WO2000061732A1 - α-GLYCATED AMINO ACID RELEASING ENZYME - Google Patents

α-GLYCATED AMINO ACID RELEASING ENZYME Download PDF

Info

Publication number
WO2000061732A1
WO2000061732A1 PCT/JP2000/002357 JP0002357W WO0061732A1 WO 2000061732 A1 WO2000061732 A1 WO 2000061732A1 JP 0002357 W JP0002357 W JP 0002357W WO 0061732 A1 WO0061732 A1 WO 0061732A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycated
enzyme
genus
amino acid
ferm
Prior art date
Application number
PCT/JP2000/002357
Other languages
English (en)
French (fr)
Inventor
Kaori Ishimaru
Masayuki Yagi
Satoshi Yonehara
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Priority to DE60013428T priority Critical patent/DE60013428T2/de
Priority to EP00915491A priority patent/EP1176191B1/en
Priority to JP2000611656A priority patent/JP4613282B2/ja
Priority to AU36771/00A priority patent/AU3677100A/en
Priority to US09/958,515 priority patent/US6825016B1/en
Publication of WO2000061732A1 publication Critical patent/WO2000061732A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to a novel enzyme, and more particularly, to a novel enzyme that releases an amino acid having a saccharified ⁇ -amino group.
  • proteases are used in various industrial fields.
  • the protease is also used when measuring a glycated protein such as glycated albumin in serum, which is an important index in diagnosis and treatment of diabetes.
  • the method for measuring a glycated protein using this protease can be performed, for example, as follows.
  • the amount of hydrogen peroxide or the amount of oxygen consumed when glycated protein is degraded by protease and the degradation product is reacted with fructosyl amino acid oxidase (hereinafter referred to as “FA ⁇ D”).
  • F ⁇ D fructosyl amino acid oxidase
  • the amount of the saccharified protein can be known.
  • the protease those disclosed in JP-A-5-192193, JP-A-7-289253 and the like are used.
  • glycated protein is treated with the protease in advance is that the above-mentioned FAOD and the like easily act on glycated amino acids and glycated peptides and hardly act on the glycated protein itself.
  • glycated hemoglobin hereinafter, referred to as “: HbA1c”
  • HbA1c glycated hemoglobin
  • an object of the present invention is to provide a new enzyme capable of treating the glycated protein or the like so that FAOD easily acts on the glycated protein or glycated peptide.
  • the present inventors first studied the mechanism of action of FAOD, which acts on glycated proteins, glycated peptides, glycated amino acids, and the like in which a sugar is bound to a amino group, among various FAODs.
  • the FAOD for example, works well on saccharified amino acids having a sugar bonded to an ⁇ -amino group, but has no effect on the saccharified proteins and saccharified peptides.
  • the present inventors isolated and cultured various bacteria in nature and examined the enzymes produced by them. As a result, the saccharification in which the sugar was bonded to an ⁇ -amino group ( ⁇ terminal amino group) was performed.
  • ⁇ -Glycated Amino acid Succeeded in isolating from a protein or glycated peptide a bacterium that produces a novel enzyme that releases an amino acid in which the ⁇ -amino group is glycated (a-Glycated Amino acid: a-GA).
  • a-Glycated Amino acid a-Glycated Amino acid: a-GA
  • ⁇ -GARE novel enzyme of the present invention, for example, ⁇ -GA can be released from the glycated protein or glycated peptide.
  • the measurement of HbA1c using the F AOD that works well can be put to practical use in clinical tests and the like.
  • the a-GARE of the present invention may have another catalytic function, for example, a function of cleaving another peptide bond, in addition to the catalytic function of releasing a-GA.
  • the novel cells isolated by the present inventors include sphingobacterium and sphingomonas. gomonas), Comamonas, Muco, Penicillium, etc. Note that the GARE of the present invention is not limited to those derived from these cells.
  • the glycated amino acid released is not particularly limited as long as its a-amino group is glycated, but as described above, HbA1c is obtained by glycation of the N-terminal valine residue. Therefore, it is preferable that the released a-GA is glycated palin (hereinafter, referred to as “ ⁇ -GV”).
  • ⁇ -GV glycated palin
  • the first Hikari GARE is derived from a cell of the genus Sphingobacterium (Sphingobacterium), and is particularly preferably derived from Sphingobacterium mizutae KDK1003 (Sphingobacterium mizutae KDK1003).
  • the sphingobacterium mizutae KDK10Q3 (Sphingoba cterium mizutae KDK1003) is a fungus newly isolated from the soil by the present inventors, and is available from the National Institute of Advanced Industrial Science and Technology (NIBH) (NIBH). Japan Deposit No. 305-85 5 6 Deposited with 1-3-3 Higashi, Tsukuba, Ibaraki Prefecture under the accession number FERM P-17348 (Deposit date: March 29, 2001).
  • the microbiological characteristics of the cells are as follows.
  • the shape of this cell is a rod of 0.5 X 1.2 in size and is non-motile.
  • Oxygen demand facultative anaerobic
  • the second Q! _GARE is derived from cells of the genus Sphingomonas, and is particularly preferably derived from Sphingomonas parapauc imobi 1 is KDK1004.
  • the Sphingomonas paraboushimobilis KDK1Q04 (Sphingomonas parapaucimobi 1 is KDK1004) is also a fungus newly isolated from the soil by the present inventors, and is a biological engineering laboratory (NIBH) of the Ministry of International Trade and Industry of Japan. Deposited with (Accession No.
  • FERM P-17347 (Original deposit date: March 29, 2001) at 1-3-1-3 Tsukuba, Higashi, Ibaraki Prefecture, Japan) The depositary authority was transferred to the Institute of Biotechnology, Institute of Industrial Science and Technology of the Ministry of International Trade and Industry by the deposit number FERM BP-7041 (transfer receipt date: February 21, 2012). Has been transferred to a deposit based on The microbiological characteristics of the cells are as follows. (Morphological characteristics)
  • This cell is 0.8 X 2.
  • Oxygen demand facultative anaerobic bacteria
  • the third ⁇ -GARE is derived from the cells of the genus Comamonas, and is particularly preferably derived from Comamonas acidovorans KDK1005.
  • the Comamonas ac i dovorans KDK1005 was also This is a microorganism newly isolated from soil by the Akira et al., National Institute of Advanced Industrial Science and Technology (NIBH), Ministry of International Trade and Industry (NIBH) (Tsukuba-Higashi, Ibaraki Pref. Deposit No. 1-3-3) under the accession number FERM P-17346 (Deposit date: March 29, 2001).
  • the microbiological characteristics of the cells are as follows.
  • the shape of this cell is a bacillus with a size of 0.6 x 1.5 tm, and has mobility.
  • the colony When the cells are grown on a conventional agar medium, the colony has a convex circular shape and has a foot pad. The color of the colonies is yellow and shiny.
  • Oxygen demand aerobic bacteria
  • Adipic acid one
  • the fourth a—GARE is derived from the cells of the genus Mucor, and is particularly preferably Muco circinel loides KDK3004 (Mucor circinel loides ⁇ . Janssenii KDK3004). Origin. Mucor circinel loides ⁇ . J ansseni i KDK3004 is also a microorganism newly isolated from the soil by the present inventors, and is a researcher of Life Sciences and Technology from the Ministry of International Trade and Industry of the Ministry of International Trade and Industry. No. FERM P-17345 (Deposit date: March 29, 2001) at the office (NI BH) (Tsukuba, Ibaraki Pref. Has been deposited. The bacteriological properties of this cell are shown below.
  • sporangiospores form subspheroidal sporangiospores, with a diameter of 4-6 im.
  • the sporangia is about 70 m in diameter and is black, and colorette is observed at the base.
  • Hyphal width is 10 to 12 m and no rhizoid formation is observed.
  • the fifth a-GARE is derived from cells of the genus Penicillium (Penici Ilium), and is particularly preferably derived from Penicillium dexumani KDK3005 (Penici Ilium waksmanii KDK3005).
  • the Penicillium waksmanii KDK3005 is also a new microorganism isolated from soil by the present inventors, and is a researcher of the Institute of Biotechnology and Industrial Technology (NI BH) (Japan). Japan No. 30 5-8 56 6 Deposited at Tsukuba East 1-chome, Ibaraki Prefecture under accession number FERM P-17344 (Deposit date: March 29, 2001).
  • the microbiological characteristics of the cells are as follows.
  • the molecular stalks emanating from the substratum are covered with thin cell walls, are smooth, and do not form apical sac.
  • the molecular pattern is unbranched. Mella occurs in 2 to 5 rings. A single 9 m phialide is formed at the tip of Mella.
  • the phialid is a short, tapered neck-shaped flask. Conidia are almost spherical with a diameter of 3, covered by smooth cell walls, and form a chain.
  • the growth rate will be 30 mm in diameter at 25 ° C for 7 days.
  • the surface of the colony is felt-like and green.
  • the hypha does not develop color.
  • the back of the colony is pale blue.
  • Do not produce leachate No. Growth at 37 ° C is negative.
  • the method for measuring a glycated protein or a glycated peptide of the present invention comprises the steps of: decomposing a glycated protein or a glycated peptide with an enzyme; reacting the degraded product with FAOD; A method for measuring a glycated protein or a glycated peptide, wherein the novel enzyme (Hiichi GARE) of the present invention is used as the enzyme.
  • the ⁇ -GARE used in the measurement method of the present invention is appropriately determined depending on the types of saccharified proteins and saccharified peptides to be measured, their concentrations, and the like. Is also good.
  • the glycated protein or the like may be degraded in advance with another enzyme (for example, a protease or the like) so that the ⁇ _GARE can more easily act.
  • the measurement of the oxidation-reduction reaction is preferably a measurement of an amount of hydrogen peroxide generated by the redox reaction or a measurement of an amount of consumed oxygen, and the measurement of the amount of hydrogen peroxide is performed.
  • the measurement is preferably performed using peroxidase and a substrate that develops color by oxidation (hereinafter, referred to as “chromogenic substrate”).
  • the amount of hydrogen peroxide can be measured by, for example, an electrical method or the like in addition to the enzymatic method using the peroxidase or the like.
  • the chromogenic substrate examples include ⁇ - (potoxymethylaminocarbonyl) —4,4′—bis (dimethylamino) diphenylamine (for example, trade name DA-64: manufactured by Wako Pure Chemical Industries, Ltd.), Examples include orthophenylenediamine ( ⁇ PD), a substrate obtained by combining a Trinder reagent with 4-aminoantipyrine.
  • the Trinder reagent include phenol, phenol derivatives, aniline derivatives, naphthol, naphthol derivatives, naphthylamine, and aphthylamine derivatives.
  • an aminoantipyrine derivative vanillin diamine sulfonic acid, methylbenzthiazolinone hydrazone (MBTH), sulfonated methylbenzthiazolinone hydrazone (SMBTH) and the like can also be used.
  • MBTH methylbenzthiazolinone hydrazone
  • SMBTH sulfonated methylbenzthiazolinone hydrazone
  • chromogenic substrates particularly preferred is N- (carboxymethylaminocarbonyl) -4,4'-bis (dimethylamino) diphenylamine.
  • the sample to be measured is preferably blood cells.
  • glycated proteins can be used, for example, in blood components other than the blood cells (whole blood, plasma, serum, etc.), biological samples such as urine and cerebrospinal fluid, drinking water such as juice, foods such as soy sauce, sauces, etc. Therefore, the measurement target sample is not limited to the blood cells.
  • the measurement target is not limited to the above-mentioned HbAlc, and other examples include glycated proteins such as gelatin and casein, and glycated peptides.
  • the glycated protein or glycated peptide measurement kit of the present invention is a measurement kit including a substrate that is oxidized by a reaction with protease, FAOD, peroxidase and peroxidase, and the protease is the ⁇ of the present invention.
  • a substrate that is oxidized by a reaction with protease, FAOD, peroxidase and peroxidase, and the protease is the ⁇ of the present invention.
  • GARE GARE. According to this measurement kit, the measurement method of the present invention can be performed quickly and easily. As described above, one type of GARE may be used alone, or two or more types may be used in combination.
  • the substrate to be oxidized is preferably a chromogenic substrate as described above, and the measurement target and the measurement target sample are the same as described above.
  • the method for producing Hiichi GARE of the present invention is a method including a step of culturing the novel cell of the present invention. This makes it possible to easily produce the GARE of the present invention.
  • the method for producing ⁇ -GARE of the present invention preferably further includes the following purification steps (a) to (c).
  • step (c) a step of separating the protein by chromatography.
  • the purification step is not particularly limited, and other purification steps may be combined. Further, for example, only the step (a) may be performed, two or more steps may be performed, and the same step may be repeatedly performed.
  • the ⁇ -GAR ⁇ of the present invention obtained by the above-described cell culture may be contained in a culture solution or may be in a purified state, and a-GA may be obtained from saccharified protein or the like. As long as it is released, it can be used regardless of its purity. However, the purification removes components other than a-GARE in the culture solution, so that the specific activity of the H-GARE is improved. Thus, when actually used, the amount used may be small, and handling is simplified. In addition, when used in various reactions, the effects of components other than Hiichi GARE can be avoided.
  • a gene encoding ⁇ -GARE of the present invention is not limited to the gene necessary for the expression of Hiichi GARE.
  • DNA fragments and RNA used as probes and primers, and the gene sequence of Hiichi GARE can also be used.
  • the chemical compound created in Includes adult fragments. Using such a gene, for example, a recombinant or the like may be produced, and thereby ⁇ -GARE may be produced.
  • the a-GARE gene of the present invention can be obtained, for example, as follows.
  • the ⁇ -GARE of the present invention is purified, for example, by a purification step described below, and the amino acid sequence is determined by a conventional method such as Edman degradation, and the gene sequence is deduced based on the amino acid sequence. Based on this, a DNA fragment, an RNA fragment and the like are produced by a conventional chemical synthesis and the like, and these are used as primers, probes and the like to a-GARE from the novel cells of the present invention. If the gene to be cloned is cloned, the gene for GARE of the present invention can be obtained. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a chromatogram obtained by decomposing a glycated peptide using a culture supernatant of a cell of the genus Sphingopacterium in one example of the present invention, and analyzing the decomposed product by TLC.
  • FIG. 2 is another chromatogram obtained by decomposing a glycated peptide using a supernatant of a culture solution of a cell of the genus Sphingomonas in the above-described example, and analyzing the degraded product by TLC.
  • FIG. 3 is a chromatogram obtained by decomposing a glycated peptide using a supernatant of a culture solution of cells of the genus Comamonas in another example of the present invention, and analyzing the degraded product by TLC.
  • FIG. 4 is another chromatogram obtained by decomposing a glycated peptide using a culture supernatant of cells of a bacterium of the genus Muco and analyzing the degraded product by TLC in the example.
  • FIG. 5 shows that in another example of the present invention, a glycated peptide was decomposed using a culture supernatant of a microorganism of the genus Penicillium, and the decomposed product was analyzed by TLC.
  • FIG. 5 shows that in another example of the present invention, a glycated peptide was decomposed using a culture supernatant of a microorganism of the genus Penicillium, and the decomposed product was analyzed by TLC.
  • FIG. 6 is a graph showing the relationship between the amount of ⁇ -GAR derived from the cells of the genus Sphingomonas and the absorbance in yet another example of the present invention.
  • FIG. 7 is a graph showing the thermal stability of ⁇ -GAR ⁇ derived from a cell of the genus Sphingomonas in yet another example of the present invention.
  • FIG. 8 is a graph showing the optimum temperature of Hikari GARE derived from a cell of the genus Sphingomonas in yet another example of the present invention.
  • Screening of the cells producing the GARE of the present invention is carried out, for example, by separating and culturing the cells in soil and decomposing the saccharified peptide using the culture solution as shown below.
  • the reaction can be carried out, and the resulting degradation products can be analyzed by thin-layer chromatography (TLC).
  • TLC thin-layer chromatography
  • the following nutrient liquid medium is sterilized in advance in an autoclave at 121 ° C for 20 minutes. Then, the soil sample is suspended in sterile water, and the suspension is added to the sterilized nutrient liquid medium, followed by shaking culture (111 rpm) at 30 ° C. for 48 hours. The obtained culture is centrifuged (12, 000 G, 15 min, 4 ° C), and the supernatant is collected. (Nutrient liquid medium)
  • the amino acid sequence is the same as the amino acid sequence at the N-terminal side of the HbA1c chain, and the amino acid glycated peptide and ⁇ -fructosyl valine (hereinafter referred to as “FV”) are replaced with the following peptides and palin: It is prepared by a standard method using a single chip.
  • Each of the glycated peptides is dissolved in distilled water so as to have a concentration of 0.01 M in advance to prepare glycated peptide aqueous solutions. Then, each of the glycated peptide aqueous solutions 501 and the culture supernatant 1001 are mixed and reacted at 37 ° C., and the reaction solutions are freeze-dried.
  • the degradation product of the saccharified peptide is analyzed by TLC to confirm the presence of ⁇ -GA released from the saccharified peptide, and to determine the presence or absence of ⁇ -GARE activity.
  • TLC TLC to confirm the presence of ⁇ -GA released from the saccharified peptide, and to determine the presence or absence of ⁇ -GARE activity.
  • the reagents and methods used are shown below.
  • Ninhydrin (Funakoshi) is dissolved in 75% by volume of ethanol to a concentration of 0.5% by volume.
  • each of the freeze-dried reaction solutions is dissolved in 50% by volume of ethanol (151), and these are spotted on the original line with a syringe (volume: 251). As a control, the FV and various amino acids are similarly spotted. Then, this plate is placed in a developing tank previously saturated with the developing solvent, and the developing solvent is raised to a distance of about 8 cm from the original line. The developing solvent is placed so that the plate is immersed to about 0.5 cm from the lower end.
  • the detection reagent (ninhydrin solution) is sprayed on the plate completely air-dried in a fume hood, and then heated by a hot stirrer (10 ° C) to perform a color development test. .
  • a sample showing the same mobility as that of the control FV was positive for GARE activity, and the cells of the culture solution were a-GARE-producing cells.
  • the TLC analysis is not limited to ninhydrin detection as described above.
  • a fluorescence detection method using a reagent such as fluorescamine, ethylenediamine sulfate or the like can also be employed.
  • novel cells isolated by the inventors by such a screening method include, for example, the above-mentioned Sphingobacterium mizutae KDK1003 (FERM P-17348), Sphingomonas paraposis Mobilis KDK1004 (Sphingomonas parapaucimobi 1 is KDK1004) (FERM BP—7041), Comamonas acidborans KDK100 5 (Comamonas acidovorans KDK1005) (FERM P—17346), Muko Sir cineroides F.
  • Substrates that can be used in the detection and activity measurement of ⁇ _GARII of the present invention are not limited to the aforementioned glycated peptides and the like.
  • glycated proteins in which the N-terminal a-amino group is glycated and glycated proteins Saccharified peptides and the like can be mentioned.
  • the released ⁇ -GA is subjected to an oxidation-reduction reaction (for example, a coloring reaction or the like) using FAOD described later to detect a; Can be measured.
  • the glycated protein examples include HbAlc, glycated globin, and the like.
  • a glycated protein may be, for example, a natural protein or a protein synthesized by an Amadori rearrangement reaction between a sugar and a protein.
  • the glycated globin is prepared, for example, by subjecting HbA1c purified using HP LC or the like to globinization by a tail method (Teale, FW J, Biochem, Biophys, Acta, 35, 543, 1959). it can.
  • the sugar to be used is not particularly limited, and examples thereof include aldoses such as glucose and ketos.
  • the glycated peptide can be prepared, for example, by protease-degrading the glycated protein as described above, or can be synthesized by Amadori rearrangement of a sugar and a synthetic peptide.
  • the length of the glycated peptide is not particularly limited, but is, for example, in the range of 2 to 20 amino acid residues, and preferably in the range of 2 to 8.
  • Examples of the peptide that performs an Amadori rearrangement reaction with a sugar include, for example, natural ones Or a synthetic peptide.
  • the amino acid composition is not particularly limited, but a peptide containing no arginine or lysine is preferred.
  • a glycated peptide in which only the amino group of the peptide is saccharified can be prepared.
  • the glycated peptide only the ⁇ -GAR activity can be detected.
  • the glycated peptide is, for example, the same glycated peptide as the N-terminal amino acid sequence in the HbA1c) 3 chain.
  • Preferred are, for example, glycated peptides in which a single amino group at the N-terminal V a1 described in “Degradation of Glycated Peptide” is glycated.
  • HbA1c is decomposed with trypsin
  • a glycated peptide having eight amino acid residues in which the amino group of the N-terminal valine is glycated can be obtained.
  • ⁇ -amino group at the ⁇ -terminal is glycated as a substrate of a-GARE
  • released ⁇ -GA may be detected, but the residue after ⁇ -G ⁇ is released.
  • Such glycated peptides are not particularly limited, and include, for example, FV—Leu (hereinafter, “FVL”), FV—Gin (hereinafter, “FVQ”), FV—A la (hereinafter, “FVA”), Dipeptides such as FV—A sn (hereinafter “FVN”).
  • FVL FV—Leu
  • FVQ FV—Gin
  • FVA FV—A la
  • Dipeptides such as FV—A sn
  • FVN Dipeptides such as FV—A sn
  • Leu leucine dehydrogenase
  • G1n daltoname dehydrogenase
  • A1a is alanineamine transferase and monoketoglutarate and lactate dehydrogenase
  • a sn is asparagineaminotransferase. I-ze, ⁇ -ketoglutarate, malate dehydrogenase, etc.
  • the reaction is allowed to proceed, and the NADH or NAD formation can be detected by measuring absorbance (wavelength 340 nm).
  • glycated tripeptides include, for example, FV-Leu-Ser (hereinafter, "FVLS").
  • FVL S FV is released by G-ARE, and at the same time, Leu-Ser is generated. This can be decomposed with a hydrolytic enzyme such as aminobeptidase, chymotrypsin, proteinase K, or the like, and the resulting leucine can be measured in the same manner as described above.
  • the length of the peptide is not particularly limited.
  • the substrate for amino acid GARE contains an amino acid and a detection group, and the amino group of the amino acid is glycated, and the detection group is amide-bonded or esterified to the strong lipoxyl group of the amino acid. It is also possible to use a substrate that binds and is undetectable in a bound state, and becomes detectable when released.
  • a-GARE When a-GARE is reacted with the substrate, it cleaves an amide bond or an ester bond between ⁇ -GA and the detection group, thereby releasing ⁇ -GA and the detection group.
  • the detection group released by this cleavage emits, for example, develops and emits light, so that a-GARE can be detected and measured.
  • the detection group is not particularly limited, but is preferably, for example, one that can be detected by coloring or fluorescence as described above.
  • Examples of the detection group that can be detected by the color development include para-nitroanilide (hereinafter referred to as “ ⁇ - ⁇ ”), para-nitrophenol, indole, i3-naphthylamide, 4-methoxy-1] 3-naphthylamide (4M / 3 NA) and the like.
  • Examples of the detection group that can be detected by the fluorescence include 4-methyl-coumaryl-7-amide.
  • p-NA and paranitrophenol can be measured by measuring the absorbance around the wavelength of 405 to 410 nm using a spectrophotometer or the like.
  • 4-methyl-coumaryl-17-amide can be measured at a wavelength of 460 nm by exciting at a wavelength of 380 nm.
  • ⁇ -GAR can release a high G This is presumed to be due to the recognition of the saccharified moiety of the amino group and the release of GGA.
  • the ⁇ -GARE substrate having a detection group bound to a carboxyl group as described above can be prepared by a conventional method using, for example, a commercially available amino acid to which a detection group is bound and a sugar.
  • the Hi-GARE of the present invention can be produced, for example, by culturing the ⁇ -GAR ⁇ -producing bacterial cells of the present invention by a method according to the above-described culture method.
  • Sphingobacterium mizutae KDK1003 (FERP-17348) has a culture temperature of 20 to 37 ° C, a culture time of 12 to 120 hours, and a medium pH.
  • Sphingomonas parapassimobilis KD K1004 (Sphingomonas parapaucimobi 1 is KDK1004)
  • FERM BP-7041 has, for example, a culture temperature range of 20 to 37 ° C and a culture time. The range is from 12 to 120 hours, and the pH of the medium is from 6.0 to 9.5.
  • Comamonas acidovorans KDK1005 (FERM Pl 7346), Muko Sir Cineroides F F Jyanseni KDK3004 cor circinelloides ⁇ . Janssenii KDK3004) (FERM P_ 17345) and P.
  • ⁇ -GARE is, for example, a culture temperature range of 20 to 37 ° C., a culture time of 12 to 120 hours, and a pH of the culture medium of 5.0 to 9.0.
  • an enzyme sample of ⁇ -GARE can be obtained.
  • known methods such as salting out with ammonium sulfate, isoelectric point precipitation, ethanol precipitation, ion exchange chromatography, gel chromatography, affinity chromatography, and hydrophobicity It can be performed by a combination such as sex mouth chromatography.
  • the culture is centrifuged (12, 00 G, 15 min, 4 ° C.) to remove bacterial cells, and a supernatant is obtained.
  • the supernatant is concentrated to 40 times (volume) by an ultrafiltration membrane (trade name: MICR II ZA, molecular weight cut off size: 3 kDa: manufactured by Asahi Kasei Corporation).
  • a 13-fold volume of an anion exchange resin (trade name: DEAE Sepharose FF: manufactured by Pharmacia) is added to the concentrated solution, and ⁇ -GARE is adsorbed and eluted by a batch method.
  • ⁇ -GARE is adsorbed and eluted by a batch method.
  • non-adsorbed proteins were removed by washing with a 1 OmM dipotassium phosphate aqueous solution, and then with a 1 OmM dihydrogen phosphate aqueous solution containing 0.05 M NaCl, and then 0.15 M N a.
  • Elute G-ARE with a 10 mM aqueous solution of phosphoric acid phosphate containing C 1 and collect the G-ARE active fraction.
  • the active fraction was applied to a column of an anion exchange resin (trade name: Q_Sepharose FF: manufactured by Pharmacia) equilibrated with 2 OmM potassium phosphate buffer (pH 7.5), and subjected to ⁇ — GAR E Is adsorbed and washed with the above buffer solution.
  • a-GARE is eluted by the stepwise method of NaC1 concentration of 0.2 M-0.26 M. In this case, a-GARE is eluted with 20 mM potassium phosphate buffer containing 0.26 M NaC1.
  • a partially purified enzyme enzyme of GARE of the present invention can be obtained by the above purification method.
  • ⁇ -GARAR derived from other novel cells of the present invention can be purified in the same manner.
  • the medium used for culturing the novel cells of the present invention is not limited to the nutrient liquid medium.
  • the following hemoglobin (Hb) medium can also be used.
  • the Hb solution can be prepared, for example, by the following method.
  • a blood cell is used as a sample, and the glycated protein (for example, HbA1c) in the blood cell is converted to ⁇ .
  • the glycated protein for example, HbA1c
  • a blood cell fraction is separated from whole blood by a conventional method such as centrifugation and lysed.
  • the hemolysis method is not particularly limited, and examples thereof include a method using a surfactant, a method using ultrasonic waves, and a method using a difference in osmotic pressure. Among these, a method using a surfactant is preferred for reasons such as easy operation.
  • the surfactant examples include polyoxyethylene-pt-octylphenyl ethers such as trade name TritonX-100, and polyoxyethylene sorbitan alkyl esters such as trade name Tween-20. And poly (oxyethylene) alkyl ethers such as Brij 35 can be used.
  • the treatment conditions with the surfactant include, for example, when the blood cell concentration in the treatment solution is 1 to 10% by volume, the surfactant is used so that the concentration in the treatment solution is 0.1 to 1% by weight. Add and stir at room temperature for about 5 seconds to 1 minute.
  • the enzyme treatment with the ⁇ -GARE of the present invention is performed on the hemolyzed sample.
  • one GA is released from the glycated protein in the hemolyzed sample.
  • the enzymatic treatment with ⁇ -GARE is performed, for example, in a buffer, and the treatment conditions include the type of ⁇ -GARII used (for example, differences in origin, etc.), the types of glycated proteins and glycated peptides, and the types thereof. It is determined as appropriate depending on the concentration of the water.
  • the processing conditions are as follows. Nohi _ GARE concentration 0.01 U ⁇ 1 KUZ l, temperature 15 ⁇ 60 ° C, reaction time 3 minutes ⁇ 6 hours, pH 5.0 ⁇ : L 0.0 range.
  • the temperature is 30 to 37 ° (reaction time: 5 to 60 minutes, pH: 6 to 8, respectively.
  • the buffer is For example, Tris-HCl buffer, phosphate buffer, Good buffer (EPPS buffer, PIPES buffer, etc.) can be used.
  • ⁇ -GARAR derived from other novel cells of the present invention can be used in the same manner.
  • the degradation product ( ⁇ -GA) obtained by the above-mentioned GARE treatment is treated with FAOD.
  • the decomposition reaction of ⁇ -GA catalyzed by this FAOD is shown in the following formula (1).
  • the sugar (I ⁇ —) is obtained by FAOD-treating the decomposed product (hi-G 1 : R 1 —CO—CH 2 —NH—R 2 ) by the a—GARE treatment. CO-CHO), amino (NH 2 - R 2) and peracids hydrogen (H 2 0 2) is produced.
  • R 1 means a residue (sugar residue) derived from the saccharide before the saccharification reaction.
  • the sugar residue (R 1 ) is an aldose residue when the sugar before the reaction is aldose, and is a ketoth residue when the sugar before the reaction is ketose.
  • the sugar residue (R 1 ) is replaced with a glucose residue (aldose residue).
  • This sugar residue (R 1 ) can be represented by, for example, — [CH (OH)] n —CH 2 OH, where n is an integer of 0-6.
  • R 2 is an amino acid residue in which a ⁇ amino group is saccharified, and can be represented by the following formula (2).
  • R 3 represents an amino acid side chain group.
  • the FAOD is not particularly limited as long as it catalyzes the reaction.
  • the FAOD may have another catalytic function.
  • This FAOD treatment is preferably carried out in a buffer as in the enzyme treatment with ⁇ -GARE.
  • the buffer is not particularly limited, and for example, Tris-HCl buffer, EPPS buffer, PIPES buffer and the like can be used.
  • the FAOD treatment conditions include, for example, a FAOD concentration in the reaction solution of 0.1 to 10 KU / liter, a temperature of 15 to 50 ° (: a reaction time of 1 to 60 minutes, and a pH of 6 to 9). Yes, preferably with FAOD concentrations of 0.5 to 2 KU / liter, temperature of 30 to 37 ° C., reaction time of 5 to 20 minutes, and pH of 7 to 8, respectively.
  • the hydrogen peroxide generated by the FAOD treatment is measured using the POD and the substrate that develops color by oxidation, using a redox reaction.
  • the redox reaction is usually performed in a buffer solution, and the conditions are appropriately determined depending on the concentration of hydrogen peroxide in the reaction solution and the like.
  • the concentration of P ⁇ ⁇ D in the reaction solution is 10 I; ⁇ 400 KU / liter, the reaction temperature is 15 ⁇ 40 ° C, the reaction time is 0:! ⁇ 5 min, the pH is 5 ⁇ 10, and more.
  • the POD concentration is 50 U to 20 KUZ liter, the reaction temperature is 30 to 37 ° C., the reaction time is 0.1 to 1 minute, and the pH is 5 to 8.
  • the buffer is not particularly limited, and the same buffer as used in the FAOD treatment can be used.
  • the color development is measured with a spectrophotometer to measure the concentration of hydrogen peroxide.
  • concentration of saccharified protein in the sample can be determined from this.
  • each processing step may be performed separately as described above, but in some cases, some steps may be performed simultaneously or all steps may be performed simultaneously.
  • ⁇ — GARE and FAOD to the sample and reacting them
  • the FAOD treatment step and the chromogenic step using POD can be performed simultaneously.
  • the step of hemolytic treatment with the surfactant and the step of ⁇ -GARE treatment can be performed simultaneously.
  • This example is an example in which a culture supernatant of a new cell producing a-GARE of the present invention is reacted with a glycated peptide having a single GA to release a_GA from the glycated peptide. .
  • bacterial culture, glycated peptide degradation, and TLC analysis were performed in the same manner as the above-mentioned screening method.
  • each of the novel cells of the present invention described below was inoculated into 5 ml of the above nutrient liquid medium (pH 8.0), and cultured at 30 ° C for 48 hours with shaking. Each of the obtained culture solutions was centrifuged to remove cells, and the supernatant was used as a crude enzyme solution. (Used bacteria)
  • Penicillium waksmanii KDK3005 (FERM P-17344)
  • the crude enzyme solution 1001 and the respective 0.05 M aqueous glycated peptide (F 2 P, F 3 P) aqueous solution 501 were combined with each other. After mixing and reacting at 30 ° C. overnight, these reaction solutions were analyzed by TLC. The results of these TLC analyzes are shown in FIGS.
  • Figures 1 to 5 show Sphingobacterium mizutae KDK1003 (FERM P—17348), Sphingomonas parapodiasmobilis KDK1004 (phingomonas parapaucimobilis KDK1004) (FERM BP-70s mosa mosa vos mosa mosa mosa mosa, moss mosa, spores), respectively.
  • KDK1005) (FERM P-17346)
  • Mucor circinel loides ⁇ . Janssenii KDK3004 (FERM P—17345) 5 is a chromatogram of TLC for.
  • lane No. 1 shows the control (FV) and lane No.
  • lane No. 3 is an F 3 P degradation product
  • FIGS. 3 to 5 lane No. 3 is an F 2 P degradation product
  • lane No. 4 is an F 3 P degradation product.
  • Table 1 below shows the mobility of the spot indicated by the arrow in each figure.
  • spots were observed at the same mobility as the control FV in the saccharified peptide digests treated with each of the crude enzyme solutions (FIG. 1 to FIG. 5 and Table 1). Spots indicated by arrows). From the above, it was found that a-GA was released from glycated peptides by Hiichi GARE of the present invention. Furthermore, the spot of the decomposition product is different from the mobility of Va1. From this, it was also found that sugar was not dissociated from FV released by Hiichi GARE. In addition, as shown in FIGS. 3 to 5, FV and His spots were observed in the F 2 P decomposition product. The fact that spots of degradation products (dipeptides) other than FV were not observed in the F 3 P degradation product may be presumed to be difficult to detect by this TLC method.
  • glycated peptides were treated with the crude enzyme derived from the novel cells of the present invention, and the release of ⁇ -GA (FV) was confirmed.
  • Sphingomonas arapaucimobilis KDK1004 (FERM BP—7041) was cultured in the aforementioned Hb medium (pH 6.0) at 28 for 5 days with reciprocal shaking for 5 days. Then, the culture solution was centrifuged (12,000 G, 15 minutes, 4 ° C), and the obtained supernatant was used as a crude enzyme solution.
  • Detection wavelength 210 nm, 230 nm Then, for each separated fraction obtained by the reverse phase chromatography, FV was detected by the following method.
  • This example is an example in which ⁇ -GAR ⁇ activity at each concentration was confirmed by changing the concentration of GARE.
  • Sphingomonas parapodiasmobilis KDK10Q4 (Sphingomonas arapaucimobilis KDK1004) (FERM BP-7041) was cultured in the same manner as in Example 2 above, and the supernatant was recovered from the culture to obtain a crude enzyme solution.
  • the crude enzyme solution 50 ml was concentrated to 5 ml using the above ultrafiltration membrane (fraction molecular weight: 5 kDa), and then partially purified by gel chromatography under the following conditions. (Gel column chromatography)
  • Detection wavelength 280 nm, 230 nm
  • a predetermined amount (25, 50, 75, 100, 1251) of the above partially purified «— GARE and 1 M potassium phosphate buffer ( PH 8.0) was added, and the mixture was reacted at 37 ° C. overnight.
  • the total volume of the reaction solution was set to 201 and the final concentration of the buffer was adjusted to 5 OmM.
  • the reaction solution was diluted 3 times (volume) with distilled water, and 10 M hydrogen peroxide solution 15 X 1 and the following redox reaction solution B 70 m 1 were added to this diluted solution 25 1 in this order.
  • the mixture was added and reacted at 37 ° C. for 15 minutes.
  • the absorbance was measured in the same manner as in Example 2.
  • the case where no a-GARE was added was used as a blank, and the amount of increase in absorbance per 5 minutes was determined as ⁇ -GARE activity.
  • Figure 6 shows the results.
  • FIG. 6 is a graph showing the relationship between the amount of enzyme ⁇ -GARE derived from Sphingomonas parapauci obi 1 is KDK1004 (FERM BP-7041) and the amount of color development (absorbance). (Composition of redox reaction solution B)
  • This example is an example of confirming the thermal stability of the Hikari GARE of the present invention.
  • the partially purified enzyme of Hi-GARE derived from Sphingomonas parapaucimobilis KDK1004 (FERM BP-7041) prepared in Example 3 was previously subjected to each temperature (30, 37, 50, 60). , 70 ° C) for 20 minutes. Then, the partially purified enzyme 1001 and 5 OmM potassium phosphate buffer (pH 8.0) 501 after the heat treatment were mixed with the F 3 P aqueous solution 501 as in Example 3, The reaction was carried out at 37 ° C for 18 hours. An oxidation-reduction reaction using FAOD was performed on 20 l of the reaction solution in the same manner as in Example 3, and the absorbance was measured.
  • FIG. Figure 7 shows the thermal stability of ⁇ _GARE derived from Sphingomonas parapaucimobilis KDK1004 (FERM BP-7041). It is rough.
  • the a-GARE exhibited 100% residual activity by heat treatment at 30 to 50 ° C., but was completely deactivated by heat treatment at 70 ° C. did.
  • This example is an example in which the optimum temperature of Hiichi GARE of the present invention was confirmed.
  • Sphingomonas parapaucimobilis KDK1004 (FERM BP-7041) (FERM BP-7041) partially purified enzyme of GARE derived from Sphingomonas parapodisimobilis KDK1004 prepared in Example 3 100/1/20 OmM phosphate buffer ( pH 8.0) 501 was mixed with the same F 3 P aqueous solution 501 as in Example 3, and the mixture was heated at each temperature (10, 30, 37, 50, 60, 70 ° C). ) For 8 hours. A redox reaction using FAOD was performed on the diluent 251, which was obtained by diluting (volume) the reaction solution three-fold with distilled water in the same manner as in Example 3, and the absorbance was measured.
  • FIG. 8 is a graph showing the optimal temperature of human G ARE derived from Sphingomonas parapodismobilis KDK1QQ4 (Sphingomonas arapaucimobilis KDK1004) (FERM BP-7041).
  • the optimum temperature of the ⁇ -GARE was found to be about 37 ° C.
  • This example is an example of confirming the molecular weight of GAR E of the present invention.
  • Sphingo monas paraboushi mobilis The culture supernatant of KDK1004 (Sphingomonas parapauc imobi 1 is KDK1004) (FERM BP-7041) was subjected to gel chromatography under the same conditions to separate. Then, each fraction was subjected to an oxidation-reduction reaction using FAOD in the same manner as in Example 3, and the Hi-GARE activity was measured.
  • a molecular weight marker 1 (trade name MW marker (HP LC): manufactured by Oriental Yeast Co.) was subjected to the above gel column chromatography under the same conditions.
  • the molecular weight of ⁇ -GARE derived from Sphingomonas paraboscium mobilis KDK1QQ4 (Sphingo monas parapaucimobi 1 is KDK1004) (FERM BP-7041) was obtained from the calibration curve of the molecular weight obtained from the results and the elution result of It is estimated to be 40,000-600,000. Industrial applicability
  • a-GARE which is a novel enzyme of the present invention, can release amino acid residues in which a single amino group is glycated from glycated proteins and the like. Therefore, for example, if the human GARE is used in a method for measuring glycated protein or the like using FAOD, the measurement of HbA1c, which is an index for diagnosing diabetes, can be performed accurately and easily. The measurement of A 1 c can be put to practical use in clinical tests and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

明 細 書 ひ一糖化アミノ酸遊離酵素 技術分野
本発明は、 新規酵素に関し、 詳しくは、 α—アミノ基が糖化されたァ ミノ酸を遊離させる新規酵素に関する。 背景技術
プロテア一ゼは、 様々な産業分野において利用されている。 例えば、 糖尿病の診断および治療等における重要な指標である血清中の糖化アル ブミン等の糖化タンパク質を測定する際にも、 前記プロテアーゼが使用 されている。
このプロテアーゼを利用した糖化タンパク質の測定方法は、 例えば、 以下に示すようにして行うことができる。 例えば、 糖化タンパク質をプ 口テア一ゼで分解し、 この分解物とフルクトシルアミノ酸ォキシダーゼ (以下、 「FA〇D」 という) とを反応させ、 生成する過酸化水素量また は消費される酸素量を測定することにより、 前記糖化夕ンパク質の量を 知ることができる。 前記プロテア一ゼとしては、 特開平 5— 1 9 2 1 9 3号公報、 特開平 7— 2 8 9 2 5 3号公報等に開示されているものが使 用されている。
このように、 糖化タンパク質を予めプロテアーゼで処理するのは、 前 記 FAOD等は、 糖化アミノ酸や糖化ペプチドに作用し易く、 糖化タン パク質自身には作用し難いからである。 特に、 糖化ヘモグロビン (以下 、 「: H b A 1 c」 という) は、 その糖化部分が) 3鎖 N末端アミノ酸残基で あるため、 この部分に F AODが作用しやすいように、 H b A l cを処 理できるプロテア一ゼが求められていた。 発明の開示
そこで、 本発明の目的は、 糖化タンパク質や糖化ペプチド等に対して F AODが作用しやすいように、 前記糖化タンパク質等を処理できる新 規酵素の提供である。
本発明者らは、 まず、 各種 FAODの中でも、 糖がひーァミノ基に結 合した糖化タンパク質、 糖化べプチドおよび糖化アミノ酸等に作用する FAODについて、 その作用機構を検討した。 その結果、 前記 FAOD は、 例えば、 α—アミノ基に糖が結合した糖化アミノ酸には良く作用す るが、 前記糖化夕ンパク質や糖化べプチドには作用しがたいことがわか つた。 そこで、 本発明者らは、 この知見に基づいて、 自然界の様々な菌 を分離培養し、 それらが産生する酵素を検討した結果、 糖が α—ァミノ 基 (Ν末端アミノ基) に結合した糖化タンパク質または糖化ペプチドか ら、 α—ァミノ基が糖化されたアミノ酸 ( a—Glycated Amino acid :以下、 「a— GA」 という) を遊離する新規酵素を産生する菌を分離す ることに成功し、 本発明に至った。 本発明の新規酵素 (α— Glycated A mino acid Releasing Enzyme:以下、 「α— GARE」 という) によ れば、 例えば、 前記糖化タンパク質や糖化ペプチドから α— G Aを遊離 できるため、 ひ — G Aに良く作用する前記 F AODを用いた H b A 1 c の測定を臨床検査等で実用化することができる。 また、 H bA l cの測 定の他に、 他の糖化タンパク質の測定等の様々な分野で使用することも できる。 なお、 本発明の a— GAREは、 a— GAを遊離させる触媒機 能のほかに、 他の触媒機能、 例えば、 他のペプチド結合を切断する機能 等を備えていても良い。 本発明者らが分離した新菌体としては、 スフィ ンゴバクテリゥム属 (Sphingobacterium), スフインゴモナス属 (Sphin gomonas) , コマモナス属 (Comamonas)、 ムコ一属 (Mucor)、 ぺニシリウ ム属 (Penicillium) 等の菌体がある。 なお、 本発明のひ— GAREは、 これらの菌体由来に制限されない。
本発明のひ — GAREにおいて、 遊離される糖化アミノ酸は、 その a ーァミノ基が糖化されていれば特に制限されないが、 前述のように、 H b A 1 cは N末端バリン残基が糖化されていることから、 前記遊離され る a— GAは、 糖化パリン (以下、 「α— GV」 という) であることが好 ましい。 本発明のひ一 GAR Eとしては、 例えば、 以下に示す、 五種類のひ一 GAR Eがある。
まず、 一つめのひ一 GAR Eは、 スフインゴパクテリゥム属 (Sphing obacterium) の菌体由来であり、 特に好ましくは、 スフインゴバクテリ ゥム ミズタエ KDK10Q3 (Sphingobacterium mizutae KDK1003) 由来 である。 このスフインゴバクテリゥム ミズタエ KDK10Q3 (Sphingoba cterium mizutae KDK1003) は、本発明者らが土壌中より新規に単離し た菌体であり、 通商産業省工業技術院生命工学工業技術研究所 (N I B H) (日本国〒 3 0 5— 8 5 6 6茨城県つくば市東 1丁目 1— 3 )に受託 番号 FERM P- 17348 (寄託日 :平成 1 1年 3月 2 9日) で寄託されてい る。 本菌体の菌学的特性は、 下記に示すとおりである。
(形態的特性)
本菌体の形状は、 その大きさが 0. 5 X 1. 2 の桿菌であり、 非 運動性である。
(培養的性質)
本菌体を常法の寒天培地に生育させた場合、 そのコロニー形態は、 低 い凸状の全縁がなめらかな円形であり、 前記コロニーの色は、 黄色であ る。
(生理学的性質)
グラム染色性 : 陰性
酸素要求性 : 通性嫌気性
硝酸塩還元 :
インドール産生 :
ブドウ糖酸性化 :
アルギニンジヒドロラーゼ :
ゥレアーゼ :
エスクリン加水分解 :
ゼラチン加水分解 :
i3—ガラクトシダーゼ :
基質資化能
ブドウ糖 : +
Lーァラビノース : +
D—マンノース : +
D—マンニトール :
N—ァセチルー D—ダルコサミン
マルト一ス : +
ダルコン酸カリウム :
n—力プリン酸 :
アジピン酸 :
D L —リンゴ酸 :
クェン酸ナトリウム :
酢酸フエニル : つぎに、 二つ目の Q! _GAREは、 スフインゴモナス属 (Sphingomon as) の菌体由来であり、 特に好ましくは、 スフインゴモナス パラボウ シモビリス KDK1004 (Sphingomonas parapauc imobi 1 i s KDK1004) 由 来である。 前記スフインゴモナス パラボウシモビリス KDK1Q04 (Sph ingomonas parapaucimobi 1 is KDK1004) も、 本発明者らが土壌中より 新規に単離した菌体であり、 通商産業省工業技術院生命工学工業技術研 究所(N I B H) (日本国〒 3 0 5— 8 5 6 6茨城県つくば巿東 1丁目 1 ― 3) に受託番号 FERM P- 17347 (原寄託日 :平成 1 1年 3月 2 9日) で寄託され、 国際寄託当局である前記通商産業省工業技術院生命工学ェ 業技術研究所に、 受託番号 FERM BP— 7041 (移管受領日 :平成 1 2年 2 月 2 1 日) で原寄託よりブ夕ぺスト条約に基づく寄託へ移管されている 。 本菌体の菌学的特性は、 下記に示すとおりである。 (形態的特性)
本菌体の形状は、 その大きさが 0. 8 X 2. O imの桿菌であり、 運 動性を有する。
(培養的性質)
本菌体を常法の寒天培地に生育させた場合、 そのコロニー形態は、 低 い凸状の全縁がなめらかな円形である。 前記コロニーの色は、 透明から 淡黄色に変化する。 マックコンケィ (Mac Conkey) 培地で生育は認めら れない。 また、 培養温度 4 2 でも弱いながら生育は認められる。
(生理学的性質)
グラム染色性 : 陰性
酸素要求性 : 通性嫌気性菌
硝酸塩還元 : - インドール産生 :
ブドウ糖酸性化 :
アルギニンジヒド口ラ一ゼ
ウレァ一ゼ :
エスクリン加水分解 : +
ゼラチン加水分解 :
/3—ガラクトシダ一ゼ : +
ブドウ糖からのガスの生成
基質資化售
ブドウ糖 : +
Lーァラビノース : +
D—マンノース :
D—マンニ卜一ル : +
N—ァセチル— D—ダルコサミン +
マルト一ス : +
ダルコン酸カリウム :
n _力プリン酸 :
アジピン酸 :
D L—リンゴ酸 :
クェン酸ナトリウム :
酢酸フエニル : + つぎに、 三つ目の α— G A R Eは、 コマモナス属 (Comamonas) の菌体 由来であり、 特に好ましくは、 コマモナス ァシドボランス KDK1005 (Comamonas ac i dovorans KDK1005) 由来である。 前記コマモナス ァ シドポランス KDK1005 (Comamonas ac i dovorans KDK1005) も、 本発 明者らが土壌中より新規に単離した菌体であり、 通商産業省工業技術院 生命工学工業技術研究所(N I B H ) (日本国〒 3 0 5— 8 5 6 6茨城県 つくば巿東 1丁目 1— 3 ) に受託番号 FERM P - 17346 (寄託日 :平成 1 1年 3月 2 9日) で寄託されている。 本菌体の菌学的特性は、 下記に示 すとおりである。
(形態的特性)
本菌体の形状は、 その大きさが 0 . 6 X 1 . 5 t mの桿菌であり、 運 動性を有する。
(培養的性質)
本菌体を常法の寒天培地に生育させた場合、 そのコロニー形態は、 凸 状の円形で、 根足を有する。 前記コロニーの色は、 黄色で光沢がある。
(生理学的性質)
グラム染色性 : 陰性
酸素要求性 : 好気性菌
硝酸塩還元 : 一
インドール産生 : 一
ブドウ糖酸性化 : 一
アルギニンジヒドロラ一ゼ : 一
ゥレアーゼ : 一
エスクリン加水分解 : 一
ゼラチン加水分解 : 一
/3—ガラクトシダーゼ : ―
基質資化能
ブドウ糖 : 一
Lーァラビノース : + D—マンノース : 一
D—マンニトール : +
N—ァセチル— D—ダルコサミン : ―
マルト一ス : 一
ダルコン酸カリウム : +
n—力プリン酸 : +
アジピン酸 : 一
DL—リンゴ酸 : +
クェン酸ナトリウム : 一
酢酸フエニル : 一 つぎに、 四つ目の a— GAREは、 ムコー属 (Mucor) の菌体由来であ り、 特に好ましくは、 ムコ一 サ一シネロイデス エフ ジヤンセッニ KDK3004 (Mucor circinel loides 丄. janssenii KDK3004) 由来で ある。 前記ムコ一 サーシネロイデス エフ ジヤンセッニ KDK3004 (Mucor circinel loides 丄. j ansseni i KDK3004) も、 本発明者ら が土壌中より新規に単離した菌体であり、 通商産業省工業技術院生命ェ 学工業技術研究所(N I BH) (日本国〒 3 0 5— 8 5 6 6茨城県つくば 巿東 1丁目 1一 3 ) に受託番号 FERM P- 17345 (寄託日 :平成 1 1年 3 月 2 9日) で寄託されている。 本菌体の菌学的特性は、 下記に示すとお りである。
(形態的特性)
亜球形の胞子嚢胞子を形成し、 その径は 4〜 6 imとなる。 胞子嚢は 直径 7 0 m程度で黒色を呈し、 基底部にカラレットが観察される。 菌 糸幅は 1 0〜 1 2 mで仮根の形成は見られない。 (培養的性質)
本菌体を常法の寒天培地に生育させた場合、 配偶子嚢の接合によって のみ接合胞子を形成する。 気菌子は綿毛状で白色を呈し、 漸次灰色と色 調を変える。 コロニー裏面は白色を呈する。 また、 37°Cでの生育は不 良で、 40°Cでは生育しない。 つぎに、 五つ目の a— GAREは、 ぺニシリウム属 (Penici Ilium) の 菌体由来であり、 特に好ましくは、 ぺニシリウム ヮクスマ二 KDK300 5 (Penici Ilium waksmanii KDK3005) 由来である。 前記ぺニシリウム ヮクスマ二 KDK3005 (Penicillium waksmanii KDK3005) も、 本発 明者らが土壌中より新規に単離した菌体であり、 通商産業省工業技術院 生命工学工業技術研究所(N I BH) (日本国〒 30 5 - 8 56 6茨城県 つくば巿東 1丁目 1一 3) に受託番号 FERM P— 17344 (寄託日 :平成 1 1年 3月 2 9日) で寄託されている。 本菌体の菌学的特性は、 下記に示 すとおりである。
(形態的特性)
基層から立ち上がる分子柄は薄い細胞壁で覆われ、 平滑であり、 頂嚢 は形成しない。 分子柄は非分岐である。 メッラは輪生で 2〜 5個生じる 。 メッラの先端に 9 mの単一のフィアライドを形成する。 フィアラィ ドの形状は短く、 先細りの首を持つフラスコ型である。 分生子は直径 3 のほぼ球状を呈し、 平滑な細胞壁で覆われ、 連鎖状をなす。
(培養的性質)
本菌体を常法の寒天培地に生育させた場合、 生育速度は 2 5°C、 7日 間で直径 3 0mmとなる。 コロニーの表面はフェルト状で緑色を呈する 。 菌糸は呈色しない。 コロニー裏面は淡青色となる。 浸出液は産生しな い。 3 7°Cでの生育は陰性である。 つぎに、 本発明の糖化タンパク質または糖化べプチドの測定方法は、 糖化タンパク質または糖化べプチドを酵素で分解した後、 この分解物と FAODとを反応させ、 この酸化還元反応を測定することにより、 前記 糖化タンパク質または糖化ペプチドを測定する方法であって、 前記酵素 として本発明の新規酵素 (ひ一 GARE) を使用することを特徴とする 。 本発明の測定方法において使用する α— GAREは、 測定する糖化夕 ンパク質や糖化べプチドの種類、 それらの濃度等により適宜決定される が、 一種類でもよいし、 二種類以上を併用してもよい。 また、 前記 α _ GAREがより作用しやすいように、 予め、 糖化タンパク質等を別の酵 素 (例えば、 プロテアーゼ等) で分解させてもよい。
本発明の測定方法において、 前記酸化還元反応の測定は、 前記酸化還 元反応によって生じる過酸化水素量の測定または消費される酸素量の測 定であることが好ましく、 前記過酸化水素量を測定する場合、 ペルォキ シダーゼと酸化により発色する基質 (以下、 「発色性基質」 という) と を用いた測定であることが好ましい。 なお、 前記過酸化水素量は、 前記 ペルォキシダーゼ等を用いた酵素的手法の他に、 例えば、 電気的手法等 により測定することもできる。
前記発色性基質としては、 Ν— (力ルポキシメチルァミノカルポニル ) — 4, 4 ' —ビス (ジメチルァミノ) ジフエニルァミンナトリウム ( 例えば、 商品名 DA— 64 :和光純薬社製等)、 オルトフエ二レンジァ ミン (〇PD)、 トリンダー試薬と 4—ァミノアンチピリンとを組み合 わせた基質等があげられる。 前記トリンダー試薬としては、 例えば、 フ ェノール、 フエノール誘導体、 ァニリン誘導体、 ナフトール、 ナフトー ル誘導体、 ナフチルァミン、 ァフチルァミン誘導体等があげられる。 ま た、 前記ァミノアンチピリンの他に、 ァミノアンチピリン誘導体、 バニ リンジァミンスルホン酸、 メチルベンズチアゾリノンヒドラゾン (MB TH)、 スルホン化メチルベンズチアゾリノンヒドラゾン (SMBTH ) 等も使用できる。 これらの発色性基質の中でも、 特に好ましくは、 N - (カルボキシメチルァミノカルボニル) — 4, 4 ' 一ビス (ジメチル ァミノ) ジフエニルァミンナトリウムである。
本発明の測定方法において、 前述のように、 血球中の HbA l cを測 定することは糖尿病の診断に有用であることから、 測定対象試料は、 血 球であることが好ましい。 しかし、 糖化タンパク質は、 例えば、 前記血 球以外の血液成分 (全血、 血漿、 血清等)、 尿や髄液等の生体試料、 ジュ ース等の飲料水、 醤油、 ソース等の食料等にも含まれるため、 測定対象 試料は前記血球には限定されない。 また、 測定対象物も、 前記 HbA l cには制限されず、 この他にも、 ゼラチン、 カゼイン等の糖化タンパク 質や糖化べプチド等があげられる。 つぎに、 本発明の糖化タンパク質または糖化ペプチドの測定キットは 、 プロテアーゼ、 FAOD、 ペルォキシダ一ゼおよびペルォキシダーゼ との反応により酸化される基質を備える測定キットであり、 前記プロテ ァ一ゼが本発明の α— G AR Eを含むことを特徵とする。 この測定キッ トによれば、 本発明の測定方法を迅速かつ簡便に行うことができる。 な お、 前述と同様に、 前記ひ一 GAREは一種類でもよいし、 二種類以上 を併用してもよい。
本発明の測定キットにおいて、 前記酸化される基質としては、 前述の ような発色性基質が好ましく、 測定対象物および測定対象試料も前述と 同様である。 つぎに、 本発明のひ一 GAREの製造方法は、 本発明の新菌体を培養 する工程を含む方法である。 これにより、 本発明のひ — GAR Eを容易 に製造することができる。
本発明の α— GAREの製造方法は、 さらに、 以下の (a) 〜 (c ) に示す精製工程を含むことが好ましい。
(a) 培養液から菌体を除去して、 上清を調製する工程。
(b) 前記上清中のタンパク質をエタノール沈殿する工程。
(c) 前記タンパク質をクロマトグラフィーにより分離する工程。 前記精製工程は特に制限されず、 その他の精製工程を組合わせてもよ い。 また、 例えば、 (a) 工程だけでもよいし、 2以上の工程を行っても く、 さらに同じ工程を繰り返し行ってもよい。
前述のような菌体培養によって得られる本発明の α— GAR Εは、 培 養液中に含有された状態でも、 精製された状態であってもよく、 糖化夕 ンパク質等から a— G Aを遊離させる限り、 その精製度に拘わらず使用 できる。 しかし、 精製すれば、 培養液中の a— GARE以外の成分が除 去されるため、 前記ひ — GAREの比活性が向上する。 これにより、 実 際に使用する際に、 その使用量が少量でよく、 取り扱いが簡便になる。 また、 各種反応に用いる場合に、 ひ一 GARE以外の成分による影響も 回避できる。 つぎに、 以上のような精製工程により精製されたひ一 GAREについ て、 そのアミノ酸配列の決定および遺伝子配列の決定を行い、 本発明の α— GAREをコードする遺伝子を調製することが好ましい。 なお、 こ の遺伝子は、 前記ひ一 GAREが発現するために必要である遺伝子には 限定されず、 例えば、 プローブやプライマーとして使用する DNA断片 や RNA等、 また、 ひ一 GAREの遺伝子配列をもとに作製した化学合 成の断片等も含む。 このような遺伝子を用いて、 例えば、 組換え体等を 作製し、 これにより α— G AREを製造してもよい。 本発明の a— GA REの遺伝子は、 例えば、 以下に示すようにして得ることができる。 まず、 本発明の α— GAR Eを、 例えば、 後述する精製工程等により 精製して、 エドマン分解等の常法によりアミノ酸配列の決定を行ない、 これをもとにその遺伝子配列を推測する。 そして、 これに基づいて常法 の化学合成等により DN A断片や RN A断片等を作製し、 これをプライ マーやプローブ等として使用して、 本発明の新規菌体から a— GARE をコ一ドする遺伝子をクローニングすれば、 本発明のひ一 GAREの遺 伝子が得られる。 図面の簡単な説明
図 1は、 本発明の一実施例において、 スフインゴパクテリゥム属の菌 体の培養液上清を用いて、 糖化ペプチドを分解し、 その分解物を TL C により分析したクロマトグラムである。
図 2は、 前記一実施例において、 スフインゴモナス属の菌体の培養液 上清を用いて、 糖化ペプチドを分解し、 その分解物を TL Cにより分析 したその他のクロマトグラムである。
図 3は、 本発明のその他の実施例において、 コマモナス属の菌体の培 養液上清を用いて、 糖化ペプチドを分解し、 その分解物を TL Cにより 分析したクロマトグラムである。
図 4は、 前記一実施例において、 ムコー属の菌体の培養液上清を用い て、 糖化ペプチドを分解し、 その分解物を TL Cにより分析したその他 のクロマトグラムである。
図 5は、 本発明のその他の実施例において、 ぺニシリウム属の菌体の 培養液上清を用いて、 糖化ペプチドを分解し、 その分解物を TL Cによ り分析したクロマトグラムである。
図 6は、 本発明のさらにその他の実施例において、 スフインゴモナス 属の菌体由来の α— GAR Ε量と吸光度との関係を表すグラフである。 図 7は、 本発明のさらにその他の実施例において、 スフインゴモナス 属の菌体由来の α— GAR Εの熱安定性を表すグラフである。
図 8は、 本発明のさらにその他の実施例において、 スフインゴモナス 属の菌体由来のひ一 GAR Eの至適温度を表すグラフである。 発明を実施するための最良の形態
本発明のひ一 G AR Eを産生する菌体のスクリ一二ングは、 例えば、 以下に示すように、 土壌中の菌体を分離培養し、 その培養液を用いて糖 化べプチドの分解反応を行い、 得られる分解物を薄層クロマトグラフィ 一 (TLC) により分析することによって行うことができる。 なお、 以 下のスクリーニング方法は、 ひ — GARE産生菌を分離するために、 本 発明者らが詳細な検討を重ねた結果、 見出したものである。 このスクリ 一二ング方法の確立によって、 本発明の α;— GAR E産生菌の分離が成 功したといっても過言ではない。
( 1) 培養方法
以下に示す栄養液体培地を、 予め、 ォ一トクレーブにより、 1 2 1°C で 20分間滅菌する。 そして、 土壌サンプルを滅菌水に懸濁し、 これを 前記滅菌済みの栄養液体培地に添加して、 3 0°Cで 48時間振とう培養 ( 1 1 1 r pm) を行う。 得られた培養液を遠心分離 ( 1 2, 0 0 0 G 、 1 5m i n、 4°C) して、 その上清を回収する。 (栄養液体培地)
麦芽エキス (商品名 Malt extract: DIFC0社製) 2. 0 g
D—グルコース (ナカライテスク社製) 2. 0 g ペプトン (商品名 Bacto peptone: DIFC0社製) 0. l g 蒸留水 1 0 0m l
(2) 糖化ペプチドの分解反応
(糖化ペプチドおよび糖化アミノ酸の製造方法)
そのアミノ酸配列が、 Hb A 1 c 鎖における N末端側アミノ酸配列 と同様であるひーァミノ基糖化ペプチドおよび α—フルクトシルバリン (以下、 「FV」 という) を、 以下のペプチドおよびパリンと、 ダルコ一 スとを用いて、 常法により作製する。
Val-His (ペプチド研究所社製:以下、 これの糖化物を 「F 2 P」 とい Ό )
Val-His-Leu (ペプチド研究所社製:以下、 これの糖化物を 「F 3 P」 という)
Val-His-Leu-T r (バイオリンク社製:以下、 これの糖化物を 「F 4 P」 という)
Val-His-Leu-Thr-Pro (S I GMA社製:以下、 これの糖化物を 「F 5 P」 という)
Val-His-Leu-Thr-Pro-Glu-Glu-Lys-Ser (バイオリンク社製:以 下、 これの糖化物を 「F 9 P」 という) (L—アミノ酸)
V a L e uおよび H i s (和光純薬工業社製)
(分解方法)
予め、 前記各糖化ペプチドを 0. 0 1 Mの濃度になるように蒸留水に 溶解し、 糖化ペプチド水溶液をそれぞれ調製する。 そして、 前記各糖化 ペプチド水溶液 5 0 1 と前記培養液上清 1 00 1 とをそれぞれ混合 し、 3 7°Cでー晚反応させた後、 これらの反応液を凍結乾燥する。
(3) TL C分析
前記糖化べプチドの分解物を TL Cにより分析し、 前記糖化べプチド から遊離される α— G Aの存在を確認し、 α— GARE活性の有無を調 ベる。 なお、 使用する試薬および方法を以下に示す。
(薄層プレート)
商品名 Pre- Coated TLC plate SILICA GEL 60 (メルク社製) (検出試薬)
ニンヒドリン (フナコシ社製) を 0. 5体積%の濃度になるように、 7 5体積%エタノールで溶解する。
(展開溶媒)
ブ夕ノール (ナカライテスク社製)、 酢酸 (ナカライテスク社製) およ び蒸留水を、 2 : 1 : 1の体積割合になるように混合する。 (分析方法)
展開距離が 8 c mになるように前記薄層プレートを準備し、 前記プレ —ト下端から 1 c mの位置をサンプルスポットの原線とする。 そして、 TL C分析の直前に、 前記凍結乾燥した各反応液を 5 0体積%エタノー ル 1 5 1にそれぞれ溶解し、 これらをシリンジ (容量 2 5 1 ) によ り前記原線上にスポットする。 なお、 コントロールとして、 前記 FVお よび各種アミノ酸も同様にスポットする。 そして、 前記展開溶媒で予め 飽和された展開槽にこのプレートをいれ、 前記原線から約 8 cmの距離 まで前記展開溶媒を上昇させる。 なお、 前記展開溶媒は、 前記プレート がその下端から約 0. 5 c mまで浸かるように入れておく。
前記展開後、 ドラフト内で完全に風乾させた前記プレートに前記検出 試薬 (ニンヒドリン溶液) を噴霧してから、 熱しておいたホットスター ラー ( 1 0 o°c) により加熱して発色試験を行う。 その結果、 コント口 —ルの F Vと同じ移動度を示すサンプルがひ — G A R E活性陽性であり 、 その培養液の菌体が a— GARE産生菌体である。
前記 TL C分析は、 前述のようなニンヒドリン検出には限定されず、 例えば、 この他にもフルォレスカミン、 エチレンジァミン硫酸塩等の試 薬を用いた蛍光検出法も採用できる。
また、 前記コントロールとしては、 例えば、 基質である糖化タンパク 質または糖化べプチドのひ — G Αを使用することが好ましい。 このようなスクリーニング方法により、 発明者らが単離した新菌体と しては、 例えば、 前記スフインゴバクテリゥム ミズタエ KDK1003 (S hingobacterium mizutae KDK1003) (FERM P— 17348)、スフインゴモ ナス パラポゥシモビリス KDK1004 (Sphingomonas parapaucimobi 1 i s KDK1004) (FERM BP— 7041)、 コマモナス ァシドボランス KDK100 5 (Comamonas acidovorans KDK1005) (FERM P— 17346)、 ムコ一 サ ーシネロイデス エフ ジヤンセッニ KDK3Q04 (Mucor circinelloid es 丄. janssenii KDK3004) (FERM P— 17345) およびぺニシリウム ヮクスマ二 KDK3005 (Penicillium waksmanii KDK3005) (FERM P - 17344) 等がある。 本発明の α _ GAR Εの検出および活性測定に使用できる基質として は、 前述の糖化ペプチド等には制限されず、 例えば、 N末端の a—アミ ノ基が糖化されている糖化夕ンパク質および糖化べプチド等があげられ る。 このような基質を用いる場合、 例えば、 遊離された α— G Aに対し て、 後述する F AODを用いた酸化還元反応 (例えば、 発色反応等) を 行うことにより、 a;— GAR Eを検出 ·測定することができる。
前記糖化タンパク質としては、 例えば、 H b A l c、 糖化グロビン等 があげられる。 このような糖化タンパク質は、 例えば、 天然のものでも よいし、 糖とタンパク質とのアマドリ転位反応により合成したものでも よい。 前記糖化グロビンは、 例えば、 HP L C等を用いて精製した H b A 1 cを、 テールの方法 (Teale, F. W. J, Biochem, Biophys, Acta, 35, 543, 1959) によりグロビン化することによって調製できる。 合成により各種 タンパク質を糖化する場合、 使用する糖は特に制限されず、 例えば、 グ ルコース等のアルド一スゃ、 ケト一ス等があげられる。
前記糖化ペプチドは、 例えば、 前述のような糖化タンパク質をプロテ ァーゼ分解することにより調製したり、 糖と合成べプチドとのアマドリ 転位により合成できる。 糖化ペプチドの長さは、 特に制限されないが、 例えば、 アミノ酸残基数 2〜 2 0の範囲であり、 好ましくは 2〜 8の範 囲である。
糖とのアマドリ転位反応を行う前記ペプチドは、 例えば、 天然のもの でもよいし合成ペプチドでもよい。 また、 そのアミノ酸組成は特に制限 されないが、 アルギニンやリジンを含まないペプチドであることが好ま しい。 このようなペプチドを糖化すれば、 ペプチドのひーァミノ基のみ が糖化された糖化ペプチドを調製できるため、 この糖化ペプチドを用い ることによって α— GAR Ε活性のみを検出できる。
具体的に、 ひ一 GAREを HbA l c測定に利用することを目的とす る場合、 前記糖化ペプチドは、 例えば、 Hb A 1 c )3鎖における N末端 側アミノ酸配列と同様の糖化ペプチドであることが好ましく、 例えば、 前記 「糖化ペプチドの分解反応」 において記載した N末端 V a 1のひ一 ァミノ基が糖化された糖化ペプチド等があげられる。 また、 例えば、 H b A 1 cをトリプシンで分解すれば、 N末端バリンのひ —アミノ基が糖 化されているアミノ酸残基数 8個の糖化べプチドを得ることができる。 また、 a— GAREの基質として、 Ν末端の α—ァミノ基が糖化され ている糖化ペプチド等を用いる場合、 遊離されたひ — GAを検出しても よいが、 α— G Α遊離後の残存ペプチドの検出により、 ひ — GAREを 検出 ·測定することもできる。
このような糖化ペプチドは、 特に制限されないが、 例えば、 FV— L e u (以下、 「FVL」)、 FV— G i n (以下、 「FVQ」)、 FV— A l a (以下、 「FVA」)、 FV— A s n (以下、 「 F V N」) 等のジペプチド があげられる。 これらは、 α— G AR Eにより F Vが遊離し、 同時に L e u、 G l n、 A l a、 A s nがそれぞれ生成される。 この生成された L e uをロイシンデヒドロゲナーゼ、 G 1 nをダルタメ一トデヒドロゲ ナーゼ、 A 1 aをァラニンァミントランスフェラ一ゼと ひ 一ケトグルタ ル酸とラクテートデヒドロゲナーゼ、 A s nをァスパラギンアミノ トラ ンスフェラ一ゼと α—ケトグルタル酸とマレートデヒドロゲナ一ゼ等と それぞれ反応させ、 NADH生成または NAD生成を吸光度測定 (波長 340 nm) することによって検出できる。
また、 糖化トリペプチドとしては、 例えば、 FV— L e u— S e r ( 以下、 「FVL S」) 等があげられる。 FVL Sは、 ひ — GAREにより FVが遊離し、 同時に L e u— S e rが生成される。 これを例えば、 ァ ミノべプチダ一ゼ、 キモトリブシン、 プロテナ一ゼ K等の加水分解酵素 で分解し、 これにより生成したロイシンを前述と同様にして測定するこ とができる。 なお、 前記ペプチドの長さは、 特に制限されない。 さらに、 ひ一 GAREの基質として、 アミノ酸と検出基とを含み、 前 記アミノ酸のひ —ァミノ基が糖化され、 かつ、 前記検出基が前記アミノ 酸のひ一力ルポキシル基にアミ ド結合またはエステル結合し、 前記検出 基が、 結合状態では検出不可能であり、 遊離すると検出可能となる基質 を用いることもできる。
a— GAREは、 前記基質と反応させれば、 α— GAと前記検出基と のアミド結合またはエステル結合を切断して、 α— GAと検出基とを遊 離する。 この切断によって遊離した前記検出基は、 例えば、 発色 ·発光 するため、 これにより a— GAREを検出 '測定できる。
前記検出基は、 特に制限されないが、 例えば、 前述のように、 発色や 蛍光により検出できるものが好ましい。 前記発色により検出できる検出 基としては、 パラ二トロアニリ ド (以下、 「ρ— ΝΑ」 という)、 パラ二 トロフエノール、 インドール、 i3—ナフチルアミド、 4—メトキシ一 ]3 一ナフチルアミド (4M/3 NA) 等があげられ、 前記蛍光により検出で きる検出基としては、 例えば、 4—メチル—クマリル— 7—アミド等が あげられる。 具体的に、 p—NAやパラニトロフエノールは、 例えば、 波長 40 5〜4 1 0 nm付近の吸光度を分光光度計等により測定すれば よく、 4一メチル—クマリル一 7—アミドは、 波長 3 8 0 nmで励起し て波長 46 0 nmで測定すればよい。
なお、 前記検出基とひ—カルボキシル基との結合が、 アミド結合であ つてもエステル結合であっても、 α— GAR Εがひ— G Αを遊離できる のは、 《— GAR Eが α—アミノ基の糖化部分を認識してひ _G Aを遊 離させるためと推測される。
このようにひ —カルボキシル基に検出基を結合させた α— GAREの 基質は、 例えば、 市販の検出基が結合したアミノ酸と糖とを用いて常法 により調製できる。 つぎに、 本発明のひ一 GAREは、 例えば、 前述の培養方法に準じた 方法により、 本発明の α— GAR Ε産生菌体を培養することによって製 造できる。 スフインゴバクテリゥム ミズタエ KDK1003 (Sphingobact eriuB mizutae KDK1003) (FER P— 17348) は、 例えば、 培養温度 2 0〜 3 7°Cの範囲、 培養時間 1 2〜 1 2 0時間の範囲、 培地の pH 6. 0〜 9. 5の範囲であり、 スフインゴモナス パラポゥシモビリス KD K1004 (Sphingomonas parapaucimobi 1 is KDK1004) (FERM BP- 7041 ) は、 例えば、 培養温度 2 0〜 3 7°Cの範囲、 培養時間 1 2〜 1 2 0時 間の範囲、 培地の pH 6. 0〜 9. 5の範囲である。 コマモナス ァシ ドポランス KDK1005 (Comamonas acidovorans KDK1005) (FERM P-l 7346)、 ムコー サーシネロイデス エフ ジヤンセッニ KDK3004 cor circinelloides 丄. janssenii KDK3004) (FERM P_ 17345)お よびぺニシリウム ヮクスマ二 KDK30Q5(Penicillium aksmanii KD K3005) (FERM P— 17344) は、 例えば、 培養温度 2 0〜 3 7 °Cの範囲、 培養時間 1 2〜 1 2 0時間の範囲、 培地の p H 5. 0〜 9. 0の範囲で ある。 また、 前記培養液に含有される Q!— GAREを、 常法により分離精製 することによって、 《— GAREの酵素標品を得ることができる。 α— GAREの精製は、 例えば、 既知の方法である、 硫安等による塩析法、 等電点沈殿法、 エタノール沈殿法、 イオン交換クロマトグラフィー、 ゲ ルクロマトグラフィー、 ァフィ二ティ一クロマトグラフィー、 疎水性ク 口マトグラフィ一等の組み合わせにより行うことができる。 以下に、 ス フィンゴバクテリゥム ミズタエ KDK1003 (Sphingobacterium mizuta e KDK1003) (FERM P— 17348)由来 α— G A R Eの精製方法の一例を示 す。 まず、 前記培養液を遠心分離 ( 1 2 , 0 0 0 G、 1 5m i n、 4°C) して菌体を除去し、 上清を得る。 そして、 前記上清を限外ろ過膜 (商品 名 M I C R〇 Z A、 分画分子量サイズ 3 kD a :旭化成社製) により 、 40倍 (体積) に濃縮する。 前記濃縮液に対して、 1 3倍体積量の 陰イオン交換樹脂 (商品名 DEAE S e p h a r o s e F F : フ アルマシア社製) を加えて、 バッチ法により α— GAR Eの吸着および 溶出を行う。 まず、 1 OmMリン酸二カリウム水溶液、 続いて 0. 0 5 M N a C 1を含む 1 OmMリン酸ニ力リゥム水溶液で洗浄することに より非吸着タンパク質を除去してから、 0. 1 5M N a C 1 を含む 1 0 mMリン酸ニ力リゥム水溶液によりひ — G AR Eを溶出させ、 ひ 一 G ARE活性画分を回収する。
次に、 前記活性画分を、 2 OmMリン酸カリウム緩衝液 (pH 7. 5 ) で平衡化した陰イオン交換樹脂 (商品名 Q_ S e p h a r o s e F F : フアルマシア社製) カラムに供して《— GAR Eを吸着させ、 前 記緩衝液により洗浄を行う。 そして、 N a C 1含有 2 0 mMリン酸カリ ゥム緩衝液 (p H 7. 5 ) を用いて、 N a C 1濃度 0. 2 M— 0. 2 6 Mのステップワイズ法により a— GAREを溶出させる。 この場合、 a — GAREは、 0. 2 6M N a C 1含有 20 mMリン酸カリウム緩衝 液により溶出される。
例えば、 以上のような精製方法によって、 部分精製された本発明のひ — GAR E酵素溶液を得ることができる。 なお、 本発明のその他の新菌 体由来の α— GAR Εも同様にして精製できる。
また、 本発明の新規菌体の培養に使用する培地は、 前記栄養液体培地 には制限されず、 この他に、 例えば、 以下に示すヘモグロビン (Hb) 培地を使用することもできる。 なお、 Hb溶液は、 例えば、 以下に示す 方法により調製できる。
(H b培地: p H 6. 0)
H b溶液 0. 2重量%
K2H P 04 0. 2重量%
Mg S〇4 7 H20 0. 02重量%
微量金属塩溶液 1. 0重量%
微量ビタミン類溶液 0. 2重量%
(H b溶液)
新鮮血液を遠心分離 (2, 0 0 0 G、 1 0分間、 室温) して赤血球を 回収し、 これに等量 (体積) の蒸留水を添加して溶血させる。 この溶血 液を遠心分離 (2, 0 0 0 G、 1 5分間、 室温) し、 赤血球膜等を除去 した溶液を H b溶液とする。 (微量金属塩溶液)
C a C 1 2 2 Η20 2 0 0 m g
H B〇 5 0 m g
C u S 04 5 H9〇 2 0 mg
K I 5 0 m g
F e S O 4 7 H20 1 0 0 m g
Mn S 04 5 H20 20 0 mg
Z n S 04 7 H20 2 0 0 m g
N a 2 M o O 4 2 H20 5 0 m g
残分 水 (全量 5 0 0 m l )
(微量ビタミン類溶液)
C a—パントテン酸 40 m g
イノシトール 2 0 mg
ナイァシン 40 m g
p—ァミノ安息香酸 2 0 m g
ピリ ドキシン塩酸塩 40 m g
チアミン塩酸塩 40 m g
ピオチン 0. 2 mg
ビタミン B i 2 0. 0 5mg
残分 水 (全量 1 0 0m l ) つぎに、 本発明の糖化タンパク質または糖化べプチドの測定方法につ いて、 血球を試料とし、 前記血球中の糖化タンパク質 (例えば、 HbA 1 c ) を、 α— GAREおよび F AODを用いて測定する例をあげて説 明する。 まず、 全血から遠心分離等の常法により血球画分を分離し、 これを溶 血させる。 この溶血方法は特に制限されず、 例えば、 界面活性剤を用い る方法、 超音波による方法、 浸透圧の差を利用する方法等が使用できる 。 この中でも、 操作の簡便性等の理由から、 界面活性剤を用いる方法が 好ましい。
前記界面活性剤としては、 例えば、 商品名 T r i t o nX— 1 0 0等 のポリォキシエチレン— p— t—ォクチルフエ二ルエーテル類、 商品名 Twe e n - 2 0等のポリオキシエチレンソルビタンアルキルエステ ル類、 商品名 B r i j 3 5等のポリ (ォキシエチレン) アルキルェ一テ ル類等が使用できる。 前記界面活性剤による処理条件は、 例えば、 処理 溶液中の血球濃度が 1〜 1 0体積%の場合、 前記処理溶液中の濃度が 0 . 1〜 1重量%になるように前記界面活性剤を添加し、 室温で、 5秒〜 1分程度攪拌すればよい。
つぎに、 前記溶血試料に対し、 本発明の α— GAREによる酵素処理 を行う。 これにより、 前記溶血試料中の糖化タンパク質からひ 一 GAを 遊離させる。 前記 α— GAREによる酵素処理は、 例えば、 緩衝液中で 行われ、 その処理条件は、 使用する α— GAR Εの種類 (例えば、 由来 等の違い) や、 糖化タンパク質や糖化ペプチドの種類およびそれらの濃 度等により適宜決定される。
例えば、 測定対象物が HbA 1 cであり、 スフインゴモナス パラポ ゥシモビリス KDK10Q4(Sphingomonas parapauc imobi 1 i s KDK1004) ( FER BP— 7041) 由来の a— G A R Eを使用する場合、 その処理条件は 、 例えば、 反応液中のひ _ G AR E濃度 0. 0 1 U〜 1 KUZリットル 、 温度 1 5〜 6 0 °C, 反応時間 3分〜 6時間、 pH 5. 0〜 : L 0. 0の 範囲である。 また、 好ましくは、 それぞれ、 温度 3 0〜 3 7° (:、 反応時 間 5〜6 0分、 pH 6〜 8の範囲である。 この場合、 前記緩衝液として は、 トリス塩酸緩衝液、 リン酸緩衝液、 グッド緩衝液 (E P P S緩衝液 、 P I P E S緩衝液等) 等が使用できる。 なお、 本発明のその他の新菌 体由来の α— GAR Εも同様にして使用できる。 つぎに、 前記ひ — GAR E処理によって得られた分解物 (α— GA) を FAODで処理する。 この FAODが触媒する、 α— GAの分解反応 を、 下記式 ( 1 ) に示す。
(式 1 )
R1— CO— CH2_NH— R2 + H2〇 + 〇2
→ R 1 - CO- CHO + ΝΗ,— R2 + Η
Figure imgf000028_0001
2 前記式 ( 1) に示すように、 前記 a— GARE処理による分解物 ( ひ - G Α : R1— CO—CH2— NH— R2) を FAOD処理すること により、 糖 (I^— CO—CHO), アミノ酸 (NH2— R2) および過酸 化水素 (H 202) が生成する。
前記式 ( 1 ) において、 R1は、 糖化反応前の糖に由来する残基 (糖 残基) を意味する。 前記糖残基 (R 1) は、 反応前の糖がアルドースの 場合はアルドース残基であり、 反応前の糖がケトースの場合、 ケト一ス 残基である。 例えば、 反応前の糖がグルコースの場合は、 アマドリ転位 により反応後の構造はフルクト一ス構造をとるが、 この場合、 糖残基 ( R1) はグルコース残基 (アルド一ス残基) となる。 この糖残基 (R1) は、 例えば、 ― [CH (OH)] n- CH2OH で示すことができ、 nは、 0〜6の整数である。
また、 前記式 ( 1) において、 R2は、 《—ァミノ基が糖化されてい るアミノ酸残基であり、 下記式 (2) で示すことができる。 下記式 (2 ) において、 R3はアミノ酸側鎖基を示す。
(式 2)
一 CHR3 - CO -〇H 前記 FAODは、 前記反応を触媒するものであれば、 特に制限されず 、 例えば、 さらに他の触媒機能を有してもよい。 この FAOD処理は、 前記 α— GAR Eによる酵素処理と同様に緩衝液中で行うことが好ま しい。 前記緩衝液は特に制限されず、 例えば、 トリス塩酸緩衝液、 EP P S緩衝液、 P I P E S緩衝液等が使用できる。
前記 FAODの処理条件は、 例えば、 反応液中の FAOD濃度 0. 1 〜 1 0 KU/リットル、 温度 1 5〜 50° (:、 反応時間 1〜 6 0分、 p H 6〜 9の範囲であり、 好ましくは、 それぞれ、 FAOD濃度 0. 5〜2 KU/リツトル、 温度 3 0〜 3 7°C、 反応時間 5〜2 0分、 pH 7〜8 の範囲である。
つぎに、 前記 FAOD処理で生じた過酸化水素を、 前記 PODおよび 酸化により発色する基質を用いて、 酸化還元反応を利用して測定する。 前記酸化還元反応は、 通常、 緩衝液中で行われ、 その条件は、 反応液 中の過酸化水素濃度等により適宜決定される。 例えば、 反応液中の P〇 D濃度 1 0 I;〜 40 0 KU/リットル、 反応温度 1 5〜40°C、 反応時 間 0. :!〜 5分、 pH 5〜 l 0であり、 より好ましくは、 POD濃度 5 0 U〜 2 0 KUZリットル、 反応温度 3 0〜 3 7°C、 反応時間 0. 1〜 1分、 pH 5〜 8である。 また、 前記緩衝液は、 特に制限されず、 前記 FAOD処理と同様の緩衝液等が使用できる。
前記基質として前記発色性基質を用いた場合は、 その発色 (反応液の 吸光度) を分光光度計で測定することにより、 過酸化水素の濃度を測定 でき、 これから試料中の糖化夕ンパク質濃度を知ることができる。 この測定において、 各処理工程は前述のように別々に行ってもよいが 、 場合によりいくつかの工程を同時に行ってもよいし、 全てを同時に行 つてもよい。 例えば、 試料に《— GAREと FAODとを同時に添加し て反応させることにより、 ひ一 GAR E処理工程と F AO D処理工程と を同時に行うことができる。 また、 ひ 一 GARE分解物に、 FAODと P ODと発色性基質とを同時に添加して反応させることにより、 FAO D処理工程と P ODを用いた発色工程とを同時に行うこともできる。 こ の他に、 前記界面活性剤による溶血処理工程と、 α— GARE処理工程 とを同時に行うことも可能である。
(実施例)
(実施例 1)
この実施例は、 本発明の a -GAREを産生する新菌体の培養液上清 と、 ひ一 GAを有する糖化ペプチドとを反応させて、 前記糖化ペプチド から a _GAを遊離させた例である。 なお、 特に示さない限り、 前記ス クリーニング方法と同様にして、 菌の培養、 糖化ペプチドの分解および TL C分析を行った。
まず、 以下に示す本発明の各新規菌体を、 それぞれ前記栄養液体培地 (pH 8. 0) 5m lに植菌して、 3 0 °Cで 48時間振とう培養を行つ た。 得られた各培養液を、 遠心分離して菌体を除去し、 その上清を粗酵 素液とした。 (使用菌体)
スフインゴバクテリゥム ミズタエ KDK1003 (Sphingobacterium mizutae KDK1003) (FERM P— 17348)
スフインゴモナス パラポゥシモビリス KDK1004 (Sphingomonas parapaucimobilis KDK1004) (FERM BP— 7041)
コマモナス ァシド ランス KDK1005 (Comamonas ac idovorans KDK1005) (FERM P— 17346)
ムコ一 サ一シネロイデス エフ ジヤンセッニ KDK30Q4(Mucor c ircinel loides 丄. jansseni i KDK3004) (FERM P- 17345)
ぺニシリウム ヮクスマ二 KDK3005 (Penicillium waksmanii KDK3005) (FERM P— 17344) 前記粗酵素液 1 0 0 1 と、 前記各 0. 0 1 M糖化ペプチド (F 2 P 、 F 3 P) 水溶液 5 0 1 とをそれぞれ混合し、 3 0°Cで一晩反応させ た後、 これらの反応液を TL Cにより分析した。 これらの TL C分析の 結果を図 1〜図 5に示す。 図 1〜図 5は、 それぞれ、 スフインゴバクテ リウム ミズタエ KDK1003 (Sphingobacterium mizutae KDK1003) ( FERM P— 17348)、 スフインゴモナス パラポゥシモビリス KDK1004 ( phingomonas parapaucimobilis KDK1004) (FERM BP— 7041)、 コマモ ナス ァシドボランス KDK1005(Comamonas acidovorans KDK1005) ( FERM P— 17346)、 ムコー サ一シネロイデス エフ ジヤンセッニ K DK3004 (Mucor circinel loides 丄. janssenii KDK3004) (FERM P — 17345)、 ぺニシリウム ヮクスマ二 KDK3005 (Penicillium aksma nii KDK3005) (FERM P— 17344)についての T L Cのクロマトグラムで ある。 図 1〜図 5において、 レーン N o. 1はコントロール (FV)、 レ —ン N o. 2はコントロール (L e u、 V a l、 H i s ) でぁり、 図 l および図 2において、 レーン No. 3は F 3 P分解物、 図 3〜図 5にお いて、 レーン No. 3は F 2 P分解物、 レーン No. 4は F 3 P分解物 である。 また、 各図中において矢印が示すスポットの移動度を、 下記表 1に示す。
(表 1 )
図 N o サンプル名 移動度
コントロ一ル F V 0. 43
F 3 P分解物 0. 44 図 2 コントロ一ル F V 0 , 43
F 3 P分解物 0 44 図 3 コントロール F V 0 40
F 2 P分解物 0 42
F 3 P分解物 0 40 図 4 コントロール F V 0 40
F 2 P分解物 0 40
F 3 P分解物 0 42 図 5 コントロール F V 0 40
F 2 P分解物 0 40
F 3 P分解物 0 42 図 1〜図 5および前記表 1に示すように、 前記各粗酵素液により処理 した糖化べプチド分解物において、 コントロール FVと同じ移動度でス ポットが確認できた (矢印で示すスポット)。 以上のことから、 本発明の ひ一 GAREにより、 糖化ペプチドから a— G Aが遊離することがわか つた。 さらに、 前記分解物のスポットが、 V a 1の移動度とは異なるこ とから、 ひ一 GAR Eにより遊離された FVから糖が乖離されていない こともわかった。 また、 図 3〜図 5に示すように、 F 2 P分解物では、 F Vと H i sのスポットが見られた。 F 3 P分解物において、 FV以外 の分解物 (ジペプチド) のスポットが見られないのは、 この TL Cの方 法では検出されにくいためと推測できる。
(実施例 2)
この実施例は、 本発明の新規菌体由来の粗酵素により糖化べプチドを 処理し、 α— GA (F V) の遊離を確認した例である。
スフインゴモナス パラポゥシモビリス KDK1004 (Sphingomonas arapaucimobilis KDK1004) (FERM BP— 7041) を、 前述の Hb培地 (p H 6. 0) で 28で、 5日間、 往復振とう培養した。 そして、 培養液を 遠心分離 ( 1 2, 00 0 G、 1 5分間、 4°C) し、 得られた上清を粗酵 素液とした。
0. 0 1 M F 4 P水溶液 5 0 1に、 前記粗酵素液 1 0 0 1およ び 0. 2 Mリン酸カリウム緩衝液 (p H 8. 0) 50 l を混合し、 3 7°Cで一晩反応させた。 この反応液を、 限外ろ過膜 (分画分子量サイズ 5 kD a :商品名ウルトラフリー MCフィル夕一: ミリポア社製、 以下 同じ) に供してタンパク質等の高分子量物質を除去し、 得られた溶液を 凍結乾燥した。
前記各凍結乾燥品を下記溶離液 A 20 a 1に溶解し、 この溶液を下記 条件で逆相クロマトグラフィーに供し、 分析開始から 1 5秒ごと (2 5 0 1 / 1フラクション) に分画した。 また、 コントロールとして FV を同条件で溶出させ、 その溶出時間も確認した。 (逆相クロマトグラフィ一)
カラム ; 商品名 Hy p e r c a r b (ジ一エルサイエンス社製) サイズ ; 1 0 0mmX4. 6 mm
ループ ; 1 0 0 0 1
溶離液 A ; トリフルォロ酢酸:蒸留水 = 0. 1 : 1 00 (体積比) 溶離液 B ; トリフルォロ酢酸:蒸留水: ァセトニトリル
= 0. 1 : 80 : 20 (体積比)
グラジェント条件 ; 0分〜2 5分 : 0— 2 0体積%溶離液 B
2 5分以降 : 20体積%溶離液8 流速 ; 1m l Z分
カラム温度 ; 3 7で
検出波長 ; 2 1 0 nm、 2 3 0 nm そして、 前記逆相クロマトグラフィーにより得られた各分離フラクシ ンについて、 以下に示す方法により FVの検出を行った。
(F Vの検出方法)
各分離フラクション溶液 20 1に、 1 0 mo 1 Zリツトル過酸化 水素水溶液 20 a 1添加した後、 下記酸化還元反応液 A 60 1 を添 加して 3 7 Xで 1 5分間反応させた。 なお、 前記反応は、 生化学自動分 析装置 (商品名 J CA— BM8 : 日本電子社製、 以下同じ) により行い 、 その検出は、 主波長 6 94 nmおよび副波長 8 84 nmにおける前記 反応液の吸光度の測定により行った。 (酸化還元反応液 Aの組成)
商品名 DA 64 3 3 xmo l Zリットル
(和光純薬工業社製、 以下同じ)
POD (Ty p e III:東洋紡績社製、 以下同じ) 3 3 KUZリットル F AOD (旭化成社製) 3. 3 KUZリットル リン酸カリウム緩衝液 (pH 8. 0) 0. 1 7 mo 1 /リットル この結果、 逆相クロマトグラフィ一における溶出時間 5〜 6分の分離 フラクションにおいて、 発色が確認された。 この溶出時間は、 コント口 —ル F Vの溶出時間と一致し、 F 4 Pの分解物に FVが存在することが 示唆された。
(実施例 3)
この実施例は、 ひ一 GARE濃度を変化させて、 各濃度における α— GAR Ε活性を確認した例である。
( 1 ) 部分精製酵素の調製
スフインゴモナス パラポゥシモビリス KDK10Q4 (Sphingomonas arapaucimobilis KDK1004) (FERM BP— 7041)を前記実施例 2と同様に してそれぞれ培養し、 その培養液から上清を回収して粗酵素液とした。 この粗酵素液 5 0m 1を、 前記限外ろ過膜 (分画分子量サイズ 5 kD a ) を用いて 5m 1に濃縮した後、 以下に示す条件のゲルクロマトグラフ ィ一に供して部分精製した。 (ゲルカラムクロマトグラフィー)
カラム : 商品名 S u p e r d e x 2 00 p g
(フアルマシア社製)
カラムサイズ : 内径 26 0 mm、 長さ 6 0 0 mm
流速 : 5. 2m l 分
検出波長 : 28 0 nm、 2 3 0 nm
溶離液 : 2 0mM リン酸カリウム緩衝液 (p H 7 5)
1フラクション : 7m l (2) a— GARE活性の測定
(分解方法)
1 0 mM F 3 P水溶液 50 1に対して、 所定量 (2 5、 5 0、 7 5、 1 0 0、 1 2 5 1 ) の前記部分精製《— GAREおよび 1 Mリン 酸カリウム緩衝液 (PH 8. 0) を添加して 3 7 °Cで一晩反応させた。 なお、 前記反応溶液は全量 20 0 1 とし、 前記緩衝液の最終濃度が 5 OmMとなるようにした。
(測定方法)
前記反応溶液を蒸留水で 3倍希釈 (体積) し、 この希釈液 2 5 1 に 、 1 0 M過酸化水素溶液 1 5 X 1 と下記酸化還元反応液 B 7 0 m 1 と をこの順序で添加し、 3 7°Cで 1 5分間反応させた。 そして、 実施例 2 と同様にして吸光度を測定した。 そして、 a— GARE無添加の場合を ブランクとし、 5分間当たりの吸光度増加量を α— G ARE活性として 求めた。 この結果を図 6に示す。 図 6は、 スフインゴモナス パラポゥ シモビリス KDK1004 (Sphingomonas parapauci obi 1 is KDK1004) (F ERM BP— 7041) 由来 α— GAREの酵素量と発色量 (吸光度) との関係 を表すグラフである。 (酸化還元反応液 Bの組成)
DA 64 3 1 u o 1 リットル POD 3 1 K U Zリットル F AOD 0. 8 K U Zリットル リン酸カリゥム緩衝液 ( p H 8. 0) 0. 1 6 m o 1 /リットル 図 6に示すように、 前記 α— GAREは、 酵素量約 2 0 0 0 1 の範囲で酵素量に依存して活性が増加した。
(実施例 4)
この実施例は、 本発明のひ一 G A R Eについて熱安定性を確認した例 である。
前記実施例 3において調製した、 スフインゴモナス パラボウシモビ リス KDK1004 (Sphingomonas parapaucimobi 1 is KDK1004) (FERM B P— 7041) 由来ひ一 GAR Eの部分精製酵素を、 予め、 各温度 ( 30、 3 7、 50、 6 0、 7 0 °C) で 2 0分間インキュベートした。 そして、 実 施例 3と同様の F 3 P水溶液 5 0 1に、 前記熱処理後の部分精製酵素 1 0 0 1および 5 OmMリン酸カリウム緩衝液 (pH 8. 0) 50 1 を混合して、 3 7 °Cで 1 8時間反応させた。 この反応溶液 2 0 l に ついて前記実施例 3と同様にして FAODを用いた酸化還元反応を行い 、 吸光度を測定した。 そして、 5分間当たりの吸光度の増加量を α— G AR Ε活性とし、 未処理の α— GAR Εの活性を 1 0 0 %とした場合の 残存活性 (%) を求めた。 この結果を図 7に示す。 図 7は、 スフインゴ モナス パラ ゥシモビリス KDK1004 (Sphingomonas parapaucimobi lis KDK1004) (FERM BP— 7041)由来 α _ GAR Eの熱安定性を示すグ ラフである。
図 7に示すように、 前記 a— GAREは、 3 0〜 5 0 °Cの熱処理によ つて 1 0 0 %の残存活性を示したが、 7 0°Cでの熱処理によって、 完全 に失活した。
(実施例 5)
この実施例は、 本発明のひ一 GAREについて至適温度を確認した例 である。
前記実施例 3において調製したスフィンゴモナス パラポゥシモビリ ス KDK1004 (Sphingomonas parapauc imob i 1 i s KDK1004) (FERM BP - 7041) 由来ひ— GAR Eの部分精製酵素 1 0 0 / 1および 2 0 OmM リン酸緩衝液 (pH 8. 0) 5 0 1を、 実施例 3と同様の F 3 P水溶 液 5 0 1 に混合し、 各温度 ( 1 0、 3 0、 3 7、 5 0、 6 0、 7 0 °C ) で 8時間反応させた。 この反応溶液を蒸留水で 3倍希釈 (体積) した 希釈液 2 5 1について、 前記実施例 3と同様にして F AODを用いた 酸化還元反応を行い、 吸光度を測定した。 そして、 5分間当たりの吸光 度の増加量をひ — GARE活性とした。 この結果を図 8に示す。 図 8は 、 スフインゴモナス パラポゥシモビリス KDK1QQ4 (Sphingomonas arapaucimobilis KDK1004) (FERM BP— 7041)由来ひ — G A R Eの至適 温度を示すグラフである。
図示のように、 前記 α— GAR Eの至適温度は、 約 3 7°C付近である ことがわかった。
(実施例 7)
この実施例は、 本発明のひ — GAR Eの分子量を確認した例である。 前記実施例 3と同様にして、 スフインゴモナス パラボウシモビリス KDK1004 (Sphingomonas parapauc imobi 1 is KDK1004) (FERM BP -7 041) の培養液上清を、 同様の条件のゲルクロマトグラフィーに供して分 離を行った。 そして、 各フラクションについて前記実施例 3と同様にし て F AO Dを用いた酸化還元反応を行い、 ひ一 GAR E活性を測定した 。 他方、 分子量マーカ一 (商品名 MWマーカー (HP L C):オリエン タル酵母社製) を同様の条件で前記ゲルカラムクロマトグラフィ一に供 した。 その結果から得られた分子量の検量線と、 a— GAREの溶出結 果とから、 スフインゴモナス パラボウシモビリス KDK1QQ4 (Sphingo monas parapaucimobi 1 is KDK1004) (FERM BP— 7041)由来 α— G A R Eの分子量は、 約 4 0 , 0 0 0〜 6 0 , 0 0 0と推定される。 産業上の利用可能性
このように本発明の新規酵素である a— GAR Eは、 糖化夕ンパク質 等から、 ひ 一アミノ基が糖化されたアミノ酸残基を遊離させることがで きる。 したがって、 例えば、 前記ひ — GAREを、 FAODを用いた糖 化タンパク質等の測定方法に使用すれば、 糖尿病診断の指標となる Hb A 1 cの測定を正確かつ簡便に行うことができるため、 Hb A 1 cの測 定を臨床検査等において実用化することが可能となる。

Claims

請 求 の 範 囲
1. 糖化タンパク質または糖化ペプチドから、 ひーァミノ基が糖化さ れたアミノ酸を遊離させる酵素であって、 スフィンゴバクテリゥム属(S phingobacterium) の菌体由来である新規酵素。
2. スフインゴバクテリゥム属の菌体が、 スフインゴバクテリゥム ミズタエ KDK1003 (Sphingobacterium mizutae KDK1003) (FERM P - 17348) である請求項 1記載の酵素。
3. 糖化タンパク質または糖化ペプチドから、 α—アミノ基が糖化され たアミノ酸を遊離させる酵素であって、 スフインゴモナス属 (Sphingom onas) の菌体由来である新規酵素。
4. スフインゴモナス属の菌体が、 スフインゴモナス パラポゥシモ ビリス KDK1004 (Sphingomonas parapauc imobi 1 i s KDK1004) (FERM
BP— 7041) である請求項 3記載の酵素。
5. 糖化タンパク質または糖化ペプチドから、 《—アミノ基が糖化さ れたアミノ酸を遊離させる酵素であって、 コマモナス属 (Comamonas) の 菌体由来である新規酵素。
6. コマモナス属の菌体が、 コマモナス ァシドボランス KDK1005 (Comamonas acidovorans KDK1005) (FERM P— 17346) である請求項 5記載の酵素。
7. 糖化タンパク質または糖化ペプチドから、 α—アミノ基が糖化さ れたアミノ酸を遊離させる酵素であって、 ムコ一属 (Mucor) の菌体由来 である新規酵素。
8. ムコー属の菌体が、 ムコ一 サ一シネロイデス エフ ジヤンセ ッニ KDK3004 (Mucor circinel loides 丄. janssenii KDK3004) ( FERM P— 17345) である請求項 7記載の酵素。
9. 糖化タンパク質または糖化ペプチドから、 α—ァミノ基が糖化さ れたアミノ酸を遊離させる酵素であって、 ぺニシリウム属 (Penicilliu m) の菌体由来である新規酵素。
1 0. ぺニシリウム属の菌体が、 ぺニシリウム ヮクスマ二 KDK300 5 (Penicillium waksmanii KDK3005) (FERM P— Π344)である請求項
9記載の酵素。
1 1. 遊離される糖化アミノ酸が、 ひ—ァミノ基が糖化されたパリン である請求項 1〜 1 0のいずれか一項に記載の酵素。
1 2. 糖化タンパク質または糖化ペプチドを酵素で分解した後、 この 分解物とフルクトシルアミノ酸ォキシダ一ゼとを反応させ、 この酸化還 元反応を測定することにより、 前記糖化夕ンパク質または糖化べプチド の量を測定する方法であって、 前記酵素として請求項 1〜 1 0のいずれ か一項に記載の酵素を使用する測定方法。
1 3. 測定対象物である糖化タンパク質が、 糖化ヘモグロビンである 請求項 1 2記載の測定方法。
14. プロテアーゼ、 フルクトシルアミノ酸ォキシダ一ゼ、 ペルォキ シダ一ゼおよびこれとの反応により酸化される基質を備える糖化タンパ ク質または糖化ペプチドの測定キットであり、 前記プロテア一ゼが、 請 求項 1〜 1 0のいずれか一項に記載の酵素を含む測定キット。
1 5. スフインゴバクテリゥム属 (Sphingobacterium) の菌体であつ て、 糖化タンパク質または糖化ペプチドから、 α—ァミノ基が糖化され たアミノ酸を遊離させる酵素を産生する菌体。
1 6. スフインゴバクテリゥム属の菌体が、 スフインゴバクテリゥム ミズタエ KDK1QQ3 (Sphingobacterium mizutae KDK1003) (FERM P — 17348) である請求項 1 5記載の菌体。
1 7. スフインゴモナス属 (Sphingomonas) の菌体であって、 糖化夕 ンパク質または糖化べプチドから、 α—ァミノ基が糖化されたアミノ酸 を遊離させる酵素を産生する菌体。
1 8. スフインゴモナス属の菌体が、 スフインゴモナス パラポゥシ モビリス KDK1004 (Sphingomonas parapaucimobi 1 i s KDK1004) (FER M BP— 7041) である請求項 1 7記載の菌体。
1 9. コマモナス属 (Comamonas) の菌体であって、 糖化タンパク質ま たは糖化べプチドから、 α—ァミノ基が糖化されたアミノ酸を遊離させ る酵素を産生する菌体。
2 0. コマモナス属の菌体が、 コマモナス ァシドボランス KDK100 5 (Comamonas acidovorans KDK1005) (FERM P— 17346)である請求項 1 9記載の菌体。
2 1. ムコー属 (Mucor) の菌体であって、 糖化タンパク質または糖化 ぺプチドから、 ひ —ァミノ基が糖化されたアミノ酸を遊離させる酵素を 産生する菌体。
2 2. ムコ一属の菌体が、 ムコー サーシネロイデス エフ ジヤン セッニ KDK3004 (Mucor circinel loides 丄. jansseni i KDK3004 ) (FERM P— 17345) である請求項 2 1記載の菌体。
2 3. ぺニシリゥム属 (Penicillium) の菌体であって、 糖化タンパク 質または糖化ペプチドから、 ひーァミノ基が糖化されたアミノ酸を遊離 させる酵素を産生する菌体。
24. ぺニシリウム属の菌体が、 ぺニシリウム ヮクスマ二 KDK300 5 (Penicillium waksmanii KDK3005) (FERM P— 17344)である請求項 2 3記載の菌体。
2 5. 遊離される糖化アミノ酸が、 α—ァミノ基が糖化されたパリン である請求項 1 5〜 2 4のいずれか一項に記載の菌体。
PCT/JP2000/002357 1999-04-12 2000-04-11 α-GLYCATED AMINO ACID RELEASING ENZYME WO2000061732A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE60013428T DE60013428T2 (de) 1999-04-12 2000-04-11 Alpha-glikolisierte aminosäure freisetzendes enzym
EP00915491A EP1176191B1 (en) 1999-04-12 2000-04-11 Alpha-glycated amino acid releasing enzyme
JP2000611656A JP4613282B2 (ja) 1999-04-12 2000-04-11 α−糖化アミノ酸遊離酵素
AU36771/00A AU3677100A (en) 1999-04-12 2000-04-11 Alpha-glycated amino acid releasing enzyme
US09/958,515 US6825016B1 (en) 1999-04-12 2000-04-11 α-glycated amino acid releasing enzyme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14218599 1999-04-12
JP11/142185 1999-04-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/958,515 A-371-Of-International US6825016B1 (en) 1999-04-12 2000-04-11 α-glycated amino acid releasing enzyme
US10/861,280 Division US20040247587A1 (en) 1999-04-12 2004-06-04 Alpha-glycated amino acid releasing enzyme

Publications (1)

Publication Number Publication Date
WO2000061732A1 true WO2000061732A1 (en) 2000-10-19

Family

ID=15309368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002357 WO2000061732A1 (en) 1999-04-12 2000-04-11 α-GLYCATED AMINO ACID RELEASING ENZYME

Country Status (7)

Country Link
US (2) US6825016B1 (ja)
EP (1) EP1176191B1 (ja)
JP (1) JP4613282B2 (ja)
CN (1) CN1218040C (ja)
AU (1) AU3677100A (ja)
DE (1) DE60013428T2 (ja)
WO (1) WO2000061732A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315600A (ja) * 2001-04-20 2002-10-29 Asahi Kasei Corp N末端糖化蛋白質の定量方法
WO2004038035A1 (ja) * 2002-10-23 2004-05-06 Daiichi Pure Chemicals Co., Ltd. フルクトシルバリンの生産方法および該生産方法により得られたフルクトシルバリンの定量方法
WO2006120976A1 (ja) 2005-05-06 2006-11-16 Arkray, Inc. タンパク質の切断方法およびその用途
WO2008018596A1 (fr) 2006-08-11 2008-02-14 Arkray, Inc. Marqueur d'hyperglycémie postprandiale, procédé de détermination et utilisation correspondants
WO2008059874A1 (fr) * 2006-11-16 2008-05-22 Amano Enzyme Inc. Nouvelle enzyme digestant les dipeptides, son procédé de préparation, procédé de dosage des protéines glyquées utilisant l'enzyme digestant les dipeptides et composition de réactif destinée à être utilisée dans ce procédé
WO2008093723A1 (ja) 2007-01-30 2008-08-07 Arkray, Inc. HbA1c測定方法
EP2096173A1 (en) 2003-05-21 2009-09-02 Asahi Kasei Pharma Corporation Method of measuring glycolated hemoglobin A1C, enzyme to be used therefor and process for producing the same
US8273577B2 (en) 2007-01-30 2012-09-25 Arkray, Inc. Method for detecting phenothiazine-derivative color and color-developer reagent used therein
EP2639586A1 (en) 2012-03-15 2013-09-18 ARKRAY, Inc. Measurement method using enzymes
US8758648B2 (en) 2008-03-19 2014-06-24 Arkray, Inc. Stabilizer of color former and use thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1304385B1 (en) * 2000-07-14 2010-12-29 ARKRAY, Inc. Method of selectively determining glycated hemoglobin
EP1443082B1 (en) * 2001-10-11 2011-06-08 ARKRAY, Inc. Method of stabilizing oxidation color former
JP4501689B2 (ja) * 2002-07-26 2010-07-14 味の素株式会社 ペプチドを生成する新規酵素およびこれを生産する微生物およびこれらを用いるジペプチドの製造方法
CN102692411B (zh) * 2012-06-08 2016-12-14 上海蓝怡科技股份有限公司 一种测定糖化血红蛋白百分比的试剂

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526150A1 (en) * 1991-07-29 1993-02-03 GENZYME LIMITED (formerly known as Genzyme (UK) Ltd) Assay
EP0678576A2 (en) * 1994-03-03 1995-10-25 Kyoto Daiichi Kagaku Co., Ltd. Fructosyl amino acid oxidase and process for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019628A (ja) 1973-06-23 1975-03-01
JPS63279782A (ja) 1987-05-12 1988-11-16 Onoda Cement Co Ltd アルカリプロテア−ゼ産生微生物
JP3428078B2 (ja) * 1992-09-10 2003-07-22 住友化学工業株式会社 ビオチンの製造方法および使用される微生物
JP2923222B2 (ja) * 1994-03-03 1999-07-26 株式会社京都第一科学 フルクトシルアミノ酸オキシダーゼ及びその製造方法
US6043050A (en) * 1996-06-27 2000-03-28 Mercian Corporation Biological process for producing steroids hydroxylated at the 25-position
AU755387B2 (en) * 1997-12-16 2002-12-12 Japan Tobacco Inc. Polypeptides having aminopeptidase activity and nucleic acids encoding same
WO2000050579A1 (fr) 1999-02-22 2000-08-31 Arkray, Inc. Nouvelle enzyme

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526150A1 (en) * 1991-07-29 1993-02-03 GENZYME LIMITED (formerly known as Genzyme (UK) Ltd) Assay
EP0678576A2 (en) * 1994-03-03 1995-10-25 Kyoto Daiichi Kagaku Co., Ltd. Fructosyl amino acid oxidase and process for producing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KENJI YAMAMOTO ET AL.: "Microbial endoglycosidases for analyses of oligosaccharide chains in glycoproteins", J. BIOCHEM., vol. 116, no. 2, 1994, pages 229 - 235, XP002929687 *
NOBUYUKI YOSHIDA ET AL.: "Primary structures of fungal fructosyl amino acid oxidases and their application to the measurement of glycated proteins", EUR. J. BIOCHEM., vol. 242, no. 3, 1996, pages 499 - 505, XP002929686 *
See also references of EP1176191A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315600A (ja) * 2001-04-20 2002-10-29 Asahi Kasei Corp N末端糖化蛋白質の定量方法
WO2004038035A1 (ja) * 2002-10-23 2004-05-06 Daiichi Pure Chemicals Co., Ltd. フルクトシルバリンの生産方法および該生産方法により得られたフルクトシルバリンの定量方法
EP2096173A1 (en) 2003-05-21 2009-09-02 Asahi Kasei Pharma Corporation Method of measuring glycolated hemoglobin A1C, enzyme to be used therefor and process for producing the same
US7820404B2 (en) 2005-05-06 2010-10-26 Arkray, Inc. Protein cleavage method and use thereof
WO2006120976A1 (ja) 2005-05-06 2006-11-16 Arkray, Inc. タンパク質の切断方法およびその用途
WO2008018596A1 (fr) 2006-08-11 2008-02-14 Arkray, Inc. Marqueur d'hyperglycémie postprandiale, procédé de détermination et utilisation correspondants
EP2325652A2 (en) 2006-08-11 2011-05-25 Arkray, Inc. Postprandial hyperglycemia marker, method of measuring the same, and usage thereof
EP2224246A1 (en) 2006-08-11 2010-09-01 Arkray, Inc. Postprandial hyperglycemia marker, method of measuring the same, and usage thereof
EP2224245A1 (en) 2006-08-11 2010-09-01 Arkray, Inc. Postprandial hyperglycemia marker, method of measuring the same, and usage thereof
WO2008059874A1 (fr) * 2006-11-16 2008-05-22 Amano Enzyme Inc. Nouvelle enzyme digestant les dipeptides, son procédé de préparation, procédé de dosage des protéines glyquées utilisant l'enzyme digestant les dipeptides et composition de réactif destinée à être utilisée dans ce procédé
WO2008093723A1 (ja) 2007-01-30 2008-08-07 Arkray, Inc. HbA1c測定方法
US8008085B2 (en) 2007-01-30 2011-08-30 Arkray, Inc. Method of measuring HbA1c
US8273577B2 (en) 2007-01-30 2012-09-25 Arkray, Inc. Method for detecting phenothiazine-derivative color and color-developer reagent used therein
EP3001190A1 (en) 2007-01-30 2016-03-30 ARKRAY, Inc. Method for detecting phenothiazine-derivative color and color-developer reagent used therein
US8758648B2 (en) 2008-03-19 2014-06-24 Arkray, Inc. Stabilizer of color former and use thereof
EP2639586A1 (en) 2012-03-15 2013-09-18 ARKRAY, Inc. Measurement method using enzymes
US8802366B2 (en) 2012-03-15 2014-08-12 Arkray, Inc. Measurement method using enzyme

Also Published As

Publication number Publication date
EP1176191B1 (en) 2004-09-01
EP1176191A4 (en) 2002-08-14
JP4613282B2 (ja) 2011-01-12
US6825016B1 (en) 2004-11-30
DE60013428T2 (de) 2005-09-15
EP1176191A1 (en) 2002-01-30
CN1218040C (zh) 2005-09-07
AU3677100A (en) 2000-11-14
US20040247587A1 (en) 2004-12-09
DE60013428D1 (de) 2004-10-07
CN1355841A (zh) 2002-06-26

Similar Documents

Publication Publication Date Title
EP2096173B1 (en) Method of measuring glycolated hemoglobin A1C, enzyme to be used therefor and process for producing the same
EP2843050B1 (en) Modified amadoriase capable of acting on fructosyl hexapeptide
US5712138A (en) Fructosyl amino acid oxidase
JP3668801B2 (ja) 新規酵素
JP2001095598A (ja) 糖化蛋白質の測定方法
JP3786966B2 (ja) フルクトシルアミノ酸オキシダーゼ、その製造方法、及び該酵素を用いたアマドリ化合物の測定方法
EP0678576A2 (en) Fructosyl amino acid oxidase and process for producing the same
WO2000061732A1 (en) α-GLYCATED AMINO ACID RELEASING ENZYME
JP3850904B2 (ja) フルクトシルアミノ酸オキシダーゼ及びその製造方法
US5824527A (en) Fructosyl amino acid oxidase and process for producing the same
JP4004081B2 (ja) フルクトシルアミノ酸オキシダーゼおよびその製造方法
JP2020141690A (ja) 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
EP2093288A1 (en) Novel dipeptide-digesting enzyme, method of producing the same, method of assaying glycated protein by using the dipeptide-digesting enzyme and reagent composition to be used therein
JP4308768B2 (ja) フルクトシルアミンオキシダーゼ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00808856.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09958515

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2000 611656

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2000915491

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000915491

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000915491

Country of ref document: EP