WO2000063453A1 - Very thin 2-piece container steel sheet excellent in pucker resistance at neck diameter reduction and in earing and production method therefor - Google Patents

Very thin 2-piece container steel sheet excellent in pucker resistance at neck diameter reduction and in earing and production method therefor Download PDF

Info

Publication number
WO2000063453A1
WO2000063453A1 PCT/JP2000/002426 JP0002426W WO0063453A1 WO 2000063453 A1 WO2000063453 A1 WO 2000063453A1 JP 0002426 W JP0002426 W JP 0002426W WO 0063453 A1 WO0063453 A1 WO 0063453A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
diameter
mns
steel sheet
ratio
Prior art date
Application number
PCT/JP2000/002426
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekuni Murakami
Masayoshi Suehiro
Seiichi Tanaka
Tetsurou Takeshita
Hirokazu Yokoya
Toru Chichiki
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14597151&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000063453(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to DE60043087T priority Critical patent/DE60043087D1/en
Priority to JP2000612527A priority patent/JP4213870B2/en
Priority to EP00915519.3A priority patent/EP1088905B2/en
Publication of WO2000063453A1 publication Critical patent/WO2000063453A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling

Definitions

  • the present invention relates to a steel sheet used as a material for cans manufactured by drawing, ironing and stretching, followed by reduction in diameter, as represented by the manufacture of two-piece cans, and a method for manufacturing the same.
  • 2-piece cans In the field of manufacturing beverage cans, food cans, and other products, the volume of containers called two-piece cans, which are integrally formed with a can and a body, is increasing.
  • 2-piece cans after the drawing process, in order to obtain the required can height, a method of increasing the can wall height by ironing or stretching, as represented by DI cans and DTR cans, is adopted.
  • the present invention has high drawability, and
  • the present invention is to provide a steel plate which is manufactured through drawing and ironing or elongation processing, which is used for a two-piece container, and a method for manufacturing the same.
  • the present inventors have developed a method based on a low carbon steel of about 0.03% C, which has a low recrystallization temperature and good deep drawability. While examining the suppression of wrinkles, we found that there was a correlation between the amount and size of precipitates such as A1N and MnS and the occurrence of wrinkles. Although this mechanism is not clear, the combination of the crystal grain size after annealing, texture formation, etc., mainly affects the work hardening behavior of the material, improving neck wrinkle resistance. it is conceivable that.
  • the present invention was completed in consideration of workability as a two-piece can annealed in a relatively low temperature range in order to suppress the buckle.
  • AIN, MnS are the following conditions
  • the average diameter of A1N with a diameter of 0.005 m or more is 0.01 ⁇ 0.10 ⁇ m (DA),
  • the ratio of the number of MnS with a diameter of 0.03 m or less is 50% or less (RM),
  • the present invention makes it possible to produce a two-piece container steel sheet having a thickness of 0.19 mm or less, which is excellent in neck wrinkle resistance and earing property.
  • Figure 1 shows the relationship between the average diameter of MnS, hot rolling conditions (slab heating temperature, winding temperature), and the critical diameter reduction rate.
  • C forms cementite in steel when its content is high.
  • Coarse cementite when exposed to the surface, may degrade the plating properties of the steel sheet.
  • Coarse cementite may also be a starting point for cracking during ironing, stretching and flange forming in the container manufacturing process. From these points, it is desirable to set the upper limit of C to 0.08%.
  • the characteristics can be significantly improved by setting the content to 0.06% or less.
  • an incomplete reduction in the region of less than 0.008% is not desirable for control of aging with residual solid solution C. Insufficient can strength However, this is not desirable from the viewpoint of rising decarburization costs. From these facts, it is desirable that C be 0.008% or more.
  • 0.02 to 0.04% is more desirable.
  • N is an important element that controls the formation of nitrides. If contained in a large amount, a large amount of nitride is generated, and it is difficult to achieve the object of the present invention. Therefore, it is desirable to set the upper limit to 0.0040%. It is more desirable to reduce the content to 0.0020% or less by performing sufficient vacuum degassing, because the amount of nitride formed is reduced and the target characteristics are improved.
  • Si is contained in a large amount, the material becomes hard and workability deteriorates. Therefore, 0.05% or less is desirable. Even more preferably less than 0.029% o
  • Mn is contained in a large amount, the material becomes hard and the workability deteriorates, and excessive reduction leads to high cost. Therefore, 0.04 to 0.4% is desirable. Further, it is more preferably 0.15 to 0.25%.
  • P is contained in a large amount, the material becomes hard and the workability is deteriorated. Furthermore, it is more preferably 0.010% or less.o
  • A1 like N, is an important element for controlling nitride, which is an important requirement of the present invention. From this point, 0.02 to 0.10% or less is desirable. Further, it is more desirably 0.050 to 0.080%.
  • the present invention mainly uses A1 nitride as a precipitate, and does not mainly use compounds such as B, Ti, and V. Therefore, B, Ti, V, etc. Not graphically added.
  • nitride is mainly A1N
  • N Nas A1N
  • ADI ADI
  • the size distribution of A1 and MnS is also an important factor for improving the resistance to net wrinkling.
  • the ratio of the number of A1N having a diameter of 0.10 / m or less among those having a diameter of 0.005 / zm or less is 10% or less, the average diameter is 0.01 to 0.10 m, and the diameter of MnS is 0%.
  • the crystal structure, the texture, and the like can be controlled, and the net wrinkle resistance of a thin material having a thickness of 0.19 dragon or less can be improved.
  • the size distribution can also be obtained by taking a picture of the field of view and performing image analysis and the like.
  • the work hardening behavior of the material including the Binger singer effect. It is generally thought that fine precipitates have a large effect on the work hardening behavior of materials.However, the quantitative and qualitative analysis of fine precipitates cannot be said to be complete even with the latest measurement techniques. Easy to cause errors. Therefore, in the present invention, the claims are specified in relation to coarse precipitates that can be expected to reduce measurement errors.
  • the shape is elongated. If the shape is not isotropic, the average of the major axis and minor axis is taken as the diameter of the deposit.
  • the thermal history of the entire manufacturing process is important. As the heat history, the slab heating temperature and the winding temperature during hot rolling are greatly affected, and it is necessary to control the reheating temperature of the billet within a predetermined range.
  • the slab reheating temperature (SRT) is determined in combination with the coiling temperature (CT: Coiling Temperature). If the reheating temperature of the slab is 1150-: L250 ° C, the winding temperature must be limited to 690-750 ° C. The reason is not clear, but in particular, by maintaining the temperature in this temperature range and changing the A1N precipitate size distribution in the steel sheet, the work hardening behavior of the material after cold rolling recrystallization is affected. It seems to be. In general, the reduction of fine precipitates directly affects the work hardening behavior, and in addition to improving the crystal grain growth during cold rolling recrystallization and increasing the crystal grain size, It is considered that work hardening is suppressed even through the change in orientation (texture).
  • the steel sheet of the present invention can be obtained without specifying the winding temperature.
  • the precipitation of MnS during slab heating progresses by lowering the heating temperature during slab to 1150 ° C or less, and the amount of fine MnS that precipitates as the temperature decreases during hot rolling is reduced. Therefore, it seems that the same effect as in the case of A1N described above is exhibited. At this time, precipitation of A1N is also promoted during slab heating, so it is considered unnecessary to specify the winding temperature.
  • the cold rolling reduction (CR) is 82-94%. This is because of the productivity in producing thin materials and the suppression of in-plane anisotropy in terms of material. If the cold rolling rate is low, reduce the thickness of the hot rolled sheet Therefore, the in-plane anisotropy increases as the hot-rolling productivity decreases, and when the cold-rolling rate is high, the load on the cold-rolling process increases, and the in-plane anisotropy also increases. Increase.
  • the annealing temperature (AT: Annealing Temperature) is ⁇ 720. The same. The reason is that recrystallization is necessary to obtain good ductility, and that the productivity of annealing may decrease at a high temperature exceeding 720 ° C. More preferably, it is 650-670 ° C.
  • RCR re-cold rolling reduction ratio
  • the steel sheet of the present invention is used as an original sheet of a surface-treated steel sheet, the effect of the present invention is not impaired at all by the surface treatment.
  • a steel sheet of each component shown in Table 1 was manufactured under the manufacturing conditions shown in Table 2 to produce a 0.180 mm steel sheet, and the present invention was evaluated based on the steel sheet.
  • a drawn cup was formed under certain conditions, and the maximum and minimum values of the cup rim height were evaluated at the earring rate calculated from the following equation (1).
  • Carrying ratio (maximum value-minimum value) Z minimum value (1)
  • the critical diameter reduction rate was determined by the following equation (2) as the limit at which wrinkles occurred. The higher the critical diameter reduction ratio, the greater the margin of the material in actual operation, so that the generation of wrinkles can be suppressed.
  • heat buckle when passing through continuous annealing line at recrystallization temperature + 40 ° C Judgment was made based on the presence or absence.
  • Figure 1 shows the relationship between the MnS size distribution and neck wrinkle resistance for a steel composition with a steel composition of 0.03% C by mass. Those having a MnS size distribution within the range of the present invention have good neck wrinkle resistance.
  • the effect of the MnS size distribution is stratified by the slab heating temperature.However, even if the MnS size distribution is similar, when the slab heating temperature is 1250 ° C or less and the winding temperature is 690 ° C or more, In the graph, the net diameter reduction is improved.
  • the wrinkle generation rate at the time of a network diameter reduction can be reduced. Furthermore, since the steel of the present invention exhibits good properties even at an annealing temperature lower than that of the conventional material, generation of a heat buckle can be avoided, and highly efficient production of an ultra-thin container material becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A 2-piece-can steel sheet characterized in that (N present as AlN)/(N content) ⊃0.5, an average diameter of AlN is 0.01 to 0.10 νm with AlN in diameter of up to 0.01 νm accounting for up to 10% of that in diameter of at least 0.005 νm, and an average diameter of MnS is 0.03 to 0.40 νm with MnS in diameter of up to 0.03 νm accounting for up to 50% of that in diameter of at least 0.005 νm. Components, a slab heating temperature at hot rolling, a coiling temperature and a re-cold-rolling ratio are specified to fulfil the above requirements, thereby making it possible to produce a heat-buckle-free, high-efficiency 2-piece-can steel sheet which is high in steel sheet yield, excellent in a can formability and reduced in pucker occurrence ratio at neck diameter reducing after drawing, ironing and stretching, and can keep a satisfactory characteristics even when annealed at a low temperature. A 2-piece-can steel sheet with a sheet thickness of up to 0.19 mm can be provided which is free from coil break at annealing, from earing at cup forming and from pucker at opening diameter reducing in the can barrel.

Description

明 細 書 ネッ ク縮径時の耐皺性及びィャリ ング性に優れた極薄 2 ピース容器 用鋼板及びその製造方法 技術分野  Technical Field Ultra-thin steel sheet for two-piece containers having excellent wrinkle resistance and shrinkage resistance when the diameter of the net is reduced, and a method for producing the same
本発明は 2 ピース缶の製造に代表される、 絞り、 しごきおよび引 伸ばし加工、 それに引き続く縮径成形により製造される缶用材料と して利用される鋼板およびその製造方法に関するものである。 特に 製缶分野においてィャリ ングが小さ く耐ネック しわ性が良好で、 か つ高生産性にて製造できる極薄容器用鋼板及びその製造方法を提供 するものである。 背景技術  The present invention relates to a steel sheet used as a material for cans manufactured by drawing, ironing and stretching, followed by reduction in diameter, as represented by the manufacture of two-piece cans, and a method for manufacturing the same. Particularly, it is an object of the present invention to provide a steel sheet for an ultra-thin container which has a small bearing, good neck wrinkle resistance and can be manufactured with high productivity in the field of can making, and a method for manufacturing the same. Background art
飲料缶、 食品缶などの製造分野では、 2 ピース缶と呼ばれる、 缶 と胴部を一体成形した容器の製造量が増加しつつある。 通常 2 ピー ス缶では、 絞り成形工程の後、 必要缶高さを得るため、 DI缶や DTR 缶に代表されるような、 しごきまたは引き延ばしなどにより缶壁高 さを高くする方法が採られる。  In the field of manufacturing beverage cans, food cans, and other products, the volume of containers called two-piece cans, which are integrally formed with a can and a body, is increasing. Usually, for 2-piece cans, after the drawing process, in order to obtain the required can height, a method of increasing the can wall height by ironing or stretching, as represented by DI cans and DTR cans, is adopted.
これらの成形時には、 鋼板歩留りやしごきまたは引き延ばし成形 性を低下させるィャリ ングの発生を低く抑えることが望まれている 。 また、 缶蓋を小さ く し缶蓋用の素材コス トを低減する目的で、 缶 開口部の径を縮める加工 (ネック加工) が行われるが、 2 ピース缶 では、 絞りおよびしごきや引き延ばし加工のため材料が硬化してお り、 しわの発生が著し く なる (耐ネック しわ性の劣化) という問題 が起きる。  At the time of these formings, it is desired to suppress the occurrence of shearing that reduces the yield and ironing of the steel sheet or the drawability. In addition, in order to make the can lid smaller and reduce the material cost for the can lid, a process to reduce the diameter of the can opening (neck processing) is performed. However, in the case of a two-piece can, drawing, squeezing and stretching are performed. As a result, the material is hardened, and the occurrence of wrinkles becomes significant (deterioration of neck wrinkle resistance).
これらを改善する技術と して、 特開平 1 - 184252号公報、 特開平 1 - 184229号公報、 特開平 2 - 141535号公報等に開示された技術が 提案されている。 Techniques for improving these are disclosed in Japanese Patent Application Laid-Open Nos. Techniques disclosed in JP-A-1-184229, JP-A-2-141535 and the like have been proposed.
一般に、 耐しわ性を向上させるには、 降伏応力 (降伏点が観測さ れない場合には 0. 2 %耐カ) を低くすることが有効とされるが、 上 述の先行技術に開示された技術では、 絞りやしごき後の軟質化が不 十分なため、 板厚が 0. 2mm以下の極薄材料を素材と して、 さ らに近 年の傾向である縮径率を更に上昇させた缶成形においては依然とし て加工時の材料の硬化或いは耐ネック しわ性の劣化等が懸念され、 更なる特性向上が望まれている。  In general, it is effective to improve the wrinkle resistance by lowering the yield stress (0.2% resistance when no yield point is observed), but it is disclosed in the above-mentioned prior art. With the conventional technology, the softening after drawing and ironing is insufficient, so that ultra-thin material with a thickness of 0.2 mm or less is used as a material to further increase the diameter reduction rate, which is a trend in recent years. Also, in can molding, there is still a concern that the material may be hardened during processing or the neck wrinkle resistance may be degraded, and further improvement in properties is desired.
これまでに開発された容器用鋼板においては、 通常の 2 ピース缶 の缶胴部形成時のしごきや、 引き延ばしという大きな加工を受けた 後の材料における縮径時のしわ発生については、 これを抑制する有 効な手段はこれまでに見出されていない。 また、 このような厚さ 0 . 2mm以下の薄手材料においては、 焼鈍時にヒー トバックルと呼ばれ る鋼板の折れが発生し生産効率が低下する。  In the steel plates for containers developed so far, the occurrence of wrinkles when the diameter of the material is reduced after ironing during the formation of the can body of ordinary two-piece cans and the material after extensive processing such as stretching has been suppressed. No effective means has been found to date. Further, in such a thin material having a thickness of 0.2 mm or less, a steel sheet called a heat buckle is broken at the time of annealing, and the production efficiency is reduced.
ヒー トバッ クル対策としては、 焼鈍時には目的の板厚より厚い鋼 板を通板し、 その後再冷延 ( 2 CR ) を施し、 目的とする板厚を得る 方法が実用化されている。 この方法は、 缶強度を確保する観点で、 本来軟質である極低炭素 IF鋼を適用した場合でも強度低下分を加工 硬化により補うため、 都合のよい製造法であるが、 2 CRによる加工 に加え、 絞り、 しごきや引き延ばし加工も重なるため、 耐ネック し わ性は顕著に劣化する。 発明の開示  As a countermeasure against heat backlash, a method has been put into practical use in which a steel sheet thicker than the target thickness is passed during annealing and then re-rolled (2CR) to obtain the target thickness. This method is a convenient manufacturing method to secure the strength of the can by work hardening to compensate for the decrease in strength by using work-hardening even when an ultra-low carbon IF steel, which is originally soft, is applied. In addition, drawing, ironing and elongation are also overlapped, so that the neck wrinkle resistance is significantly degraded. Disclosure of the invention
本発明は、 高い絞り性を有し、 かつ  The present invention has high drawability, and
1 ) 焼鈍工程での腰折れによる生産性の低下、  1) Productivity decrease due to breakage in the annealing process,
2 ) 缶胴の開口部を縮径する際のしわ発生、 3 ) 高い冷延率で製造される板厚 0. 2mm以下の極薄材料における ィャリ ングの発達、 2) Wrinkling when reducing the diameter of the opening of the can body, 3) The development of carrying in ultra-thin materials with a thickness of 0.2 mm or less, produced at a high cold rolling rate,
を回避した、 絞り及びしごき又は引き延ばし加工を経て製造され、 2 ピース容器に使用される鋼板と、 その製造方法を提供するもので ある。 The present invention is to provide a steel plate which is manufactured through drawing and ironing or elongation processing, which is used for a two-piece container, and a method for manufacturing the same.
本発明者らは、 再結晶温度が低く深絞り性が良好な C : 0. 03 %程 度の低炭素鋼をベースに、 2 CR、 絞り、 しごき、 引き延ばし加工後 のネッ ク縮径時のしわ発生抑制について検討するうちに、 A1N や Mn S など析出物の量、 サイズと しわ発生に相関があることを知見した 。 このメ カニズムは明確ではないが、 焼鈍後の結晶粒径、 集合組織 形成などが複合して、 主と して材料の加工硬化挙動に影響を及ぼす ことで、 耐ネック しわ性が改善していると考えられる。  The present inventors have developed a method based on a low carbon steel of about 0.03% C, which has a low recrystallization temperature and good deep drawability. While examining the suppression of wrinkles, we found that there was a correlation between the amount and size of precipitates such as A1N and MnS and the occurrence of wrinkles. Although this mechanism is not clear, the combination of the crystal grain size after annealing, texture formation, etc., mainly affects the work hardening behavior of the material, improving neck wrinkle resistance. it is conceivable that.
特に、 焼鈍後の冷延、 絞り、 しごき、 引き延ばし、 縮径における —連の加工においては、 加工方向が各工程で異なっているので、 い わゆるバウシンガー効果的な要素も影響していると考えられる。 結晶粒径については粗大なほど、 集合組織については { 100 } 面 強度が高く、 { 111 } 面強度が低いほど、 そして析出物については In particular, in cold rolling, drawing, ironing, elongating, and reducing diameters after annealing, since the processing direction differs in each process, so-called Bausinger effective elements are also affected. Conceivable. The coarser the grain size, the higher the {100} plane strength for the texture and the lower the {111} plane strength for the texture, and the
、 粗大かつ密度が低いほど耐しわ性は向上する。 更に、 焼鈍時のヒThe coarser and the lower the density, the better the wrinkle resistance. In addition,
— 卜バックルを抑制するため、 比較的低い温度域で焼鈍した 2 ピー ス缶としての加工性なども考慮し、 本発明を完成した。 — The present invention was completed in consideration of workability as a two-piece can annealed in a relatively low temperature range in order to suppress the buckle.
耐しわ性が、 A1N, MnSの量とサイズに影響される知見を基に、 さ らに詳細な検討を行い、 A1窒化物として存在する Nと含有 Nの比、 または A1N および MnS のサイズ分布の制限で、 耐しわ性を判別でき るとの結果を得た。 すなわち、  Based on the knowledge that wrinkle resistance is affected by the amount and size of A1N and MnS, a more detailed study was conducted to determine the ratio of N present as A1 nitride to the contained N, or the size distribution of A1N and MnS. The result was that the wrinkle resistance could be determined with the above restriction. That is,
AIN, MnSが下記条件、  AIN, MnS are the following conditions,
1 ) (A1Nと して存在する N ) / (含有 N ) > 0. 5 、  1) (N existing as A1N) / (Contained N)> 0.5,
2 ) 直径 0. 005 m以上の A1N のうち、 直径が 0. 01 m以下のも のの個数の割合が 10 %以下 (RA) 、 2) A1N with a diameter of 0.015 m or less among A1Ns with a diameter of 0.005 m or more Is less than 10% (RA),
3 ) 直径 0. 005 m以上の A1N の平均直径が 0. 01〜0. 10 ^ m ( DA ) 、  3) The average diameter of A1N with a diameter of 0.005 m or more is 0.01 ~ 0.10 ^ m (DA),
4 ) 直径 0. 005 m以上の MnS のうち、 直径が 0. 03 m以下のも のの個数の割合が 50 %以下 (RM) 、  4) Of MnS with a diameter of 0.005 m or more, the ratio of the number of MnS with a diameter of 0.03 m or less is 50% or less (RM),
5 ) 直径 0. m以上の MnS の平均直径が 0. 03〜 0. 40 m ( DM 5) The average diameter of MnS with a diameter of 0.3 m or more is 0.03 to 0.40 m (DM
) 、 ),
を満足することで、 本発明により耐ネック しわ性およびイヤリ ング 性に優れた板厚 0. 19mm以下の 2 ピース容器用鋼板を製造することが できる。 図面の簡単な説明 By satisfying the above conditions, the present invention makes it possible to produce a two-piece container steel sheet having a thickness of 0.19 mm or less, which is excellent in neck wrinkle resistance and earing property. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 MnS の平均直径と熱延条件 (スラブ加熱温度、 巻取温度 ) と限界縮径率の関係を示す図である。 発明を実施するための最良の実施形態  Figure 1 shows the relationship between the average diameter of MnS, hot rolling conditions (slab heating temperature, winding temperature), and the critical diameter reduction rate. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
まず成分について説明する。 成分はすべて質量%である。  First, the components will be described. All components are% by weight.
Cは、 含有量が多いと鋼中でセメ ンタイ 卜を形成する。 粗大なセ メ ンタイ 卜は表面に露出した場合、 鋼板のめっき性を劣化させる場 合がある。 また、 粗大なセメ ンタイ トは、 容器の製造過程における しごき、 引き延ばし、 フランジ成形時に割れの発生起点となる場合 もある。 これらの点から Cの上限は 0. 08 %とすることが望ま しい。 特に、 しごき、 引き延ばし、 フラ ンジ成形時に延性の良好な材質 が必要な場合は、 0. 06 %以下とすれば特性を大幅に向上させること ができる。 しかし、 0. 008 %未満の領域での中途半端な低減は、 固 溶 Cが残存して時効性の制御にとつて望ま し く ない。 又缶強度不足 、 脱炭コス ト上昇の点からも望ま し く ない。 これらのことから、 C は 0. 008 %以上とするこ とが望ま しい。 また、 真空脱ガスを用いず 、 低コス トで 2 ピース缶と して好ま しい砍質で高延性な特性を得る ためには、 0. 02〜0. 04 %が更に望ま しい。 C forms cementite in steel when its content is high. Coarse cementite, when exposed to the surface, may degrade the plating properties of the steel sheet. Coarse cementite may also be a starting point for cracking during ironing, stretching and flange forming in the container manufacturing process. From these points, it is desirable to set the upper limit of C to 0.08%. In particular, when a material having good ductility is required for ironing, stretching, and flange forming, the characteristics can be significantly improved by setting the content to 0.06% or less. However, an incomplete reduction in the region of less than 0.008% is not desirable for control of aging with residual solid solution C. Insufficient can strength However, this is not desirable from the viewpoint of rising decarburization costs. From these facts, it is desirable that C be 0.008% or more. Further, in order to obtain high quality and high ductility characteristics which are preferable as a two-piece can at low cost without using vacuum degassing, 0.02 to 0.04% is more desirable.
Nは、 窒化物の形成を制御する重要な元素である。 多量に含有す ると窒化物が多量に生成し、 本発明の目的を達成しにく い。 そのた め、 上限を 0. 0040 %とすることが望ま しい。 真空脱ガス処理を十分 に行なう ことにより 0. 0020 %以下にすれば、 窒化物の形成量が少な く なり、 目標特性が向上するので更に望ま しい。  N is an important element that controls the formation of nitrides. If contained in a large amount, a large amount of nitride is generated, and it is difficult to achieve the object of the present invention. Therefore, it is desirable to set the upper limit to 0.0040%. It is more desirable to reduce the content to 0.0020% or less by performing sufficient vacuum degassing, because the amount of nitride formed is reduced and the target characteristics are improved.
Siは、 多量に含有する と材質が硬質になり加工性が劣化するため 、 0. 05 %以下が望ま しい。 更により望ま し く は 0. 029 %以下である o  If Si is contained in a large amount, the material becomes hard and workability deteriorates. Therefore, 0.05% or less is desirable. Even more preferably less than 0.029% o
Mnは、 多量に含有すると材質が硬質になり加工性が劣化し、 また 過度の低減はコス ト高に繫がるので、 0. 04〜0. 4 %が望ま しい。 更 に、 より望ま し く は 0. 15〜0. 25 %である。  If Mn is contained in a large amount, the material becomes hard and the workability deteriorates, and excessive reduction leads to high cost. Therefore, 0.04 to 0.4% is desirable. Further, it is more preferably 0.15 to 0.25%.
Pは、 多量に含有すると材質が硬質になり加工性が劣化するため 、 0. 04 %以下が望ま しい。 更に、 より望ま し く は 0. 010 %以下であ る o  If P is contained in a large amount, the material becomes hard and the workability is deteriorated. Furthermore, it is more preferably 0.010% or less.o
Sは、 多量に含有する と MnS 析出物が多量に生成し、 材質が硬質 になり加工性が劣化するため、 0. 04 %以下が望ま しい。 更に、 より 望ま し く は 0. 020 %以下である。  If S is contained in a large amount, MnS precipitates are formed in a large amount, the material becomes hard, and the workability is deteriorated. Therefore, 0.04% or less is desirable. Furthermore, it is more preferably at most 0.020%.
A1は、 Nと同様本発明の重要な要件である窒化物を制御する上で 重要な元素である。 この点から 0. 02〜0. 10 %以下が望ま しい。 更に 、 より望ま し く は 0. 050〜0. 080 %である。  A1, like N, is an important element for controlling nitride, which is an important requirement of the present invention. From this point, 0.02 to 0.10% or less is desirable. Further, it is more desirably 0.050 to 0.080%.
本発明での重要な条件が窒化物量の制御である。 本発明は、 析出 物と して主に A1窒化物を利用する ものであり、 B, Ti, Vなどの化 合物を主と して利用する ものではない。 従って B, Ti, Vなどは意 図的には添加されていない。 An important condition in the present invention is control of the amount of nitride. The present invention mainly uses A1 nitride as a precipitate, and does not mainly use compounds such as B, Ti, and V. Therefore, B, Ti, V, etc. Not graphically added.
窒化物は A1N が主であるので、  Since nitride is mainly A1N,
(A1Nと して存在する N ) Z (含有 N ) 〉 0. 5  (N existing as A1N) Z (contained N)〉 0.5
とする。 ここで、 ADI と して存在する N (Nas A1N) とは、 鋼板をョ ゥ素アルコール溶液中で溶解したときの残滓中の A1量を分析し、 こ れを全量 A1N と して N量に換算した値である。 And Here, N (Nas A1N), which is present as ADI, refers to the analysis of the amount of A1 in the residue when a steel sheet is dissolved in a hydrogen alcohol solution, and the total amount of A1N to be the N amount. It is a converted value.
A1 及び MnS のサイズ分布も、 耐ネッ ク しわ性を向上させるため の重要な因子である。 本発明では、 A1N について直径 0. 005 /z m以 上のもののうち直径が 0. 10 / m以下のものの個数の割合が 10 %以下 、 平均直径 0. 01〜0. 10 m、 MnS について直径 0. 005 m以上のも ののうち直径が 0. 03 以下のものの個数の割合が 50 %以下、 平均 直径 0. 03〜0. 40 mと制限する。  The size distribution of A1 and MnS is also an important factor for improving the resistance to net wrinkling. In the present invention, the ratio of the number of A1N having a diameter of 0.10 / m or less among those having a diameter of 0.005 / zm or less is 10% or less, the average diameter is 0.01 to 0.10 m, and the diameter of MnS is 0%. Limit the number of those with a diameter of 0.03 or less out of 005 m or more to 50% or less, and the average diameter from 0.03 to 0.40 m.
これは、 鋼板から SPEED法によって得られた抽出レプリ カを、 電 子顕微鏡にて観察し、 偏りがない程度の視野について析出物の直径 及び数を計測し得られる値である。  This is a value obtained by observing an extracted replica obtained from a steel sheet by the SPEED method using an electron microscope, and measuring the diameter and number of precipitates in a field of view that is not biased.
このように析出物を制御することで、 上述のように、 結晶組織、 集合組織等を制御でき、 厚みが 0. 19龍以下の薄手材の耐ネッ ク しわ 性を改善できる。  By controlling the precipitates in this way, as described above, the crystal structure, the texture, and the like can be controlled, and the net wrinkle resistance of a thin material having a thickness of 0.19 dragon or less can be improved.
サイズ分布は、 視野を写真撮影し、 画像解析等を行なう ことでも 求めることができる。 前述のように、 耐ネック しわ性の改善にはバ ゥシンガー効果も含めた材料の加工硬化挙動を考える必要がある。 材料の加工硬化挙動には一般的に微細な析出物の影響が大きいと考 えられるが、 微細な析出物の定量及び定性分析は、 最新の測定技術 をもってしても完全とは言えず、 大きな誤差を生じやすい。 そのた め、 本発明では計測誤差をより小さ くすることが期待できる粗大な 析出物との関連で、 請求範囲を特定する。  The size distribution can also be obtained by taking a picture of the field of view and performing image analysis and the like. As mentioned above, in order to improve neck wrinkle resistance, it is necessary to consider the work hardening behavior of the material, including the Binger singer effect. It is generally thought that fine precipitates have a large effect on the work hardening behavior of materials.However, the quantitative and qualitative analysis of fine precipitates cannot be said to be complete even with the latest measurement techniques. Easy to cause errors. Therefore, in the present invention, the claims are specified in relation to coarse precipitates that can be expected to reduce measurement errors.
また、 特に MnS では形状が延伸したものがみられる場合があるが 、 形状が等方的でないものについては、 長径と短径の平均をその析 出物の直径とする。 In addition, especially in the case of MnS, there are cases where the shape is elongated. If the shape is not isotropic, the average of the major axis and minor axis is taken as the diameter of the deposit.
このように窒化物、 硫化物を制御するには、 製造工程全般にわた る熱履歴が重要となる。 熱履歴と しては、 熱延時のスラブ加熱温度 及び巻取り温度の影響が大き く 、 鋼片の再加熱温度を所定の範囲に 制御する必要がある。  To control nitrides and sulfides in this way, the thermal history of the entire manufacturing process is important. As the heat history, the slab heating temperature and the winding temperature during hot rolling are greatly affected, and it is necessary to control the reheating temperature of the billet within a predetermined range.
鋼片の再加熱温度 (SRT : Slab Reheat ing Temperature) は卷取り 温度 (CT : Coi l ing Temperature) との組合わせで決定される。 鋼片 の再加熱温度を 1150〜: L250°Cとする場合には、 卷取り温度は 690〜 750 °Cに限定する必要がある。 その理由は定かではないが、 特にこ の温度域で保定を行い鋼板中の A1N の析出物サイズ分布を変化させ ることで、 冷延再結晶後の材料の加工硬化挙動に影響を与えている ものと思われる。 大まかには微細な析出物が少なくなることで直接 的に加工硬化挙動に影響を与えると共に、 冷延再結晶時の結晶粒成 長性を向上させ結晶粒径を粗大化させることに加え、 結晶方位 (集 合組織) 変化を介しても加工硬化を抑制するものと考えられる。  The slab reheating temperature (SRT) is determined in combination with the coiling temperature (CT: Coiling Temperature). If the reheating temperature of the slab is 1150-: L250 ° C, the winding temperature must be limited to 690-750 ° C. The reason is not clear, but in particular, by maintaining the temperature in this temperature range and changing the A1N precipitate size distribution in the steel sheet, the work hardening behavior of the material after cold rolling recrystallization is affected. It seems to be. In general, the reduction of fine precipitates directly affects the work hardening behavior, and in addition to improving the crystal grain growth during cold rolling recrystallization and increasing the crystal grain size, It is considered that work hardening is suppressed even through the change in orientation (texture).
また、 鋼片を 1000〜: L 150°Cと、 上記温度範囲より低めの所定の範 囲とすれば、 巻取り温度を特定しなくても本発明の鋼板を得ること ができる。 その理由は定かではないが、 スラブ時の加熱温度を 1150 °C以下と低くすることでスラブ加熱中の MnS の析出が進行し、 熱間 圧延中に温度低下に伴い析出する微細な MnS が少なく なることで、 上記の A1N の場合と同様な効果を示すものと思われる。 またこの時 にはスラブ加熱中に A1N の析出も促進されるため、 巻取り温度の特 定も不要になると考えられる。  Further, if the billet is set to a predetermined range lower than the above temperature range of 1000 to 150 L, the steel sheet of the present invention can be obtained without specifying the winding temperature. Although the reason is not clear, the precipitation of MnS during slab heating progresses by lowering the heating temperature during slab to 1150 ° C or less, and the amount of fine MnS that precipitates as the temperature decreases during hot rolling is reduced. Therefore, it seems that the same effect as in the case of A1N described above is exhibited. At this time, precipitation of A1N is also promoted during slab heating, so it is considered unnecessary to specify the winding temperature.
冷延率(CR : Cold Rol l ing Reduct ion Rat io) は 82〜94 %である。 これは薄手材を製造するに際しての生産性と、 材質的には面内異方 性の抑制からの特定である。 冷延率が低い場合は熱延板板厚を薄く する必要があるため、 熱延生産性が低下すると共に面内異方性が增 大し、 冷延率が高い場合は冷延工程への負荷が大き く なると共に、 やはり面内異方性が増大する。 The cold rolling reduction (CR) is 82-94%. This is because of the productivity in producing thin materials and the suppression of in-plane anisotropy in terms of material. If the cold rolling rate is low, reduce the thickness of the hot rolled sheet Therefore, the in-plane anisotropy increases as the hot-rolling productivity decreases, and when the cold-rolling rate is high, the load on the cold-rolling process increases, and the in-plane anisotropy also increases. Increase.
焼鈍温度 (AT : Anneal ing Temperature) は再結晶温度〜 720 。じで ある。 その理由は、 良好な延性を得るためには再結晶させる必要が あるためと、 720°C超の高温では焼鈍の生産性が低下するおそれが あるためである。 更に望ま し く は、 650〜670 °Cである。  The annealing temperature (AT: Annealing Temperature) is ~ 720. The same. The reason is that recrystallization is necessary to obtain good ductility, and that the productivity of annealing may decrease at a high temperature exceeding 720 ° C. More preferably, it is 650-670 ° C.
焼鈍後の再冷延(RCR : Re- Cold Rol l ing Reduct ion Ratio) は 1〜 10 %で行なうのが望ま しい。 これは再冷延の効果は冷延率 1 %以上 で得られ、 また再冷延率を高く し過ぎると材料が硬質化し加工性が 劣化するためである。 更に望ま し く は 1〜 2 %である。  It is desirable to perform the re-cold rolling reduction ratio (RCR) after annealing at 1 to 10%. This is because the effect of re-cold rolling can be obtained at a cold rolling rate of 1% or more, and if the re-cold rolling rate is too high, the material becomes hard and the workability deteriorates. More preferably, it is 1-2%.
なお、 鋼板強度を高めるために、 2 CRを採用するのではなく 、 Si , Mn, Pなどの強化元素を多量に添加しても本発明の効果が失われ る ものではない。  Note that the effect of the present invention is not lost even if a large amount of reinforcing elements such as Si, Mn, and P are added instead of employing 2CR to increase the steel sheet strength.
また、 本発明鋼板は表面処理鋼板の原板と しても使用されるが、 表面処理により本発明の効果は何等損なわれる ものではない。  Further, although the steel sheet of the present invention is used as an original sheet of a surface-treated steel sheet, the effect of the present invention is not impaired at all by the surface treatment.
缶用表面処理鋼板と しては、 通常、 錫、 ク ロム (ティ ンフ リ ー) などが施される。 更に、 近年使用されるよ うになっている有機被膜 を貼ったラ ミ ネー 卜鋼板用の原板と しても、 本発明の効果を損なう こ となく使用できる。  As the surface-treated steel sheet for cans, tin, chrome (tin free), etc. are usually applied. Furthermore, even a base plate for a laminated steel sheet to which an organic film, which has been used in recent years, is pasted, can be used without impairing the effects of the present invention.
実施例 Example
表 1 に示す各成分の鋼について、 表 2 に示す製造条件で 0. 180mm の鋼板を製造し、 これを基に本発明の評価を行なった。 イヤリ ング 性については、 一定条件で絞りカ ップを成形し、 カ ップへり高さの 最大値と最小値から、 下記 ( 1 ) 式より求められるィャ リ ング率で 評価した。  A steel sheet of each component shown in Table 1 was manufactured under the manufacturing conditions shown in Table 2 to produce a 0.180 mm steel sheet, and the present invention was evaluated based on the steel sheet. With respect to the earring property, a drawn cup was formed under certain conditions, and the maximum and minimum values of the cup rim height were evaluated at the earring rate calculated from the following equation (1).
ィャリ ング率 = (最大値—最小値) Z最小値 ( 1 ) 耐ネッ ク しわ性については、 絞り比、 しごき加工率一定で、 ネッ ク成形予定部の厚さを 125 mと した缶において、 通常の実製缶で 行われるのと同様に多段の縮径を行ない、 しわが発生する限界とし て下記 ( 2 ) 式による限界縮径率を求めた。 限界縮径率が高いほど 実操業での材質の余裕度が大きいため、 しわ発生を抑止することが できる。 Carrying ratio = (maximum value-minimum value) Z minimum value (1) Regarding the net wrinkle resistance, for cans with a constant drawing ratio and ironing rate and a thickness of 125 m for the net forming section, multiple steps of diameter reduction are performed in the same way as with normal cans. The critical diameter reduction rate was determined by the following equation (2) as the limit at which wrinkles occurred. The higher the critical diameter reduction ratio, the greater the margin of the material in actual operation, so that the generation of wrinkles can be suppressed.
限界縮径率 == (初期径ー しわ発生径) / (初期径) …… ( 2 ) ヒー トバックルについては、 再結晶温度 + 40°Cで連続焼鈍ライ ン を通板した際のヒー トバッ クル発生の有無で判定した。  Critical diameter reduction == (initial diameter-wrinkling diameter) / (initial diameter) ... (2) For heat buckle, heat buckle when passing through continuous annealing line at recrystallization temperature + 40 ° C Judgment was made based on the presence or absence.
表 2から明らかなように、 本発明の範囲内で製造されたものは、 ィャリ ング性、 耐ネック しわ性、 耐ヒー トバックル性の全てに良好 な特性が得られている。  As is evident from Table 2, those manufactured within the scope of the present invention have good properties in all of the carrying properties, neck wrinkle resistance, and heat buckle resistance.
図 1 は、 鋼成分が質量%で C : 0. 03 %の鋼板について、 MnS サイ ズ分布と耐ネック しわ性の関係を見たものである。 MnS サイズ分布 について本発明範囲内のものは耐ネック しわ性が良好である。 図 1 中では MnS サイズ分布の影響をスラブ加熱温度で層別しているが、 同程度の MnS サイズ分布であっても、 スラブ加熱温度が 1250°C以下 で巻取り温度が 690°C以上の場合には、 ネッ ク縮径性の向上が見ら れる。 Figure 1 shows the relationship between the MnS size distribution and neck wrinkle resistance for a steel composition with a steel composition of 0.03% C by mass. Those having a MnS size distribution within the range of the present invention have good neck wrinkle resistance. In Fig. 1, the effect of the MnS size distribution is stratified by the slab heating temperature.However, even if the MnS size distribution is similar, when the slab heating temperature is 1250 ° C or less and the winding temperature is 690 ° C or more, In the graph, the net diameter reduction is improved.
0 ΐ 0 ΐ
2200 •0 L90 •0 ΟΤΟ •0 900 ·0 ST ·0 20 ·0 S80 •0 2200 • 0 L90 • 0 ΟΤΟ • 0 900 · 0 ST · 0 20 · 0 S80 • 0
8Τ00 •0 £90 •0 010 •0 910 ·0 ST Ό 20 ·0 200 •0  8Τ00 • 0 £ 90 • 0 010 • 0 910 · 0 ST Ό 20 · 0 200 • 0
LZ0 •0 890 •0 010 •0 ΟΤΟ ·0 02 ,0 20 ·0 ^90 •0 Ρ LZ0 • 0 890 • 0 010 • 0 ΟΤΟ · 02,0 20 · 0 ^ 90 • 0 Ρ
5800 •0 ιο •0 600 •0 9Τ0 ·0 Z ·0 εο ·ο 580 •0 0 5800 • 0 ιο • 0 600 • 0 9Τ0 · 0 Z · 0 εο · ο 580 • 0 0
9100 Ό 690 •0 600 •0 800 ·0 LO '0 10 '0 •0 q 9100 Ό 690 • 0 600 • 0 800 • 0 LO '0 10' 0 • 0 q
8200 •0 990 •0 600 •0 00 "0 Ζ ·0 20. ·0 τζο •08200 • 0 990 • 0 600 • 0 00 "0 Ζ · 0 20. · 0 τζο • 0
Figure imgf000012_0001
Figure imgf000012_0001
(%畺蔞 :  (% 畺 蔞:
I拏  Ialla
ひ ZO/0(Wf/IDd eSW9/00 OAV 表 2 鋼 SRT CT CR AT RCR RA DA RM DM ィャリ ヒ一卜 縮径 Hi ZO / 0 (Wf / IDd eSW9 / 00 OAV Table 2 Steel SRT CT CR AT RCR RA DA RM DM Carry down
NasAlN/N 判 NasAlN / N size
(°C) (°C) (%) (°C) (%) (%) (%) m) (%) (μ τη) ング (!¾) バックル 率 (!¾) a 1250 .550 93 680 5.0 40 15 0.02 55 0.08 5.6 X 16 比較 a 1250 690 93 650 5.0 60 5 0.02 35 0.06 2.6 〇 22 発明 a 1250 730 93 640 5.0 100 1 0.05 40 0.25 1.3 〇 26 発明 a 1100 550 93 650 5.0 85 3 0.04 15 0.15 2.5 〇 26 発明 a 1100 700 93 630 5.0 100 1 0.07 5 0.35 1.1 〇 28 発明 b 1200 550 92 670 1.5 40 20 0.03 40 0.20 4.4 X 12 比較 (° C) (° C) (%) (° C) (%) (%) (%) m) (%) (μ τη) (! ¾) Buckle ratio (! ¾) a 1250 .550 93 680 5.0 40 15 0.02 55 0.08 5.6 X 16 Comparison a 1250 690 93 650 5.0 60 5 0.02 35 0.06 2.6 〇 22 Invention a 1250 730 93 640 5.0 100 1 0.05 40 0.25 1.3 〇 26 Invention a 1100 550 93 650 5.0 85 3 0.04 15 0.15 2.5 〇 26 Invention a 1 100 700 93 630 5.0 100 1 0.07 5 0.35 1.1 〇 28 Invention b 1200 550 92 670 1.5 40 20 0.03 40 0.20 4.4 X 12 Compare
1050 550 92 650 1.5 40 5 0.04 10 0.15 1.5 2D 発明 a c 1200 680 90 650 15.0 40 10 0.02 40 0.25 1.5 〇 22 発明 d 1200 690 90 650 5.0 40 1 0.04 35 0.10 2.7 〇 22 発明 e 1200 600 93 700 5.0 50 15 0.04 70 0.02 3.2 X 16 比幸交 e 1200 680 93 670 5.0 90 1 0.06 60 0.05 2.0 X 16 比較 f 1100 650 92 650 5.0 80 15 0.02 20 0.10 5.8 〇 12 比幸交 1050 550 92 650 1.5 40 5 0.04 10 0.15 1.5 2D invention ac 1200 680 90 650 15.0 40 10 0.02 40 0.25 1.5 〇22 invention d 1200 690 90 650 5.0 40 1 0.04 35 0.10 2.7 〇22 invention e 1200 600 93 700 5.0 50 15 0.04 70 0.02 3.2 X 16 Hikoko e 1200 680 93 670 5.0 90 1 0.06 60 0.05 2.0 X16 Comparison f 1100 650 92 650 5.0 80 15 0.02 20 0.10 5.8 〇 12 Hikoko
[注] ヒー卜バックル 〇:発生なし。 x :発生。 [Note] Heat buckle 〇: No occurrence. x: Occurs.
産業上の利用可能性 Industrial applicability
本発明によれば、 ネッ ク縮径時のしわ発生率を低減することがで きる。 さ らに本発明鋼は、 従来材より低い焼鈍温度でも良好な特性 を示すこ とから、 ヒー トバックルの発生を回避でき、 極薄容器材料 の高効率な製造が可能になる。  ADVANTAGE OF THE INVENTION According to this invention, the wrinkle generation rate at the time of a network diameter reduction can be reduced. Furthermore, since the steel of the present invention exhibits good properties even at an annealing temperature lower than that of the conventional material, generation of a heat buckle can be avoided, and highly efficient production of an ultra-thin container material becomes possible.

Claims

請 求 の 範 囲 The scope of the claims
1. 直径 0.005 m以上の A1N の平均直径が 0.01〜 0.10 ^ m、 直径 0.005 m以上の A1N のうち直径が 0.01 m以下のものの個 数の割合が 10%以下、 1.A1N with a diameter of 0.005 m or more has an average diameter of 0.01 to 0.10 ^ m, and the ratio of the number of A1Ns with a diameter of 0.01 m or less among A1Ns with a diameter of 0.005 m or more is 10% or less,
直径 0.005 m以上の MnS の平均直径が 0.03〜 0.40 m、 直径 0.005 / m以上の MnS のうち直径が 0.03 m以下のものの個 数の割合が 50%以下、  The average diameter of MnS with a diameter of 0.005 m or more is 0.03 to 0.40 m, and the ratio of the number of MnS with a diameter of 0.03 m or less among MnS with a diameter of 0.005 / m or less is 50% or less,
(A1Nと して存在する N) / (含有 N) > 0.5 、  (N existing as A1N) / (Contained N)> 0.5,
板厚 0.19mm以下  Board thickness 0.19mm or less
であることを特徴とする耐ネック皺性及びィャリ ング性に優れた 2 ピース容器用鋼板。 A two-piece container steel sheet having excellent neck wrinkle resistance and carrying properties, characterized in that:
2. 質量%で、  2. In mass%,
C : 0.08%以下、  C: 0.08% or less,
Si: 0.05%以下、 Si: 0.05% or less,
n: 0.04〜0.4 %、  n: 0.04-0.4%,
P : 0.04%以下、  P: 0.04% or less,
S : 0.04%以下、  S: 0.04% or less,
A1: 0.02〜0.10%、  A1: 0.02-0.10%,
N : 40ppm 以下  N: 40 ppm or less
を含有し、 Containing
直径 0.005ju m以上の A1N の平均直径が 0.01~0.10 m、 直径 0.005 / m以上の A1N のうち直径が 0.01 m以下のものの個 数の割合が 10%以下、  The average diameter of A1N with a diameter of 0.005 jum or more is 0.01 to 0.10 m, and the proportion of A1N with a diameter of 0.01 m or less among A1N with a diameter of 0.005 / m or more is 10% or less,
直径 0.005 m以上の MnS の平均直径が 0.03〜0.40 m、 直径 0.005 m以上の MnS のうち直径が 0.03 m以下のものの個 数の割合が 50%以下、 (A1Nと して存在する N) / (含有 N) > 0.5 、 The average diameter of MnS with a diameter of 0.005 m or more is 0.03 to 0.40 m, and the proportion of MnS with a diameter of 0.03 m or less among the MnS with a diameter of 0.005 m or more is 50% or less, (N existing as A1N) / (Contained N)> 0.5,
板厚 0.19mm以下  Board thickness 0.19mm or less
であることを特徵とする耐ネ ッ ク皺性及びィャ リ ング性に優れた 2 ピース容器用鋼板。 A two-piece container steel sheet with excellent neck wrinkle resistance and sealing properties.
3. 質量%で、  3. In mass%,
C : 0.02〜0· 04%、  C: 0.02 ~ 0.4%,
Si : 0.029%以下、  Si: 0.029% or less,
Mn: 0.15-0.25%、  Mn: 0.15-0.25%,
P : 0.010%以下、  P: 0.010% or less,
S : 0.020%以下、  S: 0.020% or less,
A1 : 0.050〜0.080 %、  A1: 0.050-0.080%,
N : 40ppm 以下  N: 40 ppm or less
を含有し、 Containing
直径 0.005 ^ m以上の A1N の平均直径が 0.01~ 0.10 m、 直径 0.005 / m以上の A1N のうち直径が 0.01 m以下のものの個 数の割合が 10%以下、  The average diameter of A1N with a diameter of 0.005 ^ m or more is 0.01 to 0.10 m, and the ratio of A1N with a diameter of 0.01 m or less among A1N with a diameter of 0.005 / m or more is 10% or less,
直径 0.005 m以上の MnS の平均直径が 0.03〜0.40 m、 直径 0.005 m以上の MnS のうち直径が 0.03 m以下のものの個 数の割合が 50%以下、  The average diameter of MnS with a diameter of 0.005 m or more is 0.03 to 0.40 m, and the ratio of the number of MnS with a diameter of 0.03 m or less among MnS with a diameter of 0.005 m or more is 50% or less,
(A1Nと して存在する N) / (含有 N) > 0.5 、  (N existing as A1N) / (Contained N)> 0.5,
板厚 0.19mm以下  Board thickness 0.19mm or less
であることを特徴とする耐ネ ッ ク皺性及びィャリ ング性に優れた 2 ピース容器用鋼板。 A two-piece steel sheet with excellent neck wrinkle resistance and carrying properties, characterized in that:
4. 質量%で、  4. In mass%,
C : 0.08%以下、  C: 0.08% or less,
Si : 0.05%以下、  Si: 0.05% or less,
Mn: 0.04〜0.4 %、 P : 0.04%以下、 Mn: 0.04-0.4%, P: 0.04% or less,
S : 0.04%以下、  S: 0.04% or less,
Al: 0.02〜0· 10%、  Al: 0.02 ~ 0.10%,
Ν : 40ppm 以下  Ν: 40ppm or less
を含有し、 Containing
鋼片の再加熱温度 1150〜 1250°C、 熱延巻取り温度 690〜750 °Cで熱 延を行ない、 冷延率 82〜94%で冷延を行ない、 再結晶温度〜 720 °C で焼鈍を行ない、 1〜10%の圧下率で再冷延を行なつて、 Hot rolling at 1150-1250 ° C, hot rolling coiling temperature 690-750 ° C, cold rolling at a cold rolling rate of 82-94%, annealing at recrystallization temperature ~ 720 ° C And re-rolling at a rolling reduction of 1 to 10%,
直径 0.005 m以上の A1N の平均直径が 0.01〜 0.10 m、 直径 0.005 m以上の A1N のうち直径が 0.01 μ m以下のものの個 数の割合が 10%以下、  The average diameter of A1N with a diameter of 0.005 m or more is 0.01 to 0.10 m, and the proportion of A1N with a diameter of 0.01 μm or less in A1N with a diameter of 0.005 m or more is 10% or less,
直径 0.005 m以上の MnS の平均直径が 0.03〜0.40 m、 直径 0.005 m以上の MnS のうち直径が 0.03 m以下のものの個 数の割合が 50%以下、  The average diameter of MnS with a diameter of 0.005 m or more is 0.03 to 0.40 m, and the ratio of the number of MnS with a diameter of 0.03 m or less among MnS with a diameter of 0.005 m or more is 50% or less,
(A1Nと して存在する N) / (含有 N) > 0.5 、  (N existing as A1N) / (Contained N)> 0.5,
板厚 0.19mm以下  Board thickness 0.19mm or less
とすることを特徵とする耐ネッ ク皺性及びィャリ ング性に優れた 2 ピース容器用鋼板の製造方法。 A method for producing a steel sheet for a two-piece container, which is excellent in net wrinkle resistance and carrying properties.
5. 質量%で、  5. In mass%,
C : 0.08%以下、  C: 0.08% or less,
Si: 0.05%以下、  Si: 0.05% or less,
Mn: 0.04〜0.4 %、  Mn: 0.04-0.4%,
P : 0.04%以下、  P: 0.04% or less,
S : 0.04%以下、  S: 0.04% or less,
A1 : 0.02〜0.10%、  A1: 0.02-0.10%,
N : 40ppm 以下  N: 40 ppm or less
を含有し、 鋼片の再加熱温度 1000〜1150°C、 冷延率 82〜94%で冷延を行ない、 再結晶温度〜 720 °Cで焼鈍を行ない、 1 〜10%の圧下率で再冷延を 行なつて Containing Cold rolling at a reheating temperature of 1000-1150 ° C and a cold rolling rate of 82-94%, annealing at a recrystallization temperature of ~ 720 ° C, and re-rolling at a rolling reduction of 1-10% Natsute
直径 0.005 / m以上の A1N の平均直径が 0.01〜 0.10 μ m、 直径 0.005 m以上の A1N のうち直径が 0.01 μ m以下のものの個 数の割合が 10%以下、  The average diameter of A1N with a diameter of 0.005 / m or more is 0.01 to 0.10 μm, and the proportion of A1N with a diameter of 0.01 μm or less among A1N with a diameter of 0.005 m or more is 10% or less,
直径 0. m以上の MnS の平均直径が 0.03〜0.40 / m、 直径 0.005 /2 m以上の MnS のうち直径が 0.03 m以下のものの個 数の割合が 50%以下、  The average diameter of MnS with a diameter of 0.m or more is 0.03-0.40 / m, and the ratio of the number of MnS with a diameter of 0.03 m or less among MnS with a diameter of 0.005 / 2 m or more is 50% or less,
(A1Nと して存在する N) / (含有 N) 〉0.5 、  (N existing as A1N) / (Contained N)〉 0.5,
板厚 0.19mm以下  Board thickness 0.19mm or less
とすることを特徴とする耐ネッ ク皺性及びィャリ ング性に優れた 2 ピース容器用鋼板の製造方法。 A method for producing a two-piece steel sheet having excellent wrinkle resistance and carrying properties, characterized in that:
6. 質量%で、  6. In mass%,
C : 0.02〜0.04%,  C: 0.02-0.04%,
Si: 0.029%以下、  Si: 0.029% or less,
Mn: 0.15-0.25%、  Mn: 0.15-0.25%,
P : 0.010%以下、  P: 0.010% or less,
S : 0.020%以下、  S: 0.020% or less,
A1: 0.050〜0.080 %、  A1: 0.050-0.080%,
N : 40PPD1 以下  N: 40PPD1 or less
を含有し、 Containing
鋼片の再加熱温度 1150〜 1250°C、 熱延巻取り温度 690〜750 °Cで熱 延を行ない、 冷延率 82〜94%で冷延を行ない、 再結晶温度 650~67 0 °Cで焼鈍を行ない、 1〜 2 %の圧下率で再冷延を行なって、 Hot rolling at 1150-1250 ° C, hot rolling coiling temperature 690-750 ° C, cold rolling at a cold rolling rate of 82-94%, recrystallization temperature 650-670 ° C And re-rolled at a rolling reduction of 1-2%.
直径 0.005 m以上の A1N の平均直径が 0.01〜0.10 ^ m、 直径 0.005 // m以上の A1N のうち直径が 0.01 // m以下のものの個 数の割合が 10%以下、 A1N with a diameter of 0.005 m or more has an average diameter of 0.01 to 0.10 ^ m, and A1N with a diameter of 0.005 // m or more and a diameter of 0.01 // m or less Number percentage is 10% or less,
直径 0.005 i m以上の MnS の平均直径が 0.03〜 0.40 m、 直径 0.005 / m以上の MnS のうち直径が 0.03 m以下のものの個 数の割合が 50%以下、  The average diameter of MnS with a diameter of 0.005 i m or more is 0.03 to 0.40 m, and the ratio of the number of MnS with a diameter of 0.03 m or less among the MnS with a diameter of 0.005 / m or less is 50% or less,
(A1Nと して存在する N) / (含有 N) > 0.5 、  (N existing as A1N) / (Contained N)> 0.5,
板厚 0. 19mm以下  Board thickness 0.19mm or less
とすることを特徽とする耐ネ ッ ク皺性及びィャリ ング性に優れた 2 ピース容器用鋼板の製造方法。 A method for producing a two-piece container steel sheet having excellent neck wrinkle resistance and carrying properties.
PCT/JP2000/002426 1999-04-20 2000-04-13 Very thin 2-piece container steel sheet excellent in pucker resistance at neck diameter reduction and in earing and production method therefor WO2000063453A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60043087T DE60043087D1 (en) 1999-04-20 2000-04-13 STAHLBLECH FOR ULTRADÜNNE CANS WITH OUTSTANDING ANTI-WRINKLE PROPERTIES AND METHOD FOR THE PRODUCTION THEREOF
JP2000612527A JP4213870B2 (en) 1999-04-20 2000-04-13 Steel sheet for ultra-thin two-piece containers with excellent weather resistance and earrings at the time of neck diameter reduction and method for manufacturing the same
EP00915519.3A EP1088905B2 (en) 1999-04-20 2000-04-13 Steel sheet for ultra-thin two-piece cans having excellent anti-wrinkling properties and method for producing thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11285299 1999-04-20
JP11/112852 1999-04-20

Publications (1)

Publication Number Publication Date
WO2000063453A1 true WO2000063453A1 (en) 2000-10-26

Family

ID=14597151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002426 WO2000063453A1 (en) 1999-04-20 2000-04-13 Very thin 2-piece container steel sheet excellent in pucker resistance at neck diameter reduction and in earing and production method therefor

Country Status (4)

Country Link
EP (1) EP1088905B2 (en)
JP (1) JP4213870B2 (en)
DE (1) DE60043087D1 (en)
WO (1) WO2000063453A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837500B1 (en) 2002-03-21 2004-12-03 Usinor NUT SHEET IN CALM ALUMINUM STEEL AND METHOD OF MANUFACTURING A PACKAGE FROM THIS SHEET

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263877A (en) * 1996-03-28 1997-10-07 Kawasaki Steel Corp Cold rolled steel sheet excellent in aging resistance and its production
JPH10251799A (en) * 1997-03-12 1998-09-22 Kawasaki Steel Corp Steel sheet for easy-open can top excellent in top openability and rivet formability, its production and easy-open can top
JPH1136049A (en) * 1997-07-18 1999-02-09 Nkk Corp Slab for producing cold rolled steel sheet for can

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689148B2 (en) * 1988-11-19 1997-12-10 新日本製鐵株式会社 Manufacturing method of steel plate for squeeze can with small ear generation
JPH0480345A (en) * 1990-07-19 1992-03-13 Nippon Steel Corp Cold rolled steel sheet excellent in workability, roughening property and earing property and its manufacture
FR2678641B1 (en) 1991-07-04 1998-11-20 Lorraine Laminage IMPROVED STAMPING STEEL AND METHOD FOR MANUFACTURING SHEETS FOR STAMPING.
JP3103268B2 (en) * 1994-04-22 2000-10-30 新日本製鐵株式会社 Method for producing steel sheet for containers with excellent fluting resistance
JPH08253820A (en) * 1995-03-16 1996-10-01 Nisshin Steel Co Ltd Production of thin steel sheet for can, excellent in aging resistance, by continuous annealing
JP3975488B2 (en) * 1995-10-06 2007-09-12 Jfeスチール株式会社 Manufacturing method of thin steel sheet with excellent material uniformity
JP3593235B2 (en) * 1997-02-26 2004-11-24 新日本製鐵株式会社 Method of manufacturing high strength ultra-thin welded steel sheet with excellent formability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263877A (en) * 1996-03-28 1997-10-07 Kawasaki Steel Corp Cold rolled steel sheet excellent in aging resistance and its production
JPH10251799A (en) * 1997-03-12 1998-09-22 Kawasaki Steel Corp Steel sheet for easy-open can top excellent in top openability and rivet formability, its production and easy-open can top
JPH1136049A (en) * 1997-07-18 1999-02-09 Nkk Corp Slab for producing cold rolled steel sheet for can

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1088905A4 *

Also Published As

Publication number Publication date
EP1088905A1 (en) 2001-04-04
DE60043087D1 (en) 2009-11-19
JP4213870B2 (en) 2009-01-21
EP1088905B2 (en) 2019-06-05
EP1088905B1 (en) 2009-10-07
EP1088905A4 (en) 2004-12-01

Similar Documents

Publication Publication Date Title
WO2001098552A1 (en) Thin steel sheet and method for production thereof
EP2479308B1 (en) Steel sheet for cans having excellent surface roughening resistance, and method for producing same
JP2010229486A (en) Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof
JP4972771B2 (en) Method for producing aerosol drawn can and aerosol drawn can
JP4265574B2 (en) Steel plate for two-piece deformable can and manufacturing method thereof
US20220074031A1 (en) Steel sheet for cans and method of producing same
WO2000063453A1 (en) Very thin 2-piece container steel sheet excellent in pucker resistance at neck diameter reduction and in earing and production method therefor
JP5056863B2 (en) Cold rolled steel sheet and method for producing the same
JPH0949052A (en) Cold rolled steel sheet excellent in burring workability and blankability and its production
JP3718865B2 (en) Manufacturing method of lightweight can with excellent bottom pressure strength
JP2006016630A (en) High strength cold rolled steel sheet having excellent secondary working brittleness resistance and its production method
JP3244956B2 (en) Method for producing ultra-thin container steel sheet with excellent can formability
JP3548390B2 (en) Steel plate for hard two-piece container with remarkably small earring and method for producing the same
JP2000303144A (en) High strength thin steel sheet excellent in secondary working embrittlement resistance and formability and its production
JPH10280095A (en) Steel sheet for two-piece container excellent in wrinkle resistance at necking diameter reduction, and its production
JP2002317248A (en) Thinned steel sheet for deep drawn and ironed can having excellent workability
JP3878329B2 (en) Steel plate for containers having excellent wrinkle resistance after primary processing and method for producing the same
JP3685430B2 (en) Two-piece steel plate excellent in deep drawability and neck wrinkle resistance and manufacturing method thereof
JP3609883B2 (en) Method for producing steel plate for containers with extremely small earrings during drawing
JP3496333B2 (en) DTR can-adaptive steel plate with excellent side wall break resistance
JPH1088233A (en) Production of steel sheet for can
JPH10280094A (en) Steel sheet for two-piece vessel, reduced in earing and excellent in necking wrinkle resistance, and its production
JPH1030152A (en) Steel sheet suitable for use in thin deep-drawn can, and its production
JP2021139046A (en) Sheet metal product for packaging
JPH1161332A (en) Coating/baking hardened type cold rolled steel sheet superior in press formability and aging resistance characteristic

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000915519

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000915519

Country of ref document: EP