面積, C一 T開口面積, バイパス通路開口面積 は、 いずれも 1つのスプール弁として構成される第 1スティック用制御 弁 6 4, 第 2スティック用制御弁 6 0に備えられる P— C絞り 8, C - T絞り 9, バイパス通路絞り 1 0により決定されるものであるため、 ス ティック 1 0 4の自重降下制御に際して C一 T開口面積を調整するため に第 1スティック用制御弁 6 4や第 2スティック用制御弁 6 0を移動さ せると、 バイパス通路開口面積も調整されてしまい、 このバイパス通路 6 1 b , 6 6 cを流れる作動油のバイパス流量も変化してしまうことに なり、 ネガティブフローコントロールにおいて用いられるバイパス通路 下流側の作動油の圧力が変化してしまうことになる。 By the way, the P_C opening area, the C-T opening area, and the bypass passage opening area are all provided in the first stick control valve 64 and the second stick control valve 60 configured as one spool valve. Because it is determined by the P-C throttle 8, the C-T throttle 9, and the bypass passage throttle 10, the first stick is used to adjust the C-T opening area when controlling the self-weight drop of the stick 104. When the control valve 64 or the second stick control valve 60 is moved, the bypass passage opening area is also adjusted, and the bypass flow rate of the hydraulic oil flowing through the bypass passages 6 1 b and 66 c also changes. To be lost Therefore, the pressure of the hydraulic oil downstream of the bypass passage used in the negative flow control will change.
このため、 本実施形態では、 後述するように、 ポンプ傾転角制御手段 For this reason, in the present embodiment, as will be described later, the pump tilt angle control means
3の傾転角制御量補正手段 7によってポンプ傾転角制御量に補正を加え るようにしている。 The pump tilt angle control amount is corrected by the tilt angle control amount correction means 7 of 3.
ポンプ傾転角制御手段 3は、 基本傾転角制御量設定手段 6と、 傾転角 制御量補正手段 7とを備えて構成される。 そして、 これらの基本傾転角 制御量設定手段 6及び傾転角制御量補正手段 7によって、 後述する図 1 2 , 図 1 3のフローチャートに示すようにポンプ傾転角制御が行なわれ る。  The pump tilt angle control means 3 includes basic tilt angle control amount setting means 6 and tilt angle control amount correction means 7. The basic tilt angle control amount setting means 6 and the tilt angle control amount correction means 7 perform pump tilt angle control as shown in the flowcharts of FIGS. 12 and 13 described later.
このうち、 基本傾転角制御量設定手段 6は、 圧力センサ 7 4, 7 5か らの検出信号に基づいて第 1油圧ポンプ 5 1, 第 2油圧ポンプ 5 2の基 本傾転角制御量を設定し、 この基本傾転角制御量を傾転角制御量補正手 段 7へ出力するものである。  Of these, the basic tilt angle control amount setting means 6 determines the basic tilt angle control amount of the first hydraulic pump 51 and the second hydraulic pump 52 based on the detection signals from the pressure sensors 74 and 75. The basic tilt angle control amount is output to the tilt angle control amount correction means 7.
ここで、 基本傾転角制御量は、 バイパス通路 6 l b , 6 6 c内の作動 油の流量に略逆比例する特性に基づいて油圧ポンプからの吐出流量を制 御するネガティブフ口一コントロールにおいて設定されるもので、 具体 的には以下のように設定される。  Here, the basic tilt angle control amount is a negative valve control that controls the discharge flow rate from the hydraulic pump based on a characteristic that is substantially inversely proportional to the flow rate of the hydraulic oil in the bypass passages 6 lb and 66 c. It is set, specifically, as follows.
つまり、 基本傾転角制御量設定手段 6は、 圧力センサ 7 4 , 7 5によ つて検出された第 1回路部 5 5及び第 2回路部 5 6のバイパス通路 6 1 b , 6 6 cの下流側での作動油圧 (ネガコン圧) P N1, P N2を読み込ん で、 ネガコン圧 P N と要求流量 Q N とを関係づけた図 1 0に示すような マップから、 読み込まれたネガコン圧 P N1, P N2に対応する要求流量 Q N1, Q N2 (具体的には要求流量 Q N1, Q N2に相当するポンプ傾転角 V N1, VN2) を設定するようになっている。 なお、 要求流量とは、 ネガティブ フローコントロールにおいて要求される流量をいう。 また、 図 1 0では ネガコン圧 PN1に対応する要求流量 QN1 (具体的には要求流量 QN1に相 当するポンプ傾転角 VN1) のみ示している。 That is, the basic tilt angle control amount setting means 6 sets the bypass passages 6 1 b and 66 c of the first circuit portion 55 and the second circuit portion 56 detected by the pressure sensors 74 and 75. The operating hydraulic pressure (negative control pressure) P N1 , P N2 on the downstream side is read, and the negative control pressure P N1 is read from the map as shown in Fig. 10 in which the negative control pressure P N and the required flow rate Q N are related. It is adapted to set the required flow rate Q N1, Q N2 corresponding to P N2 (specifically required flow rate Q N1, the pump tilting angle corresponding to Q N2 V N1, V N2) . The required flow rate is the flow rate required in negative flow control. Also, in Figure 10 (Specifically required flow pump tilting angle V N1 to equivalent to Q N1) required flow rate Q N1 corresponding to the negative control pressure P N1 are shown only.
一方、 基本傾転角制御量設定手段 6は、 圧力センサ 7 2, 7 3によつ て検出された第 1油圧ポンプ 5 1及び第 2油圧ポンプ 5 2のポンプ吐出 圧 PP1, PP2を読み込んで、 ポンプ吐出圧 PPと許容流量 QPとを関係づ けた図 1 1に示すようなマップから、 読み込まれたポンプ吐出圧 PP1, PP2に対応する許容流量 QP1, QP2 (具体的には許容流量 QP1, QP2に相 当するポンプ傾転角 VP1, VP2) を設定するようになっている。 なお、 許容流量とは第 1油圧ポンプ 5 1及び第 2油圧ポンプ 5 2を駆動するェ ンジン 5 0の許容馬力に応じたポンプ吐出流量をいう。 また、 図 1 1で はポンプ吐出圧 PP1 に対応する許容流量 QP1 (具体的には許容流量 QP1 に相当するポンプ傾転角 VP1) のみ示している。 On the other hand, the basic tilt angle control amount setting means 6 calculates the pump discharge pressures P P1 and P P2 of the first hydraulic pump 51 and the second hydraulic pump 52 detected by the pressure sensors 72 and 73. Loading, from the map shown in the pump discharge pressure P P and allowable flow Q 1 1 and P digits relationship Dzu, corresponding to the pump discharge pressure read P P1, P P2 allowable flow Q P1, Q P2 ( Specifically, the pump tilt angles V P1 and V P2 ) corresponding to the allowable flow rates Q P1 and Q P2 are set. The allowable flow rate refers to a pump discharge flow rate according to the allowable horsepower of the engine 50 that drives the first hydraulic pump 51 and the second hydraulic pump 52. Further, in FIG. 1 1 shows only allowable flow Q P1 corresponding to the pump discharge pressure P P1 (pump tilting angle V P1 specifically corresponding to allowable flow Q P1).
そして、 基本傾転角制御量設定手段 6は、 上述の要求流量 QN1, QN2 と許容流量 QP1, QP2 とを比較し、 小さい方のポンプ流量 (要求流量 Q N1, QN2又は許容流量 QP1, QP2) になるようにポンプ傾転角 (ポンプ 傾転角 VN1, VN2又はポンプ傾転角 VP1, VP2) を設定し、 これを傾転 角制御信号として第 1油圧ポンプ 5 1及び第 2油圧ポンプ 5 2へ出力す るようになっている。 The basic tilt angle control amount setting means 6 compares the required flow rate Q N1, Q N2 above the allowable flow Q P1, Q P2, the smaller the pump flow rate (requested flow Q N1, Q N2 or acceptable The pump tilt angles (pump tilt angles V N1 , V N2 or pump tilt angles VP 1 , V P2 ) are set so that the flow rates Q P1 and Q P2 ), and this is used as the first tilt angle control signal. Output is provided to the hydraulic pump 51 and the second hydraulic pump 52.
基本傾転角制御量設定手段 6は、 上述のように構成され、 図 1 2のフ ローチャートに示すように動作する。  The basic tilt angle control amount setting means 6 is configured as described above, and operates as shown in the flowchart of FIG.
つまり、 まずステップ S 1 0でネガコン圧 PN1, PN2を読み込むとと もに、 ステップ S 2 0でポンプ吐出圧 PP1, PP2を読み込む。 That is, first, in step S10, the negative control pressures P N1 and P N2 are read, and in step S20, the pump discharge pressures P P1 and P P2 are read.
次に、 ステツプ S 3 0でステツプ S 1 0で読み込まれたネガコン圧 P N1, PN2に対応する要求流量 QN1, QN2 を図 1 0のマップから算出する とともに、 ステップ 4 0でステップ S 2 0で読み込まれたポンプ吐出圧 PP1, PP2 に対応する許容流量 QP1, QP2 を図 1 1のマップから算出す る。 Then, to calculate the required flow rate Q N1, Q N2 corresponding to step S 3 0 at step S 1 0 negative control pressure P N1 read in, P N2 from the map of FIG. 1 0, step S in step 4 0 Calculate the permissible flow rates Q P1 and Q P2 corresponding to the pump discharge pressures P P1 and P P2 read in 20 from the map in Fig. 11. You.
そして、 ステップ S 5 0で要求流量 QN1, QN2が許容流量 QP1, QP2 よりも小さいか否かを判定し、 この判定の結果、 要求流量 QN1, QN2が 許容流量 QP1, QP2よりも小さいと判定された場合は、 ステップ S 6 0 に進み、 要求流量 QN1, QN2をポンプ流量として設定し、 リターンする。 これにより、 第 1油圧ポンプ 5 1及び第 2油圧ポンプ 52の傾転角が要 求流量 QN1, QN2に応じた傾転角となるように設定される。 Then, allowed the required flow rate Q N1, Q N2 in Step S 5 0 flow rate Q P1, Q less whether determined than P2, the result of this determination, required flow rate Q N1, Q N2 is allowable flow Q P1, If it is determined that the flow rate is smaller than Q P2 , the process proceeds to step S60, where the required flow rates Q N1 and Q N2 are set as the pump flow rates, and the routine returns. Thus, the tilt angles of the first hydraulic pump 51 and the second hydraulic pump 52 are set to be the tilt angles corresponding to the required flow rates Q N1 and Q N2 .
一方、 要求流量 QN1, QN2が許容流量 QP1, QP2以上であると判定さ れた場合は、 ステップ S 7 0に進み、 許容流量 QP1, QP2 をポンプ流量 として設定し、 リターンする。 これにより、 第 1油圧ポンプ 5 1及び第 2油圧ポンプ 5 2の傾転角が許容流量 QP1, QP2に応じた傾転角となる ように設定される。 On the other hand, if it is determined that the required flow rates Q N1 and Q N2 are equal to or higher than the allowable flow rates Q P1 and Q P2 , the process proceeds to step S70, where the allowable flow rates Q P1 and Q P2 are set as the pump flow rates and the return is performed. I do. Thereby, the tilt angles of the first hydraulic pump 51 and the second hydraulic pump 52 are set to be the tilt angles according to the allowable flow rates Q P1 and Q P2 .
傾転角制御量補正手段 7は、 操作部材 54がフル操作されており、 か つ、 エンジン回転速度が最大でない場合に、 基本傾転角制御量設定手段 6により設定された基本傾転角制御信号に代えて、 第 1油圧ポンプ 5 1 及び第 2油圧ポンプ 5 2の双方のポンプ傾転角が最大になるような最大 傾転角制御信号を補正傾転角制御信号として第 1油圧ポンプ 5 1 , 第 2 油圧ポンプ 5 2へ出力するものである。  When the operation member 54 is fully operated and the engine rotation speed is not at the maximum, the tilt angle control amount correction means 7 sets the basic tilt angle control amount set by the basic tilt angle control amount setting means 6. Instead of the signal, the first hydraulic pump 5 is used as a corrected tilt angle control signal with a maximum tilt angle control signal that maximizes the pump tilt angle of both the first hydraulic pump 51 and the second hydraulic pump 52. 1, and output to the second hydraulic pump 52.
このため、 傾転角制御量補正手段 7には、 操作部材 54からの操作量 信号, エンジン回転速度センサ 7 1からの検出信号が入力され、 これら の信号に基づいて、 操作部材 54がフル操作されているか、 エンジン回 転速度が最大になっているかを判定し、 この判定の結果、 操作部材 54 がフル操作されており、 かつ、 エンジン回転速度が最大でないと判断さ れた場合は第 1油圧ポンプ 5 1, 第 2油圧ポンプ 52の傾転角が最大に なるような最大傾転角制御信号を傾転角制御信号として第 1油圧ポンプ 5 1, 第 2油圧ポンプ 5 2へ出力するようになっている。 傾転角制御量補正手段 7は、 上述のように構成されており、 図 1 3の フローチャートに示すように動作する。 Therefore, the operation amount signal from the operation member 54 and the detection signal from the engine speed sensor 71 are input to the tilt angle control amount correction means 7, and the operation member 54 is fully operated based on these signals. It is determined whether the operating member 54 is fully operated and the engine speed is not the maximum. If the result of this determination is that the operation member 54 is fully operated and the engine speed is not the maximum, the first A maximum tilt angle control signal that maximizes the tilt angle of the hydraulic pumps 51 and 52 is output to the first hydraulic pump 51 and the second hydraulic pump 52 as a tilt angle control signal. It has become. The tilt angle control amount correcting means 7 is configured as described above, and operates as shown in the flowchart of FIG.
つまり、 まずステップ A 1 0で操作部材 5 4からの操作量信号を読み 込むとともに、 ステップ A 2 0でエンジン回転速度センサ 7 1からの検 出信号を読み込む。 そして、 ステップ A 3 0で操作部材 5 4がフル操作 されているか否かを判定し、 この判定の結果、 操作部材 5 4がフル操作 されている場合はステツプ A 4 0に進む。  That is, first, in step A10, the operation amount signal from the operation member 54 is read, and in step A20, the detection signal from the engine speed sensor 71 is read. Then, in step A30, it is determined whether or not the operating member 54 is fully operated. If the result of this determination is that the operating member 54 is fully operated, the flow proceeds to step A40.
一方、 操作部材 5 4がフル操作されていない場合は基本傾転角制御量 設定手段 6により設定された基本傾転角制御信号を傾転角制御信号とし て第 1油圧ポンプ 5 1, 第 2油圧ポンプ 5 2へ出力すべく、 リターンす る。  On the other hand, when the operating member 54 is not fully operated, the basic tilt angle control signal set by the basic tilt angle control amount setting means 6 is used as the tilt angle control signal for the first hydraulic pumps 51 and 2. Return to output to hydraulic pump 52.
ステツプ A 4 0ではエンジン回転速度が最大であるか否かを判定し、 この判定の結果、 エンジン回転速度が最大であると判断された場合は傾 転角制御量補正手段 7による補正は行なわずにステップ 6 0へ進み、 基 本傾転角制御量設定手段 6により設定された基本傾転角制御信号を傾転 角制御信号として第 1油圧ポンプ 5 1,第 2油圧ポンプ 5 2へ出力する。 一方、 エンジン回転速度が最大でないと判断された場合は、 ステップ A 5 0に進み、 基本傾転角制御量設定手段 6により設定された基本傾転 角制御信号に代えて、 第 1油圧ポンプ 5 1 , 第 2油圧ポンプ 5 2の傾転 角が最大になるような最大傾転角制御信号を傾転角制御信号として設定 し、 ステップ A 6 0で傾転角制御信号を第 1油圧ポンプ 5 1, 第 2油圧 ポンプ 5 2へ出力する。  In step A40, it is determined whether or not the engine rotation speed is the maximum. If it is determined that the engine rotation speed is the maximum, the correction by the tilt angle control amount correction means 7 is not performed. In step 60, the basic tilt angle control signal set by the basic tilt angle control amount setting means 6 is output to the first hydraulic pump 51 and the second hydraulic pump 52 as a tilt angle control signal. . On the other hand, when it is determined that the engine rotation speed is not the maximum, the process proceeds to step A50, and the first hydraulic pump 5 is used instead of the basic tilt angle control signal set by the basic tilt angle control amount setting means 6. 1, Set the maximum tilt angle control signal that maximizes the tilt angle of the second hydraulic pump 5 2 as the tilt angle control signal, and in step A 60, set the tilt angle control signal to the first hydraulic pump 5. 1, Output to the second hydraulic pump 52.
このように、 ポンプ傾転角制御手段 3は、 圧力センサ 7 2, 7 3 , 7 4, 7 5からの検出信号に基づいて第 1油圧ポンプ 5 1及び第 2油圧ポ ンプ 5 2の傾転角の制御量に相当する制御信号を算出し、 この制御信号 を操作部材 5 4からの操作量信号, エンジン回転速度センサ 7 1からの 検出信号に基づいて補正して補正傾転角制御量を算出する。 そして、 こ の補正傾転角制御量に相当する制御信号を第 1油圧ポンプ 5 1及び第 2 油圧ポンプ 5 2へ出力するようになっている。 As described above, the pump displacement angle control means 3 controls the displacement of the first hydraulic pump 51 and the second hydraulic pump 52 based on the detection signals from the pressure sensors 72, 73, 74, 75. A control signal corresponding to the angle control amount is calculated, and this control signal is used as an operation amount signal from the operating member 54 and an engine speed sensor 71 Correction is performed based on the detection signal to calculate a corrected tilt angle control amount. Then, a control signal corresponding to the corrected tilt angle control amount is output to the first hydraulic pump 51 and the second hydraulic pump 52.
これにより、 第 1油圧ポンプ 5 1及び第 2油圧ポンプ 5 2の傾転角が ポンプ傾転角制御手段 3により算出された制御量に制御されて、 所定の ポンプ容量に設定される。 この結果、 第 1油圧ポンプ 5 1及び第 2油圧 ポンプ 5 2からのポンプ流量が調整される。  Thus, the tilt angles of the first hydraulic pump 51 and the second hydraulic pump 52 are controlled to the control amount calculated by the pump tilt angle control means 3, and set to a predetermined pump displacement. As a result, the pump flow rates from the first hydraulic pump 51 and the second hydraulic pump 52 are adjusted.
したがって、 本実施形態にかかる建設機械の制御装置及び制御方法に よれば、 スティック 1 0 4の自重降下時の余分な馬力消費が低減される ため、 パワーロスの低減, 燃費の改善, 熱損失の低減を図ることができ るという利点がある。  Therefore, according to the control device and control method for a construction machine according to the present embodiment, extra horsepower consumption when the stick 104 descends under its own weight is reduced, so that power loss is reduced, fuel consumption is improved, and heat loss is reduced. There is an advantage that it can be achieved.
また、 スティック駆動用油圧シリンダ 1 0 6内の圧力が高くならず、 スティック駆動用油圧シリンダ 1 0 6の温度も高まることがないため、 ヒ一トバランスの改善, クーリング性能の向上を図ることができるとい う利点もある。  Also, since the pressure in the hydraulic cylinder 106 for driving the stick does not increase and the temperature of the hydraulic cylinder 106 for driving the stick does not increase, it is possible to improve the heat balance and the cooling performance. There is also the advantage of being able to do so.
さらに、 スティック 1 0 4の自重降下時に余分な背圧が生じないため 余分な馬力が必要となることがなく、 作業効率が改善されるという利点 もある。  Furthermore, since there is no extra back pressure generated when the stick 104 descends under its own weight, there is no need for extra horsepower, and there is an advantage that work efficiency is improved.
なお、 上述の実施形態では、 スティック 1 0 4の自重降下制御につい て説明したが、 これに限られるものではなく、 自重降下するァクチユエ 一夕であれば適用することができ、 例えばブーム 1 0 3やバケツ ト 1 0 8についても同様の自重降下制御を行なうことができる。  In the above embodiment, the self-weight drop control of the stick 104 has been described. However, the present invention is not limited to this. The same weight drop control can be performed for the bucket and the bucket 108 as well.
また、 上述の実施形態では、 スティック 1 0 4の自重降下制御の場合 に、 C _ T絞り 9の径をエンジン回転速度が最大の場合にも対応できる ように従来のものよりも大きく設定するとともに、 制御弁 6 0, 6 4を 構成するスプールのストロ一ク量をエンジン回転速度に応じて変えるこ とで、 C—T開口面積を調整しているが、 C一 Τ開口面積の調整方法は これに限られるものではなく、 例えば C一 Τ絞り 9の径を変更するのに 代えて制御弁 6 0, 6 4を構成するスプールに形成される C一 Τ絞り 9 の位置を変えても良いし、 C一 Τ絞り 9は従来と同様とし、 制御弁 6 0, 6 4を構成するスプールのストロ一ク量のみを変えるようにしても良い。 さらに、 スティック駆動用油圧シリンダ 1 0 6とリザーバタンク 7 0 との間の油路の制御弁 6 0, 6 4の配設位置の下流側に、 制御弁 6 0 , 6 4とは別に、 スプール弁として構成される制御弁を設け、 エンジン回 転速度が高くなるにしたがってスティック駆動用油圧シリンダ 1 0 6と リザーバタンク 7 0との間の油路の開口面積 (C一 Τ開口面積) が大き くなるように制御弁を構成するスプールのストローク量を制御するよう にしても良い。 In the above-described embodiment, in the case of the self-weight drop control of the stick 104, the diameter of the C_T throttle 9 is set to be larger than that of the conventional one so as to be able to cope with the case where the engine speed is maximum. The stroke amount of the spools constituting the control valves 60 and 64 can be changed according to the engine speed. Thus, the C—T opening area is adjusted. However, the method of adjusting the C−Τ opening area is not limited to this. For example, instead of changing the diameter of the C−Τ throttle 9, the control valve 6 may be used. The position of the C-throttle 9 formed on the spools constituting the control valves 60 and 64 may be changed. Only one stroke may be changed. Further, a spool is provided separately from the control valves 60 and 64 in the oil passage between the stick driving hydraulic cylinder 106 and the reservoir tank 70 and downstream of the position where the control valves 60 and 64 are disposed. A control valve configured as a valve is provided, and as the engine speed increases, the opening area of the oil passage between the stick driving hydraulic cylinder 106 and the reservoir tank 70 (C 一 opening area) increases. Alternatively, the stroke amount of the spool constituting the control valve may be controlled so as to be smaller.
このように構成することで、 スティック 1 0 4の自重降下制御に際し てバイパス通路開口面積が調整され、 このバイパス通路 6 1 b, 6 6 c を流れる作動油のバイパス流量が変化してしまうことがないため、 ネガ ティブフローコントロ一ルにおいて用いられるバイパス通路下流側の作 動油の圧力が変化してしまうのを防止することができる。  With such a configuration, the opening area of the bypass passage is adjusted during the self-weight drop control of the stick 104, and the bypass flow rate of the hydraulic oil flowing through the bypass passages 6 1b and 66 c may change. Therefore, it is possible to prevent the pressure of the hydraulic oil downstream of the bypass passage used in the negative flow control from being changed.
また、 上述の実施形態では、 パイロッ ト圧によりスプールを移動され るようにしているが、 これに限られるものではなく、 電磁石等によりス プールを移動させるものでも良い。  In the above-described embodiment, the spool is moved by the pilot pressure. However, the present invention is not limited to this, and the spool may be moved by an electromagnet or the like.
また、 上述の実施形態では、 本発明をネガティブフローコントロール を行なう建設機械の制御装置に適用する場合について説明しているが、 本発明をポジティブフ口一コントロールを行なう建設機械の制御装置に 適用しても良い。 産業上の利用可能性 以上のように、 本発明の建設機械の制御装置及び制御方法は、 スティ ック等の作業機を備え、 作業機を自重降下させる動作を行なう建設機械Further, in the above-described embodiment, the case where the present invention is applied to the control device of the construction machine which performs the negative flow control is described. However, the present invention is applied to the control device of the construction machine which performs the positive flow control. May be. Industrial applicability As described above, a control device and a control method for a construction machine according to the present invention include a construction machine having a stick or the like and performing an operation of lowering the work machine by its own weight.
(例えば、 油圧ショベル) に有用であり、 特に、 作業機を駆動するため の油圧ァチユエ一夕に、 エンジン駆動油圧ポンプにより吐出される作動 油を供給する建設機械に適している。 (Eg, hydraulic shovels), and is particularly suitable for construction machinery that supplies hydraulic oil discharged from an engine-driven hydraulic pump during a hydraulic rush to drive a work machine.

Claims

請 求 の 範 囲 The scope of the claims
1. オペレータにより操作される操作部材 ( 54) と、 1. An operating member (54) operated by an operator;
エンジンにより駆動され、タンク内の作動油を吐出する油圧ポンプ( 5 1 ), ( 5 2 ) と、  Hydraulic pumps (51) and (52) driven by the engine and discharging hydraulic oil in the tank;
該油圧ポンプにより吐出される作動油により駆動される油圧ァクチュ エー夕 ( 1 0 5 ), ( 1 06 ), ( 1 0 7 ) と、  Hydraulic actuators (105), (106), (107) driven by hydraulic oil discharged by the hydraulic pump;
該油圧ァクチユエ一夕から該タンクへ作動油を排出する作動油排出通 路 ( 66 b), ( 6 9 ) と、  A hydraulic oil discharge passage (66b), (69) for discharging hydraulic oil from the hydraulic actuator to the tank from one night;
該作動油排出通路 (6 6 b), (6 9) に介装され、 該作動油排出通路 を通じて排出される作動油の流量を制御する制御弁(60), (64) と、 該エンジンの回転数を検出するエンジン回転速度センサ (7 1 ) と、 該操作部材 ( 54) の操作量に基づいて該作動油排出通路の開口面積 を調整すべく該制御弁を制御する制御手段 ( 1) とを備え、  A control valve (60), (64) interposed in the hydraulic oil discharge passage (66b), (69) for controlling the flow rate of hydraulic oil discharged through the hydraulic oil discharge passage; An engine speed sensor (71) for detecting a rotational speed; and control means (1) for controlling the control valve to adjust the opening area of the hydraulic oil discharge passage based on the operation amount of the operating member (54). With
該制御手段 ( 1 ) が、 該エンジン回転速度センサ (7 1 ) により検出 されるエンジン回転速度を加味して該制御弁 ( 6 0), ( 64) を制御す ることを特徴とする、 建設機械の制御装置。  The control means (1) controls the control valves (60), (64) in consideration of the engine speed detected by the engine speed sensor (71). Machine control device.
2. 該油圧ポンプから該油圧ァクチユエ一夕へ作動油を供給する作動油 供給通路 (6 1 a), (66 a) を備え、 2. Hydraulic oil supply passages (61a) and (66a) for supplying hydraulic oil from the hydraulic pump to the hydraulic actuator are provided.
該作動油排出通路 (66 b), (6 9) の開口面積が、 該操作部材 (5 4) の操作量が最大で、 かつ該エンジン回転速度センサ ( 7 1 ) により 検出されるエンジン回転速度が最大の場合に該作動油供給通路 ( 6 1 a), (66 a) を通じて供給される作動油の最大供給流量に応じた流量 の作動油が該作動油排出通路 (6 6 b), (6 9) を通じて排出されるよ うに設定されることを特徴とする、 請求の範囲第 1項記載の建設機械の 制御装置。 The opening area of the hydraulic oil discharge passages (66b) and (69) is such that the operation amount of the operating member (54) is the largest and the engine speed detected by the engine speed sensor (71) When the hydraulic oil discharge passage (66 b), ( 6 9) The construction machine according to claim 1 is set to be discharged through Control device.
3. 該制御手段 ( 1 ) 、 該エンジン回転速度センサ ( 7 1) により検 出されるエンジン回転速度が低くなるにつれて該作動油排出通路 (6 6 b), (6 9) の開口面積が小さくなるように該制御弁 (6 0), (64) を制御することを特徴とする、 請求の範囲第 1項記載の建設機械の制御 3. The opening area of the hydraulic oil discharge passages (66b) and (69) decreases as the engine rotation speed detected by the control means (1) and the engine rotation speed sensor (71) decreases. The control of a construction machine according to claim 1, characterized in that said control valve (60), (64) is controlled as described above.
4. 該制御手段 ( 1 ) が、 エンジン回転速度が低くなるにつれて小さく なる補正係数により該制御弁 ( 60 ), ( 64) に対する制御量を補正す ることを特徴とする、 請求の範囲第 1項記載の建設機械の制御装置。 4. The control device according to claim 1, wherein the control means (1) corrects a control amount for the control valves (60) and (64) by a correction coefficient that decreases as the engine speed decreases. A control device for a construction machine according to any one of the preceding claims.
5. 該制御手段 ( 1) 力 該作動油排出通路 (6 6 b), (6 9) の開口 面積がエンジン回転速度に応じて変化するように該制御弁 (60), (6 4) の制御量を設定することを特徴とする、 請求の範囲第 1項記載の建 設機械の制御装置。 5. The control means (1) Force The control valves (60) and (64) are controlled so that the opening areas of the hydraulic oil discharge passages (66) and (69) change according to the engine speed. The control device for a construction machine according to claim 1, wherein the control amount is set.
6. 該制御弁 (60), (64) を介して該油圧ァクチユエ一夕 ( 1 0 5), ( 1 0 6), ( 1 0 7) へ供給されなかった作動油を該タンクへ戻すバイ パス通路 (6 1 b), (6 6 c) を備え、 6. The hydraulic oil that has not been supplied to the hydraulic actuators (105), (106), and (107) via the control valves (60), (64) is returned to the tank by the return valve. With passageways (6 1 b), (6 6 c)
該制御弁 (6 0), (64) 力 該バイパス通路に介装され、 該バイパ ス通路の開口面積を調整するものとして構成され、  The control valves (60) and (64) are arranged in the bypass passage and configured to adjust the opening area of the bypass passage.
該制御手段 ( 1 ) 力  The control means (1) force
該バイパス通路内の作動油の流量に略逆比例する特性に基づいて該油 圧ポンプ (5 1 ), (52) からの吐出流量を制御するための基本傾転角 制御量を設定する基本傾転角制御量設定手段 (6) と、 該操作部材 (54) の操作量が最大で、 かつ、 該エンジン回転速度セ ンサ (7 1) により検出されるエンジン回転速度が最大でない場合に、 該油圧ポンプからの吐出流量が最大となるように該基本傾転角制御量設 定手段 (6) により設定される基本傾転角制御量を補正する傾転角制御 量補正手段 ( 7) とを備えることを特徴とする、 請求の範囲第 1項記載 の建設機械の制御装置。 A basic tilt angle for controlling a discharge amount from the hydraulic pumps (51), (52) based on a characteristic substantially inversely proportional to a flow rate of the hydraulic oil in the bypass passage. Turning angle control amount setting means (6); When the operation amount of the operation member (54) is maximum and the engine rotation speed detected by the engine rotation speed sensor (71) is not the maximum, the discharge flow rate from the hydraulic pump is maximized. The tilt angle control amount correcting means (7) for correcting the basic tilt angle control amount set by the basic tilt angle control amount setting means (6). 2. The control device for a construction machine according to claim 1.
7. ォペレ一夕により操作される操作部材 ( 54) と、 7. An operating member (54) operated by the operator,
エンジンにより駆動され、タンク内の作動油を吐出する油圧ポンプ( 5 1), (5 2) と、  Hydraulic pumps (5 1), (5 2) driven by the engine and discharging hydraulic oil in the tank;
該油圧ポンプにより吐出される作動油により駆動される油圧ァクチュ ェ一タ ( 1 0 5), ( 1 0 6 ), ( 1 0 7 ) と、  Hydraulic actuators (105), (106), (107) driven by hydraulic oil discharged by the hydraulic pump;
該油圧ァクチユエ一夕から該タンクへ作動油を排出する作動油排出通 路 (66 b), (6 9) と、  A hydraulic oil discharge passage (66b), (69) for discharging hydraulic oil to the tank from the hydraulic actuator overnight;
該作動油排出通路 ( 6 6 b), (6 9) に介装され、 該作動油排出通路 を通じて排出される作動油の流量を制御する制御弁(60), (64) と、 該エンジンの回転数を検出するエンジン回転速度センサ (7 1 ) と、 該操作部材 (54) の操作量に基づいて該作動油排出通路の開口面積 を調整すべく該制御弁を制御する制御手段 ( 1 ) とを備える建設機械の 制御方法であって、  Control valves (60) and (64) interposed in the hydraulic oil discharge passages (66 b) and (69) for controlling the flow rate of hydraulic oil discharged through the hydraulic oil discharge passage; An engine speed sensor (71) for detecting a rotation speed; and a control means (1) for controlling the control valve to adjust an opening area of the hydraulic oil discharge passage based on an operation amount of the operation member (54). A method for controlling a construction machine comprising:
該エンジン回転速度センサ ( 7 1 ) によって該エンジンの回転数を検 出する検出ステツプと、  A detection step for detecting the engine speed by the engine speed sensor (71);
該検出ステップで検出されたエンジン回転速度を加味して該制御手段 ( 1) によって該制御弁 ( 6 0 ), ( 64) を制御する制御ステップとを 備えることを特徴とする、 建設機械の制御方法。 A control step of controlling the control valves (60) and (64) by the control means (1) in consideration of the engine rotation speed detected in the detection step. Method.
8. 該制御ステップでは、 該操作部材 ( 54) の操作量が最大で、 かつ 該検出ステツプで検出されたエンジン回転速度が最大の場合に、 該油圧 ポンプから該油圧ァクチユエ一夕 ( 1 0 5), ( 1 06), ( 1 0 7) へ作 動油を供給する作動油供給通路 (6 1 a), (66 a) を通じて供給され る作動油の最大供給流量に応じた流量の作動油が該作動油排出通路 (6 6 b), (6 9) を通じて排出されるように該制御弁 (6 0), (64) が 制御されることを特徴とする、 請求の範囲第 7項記載の建設機械の制御 方法。 9. 該制御ステップでは、 該検出ステップで検出されたエンジン回転速 度が低くなるにつれて該作動油排出通路 (6 6 b), (6 9) の開口面積 が小さくなるように該制御弁 ( 6 0 ), ( 64) が制御されることを特徴 とする、 請求の範囲第 7項記載の建設機械の制御方法。 1 0. 該制御ステップでは、 エンジン回転速度が低くなるにつれて小さ くなる補正係数により該制御弁 ( 6 0), ( 64) に対する制御量が補正 されることを特徴とする、請求の範囲第 7項記載の建設機械の制御方法。 8. In the control step, when the operation amount of the operation member (54) is the maximum and the engine rotation speed detected in the detection step is the maximum, the hydraulic pump is connected to the hydraulic actuator (105). ), (106), (107) Hydraulic oil at a flow rate corresponding to the maximum supply flow rate of the hydraulic oil supplied through the hydraulic oil supply passages (61a), (66a) The control valve (60), (64) is controlled such that the oil is discharged through the hydraulic oil discharge passage (66, 69). Construction machinery control method. 9. In the control step, the control valve (6) is set so that the opening area of the hydraulic oil discharge passages (66b) and (69) decreases as the engine rotation speed detected in the detection step decreases. 8. The method for controlling a construction machine according to claim 7, wherein (0) and (64) are controlled. 10. The control step, wherein the control amount for the control valves (60) and (64) is corrected by a correction coefficient that decreases as the engine rotation speed decreases. A method for controlling a construction machine according to the item.
1 1. 該制御ステップでは、 該作動油排出通路 (66 b), (6 9) の開 口面積がエンジン回転速度に応じて変化するように該制御弁 (6 0 ),1 1. In the control step, the control valve (6 0), (6 0), so that the opening area of the hydraulic oil discharge passage (66 b), (69) changes in accordance with the engine speed
(64) の制御量が設定されることを特徴とする、 請求の範囲第 7項記 載の建設機械の制御方法。 The control method for a construction machine according to claim 7, wherein the control amount according to (64) is set.
1 2. 該制御弁 ( 60 ), ( 64) を介して該油圧ァクチユエ一夕 ( 1 0 5 ), ( 1 06 ), ( 1 0 7) へ供給されなかった作動油を該タンクへ戻す バイパス通路 ( 6 1 b), (66 c ) を備え、 該制御弁 (6 0), (64) 力 該バイパス通路に介装され、 該バイパ ス通路の開口面積を調整するものとして構成され、 1 2. Hydraulic oil not supplied to the hydraulic actuators (105), (106) and (107) via the control valves (60) and (64) is returned to the tank. With passages (61b) and (66c) The control valves (60) and (64) are arranged in the bypass passage and configured to adjust the opening area of the bypass passage.
該制御ステップでは、  In the control step,
該バイパス通路 (6 1 b), (66 c) 内の作動油の流量に略逆比例す る特性に基づいて該油圧ポンプ (5 1), (5 2) からの吐出流量を制御 するための基本傾転角制御量を設定し、  A control valve for controlling the discharge flow rate from the hydraulic pumps (51) and (52) based on a characteristic that is substantially inversely proportional to the flow rate of the hydraulic oil in the bypass passages (61b) and (66c). Set the basic tilt angle control amount,
該操作部材 (54) の操作量が最大で、 かつ、 該検出ステップで検出 されたエンジン回転速度が最大でない場合に、 該油圧ポンプからの吐出 流量が最大となるように該基本傾転角制御量を補正することを特徴とす る、 請求の範囲第 7項記載の建設機械の制御方法。  When the operation amount of the operation member (54) is the maximum and the engine rotation speed detected in the detection step is not the maximum, the basic tilt angle control is performed so that the discharge flow rate from the hydraulic pump becomes the maximum. 8. The control method for a construction machine according to claim 7, wherein the amount is corrected.
PCT/JP2000/002441 1999-04-26 2000-04-14 Method and apparatus for controlling construction machine WO2000065239A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11823499A JP3629382B2 (en) 1999-04-26 1999-04-26 Construction machine control equipment
JP11/118234 1999-04-26

Publications (1)

Publication Number Publication Date
WO2000065239A1 true WO2000065239A1 (en) 2000-11-02

Family

ID=14731559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002441 WO2000065239A1 (en) 1999-04-26 2000-04-14 Method and apparatus for controlling construction machine

Country Status (2)

Country Link
JP (1) JP3629382B2 (en)
WO (1) WO2000065239A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3165777A4 (en) * 2014-07-03 2018-04-04 Nabtesco Corporation Hydraulic circuit for construction machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6877417B2 (en) * 2001-04-17 2005-04-12 Shin Caterpillar Mitsubishi Ltd. Fluid pressure circuit
JP5450147B2 (en) * 2010-02-16 2014-03-26 カヤバ工業株式会社 Load sensing control equipment for construction machinery
JP6936690B2 (en) * 2017-10-18 2021-09-22 川崎重工業株式会社 Hydraulic excavator drive system
CN118176345A (en) * 2021-10-29 2024-06-11 住友建机株式会社 Excavator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837302A (en) * 1981-08-31 1983-03-04 Mitsubishi Heavy Ind Ltd Pump control device of working machine
JPH02142902A (en) * 1988-11-25 1990-06-01 Hitachi Constr Mach Co Ltd Hydraulic driving unit
JPH0419406A (en) * 1990-04-05 1992-01-23 Toshiba Mach Co Ltd Hydraulic working circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837302A (en) * 1981-08-31 1983-03-04 Mitsubishi Heavy Ind Ltd Pump control device of working machine
JPH02142902A (en) * 1988-11-25 1990-06-01 Hitachi Constr Mach Co Ltd Hydraulic driving unit
JPH0419406A (en) * 1990-04-05 1992-01-23 Toshiba Mach Co Ltd Hydraulic working circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3165777A4 (en) * 2014-07-03 2018-04-04 Nabtesco Corporation Hydraulic circuit for construction machine
US10161109B2 (en) 2014-07-03 2018-12-25 Nabtesco Corporation Hydraulic circuit for construction machine

Also Published As

Publication number Publication date
JP2000309952A (en) 2000-11-07
JP3629382B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
US6564548B2 (en) Speed control apparatus of working vehicle and speed control method thereof
WO2005098148A1 (en) Hydraulic drive device for working machine
JP6934454B2 (en) Construction machinery
JP6789843B2 (en) Control device for hydraulic machinery
JP2018178476A (en) Control device for hydraulic machine
JP5669559B2 (en) Control device and work machine equipped with the same
JP3539720B2 (en) Control equipment for construction machinery
JP3634980B2 (en) Construction machine control equipment
WO2000065239A1 (en) Method and apparatus for controlling construction machine
JP3686324B2 (en) Hydraulic traveling vehicle
JP4731033B2 (en) Hydraulic drive control device
JP3594837B2 (en) Control equipment for construction machinery
JP3645740B2 (en) Construction machine control equipment
JP3541142B2 (en) Control equipment for construction machinery
JP3541154B2 (en) Control equipment for construction machinery
JPH02291435A (en) Drive control device of hydraulic construction equipment
JP3612253B2 (en) Construction machine control device and control method thereof
JP7536161B2 (en) Construction Machinery
WO2023074809A1 (en) Shovel
WO2023074822A1 (en) Excavator
JP3952473B2 (en) Hydraulic control device for work machine
JP2021042857A (en) Control device of hydraulic machine
JP3330340B2 (en) Control device for hydraulic drive machine
JP2843729B2 (en) Hydraulic circuit structure
JP2015135031A (en) Traveling type hydraulic work machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase