WO2000060699A1 - Dispositif haute frequence utilisant un commutateur a parties mobiles et son procede de fabrication - Google Patents

Dispositif haute frequence utilisant un commutateur a parties mobiles et son procede de fabrication Download PDF

Info

Publication number
WO2000060699A1
WO2000060699A1 PCT/JP2000/002219 JP0002219W WO0060699A1 WO 2000060699 A1 WO2000060699 A1 WO 2000060699A1 JP 0002219 W JP0002219 W JP 0002219W WO 0060699 A1 WO0060699 A1 WO 0060699A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
layer
frequency device
substrate
switch
Prior art date
Application number
PCT/JP2000/002219
Other languages
English (en)
French (fr)
Inventor
Tsunehisa Marumoto
Ryuichi Iwata
Youichi Ara
Hideki Kusamitsu
Kenichiro Suzuki
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US09/958,377 priority Critical patent/US6777771B1/en
Publication of WO2000060699A1 publication Critical patent/WO2000060699A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/921Radiation hardened semiconductor device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/923Active solid-state devices, e.g. transistors, solid-state diodes with means to optimize electrical conductor current carrying capacity, e.g. particular conductor aspect ratio

Definitions

  • the present invention relates to a high-frequency device including a switch having a movable part and a method of manufacturing the same.
  • the present invention relates to a high-frequency device for transmitting a high-frequency signal such as a phased array antenna used for transmitting and receiving a high-frequency signal such as a microwave, and a method of manufacturing the same.
  • a high-frequency device which can be provided with a switch having a movable portion such as a micromachine switch, which is applied to a high-gain band at a high gain, and a method of manufacturing the same.
  • a phased array antenna used in a satellite tracking on-vehicle antenna or a satellite-mounted antenna and having a large number of radiating elements arranged has been used, for example, in the IEICE Technical Report AP 90-75 and This is proposed in Japanese Unexamined Patent Publication No. Hei 11-1990.
  • This type of fused array antenna has a function of arbitrarily changing the direction of a beam by changing the phase fed to each radiating element.
  • phase shifter As a means for changing the phase to be fed, a digital phase shifter (hereinafter abbreviated as a phase shifter) composed of a plurality of phase shift circuits each having a fixed and different phase shift amount is generally used. ing. In a phased array antenna, each of these phase shift circuits is controlled on / off by a 1-bit digital control signal, and the phase shift amounts of the respective phase shift circuits are combined. By combining the phase shift amounts, a feed phase of 0 to 360 'can be obtained for the entire phase shifter.
  • phase shifter applies a DC current or DC voltage to these switching elements, turns them on and off, and changes the transmission path length, susceptance, reflection coefficient, etc., and generates a predetermined phase shift amount.
  • Sa It has the structure to make it.
  • an antenna for a low-Earth orbit satellite tracking terminal in a ground station for example, frequency: 30 GHz,
  • Beam scanning range Beam tilt angle 50 from the front.
  • an aperture area of about 0.13 m 2 (36 Ommx 36 Omm) is required.
  • radiating elements must be arranged at intervals of about 1Z2 wavelength (about 5 mm at 30 GHz) to avoid the generation of grating lobes.
  • phase shift circuit used for each phase shifter must be 4 bits (minimum).
  • the number of wires required for the connection is equal to the number of radiating elements x the number of bits of the phase shift circuit, and if the above-mentioned numerical values are applied, one row in the array arrangement of 72 radiating elements x 7 2
  • the multilayered structure can realize a fused array antenna applicable to a higher frequency band.
  • the thickness of each layer is as small as several mm, so that it does not become too thick. For this reason, the phased array antenna can be made smaller in area, which is particularly advantageous when mounted on a satellite.
  • a micro machine switch which is a minute mechanical switch element
  • a switch element used for switching a phase shift amount of a phase shifter is being studied.
  • each layer is conventionally filled with a dielectric, so that a phase shifter formed in an intermediate layer has a micromachine having a movable portion. The switch could not be used.
  • a micromachine switch cannot be used as a switch element used for a phase shifter, which is not preferable.
  • the present invention is intended to solve such a problem, and is applied to a high-gain and high-frequency band, such as a fused array antenna, and has a movable part such as a micromachine switch. It is an object of the present invention to provide a high-frequency device that can use a switch and a method of manufacturing the high-frequency device. Disclosure of the invention
  • the present invention is a high-frequency device including a substrate, a plurality of waveguides, a switch, a structure, a coupling layer, a separation layer, a high-frequency component, and control means described below.
  • the substrate is made of a dielectric
  • the plurality of waveguides are formed on the substrate made of a dielectric and propagate a high-frequency signal.
  • the switch has a movable part for switching the connection state of the waveguide formed on the substrate.
  • the structure is arranged on the substrate and has a space above a formation region of the switch.
  • the coupling layer is made of a conductive material provided on the structure and provided with coupling means for coupling a high-frequency signal onto a predetermined region of the waveguide.
  • the isolation layer comprises a dielectric material formed on the tie layer.
  • the high-frequency component is formed on the separation layer, and a high-frequency signal is coupled to the waveguide via coupling means.
  • the control means controls the operation of the switch. With this configuration, the switch can be connected and disconnected in the space of the structure by being controlled by the control means.
  • the structure may include a plurality of spacers.
  • the spacer may be made of a dielectric material and may be arranged at a portion of the coupling means.
  • the spacer may be made of a conductor, and may be arranged so as to be insulated and separated from the waveguide.
  • the structure may be constituted by a plate having an integral structure in which a space is formed.
  • the phase shifter may be configured by the waveguide and the switch. At this time, if the high-frequency component is composed of a radiating element and a distributor for introducing a high frequency of a desired frequency into the waveguide is provided, a high-frequency device such as an X-array array antenna can be configured.
  • a plurality of waveguides for transmitting a high-frequency signal on a substrate made of a dielectric are formed.
  • a switch having a movable portion for switching the connection state of the waveguide of the fused array antenna is formed on the substrate.
  • a structure having a space above a switch formation region is formed on a substrate.
  • high frequency A coupling layer made of a conductive material having coupling means for coupling signals is formed on the structure such that the coupling means is arranged on a predetermined region of the waveguide, and then a separation layer made of a dielectric material is formed. Formed on the tie layer. Further, a high-frequency component to which a high-frequency signal is coupled to the waveguide via a coupling means is formed on the separation layer. Further, control means for controlling the operation of the switch is formed.
  • the switch having the movable portion controlled by the control means forms a state in which the switch performs the connection / disconnection operation in the space of the structure.
  • another high-frequency device includes an inner layer substrate constituting a multilayer substrate, a plurality of waveguides, a switch, and a structure.
  • the plurality of waveguides are formed on the main surface of the inner substrate and propagate a high-frequency signal.
  • the switch has a movable part for switching the connection state of the waveguide formed on the main surface of the inner substrate.
  • the structure is disposed between the main surface of the inner substrate and the substrate disposed thereon, and has a space above the switch forming region.
  • the switch having the movable portion performs a connection / disconnection operation in the space of the structure.
  • the structure may be composed of a plurality of spacers, and the spacer may be composed of a dielectric material and may be arranged at the coupling means.
  • the spacer may be made of a conductor and may be arranged so as to be insulated and separated from the waveguide.
  • the structure may be formed of a plate having an integral structure in which a space is formed.
  • FIG. 1 is a perspective view showing a simple configuration of a conventional phased array antenna.
  • FIG. 2 (a) is a cross-sectional view showing a partial configuration of a fused array antenna as a high-frequency device corresponding to the first embodiment of the present invention.
  • FIG. 2 (b) is a cross-sectional view showing the configuration of the switch portion in FIG. 2 (a).
  • FIG. 2 (c) is a plan view on a substrate showing a part of the configuration in FIG. 2 (a).
  • FIG. 3 is a combination of a perspective view and a cross-sectional view showing the configuration of the high-frequency device according to the first embodiment.
  • FIG. 4 (a) is a cross-sectional view showing the configuration of the high-frequency device corresponding to FIG. 2 (a) at the end of the intermediate step in the manufacturing process.
  • FIG. 4 (b) is a cross-sectional view showing the configuration at the end of the intermediate step in the manufacturing process following FIG. 4 (a).
  • FIG. 4 (c) is a cross-sectional view showing a configuration at the end of an intermediate step in the manufacturing process following FIG. 4 (b).
  • FIG. 4 (d) is a cross-sectional view showing the configuration at the end of the manufacturing process following FIG. 4 (c).
  • FIG. 5 is a sectional view showing a partial configuration of a phased array antenna as a high-frequency device according to a second embodiment of the present invention.
  • FIG. 6 (a) is a cross-sectional view showing the configuration of the high-frequency device corresponding to FIG. 5 at the time when the intermediate step is completed in the manufacturing process.
  • FIG. 6 (b) is a cross-sectional view showing the configuration at the end of the middle of the manufacturing process following FIG. 6 (a).
  • FIG. 6 (c) is a cross-sectional view showing the configuration at the end of the manufacturing process following FIG. 4 (b).
  • FIG. 7 is a plan view showing a partial configuration of a phased array antenna as a high-frequency device according to a third embodiment of the present invention.
  • FIG. 8 is a sectional view showing a partial configuration of a phased array antenna as a high-frequency device corresponding to a fourth embodiment of the present invention.
  • FIG. 9 (a) is a cross-sectional view showing the configuration of the high-frequency device corresponding to FIG. 8 at the time of completion of an intermediate step in the manufacturing process.
  • FIG. 9 (b) is a cross-sectional view showing the configuration at the end of the intermediate step in the manufacturing process following FIG. 9 (a).
  • FIG. 9 (c) is a cross-sectional view showing the configuration at the end of the middle of the manufacturing process following FIG. 9 (b).
  • FIG. 9 (d) is a cross-sectional view showing the configuration at the end of the manufacturing process following FIG. 9 (c).
  • FIG. 10 (a) is a cross-sectional view showing a configuration at the end of an intermediate step in a manufacturing process of a separation plate according to the fourth embodiment.
  • FIG. 10 (b) is a cross-sectional view showing the configuration at the end of the manufacturing process following FIG. 10 (a). It is.
  • FIG. 11 is a cross-sectional view showing a partial configuration of a fuse array antenna as a high-frequency device according to another embodiment of the present invention.
  • phased array antenna in the 30 GHz band will be described as an example of the high frequency device with reference to FIG.
  • the fused array antenna has a multilayer structure. That is, first, the phase of a high-frequency signal is controlled on a substrate 101 made of a dielectric material such as glass using a microstrip line 102 a serving as a waveguide and a micromachine switch 102 b serving as a switch. A phase control layer 102 composed of a plurality of phase shift units is formed. As shown in FIG. 2 (b), the micromachine switch 102b has a fixed electrode 121 and a movable electrode 123 supported by a column 122, and a control not shown. The means controls the operation of the movable electrode 123, and performs on / off operation by connecting / disconnecting the fixed electrode 121 and the movable electrode 123.
  • a radiation layer in which a plurality of radiation elements are formed is provided via a coupling layer 103 having a coupling slot 103a as a coupling means and a separation layer 104.
  • An element layer 105 is provided on the phase control layer 102.
  • a parasitic element layer 107 on which a plurality of parasitic elements are formed is disposed thereover via a separation layer 106. This parasitic element is added to increase the bandwidth, and may be configured as needed.
  • a distributing / combining layer 110 composed of a microstrip line or the like is arranged via a coupling layer 108 having a coupling slot 108a and a separation layer 109.
  • the distribution / combination layer 110 distributes a high-frequency signal from a power supply unit (not shown) to each of the upper phase shift units.
  • a ground layer 112 made of a conductive material is provided below a combined distribution layer 110 via a separation layer 111 made of a dielectric.
  • the phase control layer 102 can switch the microstrip lines 102a having different line lengths by a plurality of micromachine switches 102b. Is configured.
  • FIG. 2 (c) shows one cell part constituting a phased array antenna which is a high-frequency device, and a signal line X from a signal line selection unit (not shown) is provided around the cell. i1, Xi2, scanning lines Yj1, Yj2 from a scanning line selector (not shown), a trigger signal line Trg from a controller (not shown), and a switch driving power line V drv is located.
  • the micromachine switch 102b is driven by a drive circuit 102c as control means connected to these signal lines.
  • a connection is made from the upper part of the microstrip line 102a force coupling slot 108a to the lower part of the coupling slot 103a described above. ing.
  • phase shift circuits 22.5 ′, 45 ′, 90 ′, and 180 ′ are formed, and these are the micromachine switches 1. The phase is switched at 0 2b so that the phase of the guided high frequency wave is shifted to a desired value.
  • a spacer 113 made of a dielectric material is disposed between the phase control layer 102 and a layer thereabove.
  • a space is provided above the region where the micromachine switch 102b is formed.
  • the spacer 113 is arranged between the phase control layer 102 and the coupling layer 103 so that the distance between them is about 0.2 mm.
  • the spacer 113 secures a movable space for the micromachine switch 102b, and secures a distance at which a high frequency can propagate through the microstrip line 102a without any problem.
  • the entire configuration of the fused array antenna will be briefly described.
  • a radiating element layer 105 and a parasitic element layer 107 are arranged on a phase control layer 102, as shown in FIG. Also, rank Below the phase control layer 102, a distribution / combination layer 110 is arranged.
  • the radiating element layer 105 includes a separation layer 104 at the bottom and a coupling layer 103 formed of, for example, a thin Cu (copper) layer on the lower surface. I have.
  • a coupling slot 103a composed of a hole is formed corresponding to the array.
  • a coupling layer 108 made of, for example, a thin Cu layer is provided on the back surface of the phase control layer 102, and the coupling layer 108 has a coupling slot 108 corresponding to the array. a is formed.
  • the phase control layer 102 is provided with wirings X 1 to Xm and Y 1 to Y n for individually controlling each phase shift unit and these phase shift units. It has been done. Then, the high-frequency signal from the power supply unit propagates to the strip line of the distribution / combination layer 110, and is supplied to each phase shift unit of the phase control layer 102, where a predetermined amount of power supply phase shift is given. The light propagates through the coupling slot 103a of the coupling layer 103 to each radiating element of the radiating element layer 105, and is radiated from each radiating element in a predetermined beam direction.
  • a phase control layer 10 composed of a plurality of phase shift units provided with a microstrip line 102a and a micromachine switch 102b on a substrate 101.
  • a copper film is formed on the separation layer 109 made of a dielectric material, and the copper film is patterned to form a bond on the separation layer 109.
  • a coupling layer 108 with slots 108a is formed.
  • a conductive material film such as gold is formed on the separation layer 111 made of a dielectric, and this film is patterned to form the distribution synthesis layer 110 on the separation layer 111.
  • a ground layer 1 12 is formed on the back surface of the separation layer 1 1 1. Further, the back surface of the separation layer 109 is brought into contact with the surface of the separation layer 111 where the distribution synthesis layer 110 is formed, and they are attached to each other to form an integrated structure.
  • the surface of the bonding layer 108 of the integrated structure and the back surface of the substrate 101 are brought into contact with each other via the adhesive film 301, and the substrate is heated with a predetermined pressure applied thereto. 1
  • the bonding layer 108 surface is adhered to the back surface.
  • a spacer 113 is fixed to a predetermined position on the substrate 101.
  • a conductive film made of, for example, Cu is formed on the back surface of the separation layer 104 made of a dielectric, and this is patterned to provide a coupling slot 103 a on the back surface of the separation layer 104.
  • the bonded layer 103 is formed.
  • a radiating element ⁇ 105 is formed on the surface of the separation layer 104.
  • a parasitic element layer 107 is formed on the separation layer 106, and the separation layer 104 and the separation layer 106 are bonded to form an integrated structure.
  • the radiating element layer 105 and the parasitic element can be placed on the phase control layer 102.
  • a multilayer structure in which the element layers 107 are arranged is formed.
  • the spacer 113 in the first embodiment is made of a material having a high dielectric constant, and this is placed at the location of the coupling slot 103a. With this arrangement, high-frequency coupling between the upper and lower layers can be realized more efficiently. Further, in the first embodiment, since the spacer 113 is made of an insulating material (dielectric), the spacer 113 is not provided except where the micromachine switch 102 b is formed. No matter where the 13 is placed, problems such as short circuits do not occur. In addition, it is better to arrange these sensors so as to avoid the strip line. By arranging spacers so as to avoid the strip line, disturbance of high-frequency signal transmission can be suppressed even when using spacers.
  • the fused array antenna has a multilayer structure. That is, first, a microstrip line 402 a and a micromachine switch 4 are provided on the back surface of a substrate 401 made of a dielectric material such as glass.
  • the phase control layer 402 made up of a plurality of phase shift units having a phase shift unit having a phase shifter of O.sub.2b is formed.
  • a radiating element layer 400 on which a plurality of radiating elements are formed is provided on the surface of the substrate 401 via a coupling layer 403 having a coupling slot 403a and a separation layer 404. 5 was arranged.
  • a parasitic element layer 407 in which a plurality of parasitic elements are formed is arranged via a separation layer 406 on the top.
  • the micro-machine switch 402 b is formed downward. It is in a state where
  • a distribution synthesis layer 4 composed of a microstrip line or the like is provided below the phase control layer 402 below the phase control layer 402.
  • a coupling layer 408 having a coupling slot 408 a and a separation layer 409 a distribution synthesis layer 4 composed of a microstrip line or the like is provided below the phase control layer 402.
  • 10 are arranged, and distribute a high-frequency signal from a power supply unit (not shown) to each of the phase shift units in the upper layer.
  • a ground layer 412 made of a conductive material is provided via a separation layer 411 made of a dielectric.
  • the phase control layer 402 is made of a dielectric material between the phase control layer 402 and the layer below the phase control layer 402.
  • a space was provided on the area where the second micromachine switch 402b was formed.
  • the spacer 421 is arranged between the phase control layer 402 and the coupling layer 408 so that the distance between them is about 0.2 mm.
  • the spacer 421 secures a movable space for the micromachine switch 402b, and also secures a distance at which a high frequency can propagate through the microstrip line 402a without any problem.
  • phase consisting of a plurality of phase shift units having a microstrip line 402a and a micromachine switch 402b on one side of the substrate 401 is shown.
  • a control layer 402 is formed.
  • a conductive film made of, for example, Cu is formed on one surface of the separation layer 404 made of a dielectric, and this is patterned to form a bonding switch on one surface of the separation layer 404.
  • G A bonding layer 403 with 403 a is formed.
  • a radiating element layer 405 is formed on the other surface of the separation layer 404.
  • a parasitic element layer 407 is formed over the separation layer 406, and the separation layer 404 and the separation layer 406 are attached to each other to form an integrated structure.
  • the surface of the bonding layer 400 of the integrated structure and the other surface of the substrate 402 are brought into contact with each other via an adhesive film 501, and the substrate is heated under a predetermined pressure and heated. 01 and the bonding layer 403 are adhered.
  • the spacer 412 is fixed on the surface of the substrate 401 on which the phase control layer 402 is formed.
  • a copper film is formed on one surface of the separation layer 409 made of a dielectric material, and this copper film is subjected to patterning to form a coupling slot 4 on one surface of the separation layer 409.
  • a bonding layer 408 with 0.8a is formed.
  • a conductive material film such as gold is formed on one surface of the separation layer 411 made of a dielectric material, and this film is patterned to form a distribution composite layer 411 on one surface of the separation layer 411.
  • a ground layer 412 is formed on the other surface of the separation layer 411. Then, the separation layer 409 and the separation layer 411 are attached to each other to form an integrated structure.
  • the multilayer structure shown in FIG. 5 is formed by fixedly arranging these integral structures on the spacer 4122.
  • the spacer 412 may be made of a material having a high dielectric constant, and may be arranged at the coupling slot 408a. As in the first embodiment, high-frequency coupling between the upper and lower layers can be realized more efficiently.
  • a semiconductor may be used, for example, using silicon or GaAs. You may be. Since such a semiconductor has good workability, high mechanical accuracy can be obtained.
  • the spacer can be obtained by longitudinally processing a plate having a predetermined thickness, for example, by using a columnar shape such as a circular column or a polygonal column, so that the manufacture is easy. Further, a spherical spacer may be used, and it is easy to mass-produce a spacer having a uniform size. Also, if a sharp-pointed spacer such as a cone is used, if the substrate to be placed has high rigidity and planar accuracy, the height of the space between the individual spacers can be obtained by deforming the tip. Can be absorbed. Third embodiment
  • the spacer is made of a dielectric material.
  • the spacer is not limited to this.
  • the spacer may be made of a conductive material.
  • a spacer 613 made of a conductive material may be arranged in a region other than the microstrip line 102a of the phase control layer 102.
  • conduction such as grounding can be established between the upper and lower layers via the spacer 613 and a through hole (not shown) separately provided in the substrate 101. Therefore, the unnecessary mode between the ground plates, which is a parallel plate mode, can be suppressed without separately providing a means for coupling the ground potential to each layer.
  • the fused array antenna has a multilayer structure. That is, first, a phase control layer composed of a plurality of phase shift units provided with a microstrip line 72 a and a micromachine switch 72 b on a substrate 71 made of a dielectric material such as glass, for example. 7 0 2 is formed Caught.
  • a radiating element layer 70 having a plurality of radiating elements is formed via a coupling layer 703 having a coupling slot 703a and a separation layer 704. 5 was arranged. Further, a parasitic element layer 707 in which a plurality of parasitic elements are formed is arranged via a separation layer 706 thereon. This parasitic element is added to increase the bandwidth, and may be configured as necessary.
  • a distribution / combination layer 710 composed of a microstrip line or the like is arranged via a coupling layer 708 having a coupling slot 708a and a separation layer 709.
  • a high-frequency signal from a power supply unit (not shown) is distributed to each of the upper phase shift units. Then, in order to guide high-frequency waves with low loss to the microstrip lines, a ground layer 712 made of a conductive material is provided via a separation layer 711 made of a dielectric.
  • the separation plate 7 13 provided with the space 7 13 a is arranged between the phase control layer 70 2 and the layer thereabove. A space was provided above the region where the micromachine switch 720b of the O2 was formed.
  • the separation plate 713 is arranged between the phase control layer 702 and the coupling layer 703, and the interval between them is about 0.2 mm. That is, the separation plate 713 secures a movable space for the micromachine switch 702b, and secures a distance at which a high frequency can propagate through the microstrip line 702a without any problem.
  • phase control layer 70 composed of a plurality of phase shift units provided with a microstrip line 702a and a micromachine switch 72b on a substrate 701.
  • a copper film is formed on the separation layer 709 made of a dielectric material, and this copper film is patterned to form a connection having a connection slot 708 a on the separation layer 709.
  • the layer 708 is formed.
  • a conductive material film such as gold is formed on the separation layer 71 1 made of a dielectric, and this film is subjected to pattern processing to form the distribution / combination layer 7 10 on the separation layer 7 1 1.
  • a ground layer 712 is formed on the back surface of the separation layer 711.
  • the separation layer 7 0 The back surface of 9 and the surface on which the distribution / combination layer 7110 of the separation layer 7111 is formed are brought into contact with each other, and they are attached to each other to form an integral structure.
  • the surface of the bonding layer 708 of the integrated structure is brought into contact with the back surface of the substrate 701 via the adhesive film 801 and a predetermined pressure is applied. Then, the surface of the bonding layer 708 is adhered to the back surface of the substrate 701.
  • the separation plate 71 is formed at a predetermined position on the substrate 701, so that the space formed on the micromachine switch 72b is located above the micromachine switch 72b. Fix 3.
  • a conductive film made of, for example, Cu is formed on the back surface of the separation layer 704 made of a dielectric material, and this is patterned to provide a coupling slot 703 a on the back surface of the separation layer 704.
  • a bonded layer 703 is formed on the surface of the separation layer 704, a radiating element layer 705 is formed. Further, a parasitic element layer 707 is formed over the separation layer 706, and the separation layer 704 and the separation layer 706 are bonded to form an integral structure.
  • these integrated structures are fixedly arranged on the separation plate 713, so that the radiating element layer 705 and the parasitic element layer are formed on the phase control layer 702.
  • a multilayer structure in which 707 is arranged is formed.
  • the formation of the space in the separation plate may be performed as follows.
  • a light-sensitive resin film 902 is applied on a substrate 901 made of a dielectric material, and a desired film of the resin film 902 is formed.
  • a latent image is formed by exposing an optical image to a location.
  • an opening 902a is formed at a position corresponding to the latent image, so that the substrate 901 and the resin are formed. It is possible to obtain a separation plate composed of the membrane 902 and having a space formed by the opening portion 92a.
  • a space may be formed by machining a desired portion of a substrate made of a dielectric material.
  • the configuration in which the phase control layer is formed on the surface opposite to the radiating element forming direction as in the second embodiment described above may be employed. The same is true.
  • a substrate made of a dielectric material such as glass is used.
  • a phase control layer 1002 composed of a plurality of phase shift units provided with a microstrip line 1002a and a micromachine switch 1002b is formed. State.
  • a parasitic element layer 1007 on which a plurality of parasitic elements are formed is arranged via a separation layer 106 on the top.
  • the distribution / combination layer 110 is disposed, and a high-frequency signal from a power supply unit (not shown) is distributed to each of the upper phase shift units.
  • a ground layer 110 12 made of a conductive material is provided via a separation layer 101 made of a dielectric.
  • the micromachine of the phase control layer 1002 is provided.
  • a space is provided in the area where the switch 1002b is formed.
  • the separation plate 101 is disposed between the phase control layer 1002 and the coupling layer 1008 so that the distance between them is about 0.2 mm. That is, also in this case, the separation plate 110 13 secures the movable space of the micromachine switch 102 b and the distance over which the high-frequency wave can propagate through the microstrip line 100 a without any problem. Is secured.
  • alumina / aluminum nitride is used as the material for the separator, dielectric loss can be reduced.
  • glass ceramics are used, they can be made relatively inexpensive. Also, it is possible to use a fluororesin, an ABS resin, an epoxy resin, a paper phenol, or the like, so that the apparatus can be configured at a very low cost.
  • the high-frequency device is a high-frequency device such as a phased array antenna used for transmitting and receiving high-frequency signals such as microphone mouth waves.
  • the present invention is suitable for a high-frequency device that can be used in a high-gain, high-frequency band and that can use a switch having a movable portion such as a micromachine switch, and a method for manufacturing the same. I have.

Description

明細書 可動部を有するスィツチを備える高周波装置およびその製造方法 技術分野
この発明は、マイクロ波などの高周波信号の送受信に用いられる例えばフェーズ ドアレイアンテナなどのような高周波信号を伝送する高周波装置およびその製造 方法に関する。特に、高利得で高周波数帯に適用するもので例えばマイクロマシン スィツチなどのような可動部を有するスィツチを備えることができる高周波装置 およびその製造方法に関する。 背景技術
従来から高周波装置として、例えば、衛星追尾車載アンテナや衛星搭載用アンテ ナに用いられ、多数の放射素子が配置されたフェーズドアレイアンテナが、例えば 電子情報通信学会技術報告 A P 9 0 - 7 5および特開平 1一 2 9 0 3 0 1号公報 に提案されている。
この種のフヱーズドアレイアンテナは、各放射素子に給電する位相を変えること によってビームの方向を任意に変更する機能を有している。
その給電する位相を変化させる手段として、それぞれが固定的な異なる移相量を 有する複数の移相回路から構成されたディジタル移相器(以下、移相器と略称する ) が一般的に使用されている。 フェーズドアレイアンテナにおいては、それら各移相 回路を各々 1ビッ 卜のディジタルの制御信号によりオンノオフを制御してそれぞ れの移相回路が有する移相量を組み合わせる。移相量を組み合わせることにより、 移相器全体で 0〜3 6 0 ' の給電位相を得ることができる。
特に、従来のフ Iーズドアレイアンテナでは、各移相回路におけるスィツチング 素子として、 P I Nダイォード、 G a A s F E Tなどの半導体素子、 およびこれら を駆動するための駆動回路部品が多数使用されている。 そして、 その移相器は、 こ れらスィッチング素子に直流電流または直流電圧を印加してオン Zオフし、伝送路 長、 サセプタンス、 反射係数などを変化させることにより、 所定の移相量を発生さ せる構成を有している。
一方、 近年では、 低軌道衛星通信の分野などにおいて、 インターネッ 卜の利用拡 大、 さらにはマルチメディア通信の普及などにより、 高データレートでの通信が要 求されている。 このため、 アンテナの高利得化が必要となっている。 また、 高デ一 タレートでの通信を実現するためには伝送帯域幅の拡大が必要となり、さらには低 周波数帯における周波数資源の欠乏などから、 Ka帯 (20GHz〜) 以上の高周 波数帯で適用できるアンテナの実現が急がれている。
具体的には、 地上局における低軌道衛星追尾端末のアンテナとして、 例えば、 周波数: 30GHz、
アンテナの等方性利得: 36 dB i、
ビーム走査範囲:正面方向よりビームチルト角 50。
という技術性能が要求されている。
これをフ X—ズドアレイアンテナで実現するためには、 まず、 開口面積:約 0. 13 m2 (36 Ommx 36 Omm) が必要となる。 さらに、 サイ ドローブを抑制 するためには、放射素子を約 1Z2波長 (3 OGHzで 5mm前後) 間隔で配置し てグレーティングローブの発生を回避する必要がある。
また、 ビーム走査ステップを細かくし、 かつディジタル移相器の量子化誤差にと もなうサイ ドローブ劣化を低く抑えるためには、各移相器に使用される移相回路は 4ビッ ト (最小ビッ ト移相器 22. 5' ) 以上であることが望ましい。
上記の条件を満たすフェーズドアレイアンテナに用いられる合計の放射素子数 および移相回路ビッ ト数は、
移相回路素子数: 72x72=約 5000個、
移相回路ビッ ト数: 72 x 72 X 4=約 20000ビット
となる。
ここで、そのような高利得で高周波数帯に適用可能なフヱーズドアレイアンテナ を、前述した従来技術、例えば第 1図に示す特開平 1一 290301号公報記載の フェーズドアレイアンテナで実現しょうとした場合、次のような問題点があつた。 すなわち、 このような従来のフヱーズドアレイアンテナでは、第 1図に示すよう に駆動回路基板 1 1に形成された 1つのドライバ回路 12で、 各移相器内 13の 個々の移相回路を制御する構成となっているため、このドライバ回路 1 2とすべて の移相回路とを個々に接続する必要がある。 したがって、 その接続のための配線は、 放射素子数 X移相回路ビッ ト数の本数だけ必要となり、前述した数値を適用すれば、 放射素子 7 2個 X 7 2個のアレイ配置において、 1列分 (放射素子 7 2個分) の各 移相回路 (4ビッ ト) への配線数は、 7 2 X 4 = 2 8 8本となる。
このような配線を同一平面上に形成した場合、 配線幅 (L) +配線間隔 (S ) = 5 0 u + 5 0 ^ m= 0 . 1 mmとしても、 1列分 (放射素子 7 2個分) の配線束 の幅は 0. I mm x 2 8 8 = 2 8 . 8 mmとなる。
これに対して、前述したように、周波数 3 0 G H zに適用できるフェーズドアレ イアンテナでは、その放射素子の間隔を 5 mm前後で配置する必要がある。 しかし、 従来技術では、上述したように配線束の幅が 2 8 . 8 mmにもなり太すぎて物理的 にその配置が不可能になる。
ここで、放射素子が形成される層(放射素子基板 2 1および無給電素子基板 3 1 ) だけでなく、分配合成器 1 4と移相器 1 3とを異なる層に形成すれとした場合、移 相器 1 3を形成する層においては移相器 1 3だけを自由に配置できるようになる。 従って、 上述した配置の問題を解消することができる。 このように、 多層構造とす ることで、より高周波数帯に適用可能なフヱーズドアレイアンテナを実現すること ができる。 また、 多層構造とした場合、 各層の厚さは数 mm程度と小さいのであま り厚くなることはない。 このため、 フェーズドアレイアンテナをより小さい面積に することができるので、 衛星に搭載するなどのときに特に有利である。
ところで、上述したような高周波装置において、移相器の移相量を切り換えると きに用いるスィッチ素子として、微小な機械スィツチ素子であるマイクロマシーン スィツチを用いることが検討されている。 しかしながら、上述したように多層構造 にする場合、従来では各層間が誘電体で充填された構成となっていたため、 中間に 配置される層に形成される移相器には、可動部を有するマイクロマシンスィッチを 用いることができなかった。
すなわち、従来では、 フヱーズドアレイアンテナなどの高周波装置を多層構造と する場合、移相器に用いるスィツチ素子として、 マイクロマシンスィツチを用いる ことができないので好ましくない。 本発明はこのような課題を解決するためのものであり、フ I—ズドアレイアンテ ナなどのような、 高利得で高周波数帯に適用するもので、 マイクロマシンスィッチ などのような可動部を有するスィツチを用いることができる高周波装置およびそ の製造方法を提供することを目的としている。 発明の開示
本発明は、 下記に記載される基板、 複数の導波路、 スィッチ、 構造体、 結合層、 分離層、 高周波部品、 および制御手段を備えている高周波装置である。 基板は、誘 電体からなり、 複数の導波路は、 誘電体からなる基板上に形成され、 高周波信号を 伝搬する。 スィッチは、基板上に形成された導波路の接続状態を切り換える可動部 を備えている。構造体は、基板上に配置されてスィッチの形成領域上部に空間を備 えている。結合層は、構造体上に形成されて導波路の所定の領域上に高周波信号を 結合する結合手段を備えた導電材料からなる。分離層は、 その結合層上に形成され た誘電体材料からなる。高周波部品は、その分離層上に形成されて導波路との間で 結合手段を介して高周波信号が結合される。制御手段は、 スィツチの動作を制御す る。 このように構成したので、 制御手段に制御されることにより、 スィッチは構造 体の空間内で接続 非接続の動作をすることができる。
このように構成された中で、構造体は、複数のスぺーザから構成するようにして もよい。 また、 そのとき、 スぺ一サは誘電体から構成し、 かつ結合手段の部分に配 置するようにしてもよい。 また、 スぺ一サを導電体から構成し、 かつ導波路と絶縁 分離されて配置するようにしてもよい。 また、構造体は、 空間が形成された一体構 造の板から構成してもよい。 また、導波路とスィツチとで移相器が構成された状態 としてもよい。 そのとき、 高周波部品を放射素子から構成し、 また、 導波路に所望 の周波数の高周波を導入する分配器を備えれば、フ X—ズドアレイアンテナなどの 高周波装置を構成することができる。
また、 本発明による製造手順は、 まず、 誘電体からなる基板上高周波信号を伝搬 する複数の導波路を形成する。 また、手順はフヱーズドアレイアンテナを導波路の 接続状態を切り換える可動部を有するスィツチを基板上に形成する。 また、手順は スィツチの形成領域上部に空間を備えた構造体を基板上に形成する。 また、 高周波 信号を結合する結合手段を備えた導電材料からなる結合層を、結合手段が導波路の 所定の領域上に配置されるように構造体上に形成し、次いで誘電体材料からなる分 離層が結合層上に形成される。 また、導波路との間で結合手段を介して高周波信号 が結合される高周波部品がその分離層上に形成される。 また、 スィッチの動作を制 御する制御手段が形成される。
したがって、制御手段に制御される可動部を有するスィツチが、構造体の空間内 で接続 非接続の動作を行う状態を形成する。
また、 この発明による別の高周波装置は、 多層基板を構成する内層基板と、 複数 の導波路と、 スィッチと、 構造体とを備えている。 複数の導波路は、 上記内層基板 の主面に形成され、 高周波信号を伝搬する。 スィッチは、 内層基板の主面に形成さ れた導波路の接続状態を切り換える可動部を備えている。構造体は、 内層基板の主 面とこの上に配置された基板との間に配置され、スィツチ形成領域上部に空間を備 えている。
このように構成したので、可動部を有するスィツチは構造体の空間内で接続 非 接続の動作を行う。 その構造体は、 複数のスぺ一ザから構成すれば良く、 また、 ス ぺーサは誘電体から構成し、 かつ結合手段の部分に配置すればよい。 一方、 そのス ぺーサは導電体から構成し、 かつ導波路と絶縁分離して配置してもよい。 また、構 造体は、 空間が形成された一体構造の板から構成してもよい。 図面の簡単な説明
第 1図は、従来のフェーズドアレイアンテナの簡単な構成を示す斜視図である。 第 2図 (a ) は、 この発明における第 1の実施の形態に対応する高周波装置とし てのフ Iーズドアレイアンテナの一部構成を示す断面図である。
第 2図 (b ) は、 第 2図 (a ) におけるスィッチ部分の構成を示す断面図である。 第 2図 (c ) は、 第 2図 (a ) における一部構成を示す基板上平面図である。 第 3図は、第 1の実施の形態に対応する高周波装置の構成を示す斜視図および断 面図の併合図である。
第 4図 (a ) は、 第 2図 (a ) に対応する高周波装置の製造過程における途中ェ 程終了の際の構成を示す断面図である。 第 4図 (b) は、 第 4図 (a) に続く製造過程における途中工程終了の際の構成 を示す断面図である。
第 4図 (c) は、 第 4図 (b) に続く製造過程における途中工程終了の際の構成 を示す断面図である。
第 4図 (d) は、 第 4図 (c) に続く製造過程終了の際の構成を示す断面図であ る。
第 5図は、この発明における第 2の実施の形態に対応する高周波装置としてのフ エーズドアレイアンテナの一部構成を示す断面図である。
第 6図 (a) は、 第 5図に対応する高周波装置の製造過程における途中工程終了 の際の構成を示す断面図である。
第 6図 (b) は、 第 6図 (a) に続く製造過程における途中工程終了の際の構成 を示す断面図である。
第 6図 (c) は、 第 4図 (b) に続く製造過程終了の際の構成を示す断面図であ る。
第 7図は、この発明における第 3の実施の形態に対応する高周波装置としてのフ ェ一ズドアレイアンテナの一部構成を示す平面図である。
第 8図は、この発明における第 4の実施の形態に対応する高周波装置としてのフ エーズドアレイアンテナの一部構成を示す断面図である。
第 9図 (a) は、 第 8図に対応する高周波装置の製造過程における途中工程終了 の際の構成を示す断面図である。
第 9図 (b) は、 第 9図 (a) に続く製造過程における途中工程終了の際の構成 を示す断面図である。
第 9図 (c) は、 第 9図 (b) に続く製造過程における途中工程終了の際の構成 を示す断面図である。
第 9図 (d) は、 第 9図 (c) に続く製造過程終了の際の構成を示す断面図であ る。
第 10図 (a) は、 第 4の実施の形態における分離板の製造過程における途中ェ 程終了の際の構成を示す断面図である。
第 10図 (b) は、 第 10図 (a) に続く製造過程終了の際の構成を示す断面図 である。
第 1 1図は、この発明の他の形態に対応する高周波装置としてのフヱーズドアレ イアンテナの一部構成を示す断面図である。 発明を実施するための最良の形態
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 第 1の実施の形態
はじめに、 この発明における第 1の実施の形態について説明する。 ここでは、 高 周波装置として 3 0 G H z帯のフェーズドアレイアンテナを例にとり第 2図を用 いて説明する。
この第 1の実施の形態では、 第 2図 (a ) の断面図に示すように、 フヱ一ズドア レイアンテナを多層構造とした。 すなわち、 まず、 例えばガラスなどの誘電体から なる基板 1 0 1上に、導波路であるマイクロストリップ線路 1 0 2 aとスィツチで あるマイクロマシンスィツチ 1 0 2 bとを用いて高周波信号の位相を制御する複 数の移相ュニットからなる位相制御層 1 0 2が形成されている。このマイクロマシ ンスィッチ 1 0 2 bは、 第 2図 (b ) に示すように、 固定電極 1 2 1と柱体 1 2 2 に支えられた可動電極 1 2 3とを備え、 図示していない制御手段が、可動電極 1 2 3の動作を制御し、固定電極 1 2 1と可動電極 1 2 3との接続/非接続を行うこと によりオン オフ動作を行うものである。
また、その位相制御層 1 0 2上には、結合手段である結合スロッ ト 1 0 3 aを備 えた結合層 1 0 3および分離層 1 0 4を介し、複数の放射素子が形成された放射素 子層 1 0 5が配置されている。 またその上には、 分離層 1 0 6を介し、 複数の無給 電素子が形成された無給電素子層 1 0 7が配置されている。 この、無給電素子は、 広帯域化のために付加されるものであり、 必要に応じて構成すればよい。
一方、基板 1 0 1裏面には、結合スロッ ト 1 0 8 aを備えた結合層 1 0 8および 分離層 1 0 9を介し、マイクロストリップ線路などから構成された分配合成層 1 1 0が配置されている。分配合成層 1 1 0は、 図示していない給電部からの高周波信 号を、 上層の各移相ュニッ トそれぞれに分 ffiしている。 さらに、 第 2図に示した例 では、合成分配層 1 1 0の下に誘電体からなる分離層 1 1 1を介して導電体材料か らなる接地層 1 1 2が備えられている。 これら、 分離層 1 1 1および接地層 1 1 2 は、合成分配層 1 1 0から不要複写を抑制するために付加されるものであり、必要 に応じて構成すればよい。
また、 位相制御層 1 0 2は、 第 2図 (c ) の平面図に示すように、 異なる線路長 のマイクロストリツプ線路 1 0 2 aを、複数のマイクロマシンスィッチ 1 0 2 bで 切り換えるように構成されている。 第 2図 (c ) は、 高周波装置であるフェーズド アレイアンテナを構成している 1つのセル部分を示しており、 セルの周部には、信 号線選択部 (図示せず) からの信号線 X i 1、 X i 2、 走査線選択部 (図示せず) からの走査線 Y j 1、 Y j 2、 制御装置 (図示せず) からのトリガ信号線 T r g、 およびスィツチの駆動電源線 V d r vが配置されている。
そして、それら信号線に接続している制御手段としての駆動回路 1 0 2 cにより、 マイクロマシンスィツチ 1 0 2 bは駆動されている。 また、 これら信号線の内側で は、上述したマイクロストリップ線路 1 0 2 a力 結合スロッ 卜 1 0 8 aの上部位 置から結合スロッ ト 1 0 3 aの下部位置までを接続するように構成されている。 また、 そのマイクロストリップ線路 1 0 2 aの途中には、 例えば、 2 2. 5 ' 、 4 5 ' 、 9 0 ' 、 1 8 0 ' の各移相回路が構成され、 それらがマイクロマシンスィ ツチ 1 0 2 bで切り換えられ、導波する高周波の位相を所望の値にずらすようにし ている。
そして、 この第 1の実施の形態では、位相制御層 1 0 2とその上の層との間に、 誘電体材料からなるスぺーサ 1 1 3を配置することで、位相制御層 1 0 2のマイク ロマシンスィツチ 1 0 2 bが形成された領域上に空間を設けるようにした。ここで は、そのスぺ一サ 1 1 3は位相制御層 1 0 2と結合層 1 0 3との間に配置され、そ れらの間隔が約 0. 2 mmとなるようにしている。 すなわち、 そのスぺーサ 1 1 3 により、 マイクロマシンスィッチ 1 0 2 bの可動空間を確保するとともに、 マイク ロストリップ線路 1 0 2 aを、 高周波が問題なく伝搬しうる距離を確保している。 ここで、 フヱ一ズドアレイアンテナの全体的な構成に関して簡単に説明する。 そのフ X—ズドアレイアンテナは、 第 3図に示すように、 まず、 位相制御層 1 0 2上には、 放射素子層 1 0 5と無給電素子層 1 0 7とが配置されている。 また、 位 相制御層 1 0 2下には、 分配合成層 1 1 0が配置されている。そのような構成の中 で、 例えば、 放射素子層 1 0 5は、 下部に分離層 1 0 4を備え、 その下面に例えば 薄い C u (銅) の層からなる結合層 1 0 3を備えている。 また、 その結合層 1 0 3 にはアレイに対応して孔部からなる結合スロッ ト 1 0 3 aが形成されている。同様 に、位相制御層 1 0 2の裏面には、例えば薄い C uの層からなる結合層 1 0 8を備 え、その結合層 1 0 8にはアレイに対応して結合スロッ ト 1 0 8 aが形成されてい る。
そのように配置された中で、位相制御層 1 0 2には、各移相ュニッ卜およびこれ ら移相ュニッ トを個別に制御するための配線 X 1〜Xm、 Y 1〜Y nが設けられて いる。 そして、給電部からの高周波信号は、 分配合成層 1 1 0のストリップ線路に 伝搬し、 これが位相制御層 1 0 2の各移相ュニッ トに供給され、 そこで所定に給電 移相量が与えられ、結合層 1 0 3の結合スロッ ト 1 0 3 aを介して、放射素子層 1 0 5の各放射素子に伝搬し、それぞれの放射素子から所定のビーム方向に放射され る。
次に、この第 1の実施の形態における高周波装置としてのフヱーズドアレイアン テナの製造方法に関して説明する。
まず、 第 4図 (a ) に示すように、 基板 1 0 1上にマイクロストリップ線路 1 0 2 aとマイクロマシンスィッチ 1 0 2 bとを備えた複数の移相ュニッ卜からなる 位相制御層 1 0 2を形成する。
一方、 第 4図 (b ) に示すように、 まず、 誘電体からなる分離層 1 0 9上に銅膜 を形成し、 この銅膜をパターン加工することで、 分離層 1 0 9上に結合スロッ ト 1 0 8 aを備えた結合層 1 0 8を形成する。 また、誘電体からなる分離層 1 1 1上に 金などの導電性材料膜を形成し、 この膜をパターン加工することで、分離層 1 1 1 上に分配合成層 1 1 0を形成する。 また、 分離層 1 1 1裏面には接地層 1 1 2を形 成する。 また、分離層 1 0 9の裏面と分離層 1 1 1の分配合成曆 1 1 0形成面とを 当接させてそれらを貼り合わせ、 一体構造とする。
そして、 その一体構造体の結合層 1 0 8表面と、 基板 1 0 1裏面とを、 接着フィ ルム 3 0 1を介して当接させ、 所定の圧力を印加した状態で加熱し、基板 1 0 1裏 面に結合層 1 0 8表面が接着された状態とする。 次に、 第 4図 (c ) に示すように、 基板 1 0 1上の所定箇所にスぺ一サ 1 1 3を 固定する。
次に、誘電体からなる分離層 1 0 4裏面に、例えば C uからなる導電膜を形成し, これをパターン加工することで、分離層 1 0 4裏面に結合スロッ ト 1 0 3 aを備え た結合層 1 0 3を形成する。 また、 その分離層 1 0 4表面には、 放射素子曆 1 0 5 を形成する。 また、 分離層 1 0 6上に無給電素子層 1 0 7を形成し、 それら分離層 1 0 4と分離層 1 0 6を貼り合わせて一体構造とする。
そして、 第 4図 (d ) に示すように、 それら一体構造体をスぺーサ 1 1 3上に固 定配置することで、位相制御層 1 0 2上に放射素子層 1 0 5および無給電素子層 1 0 7が配置された多層構造が形成される。
ここで、 第 2図 (a ) に示すように、 この第 1の実施の形態におけるスぺーサ 1 1 3を誘電率の高い材料から構成し、これを結合スロッ ト 1 0 3 aの箇所に配置す るようにすれば、上下の層間で高周波の結合をより効率よく実現することができる。 また、 この第 1の実施の形態では、 絶縁材料 (誘電体) からスぺーサ 1 1 3を構成 しているので、 マイクロマシンスィッチ 1 0 2 b形成箇所以外であれば、そのスぺ ーサ 1 1 3をどのような箇所に配置しても、短絡などの問題が発生しない。 なお、 それらスぺ一サは、 ストリップ線路を避けるように配置した方がよい。 ストリップ 線路をさけるようにスぺーサを配置することで、スぺーサを用いても高周波信号の 伝送の乱れが発生しにくくできる。
ただし、前述のように結合スロッ ト 1 0 3 aの箇所にスぺーサを配置する場合は、 スぺーサとストリップ線路が重なってしまう力 このような場合は別途インピーダ ンス変換器や整合回路などを設けることにより、高周波信号の伝送の乱れを抑制す ることができる。 第 2の実施の形態
次に、 この発明における第 2の実施の形態に関して説明する。
この第 2の実施の形態では、第 5図の断面図に示すように、 フヱーズドアレイァ ンテナを多層構造とした。 すなわち、 まず、 例えばガラスなどの誘電体からなる基 板 4 0 1の裏面に、マイクロスト リップ線路 4 0 2 aとマイクロマシンスィツチ 4 0 2 bとを備えた複数の移相ュニッ トからなる位相制御層 4 0 2が形成されてい るようにした。
また、基板 4 0 1の表面には、結合スロッ ト 4 0 3 aを備えた結合層 4 0 3およ び分離層 4 0 4を介し、複数の放射素子が形成された放射素子層 4 0 5が配置され ているようにした。 またその上には、 分離層 4 0 6を介し、 複数の無給電素子が形 成された無給電素子層 4 0 7が配置されているようにした。
したがって、 この第 2の実施の形態では、前述した第 1の実施の形態と異なり、 放射素子層 4 0 5の形成面を上方とすれば、下方を向いてマイクロマシンスィツチ 4 0 2 bが形成された状態となっている。
また、その位相制御層 4 0 2の下方には、結合スロッ ト 4 0 8 aを備えた結合層 4 0 8および分離層 4 0 9を介し、マイクロストリップ線路などから構成された分 配合成層 4 1 0が配置され、 図示していない給電部からの高周波信号を、上層の各 移相ュニッ トそれぞれに分配している。そして、 それらマイクロストリップ線路に 低損失で高周波を導波させるため、誘電体からなる分離層 4 1 1を介して導電体材 料からなる接地層 4 1 2を備えるようにしている。
そして、 この第 2の実施の形態では、位相制御層 4 0 2とその下方の層との間に、 誘電体材料からなるスぺ一サ 4 2 1を配置することで、位相制御層 4 0 2のマイク ロマシンスィツチ 4 0 2 bが形成された領域上に空間を設けるようにした。ここで は、そのスぺ一サ 4 2 1は位相制御層 4 0 2と結合層 4 0 8との間に配置され、そ れらの間隔が約 0. 2 mmとなるようにしている。 すなわち、 そのスぺーサ 4 2 1 により、 マイクロマシンスィッチ 4 0 2 bの可動空間を確保するとともに、 マイク ロストリップ線路 4 0 2 aを、 高周波が問題なく伝搬しうる距離を確保している。 次に、この第 2の実施の形態における高周波装置であるフヱ一ズドァレイアンテ ナの製造方法に関して説明する。
まず、 第 6図 (a ) に示すように、 基板 4 0 1の一方の面にマイクロスト リップ 線路 4 0 2 aとマイクロマシンスィッチ 4 0 2 bとを備えた複数の移相ュニッ ト からなる位相制御層 4 0 2を形成する。
一方、誘電体からなる分離層 4 0 4の一方の面に、例えば C uからなる導電膜を 形成し、 これをパターン加工することで、 分離層 4 0 4の一方の面に結合ス□ッ ト 4 0 3 aを備えた結合層 4 0 3を形成する。
また、 その分離層 4 0 4の他方の面には、 放射素子層 4 0 5を形成する。 また、 分離層 4 0 6上に無給電素子層 4 0 7を形成し、それら分離層 4 0 4と分離層 4 0 6とを貼り合わせて一体構造とする。
そして、 その一体構造体の結合層 4 0 3表面と基板 4 0 2の他方の面とを、接着 フィルム 5 0 1を介して当接させ、所定の圧力を印加した状態で加熱し、基板 4 0 1と結合層 4 0 3とが接着された状態とする。
次に、 第 6図 (b ) に示すように、 基板 4 0 1の位相制御層 4 0 2形成面上に、 スぺーサ 4 1 2を固定する。
次に、誘電体からなる分離層 4 0 9の一方の面に銅膜を形成し、 この銅膜をパ夕 —ン加工することで、分離層 4 0 9の一方の面に結合スロッ ト 4 0 8 aを備えた結 合層 4 0 8を形成する。 また、誘電体からなる分離層 4 1 1の一方の面に金などの 導電性材料膜を形成し、 この膜をパターン加工することで、 分離層 4 1 1の一方の 面に分配合成層 4 1 0を形成する。 また、 分離層 4 1 1の他方の面には接地層 4 1 2を形成する。そして、分離層 4 0 9と分離層 4 1 1を貼り合わせて一体構造とす る。
そして、 第 6図 (c ) に示すように、 それら一体構造体をスぺーサ 4 1 2上に固 定配置することで、 第 5図に示した多層構造が形成される。
ここで、 この第 2の実施の形態で示すように、 スぺーサ 4 1 2を誘電率の高い材 料から構成し、 これを結合スロッ ト 4 0 8 aの箇所に配置するようにすれば、前述 した第 1の実施の形態と同様に、上下の層間で高周波の結合をより効率よく実現す ることができる。
ところで、 誘電体材料をスぺーサとして用いる場合、 例えば、 アルミナや窒化ァ ルミなどを用いると、 誘電体損が少なくて済む。 一方、 ガラスセラミックスを用い れば、 比較的安価にできる。 また、 チタン酸バリウムを用いると、 これは高誘電率 なので、 結合の効率を向上させることができる。 他方、 フッ素樹脂若しくは A B S 樹脂、 または、 エポキシ樹脂若しくは紙フヱノールなどを用いることも可能であり、 これらをスぺーザに用いる場合、 非常に安価に装置を構成できる。
一方、 半導体を用いるようにしても良く、 例えば、 シリコンまたは G a A sを用 いるようにしても良い。 このような半導体は、 加工性がよいので、 高い機械的精度 を得ることができる。
また、 スぺ一サは、 例えば、 円柱や多角柱など柱状を用いるようにすれば、 所定 の厚さの板を縱断加工すれば得られるので、 製造が容易である。 また、 球状のスぺ ーサを用いるようにしても良く、均一な大きさのスぺーサを大量に製造することが 容易である。 また、 円錐などの先が尖った状態のスぺ一サを用いれば、 配置する基 板に、 高い剛性と平面精度があれば、先端を変形させることにより個々のスぺ一サ 間に対する高さのバラツキを吸収できる。 第 3の実施の形態
ところで、上記第 1および第 2の実施の形態では、 スぺーサを誘電体材料から構 成するようにしたが、 これに限るものではない。 スぺ一サを導電材料から構成する ようにしても良い。
この場合、第 7図に示すように、位相制御層 1 0 2のマイクロストリップ線路 1 0 2 a以外の領域に、導電材料からなるスぺーサ 6 1 3を配置すればよい。そして、 この場合、 そのスぺーサ 6 1 3および基板 1 0 1に別途設けられたスルーホール (図示せず) を介して上下の層間で、 接地などの導通をとることが可能となる。 し たがって、 別途、 接地電位を結合する手段を各層に設けることなく、 パラレルプレ —トモ一ドである接地板間不要モードを抑制することができる。
このように、 導電体をスぺーサとして用いる場合、 金、 銀、 銅、 アルミニウム、 黄銅などの金属もしくは合金材料を用いれば、パラレルモードの抑圧効果がより効 率よくなり、 また、 装置の機械的な強度を増強できる。 第 4の実施の形態
次に、 この発明における第 4の実施の形態について説明する。
この第 4の実施の形態では、第 8図の断面図に示すように、 フヱ一ズドアレイァ ンテナを多層構造とした。 すなわち、 まず、 例えばガラスなどの誘電体からなる基 板 7 0 1上に、マイクロス トリツプ線路 7 0 2 aとマイクロマシンスィッチ 7 0 2 bとを備えた複数の移相ュニッ 卜からなる位相制御層 7 0 2が形成されているよ うにした。
また、 その位相制御層 7 0 2上には、結合スロッ ト 7 0 3 aを備えた結合層 7 0 3および分離層 7 0 4を介し、複数の放射素子が形成された放射素子層 7 0 5が配 置されているようにした。 またその上には、 分離層 7 0 6を介し、 複数の無給電素 子が形成された無給電素子層 7 0 7が配置されているようにした。 この、無給電素 子は、 広帯域化のために付加されるものであり、 必要に応じて構成すればよい。 一方、基板 7 0 1裏面には、結合スロッ ト 7 0 8 aを備えた結合層 7 0 8および 分離層 7 0 9を介し、マイクロストリップ線路などから構成された分配合成層 7 1 0が配置されているようにし、 図示していない給電部からの高周波信号を、上層の 各移相ュニッ トそれぞれに分配する構成とした。そして、それらマイクロストリッ プ線路に低損失で高周波を導波させるため、誘電体からなる分離層 7 1 1を介して 導電体材料からなる接地層 7 1 2を備えるようにした。
そして、 この第 4の実施の形態では、位相制御層 7 0 2とその上の層との間に、 空間 7 1 3 aを備えた分離板 7 1 3を配置することで、位相制御層 7 0 2のマイク ロマシンスィッチ 7 0 2 bが形成された領域上に空間を設けるようにした。ここで は、その分離板 7 1 3は位相制御層 7 0 2と結合層 7 0 3との間に配置され、 それ らの間隔が約 0. 2 mmとなるようにしている。 すなわち、 その分離板 7 1 3によ り、 マイクロマシンスィッチ 7 0 2 bの可動空間を確保するとともに、 マイクロス トリップ線路 7 0 2 aを、 高周波が問題なく伝搬しうる距離を確保している。 次に、この第 4の実施の形態における高周波装置としてフヱーズドアレイアンテ ナの製造方法に関して説明する。
まず、 第 9図 (a ) に示すように、 基板 7 0 1上にマイクロストリップ線路 7 0 2 aとマイクロマシンスィッチ 7 0 2 bとを備えた複数の移相ュニッ トからなる 位相制御層 7 0 2を形成する。
一方、 まず、誘電体からなる分離層 7 0 9上に銅膜を形成し、 この銅膜をパター ン加工することで、分離層 7 0 9上に結合スロッ ト 7 0 8 aを備えた結合層 7 0 8 を形成する。 また、誘電体からなる分離層 7 1 1上に金などの導電性材料膜を形成 し、 この膜をパターン加工することで、 分離層 7 1 1上に分配合成層 7 1 0を形成 する。 また、 分離層 7 1 1裏面には接地層 7 1 2を形成する。 そして、 分離層 7 0 9の裏面と分離層 7 1 1の分配合成層 7 1 0形成面とを当接させてそれらを貼り 合わせ、 一体構造とする。
そして、 第 9図 (b ) に示すように、 その一体構造体の結合層 7 0 8表面と基板 7 0 1裏面とを、接着フイルム 8 0 1を介して当接させ、所定の圧力を印加した状 態で加熱し、 基板 7 0 1裏面に結合層 7 0 8表面が接着された状態とする。
次に、 第 9図 (c ) に示すように、 基板 7 0 1上の所定箇所に、 空間 7 1 3 a形 成箇所がマイクロマシンスィツチ 7 0 2 bの上になるように、分離板 7 1 3を固定 する。
次に、誘電体からなる分離層 7 0 4裏面に、例えば C uからなる導電膜を形成し、 これをパターン加工することで、分離層 7 0 4裏面に結合スロッ 卜 7 0 3 aを備え た結合層 7 0 3を形成する。 また、 その分離層 7 0 4表面には、 放射素子層 7 0 5 を形成する。 また、 分離層 7 0 6上に無給電素子層 7 0 7を形成し、 それら分離層 7 0 4と分離層 7 0 6とを貼り合わせて一体構造とする。
そして、 第 9図 (d ) に示すように、 それら一体構造体を分離板 7 1 3上に固定 配置することで、位相制御層 7 0 2上に放射素子層 7 0 5および無給電素子層 7 0 7が配置された多層構造が形成される。
ところで、 分離板への空間の形成は、 次のようにすればよい。
例えば、 まず、 第 1 0図 (a ) に示すように、 誘電体からなる基板 9 0 1上に感 光性を有する樹脂膜 9 0 2を塗布形成し、この樹脂膜 9 0 2の所望の箇所に光学像 を露光することで潜像を形成する。
そして、 その樹脂膜 9 0 2を現像することで、 第 1 0図 (b ) に示すように、 潜 像に対応した箇所に開口部 9 0 2 aを形成すれば、基板 9 0 1と樹脂膜 9 0 2とか らなり、 開口部 9 0 2 aによる空間が形成された分離板を得ることができる。
また、誘電体からなる基板の所望の箇所を機械加工することで、空間を形成する ようにしても良い。
なお、 このように空間を備えた分離板を用いる場合においても、前述した第 2の 実施の形態のように、放射素子形成方向とは反対の面に位相制御層が形成されてい る構成としても同様である。
すなわち、 第 1 1図に示すように、 まず、 例えばガラスなどの誘電体からなる基 板 1 0 0 1の下面に、マイクロストリツプ線路 1 0 0 2 aとマイクロマシンスイツ チ 1 0 0 2 bとを備えた複数の移相ュニッ 卜からなる位相制御層 1 0 0 2が形成 されている状態とする。
そして、 ガラス基板 1 0 0 1の上面に、結合スロッ ト 1 0 0 3 aを備えた結合層 1 0 0 3および分離層 1 0 0 4を介し、複数の放射素子が形成された放射素子層 1 0 0 5が配置されているようにする。 またその上には、 分離層 1 0 0 6を介し、 複 数の無給電素子が形成された無給電素子層 1 0 0 7が配置されているようにする。 一方、位相制御層 1 0 0 2の下には、結合スロッ ト 1 0 0 8 aを備えた結合層 1 0 0 8および分離層 1 0 0 9を介し、マイクロス卜リップ線路などから構成された 分配合成層 1 0 1 0が配置されているようにし、図示していない給電部からの高周 波信号を、 上層の各移相ュニッ トそれぞれに分配する構成とする。 そして、 それら マイクロストリップ線路に低損失で高周波を導波させるため、誘電体からなる分離 層 1 0 1 1を介して導電体材料からなる接地層 1 0 1 2を備える。
そして、位相制御層 1 0 0 2とその下の層との間に、空間 1 0 1 3 aを備えた分 離板 1 0 1 3を配置することで、位相制御層 1 0 0 2のマイクロマシンスィツチ 1 0 0 2 bが形成された領域に空間を設けるようにした。 ここでは、 その分離板 1 0 1 3は位相制御層 1 0 0 2と結合層 1 0 0 8との間に配置され、それらの間隔が約 0. 2 mmとなるようにしている。 すなわち、 この場合においても、 その分離板 1 0 1 3により、マイクロマシンスィッチ 1 0 0 2 bの可動空間を確保するとともに、 マイクロス トリツプ線路 1 0 0 2 aを、高周波が問題なく伝搬しうる距離を確保し ている。
なお、 分離板の材料としては、 アルミナゃ窒化アルミなどを用いると、誘電体損 が少なくて済む。 一方、 ガラスセラミ ックスを用いれば、 比較的安価にできる。 ま た、 フッ素樹脂や A B S樹脂、 また、 エポキシ樹脂や紙フエノールなどを用いるこ とも可能であり、 非常に安価に装置を構成できる。 産業上の利用の可能性
以上説明したように、本発明にかかる高周波装置はマイク口波などの高周波信号 の送受信に用いられる例えばフェーズドアレイアンテナなどのような、高周波信号 を伝送するものであって、特に、 高利得で高周波数帯に適用するもので例えばマイ クロマシンスィツチのような可動部を有するスィツチを用いることができる高周 波装置およびその製造方法に適している。

Claims

請求の範囲
1 . 誘電体からなる基板と、
この基板上に形成された高周波信号を伝搬する複数の導波路と、
前記基板上に形成され、 かつ、前記導波路の接続状態を切り換える可動部を備え たスィ ツチと、
前記基板上に配置されて前記スィ ッチの形成領域上部に空間を備えた構造体と、 この構造体上に形成されて前記導波路の所定の領域上に高周波信号を結合する 結合手段を備えた導電材料からなる結合層と、
この結合層上に形成された誘電体材料からなる分離層と、
この分離層上に形成されて前記導波路との間で前記結合手段を介して高周波信 号が結合される高周波部品と、
前記スィツチの動作を制御する制御手段と
を備えたことを特徴とする高周波装置。
2. 請求項 1に記載の高周波装置において、 前記構造体は、 前記空間を形成する 複数のスぺ一ザから構成されることを特徴とする高周波装置。
3. 請求項 2に記載の高周波装置において、前記スぺーサは誘電体から構成され、 かつ前記結合手段の部分に配置されたことを特徴とする高周波装置。
4. 請求項 2に記載の高周波装置において、前記スぺーサは導電体から構成され、 かつ前記導波路と絶縁分離されて配置されたことを特徴とする高周波装置。
5. 請求項 1に記載の高周波装置において、 前記構造体は、 前記空間が形成され た一体構造の板から構成されたことを特徴とする高周波装置
6. 請求項 1〜5のうちいずれか一つに記載の高周波装置において、前記導波路 と前記スィッチとで移相器が構成されたことを特徴とする高周波装置。
7. 請求項 6に記載の高周波装置において、前記高周波部品は放射素子から構成 されたことを特徴とする高周波装置。
8. 請求項 7に記載の高周波装置において、前記導波路に所望の周波数の高周波 を導入する分配器が備えられたことを特徴とする高周波装置。
9 .誘電体からなる基板上に高周波信号を伝搬する複数の導波路を形成する工程 と、
前記導波路の接続状態を切り換える可動部を備えたスィツチを前記基板上に形 成する工程と、
前記スィツチの形成領域上部に空間を備えた構造体を前記基板上に形成するェ 程と、
高周波信号を結合する結合手段を備えた導電材料からなる結合層を、前記結合手 段が前記導波路の所定の領域上に配置されるように前記構造体上に形成する工程 と、
誘電体材料からなる分離層を前記結合層上に形成する工程と、
前記導波路との間で前記結合手段を介して高周波信号が結合される高周波部品 をその分離層上に形成する工程と、
前記スィツチの動作を制御する制御手段を形成する工程と
を備えたことを特徴する高周波装置の製造方法。
1 0. 請求項 9に記載の高周波装置の製造方法において、 前記構造体として、前 記空間を形成する複数のスぺーサを配置することを特徴とする高周波装置の製造 方法。
1 1 . 請求項 1 0に記載の高周波装置の製造方法において、前記スぺ一サを誘電 体から構成し、かつそのスぺーサを前記結合手段の部分に配置することを特徴とす る高周波装置の製造方法。
1 2. 請求項 1 0に記載の高周波装置の製造方法において、前記スぺ一サを導電 体から構成し、かつそのスぺーサを前記導波路と絶縁分離して配置することを特徴 とする高周波装置の製造方法。
1 3. 請求項 9に記載の高周波装置において、 前記構造体として、 前記空間が形 成された一体構造の板を配置することを特徴とする高周波装置
1 4. 高周波回路を多層基板に実装した高周波装置において、
前記多層基板を構成する内層基板と、
前記内層基板の主面に形成された高周波信号を伝搬する複数の導波路と、 前記内層基板の主面に形成された導波路の接続状態を切り換える可動部を備え たスィ ツチと、 前記内層基板の主面とこの上に配置された基板との間に配置され、前記スィツチ 形成領域上部に空間を備えた構造体と
を備えたことを特徴とする高周波装置。
1 5. 請求項 1 4に記載の高周波装置において、 前記構造体は、 前記空間を形成 する複数のスぺーザから構成されたことを特徴とする高周波装置。
1 6. 請求項 1 5に記載の高周波装置において、前記スぺーサは誘電体から構成 され、 かつ前記結合手段の部分に配置されたことを特徴とする高周波装置。
1 7. 請求項 1 5に記載の高周波装置において、前記スぺ一サは導電体から構成 され、 かつ前記導波路と絶縁分離されて配置されたことを特徴とする高周波装置。
1 8. 請求項 1 4に記載の高周波装置において、 前記構造体は、 前記空間が形成 された一体構造の板から構成されたことを特徴とする高周波装置。
PCT/JP2000/002219 1999-04-06 2000-04-06 Dispositif haute frequence utilisant un commutateur a parties mobiles et son procede de fabrication WO2000060699A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/958,377 US6777771B1 (en) 1999-04-06 2000-04-06 High-frequency device using switch having movable parts, and method of manufacture thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11098823A JP2000295030A (ja) 1999-04-06 1999-04-06 高周波装置およびその製造方法
JP11/98823 1999-04-06

Publications (1)

Publication Number Publication Date
WO2000060699A1 true WO2000060699A1 (fr) 2000-10-12

Family

ID=14230032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002219 WO2000060699A1 (fr) 1999-04-06 2000-04-06 Dispositif haute frequence utilisant un commutateur a parties mobiles et son procede de fabrication

Country Status (3)

Country Link
US (1) US6777771B1 (ja)
JP (1) JP2000295030A (ja)
WO (1) WO2000060699A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111222A (ja) * 2000-10-02 2002-04-12 Matsushita Electric Ind Co Ltd 多層基板
US8569142B2 (en) * 2003-11-28 2013-10-29 Blackberry Limited Multi-level thin film capacitor on a ceramic substrate and method of manufacturing the same
KR100747657B1 (ko) 2006-10-26 2007-08-08 삼성전자주식회사 매크로 및 마이크로 주파수 튜닝이 가능한 반도체 소자 및이를 갖는 안테나와 주파수 튜닝 회로
US20100103060A1 (en) * 2008-10-23 2010-04-29 Chad Au Flat panel antenna, such as for use in a cellular telephone site of a wireless telecommunications system
JP5896594B2 (ja) * 2010-05-14 2016-03-30 株式会社村田製作所 無線icデバイス
US9379436B1 (en) * 2013-05-24 2016-06-28 The Boeing Company Compensating for bit toggle error in phase shifters
WO2016009470A1 (ja) * 2014-07-14 2016-01-21 日立金属株式会社 アンテナ装置
US10642943B2 (en) * 2015-11-04 2020-05-05 Scepter Incorporated Atmospheric sensor network and analytical information system related thereto
US11233310B2 (en) * 2018-01-29 2022-01-25 The Boeing Company Low-profile conformal antenna
CN111788740B (zh) * 2018-02-22 2023-05-02 株式会社村田制作所 天线模块和搭载有天线模块的通信装置
CN109742161B (zh) 2018-09-30 2021-05-04 华为技术有限公司 一种开关半导体器件及其制备方法、固态移相器
CN112189280B (zh) 2019-01-22 2021-06-04 株式会社村田制作所 天线模块和通信装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174717A (ja) * 1997-06-23 1999-03-16 Nec Corp フェーズドアレーアンテナ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2717264B2 (ja) 1988-05-18 1998-02-18 東洋通信機株式会社 フェーズド・アレイ・アンテナ
JPH03182103A (ja) 1989-12-11 1991-08-08 Toyota Central Res & Dev Lab Inc フェーズドアレイアンテナ
US5116807A (en) * 1990-09-25 1992-05-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Monolithic MM-wave phase shifter using optically activated superconducting switches
US5488380A (en) * 1991-05-24 1996-01-30 The Boeing Company Packaging architecture for phased arrays
AU677380B2 (en) * 1993-08-27 1997-04-24 Murata Manufacturing Co. Ltd. Thin-film multilayer electrode of high frequency electromagnetic field coupling
JPH08287809A (ja) 1995-04-14 1996-11-01 Matsushita Electric Works Ltd マイクロリレー
US5629241A (en) * 1995-07-07 1997-05-13 Hughes Aircraft Company Microwave/millimeter wave circuit structure with discrete flip-chip mounted elements, and method of fabricating the same
US5757319A (en) * 1996-10-29 1998-05-26 Hughes Electronics Corporation Ultrabroadband, adaptive phased array antenna systems using microelectromechanical electromagnetic components
CA2211830C (en) * 1997-08-22 2002-08-13 Cindy Xing Qiu Miniature electromagnetic microwave switches and switch arrays
US6075239A (en) * 1997-09-10 2000-06-13 Lucent Technologies, Inc. Article comprising a light-actuated micromechanical photonic switch
US6057600A (en) * 1997-11-27 2000-05-02 Kyocera Corporation Structure for mounting a high-frequency package
JPH11274805A (ja) * 1998-03-20 1999-10-08 Ricoh Co Ltd 高周波スイッチ並びに製造方法、及び集積化高周波スイッチアレイ
JP3629399B2 (ja) * 2000-04-18 2005-03-16 シャープ株式会社 アンテナ一体化マイクロ波・ミリ波モジュール

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174717A (ja) * 1997-06-23 1999-03-16 Nec Corp フェーズドアレーアンテナ装置

Also Published As

Publication number Publication date
JP2000295030A (ja) 2000-10-20
US6777771B1 (en) 2004-08-17

Similar Documents

Publication Publication Date Title
JP2000196329A (ja) フェーズドアレイアンテナおよびその製造方法
EP3413396B1 (en) Antenna integrated printed wiring board
JP3481481B2 (ja) フェーズドアレイアンテナおよびその製造方法
US5874919A (en) Stub-tuned, proximity-fed, stacked patch antenna
US6642889B1 (en) Asymmetric-element reflect array antenna
EP0720252B1 (en) Miniature multi-branch patch antenna
US7026993B2 (en) Planar antenna and array antenna
EP3959777B1 (en) Low profile antenna apparatus
EP0398555B1 (en) Lightweight, low profile phased array antenna with electromagnetically coupled integrated subarrays
JP3481482B2 (ja) フェーズドアレイアンテナおよびその製造方法
WO2005031919A1 (en) Broadband slot array antenna
WO2000060699A1 (fr) Dispositif haute frequence utilisant un commutateur a parties mobiles et son procede de fabrication
WO2000039893A1 (fr) Antenne en reseau a elements en phase et procede de fabrication
WO2001001517A1 (fr) Antenne reseau a commande de phase
JP3379484B2 (ja) 高周波装置およびその製造方法
TW580794B (en) High-isolation semiconductor device
EP4250486A1 (en) Radial line slot antenna arrays
EP4197062A1 (en) Antenna array architecture with electrically conductive columns between substrates
GB2616848A (en) Radial line slot antenna arrays
WO2023180692A1 (en) Radial line slot antenna arrays
CN117337518A (zh) 在rf部件之间采用共面波导互连件的天线装置
JP3381008B2 (ja) 平面アンテナの受信板
JPH07303007A (ja) ユニットパッケージに一体化されたアンテナ・変換器システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09958377

Country of ref document: US

122 Ep: pct application non-entry in european phase