WO2000059641A1 - Device and method for micronizing powder and granular material - Google Patents

Device and method for micronizing powder and granular material Download PDF

Info

Publication number
WO2000059641A1
WO2000059641A1 PCT/JP2000/001923 JP0001923W WO0059641A1 WO 2000059641 A1 WO2000059641 A1 WO 2000059641A1 JP 0001923 W JP0001923 W JP 0001923W WO 0059641 A1 WO0059641 A1 WO 0059641A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating disk
center
compressed air
air flow
processed
Prior art date
Application number
PCT/JP2000/001923
Other languages
French (fr)
Japanese (ja)
Inventor
Masakatsu Takayasu
Original Assignee
Masakatsu Takayasu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masakatsu Takayasu filed Critical Masakatsu Takayasu
Priority to AU33309/00A priority Critical patent/AU3330900A/en
Priority to JP2000609194A priority patent/JP3761785B2/en
Publication of WO2000059641A1 publication Critical patent/WO2000059641A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1007Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member
    • B05B3/1021Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member with individual passages at its periphery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1007Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/185After-treatment, e.g. grinding, purification, conversion of crystal morphology

Definitions

  • the present invention relates to an apparatus and a method for miniaturizing a flowable object (hereinafter also referred to as “powder fluid”) that cannot maintain a certain shape such as a liquid, a fluid, a powder, and a granule.
  • a flowable object hereinafter also referred to as “powder fluid”
  • the inventor of the present invention disclosed in Japanese Patent Application Nos. 08-22026 and 8-2997129 that, for example, when cooling the inside of a greenhouse, water was used as much as possible. It was suggested that atomization in the form of fine mist is effective for promoting vaporization.
  • Japanese Patent Application No. 9-5099-16 proposed a technique for producing salt by spraying seawater to vaporize water and crystallize salt. It is important to make the size as small as possible in order to increase manufacturing efficiency.
  • two or more workpieces such as powders, granules, gas bodies, and liquids
  • two or more workpieces are sucked to be fined and mixed, and then mixed to form a liquid. It was suggested to take in.
  • liquids not only liquids but also fluids, powders, granules, and the like can be mixed with two or more powdered fluids, or mixed with a powdered fluid and a gaseous body.
  • Techniques for miniaturization are required as much as possible, especially for ultra-miniaturization.
  • the technical problem of the present invention is to pay attention to such a problem and to make it possible to make the powder fluid finer to the utmost by relatively simple technology. Disclosure of the invention
  • Item 1 is a rotating disk formed by connecting a plurality of impellers extending from the center to an outer peripheral direction between opposing disks arranged opposite to each other to a rotary drive shaft.
  • the present invention is directed to a device having an opening for supplying an object to be processed.
  • a pole is provided on the outer periphery of the rotating disk with a plurality of rigid bodies disposed at a slight gap from the outer end of the blade to cut an object to be processed slightly projecting from the outer end of the blade. It is a miniaturization device.
  • Each blade and the opposing disk may be connected by a caulking structure as shown in FIG. 1, or may be an integrally molded structure as shown in FIG.
  • a structure is provided in which a plurality of rigid bodies are provided on the outer periphery of the rotating disk with a slight gap from the outer end of the blade to cut a workpiece slightly projecting from the outer end of the blade. Therefore, the object to be processed before being shaken off by the centrifugal force by each blade is cut by colliding with the rigid body, and is further subdivided and miniaturized. As a result, the vaporization of water from the object to be processed and the mixing and compounding of two or more types of object to be processed are performed extremely smoothly, thereby improving the processing efficiency.
  • the second term includes a rotating disk formed by connecting an impeller, which is arranged with a plurality of blades extending in the outer peripheral direction from the center between opposed disks arranged to face each other, to a rotary drive shaft, In the center, an opening for supplying the workpiece is formed
  • a compressed air flow is injected in the direction tangential to the rotating disk in a direction opposite to the rotating direction of the rotating disk, at a slight distance from the outer circumference of the rotating disk, and at an angle to the surface of the rotating disk.
  • a compressed air flow jet nozzle for cutting the object to be processed, which slightly protrudes from the outer end of the blade, using a compressed air flow.
  • the compressed air flow is injected in the tangential direction of the rotating disk in the direction opposite to the rotating direction of the rotating disk, and the workpiece slightly projecting from the outer end of the blade is cut by the compressed air flow.
  • vaporization of water from the object to be processed and mixing and compounding of two or more types of the object to be processed are performed extremely smoothly, thereby improving the processing efficiency.
  • the fine ⁇ cut ultra-fine particles hit the nozzle, disturbing the nozzle, and There is no danger that the fine particles will recombine and return to larger particles.
  • the ultra-fine particles are deflected from the rotating disk, and the ultra-fine particles are scattered and dispersed by the compressed air flow, so that they are not concentrated in one place, and are not concentrated. Processing efficiency is further improved. Also, more nozzles can be arranged.
  • the third term relates to a rotating disk formed by connecting a rotating drive shaft to an impeller arranged with a plurality of blades extending from the center in an outer peripheral direction between opposed disks arranged to face each other,
  • An opening for supplying the object to be processed is formed in the center
  • the rotational speed of the rotating disk is V so that an air wall is generated around the rotating disk.
  • / P / P
  • a speed increasing means such as a pulley and a belt or a gear mechanism to achieve high-speed rotation, or use a high-speed motor with an inverter to achieve high-speed rotation. This is an ultra-miniaturized device that has been realized.
  • a collision wall surrounding the rotating disk is provided outside the rotating disk according to the first, second, or third item, and the ultrafine body cut by the cutting means collides with the rotating disk.
  • the ultrafine body cut by the cutting means is confined and floated in the collision wall, so that the opportunity of contact between the ultrafine particles increases.
  • the ultrafine particles which have collided and bounced off the collision wall come into contact with the next arriving ultrafine particles or floating ultrafine particles, the chances of contact between the ultrafine particles further increase. Therefore, it is suitable for mixing or combining two or more kinds of objects to be treated.
  • Item 5 is that an object to be processed is provided at the center of a rotating disk formed by connecting an impeller, which is arranged with a plurality of blades extending in a peripheral direction from the center between opposing disks arranged to face each other, to a rotary drive shaft.
  • an aqueous solution in which calcium is dissolved and at least carbon dioxide are provided.
  • Is supplied simultaneously from the supply port of the rotating disk into the rotating disk, and the calcium water cut by the cutting means is An ultrafine method characterized in that a gas containing a solution and carbon dioxide collides with the collision wall and is repelled, thereby significantly increasing the chance of calcium and carbon dioxide contacting and combining. .
  • Item 6 is that an object to be processed is provided at the center of a rotating disk formed by connecting an impeller arranged with a plurality of blades extending from the center in the outer peripheral direction between opposed disks arranged to face each other to a rotary drive shaft.
  • a rotating disk having an opening for supplying the same, seawater or a liquid to be treated in which any substance is dissolved is supplied from the center opening of the rotating disk, and a slight distance from the outer end of the blade is supplied.
  • cutting means such as a rigid body, a compressed air flow, or an air wall, the liquid to be processed slightly protruding from the outer end of the blade is cut to be extremely fine, and at the same time, the dispersion is enlarged as in a blower or the like.
  • This is an ultrafine method characterized by accelerating the vaporization of a liquid using a means and separating the liquid into a dissolved substance of seawater or liquid and water or liquid.
  • Clause 7 is to connect an impeller, which is arranged with a plurality of blades extending from the center in the outer peripheral direction between opposing disks arranged to face each other, to a rotary drive shaft.
  • a rotating disk having an opening for supplying an object to be processed in the center thereof, and having a plurality of air suction holes formed in at least one of the opposed disks.
  • FIG. 1 is an embodiment of a conventional finer device having an impeller structure, in which (1) is a central sectional view, and (2) is a partial sectional front view.
  • FIG. 2 shows a conventional back-to-back impeller type miniaturization apparatus, in which (1) is a cross-sectional view at the center, and (2) is a front view of the center of the intermediate disk.
  • FIG. 3 is a perspective view showing another embodiment of the impeller structure.
  • FIG. 4 is a partial cross-sectional front view of a rotating disk showing an embodiment using a rigid body as a means for cutting an object to be processed.
  • Fig. 5 is a view showing an embodiment using a compressed air flow as a means for cutting an object to be processed, (1) is a partial sectional front view of a rotating disk, and (2) is a view as viewed from below. (Bottom view).
  • FIG. 6 is a partial sectional view of a rotating disk showing an embodiment in which an air wall generated by rotating the rotating disk at an extremely high speed is used as a means for cutting the object to be processed; It is a front view.
  • Fig. 7 is a front view of the rotating disk that dynamically summarizes items related to the radius and peripheral speed of the rotating disk.
  • FIG. 8 is a partial cross-sectional front view and a central cross-sectional view of an embodiment in which a hole for air suction is formed in the opposing disk of the rotating disk.
  • FIGS. 1 to 3 show a rotary disk for atomization proposed by the inventor of the present invention in Japanese Patent Application No. Hei 8-27971.
  • Fig. 1 shows a single type, in which a plurality of blades 3 extending from the center in the outer peripheral direction are sandwiched and fixed in a space 6 between opposed disks 1 and 2 arranged opposite to each other, and fixed. 4 is configured. That is, the protruding pieces on both sides of each blade 3 are protruded from the holes of the opposed disks 1 and 2, and are caulked and fixed like the caulking portion 9.
  • the output shaft of the motor M that is, the drive shaft A is fixed at the center of one of the opposed disks 1.
  • the center of the other opposed disk 2 is provided with an opening 5 for water supply. Accordingly, when water is supplied with the water pipe end 8 directed toward the opening 5, the water is radially blown off from the space 6 between the adjacent blades 3 by centrifugal force. At this time, when the rotation speed of the impeller 4 is a high-speed rotation such as, for example, 10,000 rotations or more, a fine mist is formed.
  • the fog scattered in the direction of arrow a2 is blown away by centrifugal force, so that the reaching distance becomes longer.
  • FIG. 2 shows an embodiment in which the impeller 4 of FIG. 1 is integrated back to back, and the center of the intermediate disk 1 is fixed to the output shaft A of the motor M.
  • a window 7 is opened between the connecting portion 1 a to the motor shaft, and about half of the water supplied from the water supply pipe tip 8 is on the left side of the window 7.
  • impeller 4 enters into a of, the other half into the right side of the impeller 4 b.
  • the motor shaft A can be fixed to the center of the left disk 2a, and the center of the intermediate disk 1 can be a circular opening.
  • the blades 3 are arc-shaped, but the shape is not limited as long as it can be atomized efficiently by centrifugal force.
  • the distance between the disk 1 and the disks 2, 2a, and 2b is large at the center and narrow at the outer periphery to increase the atomization efficiency, but is not limited to this structure. Therefore, it is possible to increase the distance B between the two opposed disks 1 and 2 (2a, 2b) to a size approximately equal to or larger than the radius of the impeller 4, and to keep the distance B constant. Then, both opposed disks 1 and 2 (2 a, 2 b) can be made parallel to each other.
  • the disks 1, 2, 2a, 2b and the blade 3 are made as separate parts, and a means such as a force crimping section 9 shown in FIG. 1 is used. It can be manufactured by combining them later.
  • a means such as a force crimping section 9 shown in FIG. 1 is used. It can be manufactured by combining them later.
  • one disk 1 and each blade 3 are molded integrally with a resin, and the other disk 2 in Fig. 1 is fixed to the blade 3 by screwing or bonding. It is also possible. That is, the production method does not matter.
  • the distance between the blades 3 is wider toward the outer periphery, but by adding another blade between the blades 3, As in the case of Fig. 3, it is possible to prevent the outer circumference from becoming too wide.
  • water is supplied from the opening 5, but liquid, fluid, powder, granules, and the like other than water can also be supplied.
  • the present invention has the following improvements in order to miniaturize liquids, fluids, powders, granules, and the like using such a rotating disk having an impeller structure.
  • a plurality of rigid bodies 10 for cutting the atomized mist are arranged at intervals.
  • the small gap G is preferably as small as possible as long as the rotating disk 4 does not touch the rigid body 10.
  • a compressed air flow as a means having the same function as the rigid body 10. That is, as shown in FIG. 5, a plurality of compressed air nozzles 12 are arranged at the outer peripheral position of the rotating disk 4 so that the compressed air flow 11 can be jetted in a tangential direction of the rotating disk 4. The direction of the nozzle 12 is oriented such that the direction of jet of the compressed air flow 11 is opposite to the direction of rotation of the rotating disk 4. Also, as in the case of the rigid body 10 described above, the blades 3 are arranged so that the compressed air flow 11 is generated at a position of a slight distance G from the outer end.
  • the ultrafine mist cut in this manner is blown off by the compressed air flow 11. Therefore, as shown in FIG. 4, unlike the case where the rigid body 10 actually exists, the rigid body 10 does not cause the extremely fine mist to be trapped, and can smoothly spray the mist.
  • Compressed air flow 1 1 Force As shown by the arrow 11a in Fig. 5 (2), if it is in the direction parallel to the surface of the rotating disk 4 (in the direction perpendicular to the drive shaft A), the extremely fine mist is generated by the nozzle. Nozzle 1 2 is in the way because it hits 1 2. Further, when the mist hits the nozzle 12, there is a risk that the extremely fine mist will recombine and return to large particles.
  • the nozzle 12 can be compressed from an oblique direction. It has a structure to blow out the airflow 11. Therefore, there is no risk that the nozzles 12 will be in the way or that extremely fine particles will recombine. Moreover, the ultrafine particles are deflected from the rotating disk 4 by the compressed air flow 11 and are scattered by being scattered far away, so that they are not concentrated in one place, and the processing efficiency such as vaporization is improved. Further improve. Further, more nozzles 12 can be arranged. Compressed air flow 1 1 Jet angle »Free
  • Such high-speed rotation can be realized by using a speed increasing means such as a pulley and a belt or a gear mechanism, or by using a high-speed motor with an inverter.
  • the rotating disk 4 As the speed of the rotating disk 4 increases, the rotating disk 4 generates turbulence in the fluid, so that the resistance increases in proportion to the square of the speed.
  • the resistance F Q is
  • the coefficient a and b have a term proportional to the velocity and a term proportional to the square of the velocity.
  • the coefficients a and b are determined by the shape of the rotating disk 4 and the type of fluid around it.
  • V r ⁇
  • seawater is made extremely fine as an object to be treated using the above-described apparatus or method, the seawater becomes extremely fine mist, so the water content in the salt production method of Japanese Patent Application No. 9-509916 is filed. Evaporation is very efficient, salt mass production is easier and salt crystals are finer.
  • the apparatus or method of the present invention simultaneously sucks powder and granules or gas and liquid into a rotating disk 4 to make it extremely fine. It is extremely effective when mixed and taken into a liquid.
  • the rigid body 10 and the compressed air flow 11 in Fig. 5, and as shown in Fig. 6, the peripheral Collisions can be made one after another to promote mixing or compounding, and bonding or compounding is promoted by increasing the chances of contact between different types of substances.
  • a collision wall 13 surrounding the rotating disk 4 is provided outside the rotating disk 4 so that the microfine body cut by the cutting means as described above is confined. It is.
  • the distance R between the outer periphery of the rotating disk 4 and the collision wall 13 is small, the ultrafine particles collide with the collision wall 13 and rebound.
  • the microfine particles are trapped and drifted, increasing the chance of contact between the ultrafine particles. Further, the ultrafine particles colliding with and bounced off from the collision wall 13 come into contact with the next arriving ultrafine particles or floating ultrafine particles, and the chances of the ultrafine particles contacting each other are further increased. Therefore, it is suitable for a case where two or more kinds of objects to be treated are mixed or combined.
  • the radius r of the rotating disk 4 is about 0.05 m to 1.0 m depending on the application. Dimensions are possible. Further, the distance R between the outer periphery of the rotating disk 4 and the collision wall 13 may be about 0.01 m to about L 0 m.
  • the calcium hydroxide is dissolved in the aqueous solution supplied to the rotating disk 4 from the supply port 5, and the gas containing carbon dioxide is simultaneously sucked into the rotating disk 4 from the same supply port 5.
  • the ultrafine particles that have been cut by the cutting means are bounced off the collision wall 13, thereby significantly increasing the opportunity for the calcium and carbon dioxide to come into contact with each other and to be combined, thereby efficiently generating calcium carbonate. Is done. As a result, CO 2 reduction can be realized effectively.
  • FIG. 8 shows an embodiment for smoothing the flow of the object to be processed in the rotating disk 4.
  • the opposed disks 1 and 2 have a large number of holes 14 for air suction. Note that the air suction hole 14 may be opened in only one of the opposed disks 1 and 2.
  • the outside air is sucked into the rotating disc 4 from the hole 14, so that the sucked air causes air to flow between the opposed discs 1 and 2 and the workpiece.
  • the flow of the object to be processed in the rotating disk 4 is smoothed, and the flow in the direction of the outer periphery in the rotating disk 4 and the speed of scattering in the form of mist increase.
  • the outer disks move in the outer circumferential direction without any three-dimensional wavy movement between the opposing disks 1 and 2.
  • the object to be processed is three-dimensionally spread in close contact with the inner surfaces of the opposed disks 1 and 2, and further miniaturization is promoted.
  • the rotating disk 4 according to the present invention can be used in an upright state or in a horizontal state. Alternatively, it may be inclined. Therefore, the position and orientation of the rotating disk 4 are not restricted at all. In addition, the rotary disk 4 itself can be rocked or swung with each drive source. Industrial applicability
  • a plurality of rigid bodies are provided on the outer periphery of the rotating disk with a slight gap from the outer end of the blade to cut a workpiece slightly projecting from the outer end of the blade. Due to its structure, the object to be processed before it is shaken off by the centrifugal force by each blade is cut by colliding with the rigid body, and is further subdivided and miniaturized. As a result, vaporization of water from the object to be processed and mixing and combining of two or more types of the object to be processed are performed extremely smoothly, thereby improving the processing efficiency.
  • a compressed air flow is injected in a direction tangential to the rotating disk in a direction opposite to the rotating direction of the rotating disk, and the workpiece slightly projecting from the outer end of the blade is cut by the compressed air flow. It can be further subdivided and miniaturized. As a result, vaporization of water from the object to be processed and mixing and compounding of two or more types of the object to be processed are performed extremely smoothly, thereby improving the processing efficiency.
  • the compressed air flow has a structure that is injected obliquely to the surface of the rotating disk, so the finely cut fine particles hit the nozzles, hinder the nozzles, or become extremely fine. There is no danger that they will recombine and return to a large particle.
  • the ultrafine particles are deflected from the rotating disk, and the ultrafine particles are scattered and dispersed by the compressed air flow, so that they are not concentrated in one place. Processing efficiency such as vaporization is further improved. Also, more nozzles can be arranged.
  • the ultrafine bodies cut by the cutting means collide with the collision wall and bounce off, so that the ultrafine bodies contact each other. More opportunities. Therefore, it is suitable when mixing or combining two or more kinds of objects to be treated.
  • an aqueous solution containing dissolved calcium and a gas containing carbon dioxide are supplied from the supply port of the rotating disk to produce extremely fine particles.
  • the number of opportunities for calcium and carbon dioxide to come into contact with each other is remarkably increased, so that calcium carbonate can be efficiently generated and CO 2 can be effectively reduced.
  • seawater or liquid dissolved matter and water are used to minimize the size of the object to be processed by using cutting means and to accelerate vaporization of water or liquid by using dispersion expansion means such as a blower. Alternatively, the process of separating the liquid from the liquid is performed efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Nozzles (AREA)

Abstract

A device and a method for micronizing powder and granular material such as liquid, fluid, powder and grains that cannot retain a constant shape and is free to flow, which device and method can micronize powder and granular material positively and to the limit by using comparatively simple techniques. A rotary disk formed by connecting to a rotary drive shaft (A) an impeller (3) having a plurality of blades which are disposed between facing disks (1, 2) disposed opposite to each other and extend from the center toward the outer periphery of the impeller, wherein an opening (5) for supplying an unprocessed material is formed at the center of the rotary disk and a plurality of rigid elements for cutting apart the unprocessed material are disposed on the outer periphery of the disk so as to slightly project from the outer ends of the blades with slight gaps therefrom.

Description

明 細 書 粉流体の極微細化装置および極微細化方法 技術分野  Description Apparatus and method for ultrafine powder fluidization
本発明は、 液体や流動体、 粉体、 粒体などのように一定の形を保持 できず、 流動可能な被処理体 (以下 「粉流体」 とも呼ぶ) を極微細化 する装置並びに方法に関する。 背景技術  The present invention relates to an apparatus and a method for miniaturizing a flowable object (hereinafter also referred to as “powder fluid”) that cannot maintain a certain shape such as a liquid, a fluid, a powder, and a granule. . Background art
本発明の発明者は、 特願平 8— 2 2 0 6 1 8号や特願平 8 _ 2 9 7 1 2 9号において、 例えばビニールハウス内を冷却したりする場合に 、 水をできる限り微細な霧状にして散霧することが、 気化促進に有効 であることを提案した。  The inventor of the present invention disclosed in Japanese Patent Application Nos. 08-22026 and 8-2997129 that, for example, when cooling the inside of a greenhouse, water was used as much as possible. It was suggested that atomization in the form of fine mist is effective for promoting vaporization.
また、 特願平 9— 5 0 9 1 6号においては、 海水を散霧して水分を 気化させて塩分を結晶化させることで製塩する技術を提案したが、 こ の場合も、 海水の霧を可能な限り微細化することが、 製造効率を上げ る上で肝要である。  Also, Japanese Patent Application No. 9-5099-16 proposed a technique for producing salt by spraying seawater to vaporize water and crystallize salt. It is important to make the size as small as possible in order to increase manufacturing efficiency.
特願平 9— 1 1 0 1 7 3号においては、 粉体や粒体、 ガス体などと 液体のような、 2以上の被処理体を吸引して微細化すると共に、 混合 して、 液体の中に取り込むことを提案した。 このように、 液体に限ら ず、 流動体や粉体、 粒体などをも含む 2種以上の粉流体を混合したり 、 粉流体とガス体とを混合したりする場合にも、 同様に可能な限り微 細化する技術が必要であり、 特に極微細化が望まれる。  In Japanese Patent Application No. 9-111103, two or more workpieces, such as powders, granules, gas bodies, and liquids, are sucked to be fined and mixed, and then mixed to form a liquid. It was suggested to take in. In this way, not only liquids but also fluids, powders, granules, and the like can be mixed with two or more powdered fluids, or mixed with a powdered fluid and a gaseous body. Techniques for miniaturization are required as much as possible, especially for ultra-miniaturization.
ところが、 前記のような先に提案した技術では、 このように粉流体 を極限まで微細化したりすることが不可能であり、 その結果、 所期の 目的を十分に達成することが不可能であった。 However, in the above-mentioned proposed technology, It was impossible to reduce the size to the limit, and as a result, it was impossible to achieve the intended purpose sufficiently.
本発明の技術的課題は、 このような問題に着目し、 比較的簡易な技 術で粉流体を極限まで確実に微細化可能とすることにある。 発明の開示  The technical problem of the present invention is to pay attention to such a problem and to make it possible to make the powder fluid finer to the utmost by relatively simple technology. Disclosure of the invention
本発明の技術的課題は次のような手段によつて解決される。 第 1項 は、 互いに対向配置された対向円盤の間に中央から外周方向に延びた 複数の羽根を挟んで配置してなる羽根車を回転駆動軸に連結してなる 回転円盤において、 その中央に、 被処理体を供給する開口を形成して ある装置を対象とする。 そして、 前記回転円盤の外周に、 前記羽根の 外端からわずかの隙間をおいて、 前記羽根の外端からわずかに突出し た被処理体を切断するための剛体を複数個配設してなる極微細化装置 である。 なお、 各羽根と対向円盤とは、 第 1図のようなカシメ構造で 連結してもよく、 第 3図のような一体成型構造でもよい。  The technical problem of the present invention is solved by the following means. Item 1 is a rotating disk formed by connecting a plurality of impellers extending from the center to an outer peripheral direction between opposing disks arranged opposite to each other to a rotary drive shaft. The present invention is directed to a device having an opening for supplying an object to be processed. A pole is provided on the outer periphery of the rotating disk with a plurality of rigid bodies disposed at a slight gap from the outer end of the blade to cut an object to be processed slightly projecting from the outer end of the blade. It is a miniaturization device. Each blade and the opposing disk may be connected by a caulking structure as shown in FIG. 1, or may be an integrally molded structure as shown in FIG.
このように、 回転円盤の外周に、 前記羽根の外端からわずかの隙間 をおいて、 前記羽根の外端からわずかに突出した被処理体を切断する ための剛体を複数個配設した構造なため、 各羽根によって遠心力で振 り切られる前の被処理体が、 剛体に衝突して切断され、 更に細分化し て極微細化される。 その結果、 被処理体からの水分の気化や 2種以上 の被処理体の混合や化合が極めて円滑に行なわれ、 処理効率が向上す る o  As described above, a structure is provided in which a plurality of rigid bodies are provided on the outer periphery of the rotating disk with a slight gap from the outer end of the blade to cut a workpiece slightly projecting from the outer end of the blade. Therefore, the object to be processed before being shaken off by the centrifugal force by each blade is cut by colliding with the rigid body, and is further subdivided and miniaturized. As a result, the vaporization of water from the object to be processed and the mixing and compounding of two or more types of object to be processed are performed extremely smoothly, thereby improving the processing efficiency.
第 2項は、 互いに対向配置された対向円盤の間に中央から外周方向 に延びた複数の羽根を挟んで配置してなる羽根車を回転駆動軸に連結 してなる回転円盤を有し、 その中央に、 被処理体を供給する開口を形 成してある装置において、 回転円盤の回転方向と逆向きに、 回転円盤 の外周からわずかの間隔をおいて、 回転円盤の面に対し斜め方向から 、 回転円盤の接線方向の圧縮空気流を噴射するための圧縮空気流噴射 ノズルを配設し、 圧縮空気流を、 前記羽根の外端からわずかに突出し た被処理体を切断するための手段とした極微細化装置である。 The second term includes a rotating disk formed by connecting an impeller, which is arranged with a plurality of blades extending in the outer peripheral direction from the center between opposed disks arranged to face each other, to a rotary drive shaft, In the center, an opening for supplying the workpiece is formed In a device that has been configured, a compressed air flow is injected in the direction tangential to the rotating disk in a direction opposite to the rotating direction of the rotating disk, at a slight distance from the outer circumference of the rotating disk, and at an angle to the surface of the rotating disk. And a compressed air flow jet nozzle for cutting the object to be processed, which slightly protrudes from the outer end of the blade, using a compressed air flow.
このように、 回転円盤の回転方向と逆向きに回転円盤の接線方向の 圧縮空気流を噴射し、 圧縮空気流によって、 前記羽根の外端からわず かに突出した被処理体を切断して、 さらに細分化し、 極微細化できる 。 その結果、 被処理体からの水分の気化や 2種以上の被処理体の混合 や化合が極めて円滑に行なわれ、 処理効率が向上する。  In this way, the compressed air flow is injected in the tangential direction of the rotating disk in the direction opposite to the rotating direction of the rotating disk, and the workpiece slightly projecting from the outer end of the blade is cut by the compressed air flow. , Can be further subdivided and miniaturized. As a result, vaporization of water from the object to be processed and mixing and compounding of two or more types of the object to be processed are performed extremely smoothly, thereby improving the processing efficiency.
特に、 圧縮空気流は、 回転円盤の面に対し斜め方向から噴射される 構造なため、 細か <:切断された極微細粒子がノズルに当たり、 ノズル が邪魔になつたり、 せっかく極微細化された極微細粒子同士が再結合 して、 大きな粒子に戻るといった恐れもない。  In particular, because the compressed air flow is injected obliquely to the surface of the rotating disk, the fine <: cut ultra-fine particles hit the nozzle, disturbing the nozzle, and There is no danger that the fine particles will recombine and return to larger particles.
しかも、 極微細化された微粒子が回転円盤から逸らされることにな り、 極微細粒子が圧縮空気流によって遠くまで飛ばされて分散される ので、 一か所に集中することがなく、 気化などの処理効率がさらに向 上する。 また、 ノズルをより多く配置できる。  In addition, the ultra-fine particles are deflected from the rotating disk, and the ultra-fine particles are scattered and dispersed by the compressed air flow, so that they are not concentrated in one place, and are not concentrated. Processing efficiency is further improved. Also, more nozzles can be arranged.
第 3項は、 互いに対向配置された対向円盤の間に中央から外周方向 に延びた複数の羽根を挟んで配置してなる羽根車を回転駆動軸に連結 してなる回転円盤において、  The third term relates to a rotating disk formed by connecting a rotating drive shaft to an impeller arranged with a plurality of blades extending from the center in an outer peripheral direction between opposed disks arranged to face each other,
その中央に、 被処理体を供給する開口を形成してあり、  An opening for supplying the object to be processed is formed in the center,
前記回転円盤の外周に空気壁が発生するように、 前記回転円盤の周 速 V力く、  The rotational speed of the rotating disk is V so that an air wall is generated around the rotating disk.
ν = / P / P まで上昇可能とするために、 プーリーとベルトや歯車機構などの増 速手段を介して回転円盤を駆動することで高速回転化するか、 または ィンバーター付高速モ一トルを用いることで高速回転化を実現してな る極微細化装置である。 ν = / P / P In order to be able to ascend to high speed, drive the rotating disk through a speed increasing means such as a pulley and a belt or a gear mechanism to achieve high-speed rotation, or use a high-speed motor with an inverter to achieve high-speed rotation. This is an ultra-miniaturized device that has been realized.
このように、 増速手段やインバーター付高速モートルを用い、 回転 円盤の周速を極めて高速化して空気壁を形成することで、 剛体や圧縮 空気流と同様な機能を得ることができ、 その結果、 処理効率が格段と 向上する。  In this way, by using a speed-increasing means and a high-speed motor with an inverter, the peripheral speed of the rotating disk is extremely increased to form an air wall, and the same function as a rigid body or compressed air flow can be obtained. The processing efficiency is greatly improved.
第 4項は、 第 1項、 第 2項または第 3項に記載の回転円盤の外側に 、 該回転円盤を囲むような衝突壁を設け、 前記の切断手段で切断され た極微細体が衝突可能な構造とした極微細化装置である。  In a fourth aspect, a collision wall surrounding the rotating disk is provided outside the rotating disk according to the first, second, or third item, and the ultrafine body cut by the cutting means collides with the rotating disk. This is a microminiaturization device with a possible structure.
このように、 回転円盤を囲むような衝突壁を設けてあるので、 その 中に、 前記の切断手段で切断された極微細体が閉じ込められて漂うた め、 極微細粒子同士が接する機会が増える。 しかも、 該衝突壁に衝突 して跳ね返された極微細粒子が次に到来する極微細粒子や漂っている 極微細粒子と接するため、 極微細粒子同士が接する機会がさらに増え る。 そのため、 2種以上の被処理体を混合したり、 化合させたりする 場合に適している。  As described above, since the collision wall surrounding the rotating disk is provided, the ultrafine body cut by the cutting means is confined and floated in the collision wall, so that the opportunity of contact between the ultrafine particles increases. . In addition, since the ultrafine particles which have collided and bounced off the collision wall come into contact with the next arriving ultrafine particles or floating ultrafine particles, the chances of contact between the ultrafine particles further increase. Therefore, it is suitable for mixing or combining two or more kinds of objects to be treated.
第 5項は、 互いに対向配置された対向円盤の間に中央から外周方向 に延びた複数の羽根を挟んで配置した羽根車を回転駆動軸に連結して なる回転円盤の中央に、 被処理体を供給する開口を有し、 前記回転円 盤の外側に、 該回転円盤を囲むような衝突壁を設けてなる装置を用い て極微細化する際に、 カルシウムを溶かし込んだ水溶液と少なくとも 二酸化炭素を含んだ気体とを、 前記回転円盤の供給口から同時に回転 円盤の中へ供給して、 前記の切断手段で切断された後のカルシウム水 溶液と二酸化炭素を含んだ気体が、 前記の衝突壁に衝突して跳ね返さ れることで、 カルシウムと二酸化炭素とが接触して化合する機会を著 しく増やすことを特徴とする極微細化方法である。 Item 5 is that an object to be processed is provided at the center of a rotating disk formed by connecting an impeller, which is arranged with a plurality of blades extending in a peripheral direction from the center between opposing disks arranged to face each other, to a rotary drive shaft. When ultra-fine processing is performed using a device provided with an impact wall surrounding the rotating disk outside the rotating disk, an aqueous solution in which calcium is dissolved and at least carbon dioxide are provided. Is supplied simultaneously from the supply port of the rotating disk into the rotating disk, and the calcium water cut by the cutting means is An ultrafine method characterized in that a gas containing a solution and carbon dioxide collides with the collision wall and is repelled, thereby significantly increasing the chance of calcium and carbon dioxide contacting and combining. .
このように、 第 4項のような回転円盤を囲む衝突壁を有する装置を 用いて、 カルシウムを溶かし込んだ水溶液と二酸化炭素を含んだ気体 とを、 回転円盤の供給口から供給して極微細化させ、 しかも衝突壁で 跳ね返させる方法によると、 カルシウムと二酸化炭素が接触して化合 する機会を著しく増えるので、 炭酸カルシウムを効率よく生成でき、 C 0 2 削減を効果的に実現できる。 In this way, using a device having a collision wall surrounding the rotating disk as described in Section 4, an aqueous solution containing calcium dissolved therein and a gas containing carbon dioxide are supplied from the supply port of the rotating disk to produce ultrafine particles. According to the method in which calcium and carbon dioxide are repelled and bounced off the collision wall, the number of opportunities for calcium and carbon dioxide to come into contact with each other is significantly increased, so that calcium carbonate can be efficiently generated and CO 2 can be effectively reduced.
第 6項は、 互いに対向配置された対向円盤の間に中央から外周方向 に延びた複数の羽根を挟んで配置した羽根車を回転駆動軸に連結して なる回転円盤の中央に、 被処理体を供給する開口を形成してなる回転 円盤を用い、 海水又は任意の物質が溶け込んでいる被処理液体を前記 の回転円盤の中央の開口から供給し、 前記羽根の外端からわずかの間 隔をおいて、 剛体、 圧縮空気流または空気壁などの切断手段を設ける ことで、 前記羽根の外端からわずかに突出した被処理液体を切断して 極微細化すると同時に、 送風機などのような分散拡大手段を用いて液 体の気化を早め、 海水又は液体の溶解物と水分又は液体とに分離する ことを特徴とする極微細化方法である。  Item 6 is that an object to be processed is provided at the center of a rotating disk formed by connecting an impeller arranged with a plurality of blades extending from the center in the outer peripheral direction between opposed disks arranged to face each other to a rotary drive shaft. Using a rotating disk having an opening for supplying the same, seawater or a liquid to be treated in which any substance is dissolved is supplied from the center opening of the rotating disk, and a slight distance from the outer end of the blade is supplied. By providing cutting means such as a rigid body, a compressed air flow, or an air wall, the liquid to be processed slightly protruding from the outer end of the blade is cut to be extremely fine, and at the same time, the dispersion is enlarged as in a blower or the like. This is an ultrafine method characterized by accelerating the vaporization of a liquid using a means and separating the liquid into a dissolved substance of seawater or liquid and water or liquid.
このように、 切断手段を用いて被処理体を極微細化すると同時に、 送風機などのような分散拡大手段を用いて水分又は液体の気化を早め ることで、 海水又は液体の溶解物と水分又は液体とを分離する処理が 効率的に行なわれる。  In this way, by miniaturizing the object to be processed by using the cutting means, and by accelerating the vaporization of the water or liquid by using a dispersion-enlarging means such as a blower, the dissolved substance of the seawater or liquid and the water or The process of separating from the liquid is performed efficiently.
第 7項は、 互いに対向配置された対向円盤の間に中央から外周方向 に延びた複数の羽根を挟んで配置した羽根車を回転駆動軸に連結して なる回転円盤において、 その中央に、 被処理体を供給する開口を有し ており、 少なくとも片方の対向円盤に、 複数個の空気吸入用の孔を開 けてある回転円盤である。 前記のような切断手段は必ずしも必要ない o Clause 7 is to connect an impeller, which is arranged with a plurality of blades extending from the center in the outer peripheral direction between opposing disks arranged to face each other, to a rotary drive shaft. A rotating disk having an opening for supplying an object to be processed in the center thereof, and having a plurality of air suction holes formed in at least one of the opposed disks. The above cutting means is not always necessary o
このように、 回転円盤の少なくとも片方の対向円盤に、 複数個の空 気吸入孔を開けてあるため、 該空気吸入孔から流れ込んだ空気流によ つて、 回転円盤内における被処理体の流れがより円滑となり、 また回 転円盤内の空間全体に拡散しながら流れるため、 細霧発生が円滑に行 なわれる。 また、 剛体や圧縮空気流、 空気壁などの切断手段を併用す る場合には、 より均一にかつ安定した極微細化作用が得られる。 図面の簡単な説明  As described above, since a plurality of air suction holes are formed in at least one of the opposed disks of the rotating disk, the flow of the object to be processed in the rotating disk is caused by the airflow flowing from the air suction holes. Finer fog is generated more smoothly because it flows while diffusing into the entire space inside the rotating disk. In addition, when a cutting means such as a rigid body, a compressed air flow, or an air wall is used in combination, a more uniform and stable ultrafine-graining action can be obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 従来の羽根車構造の微細化装置の実施形態であり、 (1 ) は中心断面図、 (2 ) は部分断面正面図である。  FIG. 1 is an embodiment of a conventional finer device having an impeller structure, in which (1) is a central sectional view, and (2) is a partial sectional front view.
第 2図は、 従来の背中合わせ構造の羽根車式の微細化装置であり、 ( 1 ) は中心断面図、 (2 ) は中間の円盤の中央部の正面図である。 第 3図は、 羽根車構造の別の実施形態を示す斜視図である。  FIG. 2 shows a conventional back-to-back impeller type miniaturization apparatus, in which (1) is a cross-sectional view at the center, and (2) is a front view of the center of the intermediate disk. FIG. 3 is a perspective view showing another embodiment of the impeller structure.
第 4図は、 被処理体の切断手段として、 剛体を用いた実施形態を示 す回転円盤の部分断面正面図である。  FIG. 4 is a partial cross-sectional front view of a rotating disk showing an embodiment using a rigid body as a means for cutting an object to be processed.
第 5図は、 被処理体の切断手段として、 圧縮空気流を用いた実施形 態を示す図で、 (1 ) は回転円盤の部分断面正面図、 (2 ) は下側か ら見た図 (底面図) である。  Fig. 5 is a view showing an embodiment using a compressed air flow as a means for cutting an object to be processed, (1) is a partial sectional front view of a rotating disk, and (2) is a view as viewed from below. (Bottom view).
第 6図は、 被処理体の切断手段として、 回転円盤を極高速回転させ ることで発生した空気壁を用いる実施形態を示す回転円盤の部分断面 正面図である。 FIG. 6 is a partial sectional view of a rotating disk showing an embodiment in which an air wall generated by rotating the rotating disk at an extremely high speed is used as a means for cutting the object to be processed; It is a front view.
第 7図は、 回転円盤の半径や周速に関する事項を力学的にまとめた 回転円盤の正面図である。  Fig. 7 is a front view of the rotating disk that dynamically summarizes items related to the radius and peripheral speed of the rotating disk.
第 8図は、 回転円盤の対向円盤に空気吸入用の孔を開けた実施形態 の部分断面正面図と中心断面図である。 発明を実施するための最良の形態  FIG. 8 is a partial cross-sectional front view and a central cross-sectional view of an embodiment in which a hole for air suction is formed in the opposing disk of the rotating disk. BEST MODE FOR CARRYING OUT THE INVENTION
次に本発明による粉流体の極微細化装置および極微細化方法が実際 上どのように具体化されるか実施形態を説明する。 図 1から第 3図は 、 本発明の発明者が特願平 8— 2 9 7 1 2 9号において提案した散霧 用の回転円盤である。  Next, an embodiment will be described as to how the apparatus and method for miniaturizing a powder fluid according to the present invention are actually embodied. FIGS. 1 to 3 show a rotary disk for atomization proposed by the inventor of the present invention in Japanese Patent Application No. Hei 8-27971.
第 1図はシングルタイプであり、 互いに対向配置された対向円盤 1 と 2との間の空間 6に、 中心から外周方向に延びた複数の羽根 3を挟 んで配置し、 固定することで羽根車 4を構成してある。 すなわち、 各 羽根 3の両側の突出片を両対向円盤 1、 2の孔から突出させて、 カシ メ部 9のように加締めて固定してある。  Fig. 1 shows a single type, in which a plurality of blades 3 extending from the center in the outer peripheral direction are sandwiched and fixed in a space 6 between opposed disks 1 and 2 arranged opposite to each other, and fixed. 4 is configured. That is, the protruding pieces on both sides of each blade 3 are protruded from the holes of the opposed disks 1 and 2, and are caulked and fixed like the caulking portion 9.
そして、 片方の対向円盤 1の中心に、 モータ Mの出力軸、 すなわち 駆動軸 Aを固定してある。 他方の対向円盤 2の中央は、 給水のために 開口 5が開けられている。 したがって、 水道管の先端 8を開口 5に向 けて、 給水すると、 遠心力によって隣接する羽根 3 · 3間の空間 6か ら放射方向に吹き飛ばされる。 このとき、 羽根車 4の回転数が、 例え ば 1万回転以上といった高速回転の場合は、 細霧状となる。  The output shaft of the motor M, that is, the drive shaft A is fixed at the center of one of the opposed disks 1. The center of the other opposed disk 2 is provided with an opening 5 for water supply. Accordingly, when water is supplied with the water pipe end 8 directed toward the opening 5, the water is radially blown off from the space 6 between the adjacent blades 3 by centrifugal force. At this time, when the rotation speed of the impeller 4 is a high-speed rotation such as, for example, 10,000 rotations or more, a fine mist is formed.
すなわち、 羽根車 4が矢印 a 1方向 (図における左回転) に高速回 転すると、 開口 5から吸入された水は、 各羽根 3の前面 3 aに沿って 遠心力で外側に移動し、 最終的に羽根 3の外端から遠心力で矢印 2方 向に振り飛ばされる。 このような動きが、 高速で行われることで、 矢 印 2方向に飛散するときに霧状となる。 That is, when the impeller 4 rotates at a high speed in the direction of the arrow a1 (left rotation in the figure), the water sucked from the openings 5 moves outward by centrifugal force along the front face 3a of each impeller 3, and finally ends. Arrow 2 from the outer end of the blade 3 by centrifugal force She is swung away. Such a movement is performed at a high speed, and becomes mist when scattered in the direction of the arrow 2.
また、 矢印 a 2方向に飛散する霧は、 遠心力によって遠くまで飛ば されるので、 到達距離も長くなる。  Also, the fog scattered in the direction of arrow a2 is blown away by centrifugal force, so that the reaching distance becomes longer.
第 2図は、 第 1図の羽根車 4を背中合わせに一体化した実施形態で あり、 中間の円盤 1の中心をモータ Mの出力軸 Aに固定してある。 ま た、 中間の円盤 1の中央には、 モータ軸との連結部 1 aの間に窓孔 7 を開けて、 給水管先端 8から供給された水の約半分は、 該窓孔 7から 左側の羽根車 4 a中に入り、 残り半分は右側の羽根車 4 b中に入る。 なお、 モータ軸 Aは、 左側の円盤 2 aの中心に固定し、 中間の円盤 1の中央は、 円形の開口とすることも可能である。 FIG. 2 shows an embodiment in which the impeller 4 of FIG. 1 is integrated back to back, and the center of the intermediate disk 1 is fixed to the output shaft A of the motor M. In the center of the intermediate disk 1, a window 7 is opened between the connecting portion 1 a to the motor shaft, and about half of the water supplied from the water supply pipe tip 8 is on the left side of the window 7. impeller 4 enters into a of, the other half into the right side of the impeller 4 b. The motor shaft A can be fixed to the center of the left disk 2a, and the center of the intermediate disk 1 can be a circular opening.
第 1図 (2 ) においては、 羽根 3は円弧状になっているが、 遠心力 によって効率的に霧化できれば、 図示の形状に限定されない。 また、 円盤 1と円盤 2、 2 a、 2 bとの間隔は、 中央部を大きく、 外周寄り を狭くすることで、 霧化効率を高く しているが、 この構造に限定され ない。 したがって、 両対向円盤 1と 2 ( 2 a、 2 b ) との間隔 Bを、 羽根車 4の半径と同程度の寸法まで、 あるいはそれ以上に大きくする ことも可能であり、 また間隔 Bを一定にして、 両対向円盤 1と 2 ( 2 a、 2 b ) とを互いに平行にすることもできる。  In FIG. 1 (2), the blades 3 are arc-shaped, but the shape is not limited as long as it can be atomized efficiently by centrifugal force. The distance between the disk 1 and the disks 2, 2a, and 2b is large at the center and narrow at the outer periphery to increase the atomization efficiency, but is not limited to this structure. Therefore, it is possible to increase the distance B between the two opposed disks 1 and 2 (2a, 2b) to a size approximately equal to or larger than the radius of the impeller 4, and to keep the distance B constant. Then, both opposed disks 1 and 2 (2 a, 2 b) can be made parallel to each other.
第 1図、 第 2図における羽根車は、 各円盤 1、 2、 2 a、 2 bと羽 根 3を別体の部品とし、 第 1図に示す力シメ部 9のような手段を用い 、 後で結合しても製造できる。 あるいは、 第 3図のように、 片方の円 盤 1と各羽根 3を铸物ゃ樹脂で一体成型し、 第 1図における他方の円 盤 2は、 羽根 3にネジ止めや接着などで固定することも可能である。 すなわち、 製造方法のいかんを問わない。 1 and 2, the disks 1, 2, 2a, 2b and the blade 3 are made as separate parts, and a means such as a force crimping section 9 shown in FIG. 1 is used. It can be manufactured by combining them later. Alternatively, as shown in Fig. 3, one disk 1 and each blade 3 are molded integrally with a resin, and the other disk 2 in Fig. 1 is fixed to the blade 3 by screwing or bonding. It is also possible. That is, the production method does not matter.
また、 第 1図 (2 ) のように、 各羽根 3の間隔は、 外周寄りが広く なっているが、 各羽根 3同士の間に、 さらにもう 1枚の羽根を追加す ることで、 第 3図の場合と同様に、 外周側が拡がり過ぎるのを防止で さ o。  Also, as shown in Fig. 1 (2), the distance between the blades 3 is wider toward the outer periphery, but by adding another blade between the blades 3, As in the case of Fig. 3, it is possible to prevent the outer circumference from becoming too wide.
以上の説明では、 開口 5から水を供給しているが、 水以外の液体や 流動体、 粉体、 粒体などを供給することも可能である。  In the above description, water is supplied from the opening 5, but liquid, fluid, powder, granules, and the like other than water can also be supplied.
本発明は、 このような羽根車構造の回転円盤を用いて液体や流動体 、 粉体、 粒体などを極微細化するために、 以下のような改良を加えて ある。  The present invention has the following improvements in order to miniaturize liquids, fluids, powders, granules, and the like using such a rotating disk having an impeller structure.
第 1図、 第 2図のように、 対向円盤 1、 2間に複数の羽根 3…を挟 んで配置した回転円盤 4において、 第 4図のように、 各羽根 3…の外 端からわずかの間隔 Gをおいて、 被散霧体を切断するための剛体 1 0 を複数個、 間隔をおいて配設してある。 前記のわずかの間隔 Gとは、 回転円盤 4側が剛体 1 0と接しない範囲で可能な限り小さな隙間が望 ましい。  As shown in FIGS. 1 and 2, in a rotating disk 4 having a plurality of blades 3 sandwiched between opposed disks 1 and 2, as shown in FIG. At intervals G, a plurality of rigid bodies 10 for cutting the atomized mist are arranged at intervals. The small gap G is preferably as small as possible as long as the rotating disk 4 does not touch the rigid body 10.
このように、 微小隙間 Gをおいて、 回転円盤 4の外側に剛体 1 0が 配置されていると、 各羽根 3…の外端で振り切られる前に、 被散霧体 が瞬時に剛体 1 0に当たって、 切断される。 その結果、 一粒の霧状の 水滴が、 複数の極微細な水粒子に分割されて、 極微細の霧となり、 水 分の気化がより容易になる。  In this way, if the rigid body 10 is arranged outside the rotating disk 4 with a small gap G, the atomized mist is instantaneously moved to the rigid body 10 before being shaken off at the outer end of each blade 3. Is cut off. As a result, a single mist of water droplets is divided into a plurality of extremely fine water particles, resulting in an extremely fine mist, which facilitates vaporization of water.
剛体 1 0の数が多いほど、 極微細化の効率は良いが、 各剛体 1 0の 間隔が狭すぎると、 せっかく極微細化された霧が閉じ込められる恐れ があるので、 極微細化された霧が外側に流出できるように、 各剛体 1 0 · 1 0間にある程度の間隔が必要となる。 このような剛体 1 0と同様な機能を司る手段として、 圧縮空気流を 用いることも有効である。 すなわち、 第 5図のように、 回転円盤 4の 外周位置に、 該回転円盤 4の接線方向に圧縮空気流 1 1を噴出できる ように圧縮空気のノズル 1 2を複数個配設してある。 ノズル 1 2の向 きは、 圧縮空気流 1 1の噴出方向が、 回転円盤 4の回転方向に対し逆 向きとなるように向ける。 また、 前記の剛体 1 0の場合と同様に、 各 羽根 3…の外端からわずかの間隔 Gの位置に圧縮空気流 1 1が発生す るように配置する。 As the number of rigid bodies 10 increases, the efficiency of ultrafineness becomes higher.However, if the distance between the rigid bodies 10 is too small, there is a risk that extremely finely divided fog may be confined. Some space is required between each rigid body 10 · 10 so that can flow out. It is also effective to use a compressed air flow as a means having the same function as the rigid body 10. That is, as shown in FIG. 5, a plurality of compressed air nozzles 12 are arranged at the outer peripheral position of the rotating disk 4 so that the compressed air flow 11 can be jetted in a tangential direction of the rotating disk 4. The direction of the nozzle 12 is oriented such that the direction of jet of the compressed air flow 11 is opposite to the direction of rotation of the rotating disk 4. Also, as in the case of the rigid body 10 described above, the blades 3 are arranged so that the compressed air flow 11 is generated at a position of a slight distance G from the outer end.
このようにして、 各羽根 3…の外端からわずかの隙間 Gの位置にお いて、 回転円盤 4の回転方向に対し逆向きに、 しかも接線方向に圧縮 空気流 1 1を発生させると、 この圧縮空気流 1 1によって密度の高い 空気壁を形成することができる。 その結果、 圧縮空気流 1 1に、 各羽 根 3…の外端で振り切られる前の被散霧体が瞬時に当たって切断され 、 極微細化される。  In this way, when the compressed air flow 11 is generated in a direction opposite to the rotation direction of the rotating disk 4 and tangentially at a position of a small gap G from the outer end of each blade 3. A dense air wall can be formed by the compressed air flow 11. As a result, the atomized mist before being shaken off by the outer ends of the blades 3 is instantaneously hit by the compressed air flow 11 and is cut off to be extremely fine.
こうして極微細に切断された極微細霧は、 圧縮空気流 1 1によって 吹き飛ばされる。 したがって、 第 4図のように、 実際に剛体 1 0が存 在する場合のように、 剛体 1 0によって、 極微細化された霧が閉じ込 められる恐れはなく、 円滑に散霧できる。  The ultrafine mist cut in this manner is blown off by the compressed air flow 11. Therefore, as shown in FIG. 4, unlike the case where the rigid body 10 actually exists, the rigid body 10 does not cause the extremely fine mist to be trapped, and can smoothly spray the mist.
圧縮空気流 1 1力 第 5図 (2 ) における矢印 1 1 aで示すように 、 回転円盤 4の面と平行方向 (駆動軸 Aと直角方向) だと、 せっかく 極微細化された霧がノズル 1 2に当たるので、 ノズル 1 2が邪魔にな る。 また、 ノズル 1 2に当たった際に、 極微細化された霧同士が再結 合して大きな粒子に戻ってしまう恐れがある。  Compressed air flow 1 1 Force As shown by the arrow 11a in Fig. 5 (2), if it is in the direction parallel to the surface of the rotating disk 4 (in the direction perpendicular to the drive shaft A), the extremely fine mist is generated by the nozzle. Nozzle 1 2 is in the way because it hits 1 2. Further, when the mist hits the nozzle 12, there is a risk that the extremely fine mist will recombine and return to large particles.
ところが、 第 5図 (2 ) に示すように、 ノズル 1 2を、 回転円盤 4 の面に対し角度 0を設けて配置することによって、 斜め方向から圧縮 空気流 1 1を噴出させる構造になっている。 そのため、 ノズル 1 2が 邪魔になつたり、 極微細化した粒子が再結合したりする恐れはない。 しかも、 極微細化された微粒子が、 圧縮空気流 1 1で回転円盤 4か ら逸らされ、 遠くまで飛ばされて拡散されるので、 一か所に集中する ことがなく、 気化などの処理効率がさらに向上する。 また、 ノズル 1 2をより多く配置できる。 なお、 圧縮空気流 1 1の噴出角度 »は自由However, as shown in Fig. 5 (2), by arranging the nozzle 12 at an angle of 0 with respect to the surface of the rotating disk 4, the nozzle 12 can be compressed from an oblique direction. It has a structure to blow out the airflow 11. Therefore, there is no risk that the nozzles 12 will be in the way or that extremely fine particles will recombine. Moreover, the ultrafine particles are deflected from the rotating disk 4 by the compressed air flow 11 and are scattered by being scattered far away, so that they are not concentrated in one place, and the processing efficiency such as vaporization is improved. Further improve. Further, more nozzles 12 can be arranged. Compressed air flow 1 1 Jet angle »Free
(<- 55 i£" さる。 (<-55 i £ "monkey.
以上のようにして、 剛体 1 0を設けたり、 圧縮空気流 1 1を発生さ せることが有効であるが、 剛体 1 0や圧縮空気流 1 1による極微細化 作用は、 回転円盤 4の周速と剛体 1 0や圧縮空気流 1 1との相対速度 が速いことによって可能となる。  As described above, it is effective to provide the rigid body 10 or to generate the compressed air flow 11, but the rigidization by the rigid body 10 and the compressed air flow 11 is not effective. This is made possible by the high relative speed between the velocity and the rigid body 10 or the compressed air flow 11.
したがって、 回転円盤 4の周速が、 第 4図や第 5図の場合よりも、 極めて高速化できるのであれば、 剛体 1 0や圧縮空気流 1 1が存在し なくても、 剛体 1 0や圧縮空気流 1 1が存在する場合と同様な極微細 化作用が期待できる。  Therefore, if the peripheral speed of the rotating disk 4 can be made much higher than in the case of FIGS. 4 and 5, even if the rigid body 10 and the compressed air flow 11 are not present, the rigid body 10 An ultra-miniaturization effect similar to the case where the compressed air flow 11 exists can be expected.
すなわち、 このように圧縮空気流 1 1などと同様な空気壁が発生可 能とするには、 第 6図のように、 回転円盤 4における羽根 3…の外端 における周速 V力く、 となるまで上昇させることが必要である。 このような高速回転は、 プーリーとベルトや歯車機構などによる増速手段を用いて増速したり 、 インバーター付高速モートルなどを用いることで実現できる。  That is, in order to enable the generation of an air wall similar to that of the compressed air flow 11 or the like, as shown in FIG. 6, the peripheral speed V at the outer end of the blades 3... It is necessary to raise it. Such high-speed rotation can be realized by using a speed increasing means such as a pulley and a belt or a gear mechanism, or by using a high-speed motor with an inverter.
次にその理由を説明する。 いま、 回転円盤 4の外端における周速 V が比較的小さい場合の抵抗力は、 回転円盤 4とその周囲の空気との間 の粘性によって生じ、 力 F。 は、 aという空気抵抗係数を用いて、 F 0 =- a V - ( 1 ) Next, the reason will be described. Now, when the peripheral speed V at the outer end of the rotating disk 4 is relatively small, the resistance between the rotating disk 4 and the surrounding air is Caused by the viscosity of the force F. Is given by F 0 =-a V-(1)
のように速度に比例する。  Is proportional to the speed.
回転円盤 4の速度が増加するにつれて、 回転円盤 4が流体中に乱流 を発生させ、 そのために、 速度の二乗に比例して抵抗力が大きくなる 。 一般に、 抵抗力 FQ は、 As the speed of the rotating disk 4 increases, the rotating disk 4 generates turbulence in the fluid, so that the resistance increases in proportion to the square of the speed. In general, the resistance F Q is
Fo = a V + b V 2 … (2) Fo = a V + b V 2 … (2)
となり、 速度に比例する項と速度の二乗に比例する項をもち、 その 係数 a、 bは回転円盤 4の形状やその周囲の流体の種類によつて決ま ο  The coefficient a and b have a term proportional to the velocity and a term proportional to the square of the velocity. The coefficients a and b are determined by the shape of the rotating disk 4 and the type of fluid around it.
空気中での回転円盤 4の運動を考える場合に、 速度の二乗に比例す る項が重要となり、 抵抗係数 C。 を用いて、  When considering the motion of the rotating disk 4 in the air, the term proportional to the square of the velocity becomes important, and the resistance coefficient C. Using,
1  1
FD = —— CD Αν2 … (3) F D = —— C D Αν 2 … (3)
2 と言己される。  It is said to be 2.
P :流体密度  P: Fluid density
A:被処理体の有効断面積  A: Effective sectional area of the workpiece
CD :回転円盤 4の形により決まる次元のない抵抗係数 C D : Dimensionless drag coefficient determined by the shape of the rotating disk 4
気体中を回転円盤 4が回転するとき、 動圧 1 /2 p V 2 が気体の圧 力 Pに比べて小さいような速さでは、 気体を縮まない液体として取り 扱うこともできる。 しかし、 回転円盤 4の周速 Vが'、 When the in gas rotating disc 4 rotates, the dynamic pressure 1/2 p V 2 is small such fast compared to pressure P of the gas can also be treated takes as a liquid which does not shrink the gas. However, the peripheral speed V of the rotating disk 4 is',
v=V P/P ··' (4)  v = V P / P '(4)
の程度になると、 気体が圧縮される影響が著しくなつて慣性抵抗の 効果が大きくなり、 流れの様子や抵抗も、 速さが小さい場合とは非常 ίこ違つてく る。 すなわち、 空気の圧縮抵抗を、 完全に物理的な力として考慮しなけ ればならなくなる。 この回転円盤による慣性抵抗を考慮すれば、 回転 円盤 4の端速 (羽根 3…の外端の周速) Vが、 In this case, the effect of gas compression becomes significant and the effect of the inertial resistance increases, and the flow state and the resistance become very different from those at low speed. In other words, the compression resistance of air must be considered completely as a physical force. Considering the inertial resistance of this rotating disk, the end speed of the rotating disk 4 (the peripheral speed of the outer end of the blades 3 ...) V
v=7 P/ … (4)  v = 7 P /… (4)
に近くなつた状態では、 第 4図や第 5図のような剛体 1 0や圧縮空 気流 1 1と同様な機能をする空気壁が自然と発生するので、 剛体 1 0 や圧縮空気流 1 1は不必要となる。  In the state close to, the rigid body 10 and the compressed air flow 11 1 as shown in Fig. 4 and Fig. 5 naturally generate air walls having the same function as the rigid body 10 and the compressed air flow 1 1. Becomes unnecessary.
ν= Γ ωであるから、 Vを速くするには、 半径 rを大きく してもよ いし、 角速度 ωを速く してもよい。 したがって、 Since ν = Γ ω, to increase V, the radius r may be increased or the angular velocity ω may be increased. Therefore,
Figure imgf000015_0001
Figure imgf000015_0001
となるよう、 rと ωを調整するものとする。  R and ω are adjusted so that
もちろん、 回転円盤 4の周速 Vが小さい場合は、 第 4図の剛体 1 0 や第 5図の圧縮空気流 1 1も極めて有効である。  Of course, when the peripheral speed V of the rotating disk 4 is small, the rigid body 10 in FIG. 4 and the compressed air flow 11 in FIG. 5 are also very effective.
第 7図において、 回転円盤 4の半径 rや周速 Vに関する力学的まと めをする。  In FIG. 7, a dynamic summary of the radius r and the peripheral speed V of the rotating disk 4 is given.
r :回転円盤 4の半径  r: radius of rotating disk 4
ω :回転円盤 4の角速度  ω: angular velocity of rotating disk 4
V :回転円盤 4の外周の速度  V: Speed around the outer circumference of the rotating disk 4
η :単位時間に回転する回転数  η: Number of rotations per unit time
V = r ω  V = r ω
ω = 2 π n  ω = 2 π n
ν = 2 π τ n  ν = 2 π τ n
次に回転円盤 4の周速 Vと半径 rとの関係を考察する。  Next, the relationship between the peripheral speed V of the rotating disk 4 and the radius r will be considered.
いま、 t °Cにおける音速 Vは、  Now, the sound velocity V at t ° C is
v= 3 3 1. 5 + 0. 6 t (mZs e c) で与えられる。 t = 4 0°Cとすると、 v = 3 31.5 + 0.6 t (mZs ec) Given by Assuming t = 40 ° C,
v = 3 3 1. 5 + 2 4 (m/ s e c) = 3 5 5. 5 m/ s e c となる。 分速に直すと、  v = 3 31.5 + 24 (m / sec) = 35.5.5 m / sec When converted to minute speed,
v = 3 5 5. 5 X 6 0 = 2 1 3 3 0 m/m i n  v = 3 5 5.5 X 6 0 = 2 1 3 3 0 m / m i n
v = 2 7Γ r n であるから (n= r pm)  Since v = 2 7 n r n (n = r pm)
r = 0. 2 0 mとすると、  If r = 0.20 m,
2 1 3 3 0 = 2 X 3. 1 4 X 0. 2 x n となるので、  2 1 3 3 0 = 2 X 3.14 X 0.2 x n
2 1 3 3 0  2 1 3 3 0
n = = 1 6 9 8 2 r pm  n = = 1 6 9 8 2 r pm
1. 2 5 6  1. 2 5 6
r = 0. 2 5 mとすると、  If r = 0.25 m,
2 1 3 3 0 = 2 X 3. 1 4 X 0. 2 5 X n となるので、  2 1 3 3 0 = 2 X 3.14 X 0.25 X n
2 1 3 3 0  2 1 3 3 0
n = = 1 3 5 8 5 r pm  n = = 1 3 5 8 5 r pm
1. 5 7  1. 5 7
結局、 回転円盤 4の半径 rが 2 0 c mとすると、 1 6 9 8 2 r pm 以上の高速回転を要し、 半径 rが 2 5 c mとすると、 1 3 5 8 5 r p mで足りる、 ということになる。 このような条件を満足できれば、 第 4図の剛体 1 0や第 5図の圧縮空気流 1 1は不要となる。  After all, if the radius r of the rotating disk 4 is 20 cm, high-speed rotation of 16982 rpm or more is required, and if the radius r is 25 cm, 1358 5 rpm is sufficient. become. If these conditions can be satisfied, the rigid body 10 in FIG. 4 and the compressed air flow 11 in FIG. 5 become unnecessary.
半径 rが 2 5 c mより大きい大型の回転円盤 4でも駆動できるよう にパワーの大きなモータを使用すれば、 回転数はさらに少なくできる o  If a large-power motor is used to drive a large rotating disk 4 with a radius r larger than 25 cm, the number of rotations can be further reduced.
以上のような装置又は方法を用いて、 被処理体として海水を極微細 化すると、 海水が極めて微細な霧状となるため、 特願平 9 - 5 0 9 1 6号の製塩方法における水分の気化が極めて効率的に行なわれ、 塩の 大量生産がより容易になると共に、 塩の結晶もより細かくなる。  If seawater is made extremely fine as an object to be treated using the above-described apparatus or method, the seawater becomes extremely fine mist, so the water content in the salt production method of Japanese Patent Application No. 9-509916 is filed. Evaporation is very efficient, salt mass production is easier and salt crystals are finer.
また、 種々の溶液を極微細化して、 水分の気化を促進させると、 溶 解物と水分又は液体とに分離することも容易になる。 In addition, when various solutions are miniaturized to promote vaporization of water, It is also easy to separate the disassembly from water or liquid.
さらに、 送風機を併用して、 極微細化された細霧をより遠くまで吹 き飛ばして分散拡大すると、 水分や液体の気化が一層促進される。 こ のとき、 温風ないし熱風を用いると、 より効果的であることは、 言う までもない。  Furthermore, when the finely divided fine fog is blown away further and dispersed and expanded using a blower, vaporization of water and liquid is further promoted. At this time, it is needless to say that using hot air or hot air is more effective.
本発明の装置又は方法を、 特願平 9一 1 1 0 1 7 3号のように、 回 転円盤 4中に粉粒体やガス体などと液体とを同時に吸入して極微細化 すると共に混合して、 液体の中に取り込む際も極めて有効である。 す なわち、 第 4図の剛体 1 0や第 5図の圧縮空気流 1 1、 第 6図のよう に回転円盤 4の周速 Vを極高速化することで、 極微細化された物質が 次々と混合又は化合を促進するために衝突させることが可能となり、 異種の物質同士の接する機会を増やすことで、 結合ないし化合が促進 される。  As disclosed in Japanese Patent Application No. 9-111173, the apparatus or method of the present invention simultaneously sucks powder and granules or gas and liquid into a rotating disk 4 to make it extremely fine. It is extremely effective when mixed and taken into a liquid. In other words, as shown in Fig. 4, the rigid body 10 and the compressed air flow 11 in Fig. 5, and as shown in Fig. 6, the peripheral Collisions can be made one after another to promote mixing or compounding, and bonding or compounding is promoted by increasing the chances of contact between different types of substances.
第 4図に例示するように、 回転円盤 4の外側に、 該回転円盤 4を囲 むような衝突壁 1 3を設け、 前記のような切断手段で切断された後の 極微細体を閉じ込める構造にしてある。 また、 回転円盤 4の外周と衝 突壁 1 3との間隔 Rが小さい場合は、 極微細粒子が衝突壁 1 3に衝突 して跳ね返る。  As illustrated in FIG. 4, a collision wall 13 surrounding the rotating disk 4 is provided outside the rotating disk 4 so that the microfine body cut by the cutting means as described above is confined. It is. When the distance R between the outer periphery of the rotating disk 4 and the collision wall 13 is small, the ultrafine particles collide with the collision wall 13 and rebound.
その結果、 極微細体が閉じ込められて漂うため、 極微細粒子同士が 接する機会が増える。 また、 該衝突壁 1 3に衝突して跳ね返された極 微細粒子が次に到来する極微細粒子や漂つている極微細粒子と接する ことになり、 極微細粒子同士が接する機会がさらに増える。 そのため 、 2種以上の被処理体を混合したり、 化合させたりする場合に適して いる。  As a result, the microfine particles are trapped and drifted, increasing the chance of contact between the ultrafine particles. Further, the ultrafine particles colliding with and bounced off from the collision wall 13 come into contact with the next arriving ultrafine particles or floating ultrafine particles, and the chances of the ultrafine particles contacting each other are further increased. Therefore, it is suitable for a case where two or more kinds of objects to be treated are mixed or combined.
回転円盤 4の半径 rは、 用途に応じて 0 . 0 5 m〜l . 0 m程度の 寸法が考えられる。 また、 回転円盤 4の外周と衝突壁 1 3との間隔 R は、 0 . 0 1 m〜: L 0 m程度が考えられる。 The radius r of the rotating disk 4 is about 0.05 m to 1.0 m depending on the application. Dimensions are possible. Further, the distance R between the outer periphery of the rotating disk 4 and the collision wall 13 may be about 0.01 m to about L 0 m.
この場合、 供給口 5から回転円盤 4中に供給される水溶液の中に力 ルシゥムを溶かし込んでおき、 かつ二酸化炭素を含んだ気体を同じ供 給口 5から同時に回転円盤 4の中へ吸入させると、 前記の切断手段で 切断された後の極微細粒子が衝突壁 1 3で跳ね返されることで、 カル シゥムと二酸化炭素が接触して化合する機会が著しく増え、 炭酸カル シゥムが効率的に生成される。 その結果、 C O 2 削減を効果的に実現 できる。 In this case, the calcium hydroxide is dissolved in the aqueous solution supplied to the rotating disk 4 from the supply port 5, and the gas containing carbon dioxide is simultaneously sucked into the rotating disk 4 from the same supply port 5. The ultrafine particles that have been cut by the cutting means are bounced off the collision wall 13, thereby significantly increasing the opportunity for the calcium and carbon dioxide to come into contact with each other and to be combined, thereby efficiently generating calcium carbonate. Is done. As a result, CO 2 reduction can be realized effectively.
第 8図は回転円盤 4内における被処理体の流れを円滑にするための 実施形態であり、 対向円盤 1、 2に、 空気吸入用の孔 1 4を多数開け てある。 なお、 空気吸入孔 1 4は、 対向円盤 1、 2のいずれか片方だ けに開けてもよい。  FIG. 8 shows an embodiment for smoothing the flow of the object to be processed in the rotating disk 4. The opposed disks 1 and 2 have a large number of holes 14 for air suction. Note that the air suction hole 14 may be opened in only one of the opposed disks 1 and 2.
第 8図 (1 ) に矢印で示すように、 この孔 1 4から外気が回転円盤 4中に吸入されるため、 吸入された空気によって、 対向円盤 1、 2と 被処理体との間に空気流が形成されることで、 被処理体の回転円盤 4 内における流れを円滑にし、 回転円盤 4内における外周方向への流れ や霧状になつて飛散する速度が高まる。  As indicated by the arrow in Fig. 8 (1), the outside air is sucked into the rotating disc 4 from the hole 14, so that the sucked air causes air to flow between the opposed discs 1 and 2 and the workpiece. By the formation of the flow, the flow of the object to be processed in the rotating disk 4 is smoothed, and the flow in the direction of the outer periphery in the rotating disk 4 and the speed of scattering in the form of mist increase.
また、 孔 1 4から吸入された空気流と開口 5から吸入された被処理 体との相互作用によって、 対向円盤 1、 2間で立体的な波状の動きを しな力くら、 外周方向に移動するので、 対向円盤 1、 2の内面に密着し て ^、た被処理体を立体的に拡げる働きをし、 より極微細化が促進され る。  In addition, due to the interaction between the air flow sucked through the holes 14 and the object sucked through the openings 5, the outer disks move in the outer circumferential direction without any three-dimensional wavy movement between the opposing disks 1 and 2. As a result, the object to be processed is three-dimensionally spread in close contact with the inner surfaces of the opposed disks 1 and 2, and further miniaturization is promoted.
このように、 この空気吸入孔 1 4による作用は、 前記のような切断 手段に到達する前に発生するので、 この空気吸入孔 1 4は、 本発明の 発明者が先に提案した回転円盤のように、 第 4図から第 7図のような 切断手段を使用しない構造においても、 極めて有効に作用する。 As described above, the action of the air suction hole 14 occurs before reaching the cutting means as described above. It works extremely effectively even in a structure that does not use cutting means as shown in FIGS. 4 to 7, such as the rotating disk proposed by the inventor.
なお、 本発明における回転円盤 4は、 立てた状態で使用することも でき、 水平状態でも使用できる。 あるいは、 斜めにしてもよい。 した がって、 回転円盤 4の姿勢や向きは全く制限されない。 また、.駆動源 ごと回転円盤 4自体を揺動ざせたり、 首振り運動させたりすることも できる。 産業上の利用可能性  The rotating disk 4 according to the present invention can be used in an upright state or in a horizontal state. Alternatively, it may be inclined. Therefore, the position and orientation of the rotating disk 4 are not restricted at all. In addition, the rotary disk 4 itself can be rocked or swung with each drive source. Industrial applicability
第 1項によると、 回転円盤の外周に、 前記羽根の外端からわずかの 隙間をおいて、 前記羽根の外端からわずかに突出した被処理体を切断 するための剛体を複数個配設した構造なため、 各羽根によって遠心力 で振り切られる前の被処理体が、 剛体に衝突して切断され、 更に細分 化して極微細化される。 その結果、 被処理体からの水分の気化や 2種 以上の被処理体の混合や化合が極めて円滑に行なわれ、 処理効率が向 上する。  According to the first aspect, a plurality of rigid bodies are provided on the outer periphery of the rotating disk with a slight gap from the outer end of the blade to cut a workpiece slightly projecting from the outer end of the blade. Due to its structure, the object to be processed before it is shaken off by the centrifugal force by each blade is cut by colliding with the rigid body, and is further subdivided and miniaturized. As a result, vaporization of water from the object to be processed and mixing and combining of two or more types of the object to be processed are performed extremely smoothly, thereby improving the processing efficiency.
第 2項によると、 回転円盤の回転方向と逆向きに回転円盤の接線方 向の圧縮空気流を噴射し、 圧縮空気流によって、 前記羽根の外端から わずかに突出した被処理体を切断して、 さらに細分化し、 極微細化で きる。 その結果、 被処理体からの水分の気化や 2種以上の被処理体の 混合や化合が極めて円滑に行なわれ、 処理効率が向上する。  According to the second term, a compressed air flow is injected in a direction tangential to the rotating disk in a direction opposite to the rotating direction of the rotating disk, and the workpiece slightly projecting from the outer end of the blade is cut by the compressed air flow. It can be further subdivided and miniaturized. As a result, vaporization of water from the object to be processed and mixing and compounding of two or more types of the object to be processed are performed extremely smoothly, thereby improving the processing efficiency.
特に、 圧縮空気流は、 回転円盤の面に対し斜め方向から噴射される 構造なため、 細かく切断された極微細粒子がノズルに当たり、 ノズル が邪魔になつたり、 せっかく極微細化された極微細粒子同士が再結合 して、 大きな粒子に戻るといった恐れもない。 しかも、 極微細化された微粒子が回転円盤から逸らされることにな り、 極微細化された微粒子が圧縮空気流によって遠くまで飛ばされて 分散されるので、 一か所に集中することがなく、 気化などの処理効率 がさらに向上する。 また、 ノズルをより多く配置できる。 In particular, the compressed air flow has a structure that is injected obliquely to the surface of the rotating disk, so the finely cut fine particles hit the nozzles, hinder the nozzles, or become extremely fine. There is no danger that they will recombine and return to a large particle. In addition, the ultrafine particles are deflected from the rotating disk, and the ultrafine particles are scattered and dispersed by the compressed air flow, so that they are not concentrated in one place. Processing efficiency such as vaporization is further improved. Also, more nozzles can be arranged.
第 3項によると、 増速手段やインバーター付高速モ一トルを用い、 回転円盤の周速を極めて高速化して空気壁を形成することで、 剛体や 圧縮空気流と同様な機能を得ることができ、 その結果、 処理効率が格 段と向上する。  According to paragraph 3, by using a speed-increasing means or a high-speed motor with an inverter, the peripheral speed of the rotating disk is extremely increased to form an air wall, so that a function similar to that of a rigid body or compressed air flow can be obtained. As a result, the processing efficiency is significantly improved.
第 4項によると、 回転円盤を囲むような衝突壁を設けてあるので、 前記の切断手段で切断された極微細体が該衝突壁に衝突して跳ね返さ れることで、 極微細体同士が接する機会が増える。 そのため、 2種以 上の被処理体を混合したり、 化合させたりする場合に適している。 第 5項のように、 第 4項のような衝突壁を有する装置を用いて、 力 ルシゥムを溶かし込んだ水溶液と二酸化炭素を含んだ気体とを、 回転 円盤の供給口から供給して極微細化させ、 しかも衝突壁で跳ね返させ る方法によると、 カルシウムと二酸化炭素が接触して化合する機会を 著しく増えるので、 炭酸カルシウムを効率よく生成でき、 C 0 2 削減 を効果的に実現できる。 According to the fourth aspect, since the collision wall surrounding the rotating disk is provided, the ultrafine bodies cut by the cutting means collide with the collision wall and bounce off, so that the ultrafine bodies contact each other. More opportunities. Therefore, it is suitable when mixing or combining two or more kinds of objects to be treated. As described in paragraph 5, using a device having a collision wall as described in paragraph 4, an aqueous solution containing dissolved calcium and a gas containing carbon dioxide are supplied from the supply port of the rotating disk to produce extremely fine particles. According to the method in which calcium and carbon dioxide are repelled by the collision wall, the number of opportunities for calcium and carbon dioxide to come into contact with each other is remarkably increased, so that calcium carbonate can be efficiently generated and CO 2 can be effectively reduced.
第 6項によると、 切断手段を用いて被処理体を極微細化すると同時 に、 送風機などのような分散拡大手段を用いて水分又は液体の気化を 早めるため、 海水又は液体の溶解物と水分又は液体とを分離する処理 が効率的に行なわれる。  According to paragraph 6, seawater or liquid dissolved matter and water are used to minimize the size of the object to be processed by using cutting means and to accelerate vaporization of water or liquid by using dispersion expansion means such as a blower. Alternatively, the process of separating the liquid from the liquid is performed efficiently.
第 7項によると、 回転円盤の少なくとも片方の対向円盤に、 複数個 の空気吸入孔を開けてあるため、 該空気吸入孔から流れ込んだ空気流 によって、 回転円盤内における被処理体の流れがより円滑となり、 ま た回転円盤内の空間全体に拡散しながら流れるため、 細霧発生が円滑 に行なわれる。 また、 剛体や圧縮空気流、 空気壁などの切断手段を併 用する場合には、 より均一にかつ安定した極微細化作用が得られる。 According to paragraph 7, since a plurality of air suction holes are formed in at least one of the opposed disks of the rotating disk, the flow of the object to be processed in the rotating disk is further increased by the airflow flowing from the air suction holes. It will be smooth Since it flows while diffusing into the entire space inside the rotating disk, fine fog is generated smoothly. In addition, when cutting means such as a rigid body, a compressed air flow, and an air wall are used together, a more uniform and stable micronizing action can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 互いに対向配置された対向円盤の間に中央から外周方向に延び た複数の羽根を挟んで配置してなる羽根車を回転駆動軸に連結してな る回転円盤において、 1. A rotating disk in which a plurality of blades extending from the center and extending in the outer peripheral direction are sandwiched between opposed disks arranged opposite to each other and an impeller is connected to a rotary drive shaft.
その中央に、 被処理体を供給する開口を形成してあり、  An opening for supplying the object to be processed is formed in the center,
かつ前記回転円盤の外周に、 前記羽根の外端からわずかの隙間をお いて、 前記羽根の外端からわずかに突出した被処理体を切断するため の剛体を複数個配設してなることを特徴とする極微細化装置。  In addition, a plurality of rigid bodies for cutting a workpiece slightly protruding from the outer end of the blade are provided on the outer periphery of the rotating disk with a slight gap from the outer end of the blade. Ultra-miniaturized device characterized.
2 . 互いに対向配置された対向円盤の間に中央から外周方向に延び た複数の羽根を挟んで配置してなる羽根車を回転駆動軸に連結してな る回転円盤において、  2. A rotating disk in which a plurality of impellers extending from the center in the outer peripheral direction are sandwiched between opposed disks arranged opposite to each other and connected to a rotary drive shaft,
その中央に、 被処理体を供給する開口を形成してあり、  An opening for supplying the object to be processed is formed in the center,
回転円盤の回転方向と逆向きに、 回転円盤の外周からわずかの間隔 をおいて、 回転円盤の面に対し斜め方向から、 回転円盤の接線方向 の圧縮空気流を噴射するための圧縮空気流噴射ノズルを配設し、 圧縮 空気流を、 前記羽根の外端からわずかに突出した被処理体を切断する ための手段としたことを特徴とする極微細化装置。  Compressed air flow injection to inject the compressed air flow in the direction tangential to the rotating disk in a direction opposite to the rotating direction of the rotating disk, at a slight distance from the outer periphery of the rotating disk, and at an angle to the surface of the rotating disk A micro-miniaturization apparatus, comprising: a nozzle; and a means for cutting a workpiece slightly projecting from an outer end of the blade by using a compressed air flow.
3 . 互いに対向配置された対向円盤の間に中央から外周方向に延び た複数の羽根を挟んで配置してなる羽根車を回転駆動軸に連結してな る回転円盤において、  3. A rotating disk in which a plurality of blades extending from the center to the outer peripheral direction are sandwiched between opposed disks arranged opposite to each other and an impeller is connected to a rotary drive shaft.
その中央に、 被処理体を供給する開口を形成してあり、  An opening for supplying the object to be processed is formed in the center,
前記回転円盤の外周に空気壁が発生するように、 前記回転円盤の周 速 V力く、  The rotational speed of the rotating disk is V so that an air wall is generated around the rotating disk.
ν =7 P / P まで上昇可能とするために、 プーリーとベルトや歯車機構などの増 速手段を介して回転円盤を駆動することで高速回転化するか、 または ィンバーター付高速モートルを用いることで高速回転化を実現するこ とを特徴とする極微細化装置。 ν = 7 P / P High-speed rotation is achieved by driving a rotating disk through a speed-up means such as a pulley and a belt or a gear mechanism, or by using a high-speed motor with inverter. Ultra-miniaturization equipment characterized by this.
4 . 前記回転円盤の外側に、 該回転円盤を囲むような衝突壁を設け 4. A collision wall is provided outside the rotating disk so as to surround the rotating disk.
、 前記の切断手段で切断された極微細体が衝突可能な構造としたこと を特徴とする第 1項、 第 2項または第 3項に記載の極微細化装置。 4. The microminiaturization apparatus according to claim 1, wherein the microfine body cut by the cutting means has a structure capable of colliding.
5 . 互いに対向配置された対向円盤の間に中央から外周方向に延び た複数の羽根を挟んで配置した羽根車を回転駆動軸に連結してなる回 転円盤の中央に、 被処理体を供給する開口を有し、 前記回転円盤の外 側に、 該回転円盤を囲むような衝突壁を設けてなる装置を用い、  5. The workpiece is supplied to the center of a rotating disk that is connected to a rotary drive shaft by impellers arranged with a plurality of blades extending from the center to the outer periphery between opposed disks arranged opposite to each other. Using an apparatus having an opening to provide a collision wall surrounding the rotating disk on the outside of the rotating disk,
カルシウムを溶かし込んだ水溶液と少なくとも二酸化炭素を含んだ 気体とを、 前記回転円盤の供給口から同時に回転円盤の中へ供給して 、 前記の切断手段で切断された後のカルシゥム水溶液と二酸化炭素を 含んだ気体が、 前記の衝突壁に衝突して跳ね返されることで、 カルシ ゥムと二酸化炭素とが接触して化合する機会を著しく增やすことを特 徵とする極微細化方法。  An aqueous solution in which calcium is dissolved and a gas containing at least carbon dioxide are simultaneously supplied from the supply port of the rotating disk into the rotating disk, and the calcium aqueous solution and carbon dioxide cut by the cutting means are separated. An ultrafine method characterized in that the gas contained collides with the collision wall and is bounced off, thereby significantly reducing the chance of contact between calcium and carbon dioxide to form a compound.
6 . 互いに対向配置された対向円盤の間に中央から外周方向に延び た複数の羽根を挟んで配置した羽根車を回転駆動軸に連結してなる回 転円盤の中央に、 被処理体を供給する開口を形成してなる回転円盤を 用い、  6. The object to be processed is supplied to the center of a rotating disk that is connected to a rotary drive shaft by impellers arranged with a plurality of blades extending from the center in the outer peripheral direction between opposed disks arranged opposite to each other. Using a rotating disk with an opening
海水又は任意の物質が溶け込んでいる被処理液体を前記の回転円盤 の中央の開口から供給し、 前記羽根の外端からわずかの間隔をおいて 、 剛体、 圧縮空気流または空気壁などの切断手段を設けることで、 前 記羽根の外端からわずかに突出した被処理液体を切断して極微細化す ると同時に、 送風機などのような分散拡大手段を用いて液体の気化を 早め、 海水又は液体の溶解物と水分又は液体とに分離することを特徴 とする極微細化方法。 Sea water or a liquid to be treated in which any substance is dissolved is supplied from the center opening of the rotating disk, and a cutting means such as a rigid body, a compressed air flow or an air wall is provided at a slight distance from the outer end of the blade. Is provided to cut the liquid to be processed that slightly protrudes from the outer end of the blade to make it extremely fine. And a method for accelerating the vaporization of the liquid using a dispersion expanding means such as a blower, and separating the liquid into a dissolved substance of seawater or liquid and water or liquid.
7 . 互いに対向配置された対向円盤の間に中央から外周方向に延び た複数の羽根を挟んで配置した羽根車を回転駆動軸に連結してなる回 転円盤において、  7. A rotating disk in which an impeller arranged with a plurality of blades extending in the outer peripheral direction from the center between opposed disks arranged opposite to each other is connected to a rotary drive shaft,
その中央に、 被処理体を供給する開口を有しており、  At the center, there is an opening for supplying the object,
少なくとも片方の対向円盤に、 複数個の空気吸入用の孔を開けてあ ることを特徴とする回転円盤。  A rotating disk characterized in that at least one of the opposing disks has a plurality of holes for air intake.
PCT/JP2000/001923 1999-04-02 2000-03-28 Device and method for micronizing powder and granular material WO2000059641A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU33309/00A AU3330900A (en) 1999-04-02 2000-03-28 Device and method for micronizing powder and granular material
JP2000609194A JP3761785B2 (en) 1999-04-02 2000-03-28 Apparatus and method for ultrafine powder fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9682699 1999-04-02
JP11/96826 1999-04-02

Publications (1)

Publication Number Publication Date
WO2000059641A1 true WO2000059641A1 (en) 2000-10-12

Family

ID=14175374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001923 WO2000059641A1 (en) 1999-04-02 2000-03-28 Device and method for micronizing powder and granular material

Country Status (4)

Country Link
JP (1) JP3761785B2 (en)
AU (1) AU3330900A (en)
TW (1) TW476671B (en)
WO (1) WO2000059641A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520176A (en) * 2009-03-16 2012-09-06 ガバエ テクノロジーズ,エルエルシー Apparatus, system and method for generating particles using a rotating capillary
CN106447891A (en) * 2016-11-17 2017-02-22 中国人民解放军理工大学 Coin sorting device
CN108568358A (en) * 2018-05-16 2018-09-25 苏州极目机器人科技有限公司 A kind of centrifugal atomization apparatus
CN110999777A (en) * 2019-11-07 2020-04-14 陈天保 Agricultural vegetable planting case
JP2020521631A (en) * 2017-07-11 2020-07-27 ▲広▼州▲極飛▼科技有限公司Guangzhou Xaircraft Technology Co., Ltd. Atomizing disc, atomizing device having the same, and drone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021031199A1 (en) * 2019-08-22 2021-02-25 于志远 Device and method for preparing metal or alloy powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130500A (en) * 1978-03-31 1979-10-09 Shiraishi Kogyo Kaisha Ltd Manufacture of cubic calcium carbonate
JPS62179052U (en) * 1986-04-28 1987-11-13
JPH08294646A (en) * 1995-04-28 1996-11-12 Toshinao Sato Liquid spray mechanism and flux applying device using the mechanism
WO1998005432A1 (en) * 1996-08-03 1998-02-12 Masakatsu Takayasu Spraying apparatus and spraying method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130500A (en) * 1978-03-31 1979-10-09 Shiraishi Kogyo Kaisha Ltd Manufacture of cubic calcium carbonate
JPS62179052U (en) * 1986-04-28 1987-11-13
JPH08294646A (en) * 1995-04-28 1996-11-12 Toshinao Sato Liquid spray mechanism and flux applying device using the mechanism
WO1998005432A1 (en) * 1996-08-03 1998-02-12 Masakatsu Takayasu Spraying apparatus and spraying method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520176A (en) * 2009-03-16 2012-09-06 ガバエ テクノロジーズ,エルエルシー Apparatus, system and method for generating particles using a rotating capillary
CN106447891A (en) * 2016-11-17 2017-02-22 中国人民解放军理工大学 Coin sorting device
JP2020521631A (en) * 2017-07-11 2020-07-27 ▲広▼州▲極飛▼科技有限公司Guangzhou Xaircraft Technology Co., Ltd. Atomizing disc, atomizing device having the same, and drone
CN108568358A (en) * 2018-05-16 2018-09-25 苏州极目机器人科技有限公司 A kind of centrifugal atomization apparatus
CN108568358B (en) * 2018-05-16 2023-12-01 苏州极目机器人科技有限公司 Centrifugal atomizing device
CN110999777A (en) * 2019-11-07 2020-04-14 陈天保 Agricultural vegetable planting case

Also Published As

Publication number Publication date
JP3761785B2 (en) 2006-03-29
TW476671B (en) 2002-02-21
AU3330900A (en) 2000-10-23

Similar Documents

Publication Publication Date Title
JP5413762B2 (en) How to remove dust
WO2010150656A1 (en) Stirring rotating body and stir device
US20110309160A1 (en) Rotary atomizer or mister
CN201037473Y (en) Electric motor and electric dust collector using the same
WO2006001126A1 (en) Crushing equipment
WO2000059641A1 (en) Device and method for micronizing powder and granular material
JP6714651B2 (en) Gas-liquid mixing device
JP2002346356A (en) Gas/liquid mixing dissolving device
JP2004269956A (en) Apparatus for producing metallic powder, and method for producing metallic powder using the apparatus
US20210213400A1 (en) Gas-liquid mixing device
JP2009191635A (en) Gas machine
JP3621735B2 (en) Negative ion generator
JPH06269699A (en) Liquid atomizing device
JP2008308716A (en) Aerosol generator and film deposition apparatus
JP4308194B2 (en) Pellet granulation method and apparatus
JPH09276675A (en) Gas-liquid contact apparatus
RU2094135C1 (en) Classifier
JP2001321684A (en) Mechanical air flow type pulverizer and mechanical air for pulverizing method of solid raw material using the same
JPH0796207A (en) Device and method for grinding tea leaf
RU2108160C1 (en) Method and device for grinding materials
JPH119949A (en) Ozone fog generator
GB2354232A (en) Cyclone apparatus for treating sewage
JPH04332552A (en) Foam water flow generating device
JP2004290712A (en) Water stream generator due to fluctuation of volume body
JPS63302965A (en) Jet mill

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 609194

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase