JP2002346356A - Gas/liquid mixing dissolving device - Google Patents

Gas/liquid mixing dissolving device

Info

Publication number
JP2002346356A
JP2002346356A JP2001156717A JP2001156717A JP2002346356A JP 2002346356 A JP2002346356 A JP 2002346356A JP 2001156717 A JP2001156717 A JP 2001156717A JP 2001156717 A JP2001156717 A JP 2001156717A JP 2002346356 A JP2002346356 A JP 2002346356A
Authority
JP
Japan
Prior art keywords
liquid
gas
pump
dissolving apparatus
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001156717A
Other languages
Japanese (ja)
Other versions
JP4377087B2 (en
Inventor
Soichiro Osaki
荘一郎 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikuni KK
Original Assignee
Nikuni KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikuni KK filed Critical Nikuni KK
Priority to JP2001156717A priority Critical patent/JP4377087B2/en
Publication of JP2002346356A publication Critical patent/JP2002346356A/en
Application granted granted Critical
Publication of JP4377087B2 publication Critical patent/JP4377087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas/liquid mixing dissolving device capable of enhancing the dissolution efficiency of the gas and reducing cost and noise. SOLUTION: A cylindrical body 23 is inserted into the liquid of a liquid tank 21 and the liquid and the gas are suctioned from an upper part of this cylindrical body 23. The liquid and the gas in the cylindrical body 23 are suctioned to a lower part of the cylindrical body 23 while they are stirred and mixed and a pump 24 for discharging them to the periphery is provided on the lower part of the cylindrical body 23. The dissolution efficiency of gas is enhanced by continuously carrying out gas dissolving treatments at three stages, i.e., the dissolution of the gas by a gas/liquid stirring mixing action in the cylindrical body 23 generated by the suction force of the pump; the dissolution of the gas by a gas/liquid stirring mixing action in the pump 24; and the dissolution of the gas when bubbles 59 discharged from the pump 24 into the liquid are floated up in the liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液中に気体を溶解
させる気液混合溶解装置に関する。
The present invention relates to a gas-liquid mixing and dissolving apparatus for dissolving a gas in a liquid.

【0002】[0002]

【従来の技術】従来、図7に示されるように、曝気処理
用の液槽11内の液12に酸素を溶解させるときは、コンプ
レッサまたはブロワなどの強制給気装置13を用いて、加
圧された空気を、液槽11の底部に配管されたノズル14に
供給し、ノズル14から液槽11内の液中に空気を強制的に
吹込むことで無数の気泡15を発生させ、気泡15内の酸素
を液槽11内の液中に溶解させるようにしている。なお、
処理前の液は、入口管16より液槽11内に流入し、処理後
の液は、液槽11より出口管17を経て外部へ流出する。
2. Description of the Related Art Conventionally, as shown in FIG. 7, when oxygen is dissolved in a liquid 12 in a liquid tank 11 for aeration treatment, a forced air supply device 13 such as a compressor or a blower is used to pressurize the oxygen. The air thus supplied is supplied to a nozzle 14 provided at the bottom of the liquid tank 11, and countless air bubbles 15 are generated by forcibly blowing air from the nozzle 14 into the liquid in the liquid tank 11, thereby generating air bubbles 15 The oxygen inside is dissolved in the liquid in the liquid tank 11. In addition,
The liquid before the treatment flows into the liquid tank 11 through the inlet pipe 16, and the liquid after the treatment flows out of the liquid tank 11 through the outlet pipe 17.

【0003】[0003]

【発明が解決しようとする課題】ノズル14から噴出され
た気泡15が液槽11内の液面まで浮上する間だけで、気泡
中の酸素を液槽11内の液中に溶解させるので、酸素の溶
解効率が良くない。
The oxygen in the bubbles is dissolved in the liquid in the liquid tank 11 only while the bubbles 15 ejected from the nozzle 14 float up to the liquid surface in the liquid tank 11. Dissolution efficiency is not good.

【0004】また、コンプレッサやブロワなどの強制給
気装置13は、多くの電力を消費する。特に、液槽11が深
いほど、加圧された空気を水圧に抗して液槽11の底部ま
で強制的に吹込む必要があるので、電力消費量が多くな
り、コストがかかるとともに、強制給気装置13から発生
する騒音も大きくなる。
Further, the forced air supply device 13 such as a compressor or a blower consumes a large amount of electric power. In particular, the deeper the liquid tank 11, the more it is necessary to forcibly blow the pressurized air to the bottom of the liquid tank 11 against the water pressure. The noise generated from the ventilation device 13 also increases.

【0005】本発明は、このような点に鑑みなされたも
ので、気体の溶解効率を向上できるとともにコストや騒
音を低減できる気液混合溶解装置を提供することを目的
とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas-liquid mixing and dissolving apparatus capable of improving gas dissolving efficiency and reducing cost and noise.

【0006】[0006]

【課題を解決するための手段】請求項1に記載された発
明は、液中に挿入され上部から液および気体を吸込む筒
体と、筒体の下部に設けられ筒体内の液および気体を攪
拌混合しながら吸込むとともに周囲に吐出するポンプと
を具備した気液混合溶解装置であり、ポンプ吸込力で生
ずる筒体内での気液攪拌混合作用による気体溶解と、ポ
ンプ内での気液攪拌混合作用による気体溶解と、ポンプ
から液中に吐出された気泡が液中を浮上する際の気体溶
解との3段階の気体溶解処理が連続になされることによ
り、高い気体溶解効率が得られる。
According to the present invention, a cylinder inserted into a liquid and sucking the liquid and gas from the upper part, and a liquid and a gas provided in the lower part of the cylinder are agitated. A gas-liquid mixing and dissolving device including a pump that sucks while mixing and discharges the gas to the surroundings. By performing gas dissolution processing in three stages, that is, gas dissolution due to the above and gas dissolution when bubbles discharged into the liquid from the pump float in the liquid, high gas dissolution efficiency can be obtained.

【0007】請求項2に記載された発明は、請求項1記
載の気液混合溶解装置における筒体が、液中に開口され
る吸液口を有するとともに吸液口から内部に吸込まれた
液を滝状に落下させるストレート筒部を具備した気液混
合溶解装置であり、ポンプの吸込作用によってストレー
ト筒部内の液面液位が低下し、吸液口よりストレート筒
部内に吸込まれた液が、気体を巻込みながら滝のように
なって流落ちるため、従来のコンプレッサやブロワなど
の強制給気装置を用いることなく気体を大気圧下で効率
良く吸引でき、ポンプ駆動に要するエネルギのコストを
低減できるとともに騒音も低減できる。
According to a second aspect of the present invention, there is provided a gas-liquid mixing and dissolving apparatus according to the first aspect, wherein the cylinder has a liquid suction port opened in the liquid and the liquid sucked into the inside from the liquid suction port. Is a gas-liquid mixing and dissolving device equipped with a straight cylinder part that allows the liquid to fall in a waterfall shape.The liquid level in the straight cylinder part decreases due to the suction action of the pump, and the liquid sucked into the straight cylinder part from the liquid suction port is Since gas flows down like a waterfall while entraining gas, gas can be efficiently sucked at atmospheric pressure without using a forced air supply device such as a conventional compressor or blower, and the cost of energy required to drive the pump is reduced. Noise can be reduced as well as reduced.

【0008】請求項3に記載された発明は、請求項2記
載の気液混合溶解装置における吸液口が、ストレート筒
部の接線方向に設けられた気液混合溶解装置であり、接
線方向の吸液口から吸込まれた液は、ストレート筒部の
内部で旋回流となって中央部が凹むように流落ちるた
め、気体を中央部の凹み部分で効率良く巻込み、強制給
気装置を用いることなく大気圧下で効率良く吸引でき
る。
According to a third aspect of the present invention, there is provided a gas-liquid mixing and dissolving apparatus in which the liquid suction port of the gas-liquid mixing and dissolving apparatus according to the second aspect is provided in a tangential direction of the straight cylindrical portion. The liquid sucked from the liquid suction port becomes a swirling flow inside the straight cylindrical part and flows down so that the central part is concave, so the gas is efficiently caught in the concave part of the central part and a forced air supply device is used It can be efficiently sucked under atmospheric pressure without any.

【0009】請求項4に記載された発明は、請求項2ま
たは3記載の気液混合溶解装置における筒体が、ストレ
ート筒部の下部に設けられ下方に向って漸次小径のテー
パ筒部を具備した気液混合溶解装置であり、ポンプの吸
込作用によって吸液口よりストレート筒部内に滝のよう
になって流込んだ液と気体が、テーパ筒部の内部でサイ
クロン状の激しい乱流を発生させるから、テーパ筒部内
で気液を効率良く攪拌混合させて、気体溶解効率を向上
できる。
According to a fourth aspect of the present invention, in the gas-liquid mixing and dissolving apparatus according to the second or third aspect, the cylindrical body is provided at a lower portion of the straight cylindrical portion and has a tapered cylindrical portion having a gradually decreasing diameter toward the lower side. The liquid and gas flowed into the straight cylinder part from the liquid suction port as a waterfall by the suction action of the pump, generating a strong cyclone-like turbulent flow inside the tapered cylinder part. Therefore, the gas-liquid can be efficiently stirred and mixed in the tapered cylindrical portion, and the gas dissolving efficiency can be improved.

【0010】請求項5に記載された発明は、請求項1乃
至4のいずれか記載の気液混合溶解装置におけるポンプ
が、筒体の下端に固定されたケーシングと、ケーシング
の内部に回転自在に設けられたポンプ羽根と、ポンプ羽
根の中心に接続された主軸と、主軸を回動する駆動装置
とを具備した気液混合溶解装置であり、筒体とともに液
中に挿入されたポンプのケーシング内では、加圧下で気
液がポンプ羽根により回転しながら攪拌混合されるか
ら、気体を液中に高濃度で溶解できるとともに、ケーシ
ングの吸込側および吐出側の両方に液中深度に応じた液
圧が作用することから、ポンプ負荷は液中深度に影響さ
れにくいので、コンプレッサやブロワなどの強制給気装
置を用いて液中に気体を吹込む場合に対し、ポンプ駆動
に要するエネルギのコストや騒音を低減できる。また、
前記3段階の気体溶解処理を1台の駆動装置のみにより
効率良くできる。
According to a fifth aspect of the present invention, there is provided a gas-liquid mixing / dissolving apparatus according to any one of the first to fourth aspects, wherein the pump is rotatably provided inside the casing fixed to the lower end of the cylindrical body. A gas-liquid mixing and dissolving device including a pump blade provided, a main shaft connected to the center of the pump blade, and a driving device for rotating the main shaft, in a casing of the pump inserted into the liquid together with the cylinder. In this case, the gas and liquid are stirred and mixed while rotating by the pump blades under pressure, so that the gas can be dissolved in the liquid at a high concentration, and the liquid pressure corresponding to the liquid depth is provided on both the suction side and the discharge side of the casing. The pump load is not easily influenced by the depth in the liquid, so the energy required to drive the pump is not required when gas is blown into the liquid using a forced air supply device such as a compressor or blower. It is possible to reduce strike and noise. Also,
The three-stage gas dissolution process can be efficiently performed by only one driving device.

【0011】請求項6に記載された発明は、請求項5記
載の気液混合溶解装置におけるケーシングが、円筒状に
形成され、ケーシングの円筒周面から突出された複数の
吐出ノズルを具備した気液混合溶解装置であり、ケーシ
ング内のポンプ羽根による攪拌混合で生じた気体溶解液
と多量の微小気泡とを、ケーシングの円筒周面から突出
された複数の吐出ノズルよりケーシング周囲の広範囲に
連続的に分散吐出できる。分散吐出された気体溶解液
は、ポンプ周囲の液と混合され、その液の溶存酸素値を
高め、小さな気泡は液面まで浮上する間に、接触した液
中に気泡中の気体を溶解させることができる。
According to a sixth aspect of the present invention, there is provided a gas-liquid mixing and dissolving apparatus according to the fifth aspect, wherein the casing is formed in a cylindrical shape and includes a plurality of discharge nozzles protruding from the cylindrical peripheral surface of the casing. A liquid mixing and dissolving device that continuously disperses a gas dissolved liquid and a large amount of microbubbles generated by stirring and mixing by a pump blade in a casing over a wide area around the casing from a plurality of discharge nozzles protruding from the cylindrical peripheral surface of the casing. Can be dispersed and discharged. The dispersed gas discharge liquid is mixed with the liquid around the pump to increase the dissolved oxygen value of the liquid, and the small bubbles dissolve the gas in the bubbles in the contacted liquid while floating to the liquid surface. Can be.

【0012】請求項7に記載された発明は、請求項5ま
たは6記載の気液混合溶解装置におけるポンプ羽根が、
主軸に直角に取付けられた複数の皿形の回転翼と、これ
らの回転翼の少なくとも対向面に設けられ回転翼の表面
抵抗を増加させる抵抗増加手段とを具備した気液混合溶
解装置であり、主軸に直角に取付けられた複数の皿形の
回転翼は高速回転が可能であり、それらの間の抵抗増加
手段により液を高速で切裂くように撹拌して回転翼の表
面で微細な乱流を発生させ、無数の微細な気泡を効率良
く発生させることで、液中への気体溶解比率を格段に高
めることができるとともに、気体溶解比率が高い気液混
合体を性能低下を起こすことなく、高速回転による遠心
力で移送してポンプ周囲の液中に吐出できる。また、主
軸に直角に取付けられた皿形の回転翼の表面抵抗を抵抗
増加手段により増加させるのみであるから、ポンプ内目
詰まりや夾雑物の絡付きなどを防止できる。
According to a seventh aspect of the present invention, in the gas-liquid mixing and dissolving apparatus according to the fifth or sixth aspect, the pump blade comprises:
A gas-liquid mixing and dissolving apparatus comprising: a plurality of dish-shaped rotors attached at right angles to a main shaft; and a resistance increasing unit provided on at least a facing surface of the rotors to increase surface resistance of the rotors. A plurality of dish-shaped rotors mounted at right angles to the main shaft are capable of high-speed rotation, and agitating the liquid at high speed by means of resistance increase between them to create fine turbulence on the surface of the rotor. By generating an infinite number of fine bubbles efficiently, the gas dissolution ratio in the liquid can be significantly increased, and the gas-liquid mixture with a high gas dissolution ratio does not cause performance degradation, It can be transferred by centrifugal force by high-speed rotation and discharged into the liquid around the pump. Further, since only the surface resistance of the dish-shaped rotor attached to the main shaft at right angles is increased by the resistance increasing means, clogging in the pump and entanglement of impurities can be prevented.

【0013】請求項8に記載された発明は、請求項7記
載の気液混合溶解装置における複数の皿形の回転翼が、
斜め下向きに折曲された折曲周縁部を有し、折曲周縁部
に抵抗増加手段が径方向に設けられた気液混合溶解装置
であり、斜め下向きに折曲された折曲周縁部の径方向の
抵抗増加手段から与えられた遠心力により、斜め下方へ
方向付けされた気液混合体は、ポンプからいったん斜め
下方へ吐出された後、浮上に転ずるので、浮上に要する
時間をかせぎ、液中を浮上する際に溶解する気体溶解を
より効果的にできる。
According to an eighth aspect of the present invention, there is provided a gas-liquid mixing and dissolving apparatus according to the seventh aspect, wherein the plurality of dish-shaped rotating blades comprises:
It is a gas-liquid mixing and dissolving apparatus having a bent peripheral part bent obliquely downward, and a resistance increasing means provided radially in the bent peripheral part. Due to the centrifugal force given by the radial resistance increasing means, the gas-liquid mixture directed diagonally downward is once discharged diagonally downward from the pump, and then turns into floating, so the time required for floating is saved, Dissolution of gas dissolved when floating in liquid can be more effectively performed.

【0014】請求項9に記載された発明は、請求項1乃
至8のいずれか記載の気液混合溶解装置における筒体
が、液槽の上部で固定され、ポンプは、液槽の底部の近
傍に配置された気液混合溶解装置であり、既設の液槽内
にも、その液槽の上部から本装置を挿入するようにして
設置でき、3段階の気体溶解処理により液槽内での気体
溶解効率を向上できるとともに、従来のコンプレッサや
ブロワなどの強制給気装置を用いて液中に気体を吹込む
場合に対し、ポンプ駆動に要するエネルギのコストや騒
音を低減できる。
According to a ninth aspect of the present invention, in the gas-liquid mixing and dissolving apparatus according to any one of the first to eighth aspects, the cylinder is fixed at an upper portion of the liquid tank, and the pump is provided near a bottom of the liquid tank. This is a gas-liquid mixing and dissolving device that is installed in the existing liquid tank, and can be installed by inserting this device from the top of the liquid tank. The dissolution efficiency can be improved, and the cost and noise of the energy required for driving the pump can be reduced as compared with the case where gas is blown into the liquid using a conventional forced air supply device such as a compressor or a blower.

【0015】請求項10に記載された発明は、請求項5
乃至9のいずれか記載の気液混合溶解装置における駆動
装置が、ポンプの下側に一体的に設けられた気液混合溶
解装置であり、液の深さに関係なくポンプ羽根の主軸の
長さおよび太さを大幅に短小化および小径化できるた
め、主軸およびこの主軸の軸振れ振動を抑える軸受構造
を小型で安価なものにできるとともに、筒体中で気体が
サイクロン現象により液中に吸引混合される際に、筒体
内に障害物となる主軸を貫通させる必要がないので、サ
イクロン現象効果がより大となり、サイクロン現象効果
による気体吸引量を増大できる。
The invention described in claim 10 is the fifth invention.
10. The driving device in the gas-liquid mixing and dissolving device according to any one of the above items 1 to 9, wherein the driving device is a gas-liquid mixing and dissolving device integrally provided below the pump, and the length of the main shaft of the pump blade is independent of the liquid depth. The size and diameter of the main shaft and the bearing structure that suppresses shaft run-out vibration can be made small and inexpensive, and the gas is sucked and mixed into the liquid by the cyclone phenomenon in the cylinder. At this time, it is not necessary to penetrate the main shaft, which is an obstacle, into the cylinder, so that the cyclone effect becomes larger and the amount of gas suction by the cyclone effect can be increased.

【0016】[0016]

【発明の実施の形態】以下、本発明を、図1乃至図3に
示された一実施の形態、図4乃至図6に示された他の実
施の形態を参照しながら詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to one embodiment shown in FIGS. 1 to 3 and other embodiments shown in FIGS.

【0017】先ず、図1乃至図3に示された一実施の形
態を説明する。
First, an embodiment shown in FIGS. 1 to 3 will be described.

【0018】図1は、気液混合溶解装置の全体を示し、
液槽21の上縁部に、取付板22を介して、液中に挿入され
た筒体23が固定されている。この筒体23は、上部から液
および気体を吸込むものである。筒体23の下部には、筒
体23内の液および気体を攪拌混合しながら吸込むととも
に周囲に吐出するポンプ24が設けられている。ポンプ24
は、液槽21の底部の近傍に配置されている。
FIG. 1 shows the entire gas-liquid mixing and dissolving apparatus.
A cylinder 23 inserted into the liquid is fixed to the upper edge of the liquid tank 21 via a mounting plate 22. The cylinder 23 sucks liquid and gas from above. At the lower part of the cylindrical body 23, there is provided a pump 24 which sucks in the liquid and gas in the cylindrical body 23 while stirring and mixing and discharges the liquid and gas to the surroundings. Pump 24
Is arranged near the bottom of the liquid tank 21.

【0019】筒体23の槽内液面25より上側位置には、吸
気口26が設けられ、この吸気口26に吸気管27が接続され
ている。この吸気管27の先端は、大気に開放されてい
る。吸気管27には気体供給源を接続しても良い。
An intake port 26 is provided above the liquid level 25 in the tank of the cylindrical body 23, and an intake pipe 27 is connected to the intake port 26. The tip of the intake pipe 27 is open to the atmosphere. A gas supply source may be connected to the intake pipe 27.

【0020】筒体23の槽内液面25より下側位置には、液
槽21内の液中に開口された複数の吸液口28が2段に設け
られている。なお、下段の吸液口28は、なくても良い。
At a position below the liquid surface 25 in the tank of the cylindrical body 23, a plurality of liquid suction ports 28 opened in the liquid in the liquid tank 21 are provided in two stages. Note that the lower liquid suction port 28 may not be provided.

【0021】筒体23は、吸液口28から内部に吸込まれた
液を滝状に落下させるストレート筒部31と、このストレ
ート筒部31の下部に連続的に設けられた、下方に向って
漸次小径のテーパ筒部32とを具備している。
The cylindrical body 23 has a straight cylindrical portion 31 for dropping the liquid sucked into the inside from the liquid suction port 28 in a waterfall shape, and a downwardly extending portion provided continuously below the straight cylindrical portion 31. And a tapered cylindrical portion 32 having a progressively smaller diameter.

【0022】ストレート筒部31の下端とテーパ筒部32の
上端は、それぞれに一体化されたフランジ部33により接
続されているが、ストレート筒部31とテーパ筒部32は一
体成形しても良い。
The lower end of the straight tubular portion 31 and the upper end of the tapered tubular portion 32 are connected by an integral flange portion 33. However, the straight tubular portion 31 and the tapered tubular portion 32 may be integrally formed. .

【0023】図2に示されるように、ストレート筒部31
に開口された吸液口28は、ストレート筒部31の接線方向
に設けられている。
As shown in FIG. 2, the straight cylindrical portion 31
The liquid suction port 28 that is opened at the bottom is provided in the tangential direction of the straight cylindrical portion 31.

【0024】また、図1に示されるように、ポンプ24
は、筒体23のテーパ筒部32の下端に、吸込口34および吐
出口35を有する有底円筒状に形成されたケーシング36が
固定され、このケーシング36の内部に、気液混合、撹拌
用および送液用のポンプ羽根37が回転自在に設けられ、
また、ポンプ羽根37の中心に筒体23を貫通した主軸38が
接続され、主軸38を回動する駆動装置としての電動機39
が、筒体23の上側に配置されている。
Also, as shown in FIG.
A bottomed cylindrical casing 36 having a suction port 34 and a discharge port 35 is fixed to the lower end of the tapered tubular section 32 of the tubular body 23, and inside the casing 36, gas-liquid mixing and stirring are performed. And a pump blade 37 for liquid supply is provided rotatably,
Further, a main shaft 38 penetrating through the cylinder 23 is connected to the center of the pump blade 37, and an electric motor 39 as a driving device for rotating the main shaft 38 is provided.
Are arranged above the cylindrical body 23.

【0025】電動機39は、取付板22の上側に取付台41を
介してモータ本体42が固定され、モータ本体42から突出
されたモータ回転軸43がカップリング44を介して主軸38
に接続されている。
The motor 39 has a motor main body 42 fixed to the upper side of the mounting plate 22 via a mounting base 41, and a motor rotating shaft 43 protruding from the motor main body 42 is connected to a main shaft 38 via a coupling 44.
It is connected to the.

【0026】主軸38は、取付板22に設けられた軸受部45
と、ストレート筒部31およびテーパ筒部32間のフランジ
部33に設けられた軸受部46とにより、回動自在に軸受支
持されているが、例えば、主軸38の下端をポンプ24のケ
ーシング36で軸受支持できる場合や、主軸38の長さが短
い場合は、中間の軸受部46は、設けない方が望ましい。
The main shaft 38 has a bearing 45 provided on the mounting plate 22.
And a bearing portion 46 provided on a flange portion 33 between the straight tubular portion 31 and the tapered tubular portion 32, the bearing being rotatably supported by a bearing.For example, the lower end of the main shaft 38 is supported by a casing 36 of the pump 24. If the bearing can be supported or the length of the main shaft 38 is short, it is preferable that the intermediate bearing 46 is not provided.

【0027】この中間部分には、ストレート筒部31から
テーパ筒部32への液流通を円滑にできるようにする上
で、できるだけ大きな通孔47を設けておく。
In the intermediate portion, a through hole 47 as large as possible is provided in order to facilitate the flow of the liquid from the straight tubular portion 31 to the tapered tubular portion 32.

【0028】ポンプ24の吐出口35は、ケーシング36の円
筒周面から突出された複数の吐出ノズル48の内部に設け
られている。この吐出ノズル48は、ケーシング36の円筒
周面に等間隔で配置しても良いし、液槽21の壁面などの
設置場所環境によっては不等間隔で配置しても良い。
The discharge port 35 of the pump 24 is provided inside a plurality of discharge nozzles 48 protruding from the cylindrical peripheral surface of the casing 36. The discharge nozzles 48 may be arranged at regular intervals on the cylindrical peripheral surface of the casing 36, or may be arranged at irregular intervals depending on the installation environment such as the wall surface of the liquid tank 21.

【0029】ケーシング36の内部に配置されたポンプ羽
根37は、主軸38に複数の皿形の回転翼51が直角に取付け
られ、これらの回転翼51の少なくとも対向面に、回転翼
51の表面抵抗を増加させる抵抗増加手段としての凸部材
52が設けられている。
The pump blade 37 disposed inside the casing 36 has a plurality of dish-shaped rotating blades 51 mounted on the main shaft 38 at a right angle, and at least facing the rotating blades 51 to the rotating blades 51.
Convex member as resistance increasing means for increasing surface resistance of 51
52 are provided.

【0030】複数の皿形の回転翼51は、斜め下向きに折
曲された折曲周縁部53を有し、前記吐出ノズル48も、同
様に斜め下向きに突出されている。
The plurality of dish-shaped rotating blades 51 have a bent peripheral edge 53 bent obliquely downward, and the discharge nozzle 48 similarly projects obliquely downward.

【0031】図3に示されるように、抵抗増加手段とし
ての凸部材52は、折曲周縁部53にて径方向に設けられて
いる。
As shown in FIG. 3, a convex member 52 as a resistance increasing means is provided at a bent peripheral portion 53 in a radial direction.

【0032】次に、図1乃至図3に示された実施の形態
の作用を説明する。
Next, the operation of the embodiment shown in FIGS. 1 to 3 will be described.

【0033】ポンプ24の吸込作用によって、ストレート
筒部31内の液面56の液位が低下し、吸液口28よりストレ
ート筒部31内に吸込まれた液が、気体を巻込みながら滝
のようになって流落ちるため、従来のコンプレッサやブ
ロワなどの強制給気装置を用いなくても、気体は、大気
圧下で吸気管27より効率良く吸引される。
Due to the suction action of the pump 24, the liquid level of the liquid surface 56 in the straight tube portion 31 drops, and the liquid sucked into the straight tube portion 31 from the liquid suction port 28 causes the water to fall while entraining gas. As a result, the gas is efficiently sucked from the intake pipe 27 under the atmospheric pressure without using a conventional forced air supply device such as a compressor or a blower.

【0034】このとき、図2に示されるように、液は、
接線方向の吸液口28からストレート筒部31内に吸込ま
れ、ストレート筒部31の内部で旋回流となって、図1に
示されるように中央部が凹むように流落ちるサイクロン
現象が生ずるため、気体を中央部の凹み部分57に巻込
み、大気圧下でも多量の気体を効率良く吸引できる(サ
イクロン現象効果)。
At this time, as shown in FIG.
Since the liquid is sucked into the straight cylindrical portion 31 from the tangential liquid suction port 28 and becomes a swirling flow inside the straight cylindrical portion 31, as shown in FIG. The gas is wound around the concave portion 57 at the center, and a large amount of gas can be efficiently sucked even under the atmospheric pressure (cyclone effect).

【0035】吸液口28よりストレート筒部31内に滝のよ
うになって流込んだ液と気体は、ストレート筒部31内で
混合作用を受けながら、ストレート筒部31内から通孔47
を経てテーパ筒部32の内部に移行し、このテーパ筒部32
の内部でサイクロン状の激しい乱流58を発生させるの
で、この乱流58によりテーパ筒部32内で気液が効率良く
攪拌混合され、液中に気体が効率良く溶解される。
The liquid and the gas which flow into the straight tube portion 31 from the liquid suction port 28 as a waterfall are subjected to a mixing action in the straight tube portion 31 while passing through the through hole 47 from the straight tube portion 31.
Through the inside of the tapered tube portion 32,
A strong cyclone-like turbulent flow 58 is generated inside the gas turbine, so that the turbulent flow 58 efficiently agitates and mixes gas and liquid in the tapered tubular portion 32, and dissolves gas efficiently in the liquid.

【0036】テーパ筒部32内で処理された気液混合体
は、ポンプ24の吸込口34よりケーシング36内に吸込ま
れ、液槽21の底部の液圧による加圧下で、ポンプ羽根37
により回転しながら攪拌混合されるので、このケーシン
グ36内でも、さらに気体が液中に高濃度に溶解される。
The gas-liquid mixture processed in the tapered cylindrical portion 32 is sucked into the casing 36 from the suction port 34 of the pump 24, and is pumped by the pump blades 37 under pressure by the liquid pressure at the bottom of the liquid tank 21.
Since the gas is stirred and mixed while rotating, the gas is further dissolved in the liquid in the casing 36 at a high concentration.

【0037】このとき、主軸38に直角に取付けられた複
数の皿形の回転翼51は高速回転が可能であり、それらの
間の凸部材52により液を高速で切裂くように撹拌して回
転翼51の表面で微細な乱流を発生させ、無数の微細な気
泡を効率良く発生させることで、液中への気体溶解比率
が格段に高められる。
At this time, a plurality of dish-shaped rotating blades 51 mounted at right angles to the main shaft 38 can rotate at a high speed, and the liquid is stirred and rotated by a convex member 52 therebetween so as to cut the liquid at a high speed. By generating fine turbulence on the surface of the wing 51 and efficiently generating countless fine bubbles, the gas dissolution ratio in the liquid is significantly increased.

【0038】ケーシング36内のポンプ羽根37による攪拌
混合で生じた気体溶解液と、多量の微小気泡は、ケーシ
ング36の円筒周面から突出された複数の吐出ノズル48よ
り、ポンプ周囲の液槽21内の液中に、広範囲に連続的に
分散吐出される。
The gas solution produced by the stirring and mixing by the pump blades 37 in the casing 36 and a large amount of microbubbles are supplied from a plurality of discharge nozzles 48 projecting from the cylindrical peripheral surface of the casing 36 to the liquid tank 21 around the pump. Dispersed and discharged over a wide range into the liquid inside.

【0039】その際、ポンプ24は、気体溶解比率の高い
気液混合体を性能低下を起こすことなく、高速回転によ
る遠心力で移送してポンプ周囲の液中に吐出する。
At this time, the pump 24 transfers the gas-liquid mixture having a high gas dissolution ratio by centrifugal force generated by high-speed rotation and discharges the mixture into the liquid around the pump without deteriorating the performance.

【0040】ポンプ24の各吐出ノズル48から分散吐出さ
れた気体溶解液は、ポンプ周囲の液と混合され、その液
の溶存酸素値を高める。また、多量の微細な気泡59は、
ポンプ周囲から槽内液面25まで浮上するが、その間に、
接触した液中に気泡中の酸素を溶解させる。
The gas solution dispersed and discharged from each discharge nozzle 48 of the pump 24 is mixed with the liquid around the pump to increase the dissolved oxygen value of the liquid. Also, a large amount of fine bubbles 59
It floats from the pump area to the liquid level 25 in the tank.
The oxygen in the bubbles is dissolved in the contacted liquid.

【0041】ポンプ24の斜め下向きに折曲された折曲周
縁部53の凸部材52から与えられた遠心力により、斜め下
方へ方向付けされた気液混合体は、吐出ノズル48からい
ったん斜め下方へ吐出された後、浮上に転ずるので、浮
上に要する時間がかかる分、液中を浮上する際の気体溶
解が、より効果的になされる。
The gas-liquid mixture directed obliquely downward by the centrifugal force applied from the convex member 52 of the bent peripheral portion 53 bent obliquely downward of the pump 24 once obliquely flows downward from the discharge nozzle 48. After being discharged to the surface of the liquid, the gas is turned into a floating state, so that the time required for the floating is increased, so that the gas is dissolved more effectively when floating in the liquid.

【0042】このように、ポンプ24の吸込力で生ずる筒
体23内での気液攪拌混合作用による気体溶解と、ポンプ
24内での気液攪拌混合作用による気体溶解と、ポンプ24
から液槽21内の液中に吐出された気泡59が液中を浮上す
る際の気体溶解の3段階の気体溶解処理が連続になされ
ることにより、高い気体溶解効率が得られる。
As described above, the gas dissolution by the gas-liquid stirring and mixing action in the cylinder 23 generated by the suction force of the pump 24
Gas dissolution by the gas-liquid stirring and mixing action in 24 and pump 24
By performing the gas dissolution processing in three stages of gas dissolution when the bubbles 59 discharged into the liquid in the liquid tank 21 from the liquid float in the liquid, high gas dissolution efficiency can be obtained.

【0043】次に、本装置により得られる効果を列記す
る。
Next, effects obtained by the present apparatus will be listed.

【0044】筒体23内では、主軸38の回転によるポンプ
24の吸込作用によって、ストレート筒部31内の液面56の
液位が低下することで、ストレート筒部31に開口された
吸液口28より液が、空気を巻込みながら滝のようになっ
て流落ちるから、コンプレッサやブロワを用いず、大気
圧下で空気を効率良く吸引して液中に混合できる。
In the cylinder 23, the pump is driven by the rotation of the main shaft 38.
Due to the suction action of 24, the liquid level of the liquid level 56 in the straight tube portion 31 decreases, and the liquid becomes like a waterfall from the liquid suction port 28 opened in the straight tube portion 31 while entraining air. As it flows down, air can be efficiently sucked and mixed into the liquid under atmospheric pressure without using a compressor or a blower.

【0045】さらに、筒体23のテーパ筒部32の内部で
は、主軸38の回転によるポンプ羽根37の回転によって滝
のようになって流れ込んだ液と空気とが、テーパ筒部32
の内部でサイクロン状の激しい乱流58を発生させ、撹拌
されながら通過するため、液中に気体を効率良く混合溶
解できる。
Further, inside the tapered tubular portion 32 of the tubular body 23, the liquid and the air that flow as a waterfall as a result of the rotation of the pump blade 37 due to the rotation of the main shaft 38 are removed.
A strong cyclone-like turbulent flow 58 is generated inside and the gas is passed while being stirred, so that the gas can be efficiently mixed and dissolved in the liquid.

【0046】ポンプ24内では、加圧下で気液が回転しな
がら撹拌混合されるので、気体を液中に高濃度で溶解で
きる。
In the pump 24, the gas and liquid are stirred and mixed while rotating under pressure, so that the gas can be dissolved in the liquid at a high concentration.

【0047】その際、ポンプ24は、複数枚数の特殊形状
のポンプ羽根37を用いて気液を高速回転で撹拌混合する
ので、気体の混合比率が50%以上の液も性能低下を起
こすことなく、移送することができ、液中に多量の空気
を注入できる。なお、通常のポンプ24では、液に対する
気体の混合比率は5%が限度である。
At this time, the pump 24 uses a plurality of specially shaped pump blades 37 to stir and mix the gas and liquid at a high speed, so that the liquid having a gas mixing ratio of 50% or more does not cause performance deterioration. Can be transferred, and a large amount of air can be injected into the liquid. In the ordinary pump 24, the mixing ratio of gas to liquid is limited to 5%.

【0048】さらに、ポンプ24は、主軸38に直角に取付
けられた皿形の回転翼51の表面抵抗を凸部材52により増
加させるのみであるから、汚泥液などによるポンプ24内
の目詰まりや夾雑物の絡付きなどを防止できる。
Further, since the pump 24 merely increases the surface resistance of the dish-shaped rotary blade 51 mounted at right angles to the main shaft 38 by the convex member 52, clogging or contamination of the pump 24 due to sludge liquid or the like. Entanglement of the object can be prevented.

【0049】ポンプ24は、ポンプ羽根37の高速回転力に
より、複数箇所の吐出ノズル48より、気体溶解液および
多量の微細な気泡59などの気液混合体を、液槽21内の底
部の広い範囲の液中に達続的に分散放出できる。
The pump 24 uses a high-speed rotation force of the pump blade 37 to discharge a gas-liquid mixture such as a gas solution and a large amount of fine bubbles 59 from a plurality of discharge nozzles 48 at a wide bottom in the liquid tank 21. It can be continuously dispersed and released in a range of liquids.

【0050】そして、気体溶解液は、分散して液槽21内
の液と混合されるから、液槽21内の液の溶存酸素値すな
わちDО値を高めることができる。また、小さな気泡59
は液面25まで液槽21内の液と接触しながら浮上し、この
間に気泡59中の酸素が液槽21内の液に酸素移動するの
で、高い酸素溶解効率が得られる。
Since the gas solution is dispersed and mixed with the liquid in the liquid tank 21, the dissolved oxygen value of the liquid in the liquid tank 21, that is, the DО value can be increased. Also small bubbles 59
Rises up to the liquid level 25 while being in contact with the liquid in the liquid tank 21, and during this time, oxygen in the bubbles 59 moves to the liquid in the liquid tank 21, so that high oxygen dissolving efficiency can be obtained.

【0051】また、電動機39は、1台のみで3段階の気
体溶解処理を効率良くでき、さらに、筒体23を貫通する
主軸38により、液中のポンプ羽根37に対し電動機39を液
上に分離したから、電動機39のメンテナンスを容易にで
きる。
Further, only one motor 39 can efficiently perform the three-stage gas dissolving process. Further, the main shaft 38 penetrating the cylinder 23 allows the motor 39 to be placed above the liquid with respect to the pump blade 37 in the liquid. Since it is separated, maintenance of the electric motor 39 can be facilitated.

【0052】次に、図4乃至図6に示された他の実施の
形態を説明する。なお、図1乃至図3に示された実施の
形態と同様の部分には、同一符号を付して、その説明を
省略する。
Next, another embodiment shown in FIGS. 4 to 6 will be described. The same parts as those in the embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and description thereof will be omitted.

【0053】図4に示されるように、ポンプ24のケーシ
ング36の下側に、ポンプ24の駆動装置としての液密構造
の電動機39が一体的に設けられている。
As shown in FIG. 4, an electric motor 39 having a liquid-tight structure as a driving device of the pump 24 is integrally provided below the casing 36 of the pump 24.

【0054】この電動機39のモータ本体42の側面には、
液槽21の底面61に設置される脚部62が下方へ向けて一体
に突出され、また、モータ本体42の上面には、軸受部63
を介して取付フランジ64が一体に形成され、このモータ
本体42と一体の取付フランジ64が、ポンプ24のケーシン
グ36の底板部65にパッキング66を介して液密に固定され
ている。
On the side of the motor body 42 of the electric motor 39,
Legs 62 installed on the bottom surface 61 of the liquid tank 21 are integrally protruded downward, and a bearing 63
The mounting flange 64 is formed integrally with the motor main body 42, and is fixed to the bottom plate 65 of the casing 36 of the pump 24 via a packing 66 in a liquid-tight manner.

【0055】取付フランジ64の中央部に設けられた軸受
部63から上方へ突出された主軸38は、ケーシング36の底
板部65に穿設された軸穴67を通して、ポンプ羽根37の中
心に接続されている。
The main shaft 38 projecting upward from a bearing 63 provided at the center of the mounting flange 64 is connected to the center of the pump blade 37 through a shaft hole 67 formed in a bottom plate 65 of the casing 36. ing.

【0056】このため、図5に示されるように、筒体23
の内部には主軸38などがなく、筒体23内の旋回流を妨げ
るものがない。
For this reason, as shown in FIG.
Does not have a main shaft 38 or the like, and there is nothing obstructing the swirling flow in the cylindrical body 23.

【0057】ポンプ羽根37は、主軸38に下側の回転翼51
が直角に取付けられ、この回転翼51の上側に、図6に示
されるように配置された複数の結合部材68を介して、上
側の回転翼51が平行に取付けられ、これらの上下の回転
翼51の対向面に、回転翼51の表面抵抗を増加させる抵抗
増加手段としての凸部材52が設けられている。
The pump blade 37 has a lower rotating blade 51 attached to the main shaft 38.
Are mounted at right angles, and above the rotor 51, upper rotors 51 are mounted in parallel via a plurality of coupling members 68 arranged as shown in FIG. A convex member 52 as a resistance increasing means for increasing the surface resistance of the rotary wing 51 is provided on the facing surface of the rotating blade 51.

【0058】そして、この水中モータ式の気液混合溶解
装置は、ポンプ羽根37の主軸38の長さおよび太さを、液
槽21の深さ(すなわち液深)に関係なく一定にすること
ができ、主軸関連の構造を大幅に短小化および小径化で
きる。
The submerged motor-type gas-liquid mixing and dissolving apparatus can make the length and thickness of the main shaft 38 of the pump blade 37 constant irrespective of the depth of the liquid tank 21 (ie, the liquid depth). As a result, the structure related to the spindle can be greatly shortened and reduced in diameter.

【0059】すなわち、主軸38およびこの主軸38の軸振
れ振動を抑える軸受部63を小型化でき、主軸38および軸
受部63の制作費が安価になり、装置の製造コストを低減
でき、また、軸受部63の損傷が軽減し、メンテナンスコ
ストを低減できる。
That is, the main shaft 38 and the bearing 63 for suppressing the shaft runout vibration of the main shaft 38 can be downsized, the production cost of the main shaft 38 and the bearing 63 can be reduced, the manufacturing cost of the apparatus can be reduced, and Damage to the part 63 is reduced, and maintenance costs can be reduced.

【0060】さらに、筒体23内に主軸38を貫通させる必
要がないので、筒体23中で気体がサイクロン現象により
液中に吸引混合される際に、筒体23内に主軸38がある場
合に比べて、サイクロン現象効果がより顕著になり、サ
イクロン現象効果による気体吸引量が増大する。
Further, since it is not necessary to penetrate the main shaft 38 in the cylindrical body 23, when the gas is sucked and mixed into the liquid by the cyclone phenomenon in the cylindrical body 23, the main shaft 38 may be in the cylindrical body 23. As compared with the above, the cyclone phenomenon effect becomes more remarkable, and the gas suction amount due to the cyclone phenomenon effect increases.

【0061】以上のように、各実施の形態において、液
中への空気の混合溶解処理は、筒体23のテーパ筒部32の
内部、ポンプ24の内部、液槽21の内部の3段階でなされ
るため、高い気体溶解効率が得られ、液槽21内の液中の
酸素濃度を高濃度化できる。
As described above, in each embodiment, the process of mixing and dissolving air into the liquid is performed in three stages: inside the tapered tube portion 32 of the tube 23, inside the pump 24, and inside the liquid tank 21. As a result, high gas dissolving efficiency can be obtained, and the oxygen concentration in the liquid in the liquid tank 21 can be increased.

【0062】さらに、本装置は、既設の液槽21内にも、
その液槽21の上部から挿入するようにして設置できるの
で、イニシャルコストを低減できる。
Further, the present apparatus is also used in the existing liquid tank 21.
Since it can be installed so as to be inserted from above the liquid tank 21, the initial cost can be reduced.

【0063】また、電動機39は、液中のポンプ24を軽負
荷状態で駆動でき、従来のコンプレッサやブロワなどの
強制給気装置を用いて液中に気体を吹込む場合に対し、
ポンプ駆動に要するランニングコストを低減できるとと
もに、電動機39などから生ずる音は静かであり、低騒音
化を図れる。
Further, the electric motor 39 can drive the pump 24 in the liquid under a light load state, and is capable of driving a gas into the liquid using a conventional forced air supply device such as a compressor or a blower.
The running cost required for driving the pump can be reduced, and the noise generated from the electric motor 39 and the like is quiet, and the noise can be reduced.

【0064】すなわち、ケーシング36の吸込側および吐
出側の両方に液中深度に応じた液圧が作用することか
ら、ポンプ24の負荷は液中深度に影響されにくいので、
コンプレッサやブロワなどの強制給気装置を用いて液中
に気体を吹込む場合に対し、ポンプ24の駆動に要する電
動機39のエネルギコストや騒音は低い。
That is, since the hydraulic pressure corresponding to the submerged depth acts on both the suction side and the discharge side of the casing 36, the load of the pump 24 is hardly affected by the submerged depth.
The energy cost and noise of the electric motor 39 required for driving the pump 24 are lower than when gas is blown into the liquid using a forced air supply device such as a compressor or a blower.

【0065】なお、本装置は、空気中の酸素を水中に溶
解させる水処理用の曝気槽で用いることが一般的である
が、吸気管27から空気以外の気体または酸素のみを筒体
23内に供給すれば、その気体を液体中に溶解させること
も可能である。さらに、本装置は、液槽21に設置される
ものとして限定されるものではなく、池などの自然に形
成された液溜り部に用いられる形態も含むものである。
The present apparatus is generally used in an aeration tank for water treatment for dissolving oxygen in air in water, but only gas or oxygen other than air is supplied from a suction pipe 27 to a cylindrical body.
By supplying the gas into the liquid 23, the gas can be dissolved in the liquid. Further, the present apparatus is not limited to being installed in the liquid tank 21, but includes a form used for a naturally formed liquid pool such as a pond.

【0066】[0066]

【発明の効果】請求項1記載の発明によれば、ポンプ吸
込力で生ずる筒体内での気液攪拌混合作用による気体溶
解と、ポンプ内での気液攪拌混合作用による気体溶解
と、ポンプから液中に吐出された気泡が液中を浮上する
際の気体溶解との3段階の気体溶解処理が連続になされ
ることにより、高い気体溶解効率が得られる。
According to the first aspect of the present invention, gas dissolution by the gas-liquid stirring and mixing action in the cylinder caused by the suction force of the pump, gas dissolution by the gas-liquid stirring and mixing action in the pump, and High gas dissolution efficiency can be obtained by continuously performing the three-stage gas dissolution treatment with gas dissolution when bubbles discharged into the liquid float in the liquid.

【0067】請求項2記載の発明によれば、ポンプの吸
込作用によってストレート筒部内の液面液位が低下し、
吸液口よりストレート筒部内に吸込まれた液が、気体を
巻込みながら滝のようになって流落ちるため、従来のコ
ンプレッサやブロワなどの強制給気装置を用いることな
く気体を大気圧下で効率良く吸引でき、ポンプ駆動に要
するエネルギのコストを低減できるとともに騒音も低減
できる。
According to the second aspect of the present invention, the liquid level in the straight cylindrical portion is reduced by the suction action of the pump,
The liquid sucked into the straight cylinder from the suction port flows down like a waterfall while entraining the gas, so the gas can be removed at atmospheric pressure without using a forced air supply device such as a conventional compressor or blower. Efficient suction can be performed, the cost of energy required for driving the pump can be reduced, and noise can be reduced.

【0068】請求項3記載の発明によれば、接線方向の
吸液口から吸込まれた液は、ストレート筒部の内部で旋
回流となって中央部が凹むように流落ちるため、気体を
中央部の凹み部分で効率良く巻込み、強制給気装置を用
いることなく大気圧下で効率良く吸引できる。
According to the third aspect of the present invention, the liquid sucked from the liquid suction port in the tangential direction forms a swirling flow inside the straight cylindrical portion and flows down so that the central portion is depressed. The air can be efficiently wrapped in the concave portion of the portion, and can be efficiently sucked under the atmospheric pressure without using a forced air supply device.

【0069】請求項4記載の発明によれば、ポンプの吸
込作用によって吸液口よりストレート筒部内に滝のよう
になって流込んだ液と気体が、テーパ筒部の内部でサイ
クロン状の激しい乱流を発生させるから、テーパ筒部内
で気液を効率良く攪拌混合させて、気体溶解効率を向上
できる。
According to the fourth aspect of the present invention, the liquid and the gas which flow into the straight cylindrical portion from the liquid suction port as a waterfall by the suction action of the pump are intensely cyclone-like inside the tapered cylindrical portion. Since the turbulent flow is generated, the gas-liquid can be efficiently stirred and mixed in the tapered cylindrical portion, and the gas dissolving efficiency can be improved.

【0070】請求項5記載の発明によれば、筒体ととも
に液中に挿入されたポンプのケーシング内では、加圧下
で気液がポンプ羽根により回転しながら攪拌混合される
から、気体を液中に高濃度で溶解できるとともに、ケー
シングの吸込側および吐出側の両方に液中深度に応じた
液圧が作用することから、ポンプ負荷は液中深度に影響
されにくいので、コンプレッサやブロワなどの強制給気
装置を用いて液中に気体を吹込む場合に対し、ポンプ駆
動に要するエネルギのコストや騒音を低減できる。ま
た、前記3段階の気体溶解処理を1台の駆動装置のみに
より効率良くできる。
According to the fifth aspect of the present invention, in the pump casing inserted into the liquid together with the cylinder, the gas and liquid are stirred and mixed while being rotated by the pump blades under pressure. The pump load is hardly affected by the depth of the liquid, and the pump load is hardly affected by the depth of the liquid. In contrast to the case where gas is blown into the liquid using the air supply device, the cost and noise of energy required for driving the pump can be reduced. Further, the three-stage gas dissolving process can be efficiently performed by only one driving device.

【0071】請求項6記載の発明によれば、ケーシング
内のポンプ羽根による攪拌混合で生じた気体溶解液と多
量の微小気泡とを、ケーシングの円筒周面から突出され
た複数の吐出ノズルよりケーシング周囲の広範囲に連続
的に分散吐出できる。分散吐出された気体溶解液は、ポ
ンプ周囲の液と混合され、その液の溶存酸素値を高め、
小さな気泡は液面まで浮上する間に、接触した液中に気
泡中の気体を溶解させることができる。
According to the sixth aspect of the present invention, the gas solution and a large amount of microbubbles generated by stirring and mixing by the pump blades in the casing are separated from the casing by a plurality of discharge nozzles projecting from the cylindrical peripheral surface of the casing. Dispersion can be continuously performed over a wide area around the device. The gas solution dispersed and discharged is mixed with the liquid around the pump to increase the dissolved oxygen value of the liquid,
While the small bubbles float to the liquid surface, the gas in the bubbles can be dissolved in the contacted liquid.

【0072】請求項7記載の発明によれば、主軸に直角
に取付けられた複数の皿形の回転翼は高速回転が可能で
あり、それらの間の抵抗増加手段により液を高速で切裂
くように撹拌して回転翼の表面で微細な乱流を発生さ
せ、無数の微細な気泡を効率良く発生させることで、液
中への気体溶解比率を格段に高めることができるととも
に、気体溶解比率が高い気液混合体を性能低下を起こす
ことなく、高速回転による遠心力で移送してポンプ周囲
の液中に吐出できる。また、主軸に直角に取付けられた
皿形の回転翼の表面抵抗を抵抗増加手段により増加させ
るのみであるから、ポンプ内目詰まりや夾雑物の絡付き
などを防止できる。
According to the seventh aspect of the present invention, the plurality of dish-shaped rotors mounted at right angles to the main shaft can rotate at a high speed, and the means for increasing the resistance between them allows the liquid to be cut at a high speed. By generating fine turbulence on the surface of the rotor blades by stirring to generate innumerable fine bubbles efficiently, the gas dissolution ratio in the liquid can be significantly increased and the gas dissolution ratio The high gas-liquid mixture can be transferred by centrifugal force due to high speed rotation and discharged into the liquid around the pump without deteriorating the performance. Further, since only the surface resistance of the dish-shaped rotor attached to the main shaft at right angles is increased by the resistance increasing means, clogging in the pump and entanglement of impurities can be prevented.

【0073】請求項8記載の発明によれば、斜め下向き
に折曲された折曲周縁部の径方向の抵抗増加手段から与
えられた遠心力により、斜め下方へ方向付けされた気液
混合体は、ポンプからいったん斜め下方へ吐出された
後、浮上に転ずるので、浮上に要する時間をかせぎ、液
中を浮上する際に溶解する気体溶解をより効果的にでき
る。
According to the eighth aspect of the present invention, the gas-liquid mixture directed obliquely downward by the centrifugal force applied from the radial resistance increasing means of the bent peripheral portion bent obliquely downward. Is discharged from a pump once obliquely downward, and then turns to float, so that the time required for floating is saved, and gas dissolved during floating in liquid can be more effectively dissolved.

【0074】請求項9記載の発明によれば、既設の液槽
内にも、その液槽の上部から本装置を挿入するようにし
て設置でき、3段階の気体溶解処理により液槽内での気
体溶解効率を向上できるとともに、従来のコンプレッサ
やブロワなどの強制給気装置を用いて液中に気体を吹込
む場合に対し、ポンプ駆動に要するエネルギのコストや
騒音を低減できる。
According to the ninth aspect of the present invention, the present apparatus can be installed in an existing liquid tank so as to be inserted from the upper part of the liquid tank, and can be installed in the liquid tank by three-stage gas dissolution processing. The gas dissolving efficiency can be improved, and the cost and noise of energy required for driving the pump can be reduced as compared with the case where gas is blown into liquid using a conventional forced air supply device such as a compressor or a blower.

【0075】請求項10記載の発明によれば、駆動装置
が、ポンプの下側に一体的に設けられたので、液の深さ
に関係なくポンプ羽根の主軸の長さおよび太さを大幅に
短小化および小径化できるため、主軸およびこの主軸の
軸振れ振動を抑える軸受構造を小型で安価なものにでき
るとともに、筒体中で気体がサイクロン現象により液中
に吸引混合される際に、筒体内に障害物となる主軸を貫
通させる必要がないので、サイクロン現象効果がより大
となり、サイクロン現象効果による気体吸引量を増大で
きる。
According to the tenth aspect of the present invention, since the driving device is provided integrally below the pump, the length and thickness of the main shaft of the pump blade can be greatly increased regardless of the depth of the liquid. The main shaft and the bearing structure for suppressing shaft run-out vibration of the main shaft can be made small and inexpensive because it can be made shorter and smaller in diameter, and when the gas is sucked and mixed into the liquid by the cyclone phenomenon in the cylinder, Since there is no need to penetrate the main shaft, which is an obstacle in the body, the cyclone effect is increased and the amount of gas suction by the cyclone effect can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る気液混合溶解装置の一実施の形態
を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a gas-liquid mixing and dissolving apparatus according to the present invention.

【図2】同上気液混合溶解装置の液吸込部分の断面図で
ある。
FIG. 2 is a sectional view of a liquid suction part of the gas-liquid mixing and dissolving apparatus.

【図3】同上気液混合溶解装置のポンプ羽根の平面図で
ある。
FIG. 3 is a plan view of a pump blade of the gas-liquid mixing and dissolving apparatus.

【図4】本発明に係る気液混合溶解装置の他の実施の形
態を示す断面図である。
FIG. 4 is a sectional view showing another embodiment of the gas-liquid mixing and dissolving apparatus according to the present invention.

【図5】同上気液混合溶解装置の液吸込部分の断面図で
ある。
FIG. 5 is a sectional view of a liquid suction portion of the gas-liquid mixing and dissolving apparatus.

【図6】同上気液混合溶解装置のポンプ羽根の平面図で
ある。
FIG. 6 is a plan view of a pump blade of the gas-liquid mixing and dissolving apparatus.

【図7】従来の気液混合溶解装置の一例を示す断面図で
ある。
FIG. 7 is a sectional view showing an example of a conventional gas-liquid mixing and dissolving apparatus.

【符号の説明】[Explanation of symbols]

21 液槽 23 筒体 24 ポンプ 28 吸液口 31 ストレート筒部 32 テーパ筒部 36 ケーシング 37 ポンプ羽根 38 主軸 39 駆動装置としての電動機 48 吐出ノズル 51 回転翼 52 抵抗増加手段としての凸部材 53 折曲周縁部 21 Liquid tank 23 Cylinder 24 Pump 28 Liquid suction port 31 Straight cylinder 32 Tapered cylinder 36 Casing 37 Pump blade 38 Main shaft 39 Electric motor as drive unit 48 Discharge nozzle 51 Rotary blade 52 Convex member as resistance increasing means 53 Bend Perimeter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F04D 29/22 F04D 29/22 B 29/44 29/44 D 31/00 31/00 Fターム(参考) 3H022 AA01 AA06 BA01 BA04 3H033 AA07 AA20 BB01 BB06 BB12 BB16 BB17 CC01 CC03 DD03 EE19 3H034 AA07 AA20 BB01 BB06 BB12 BB16 BB17 CC01 CC03 DD12 EE18 4D029 AA09 AB02 4G035 AA01 AB24 AB25 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) F04D 29/22 F04D 29/22 B 29/44 29/44 D 31/00 31/00 F-term (reference) 3H022 AA01 AA06 BA01 BA04 3H033 AA07 AA20 BB01 BB06 BB12 BB16 BB17 CC01 CC03 DD03 EE19 3H034 AA07 AA20 BB01 BB06 BB12 BB16 BB17 CC01 CC03 DD12 EE18 4D029 AA09 AB02 4G035 AAAB

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 液中に挿入され上部から液および気体を
吸込む筒体と、 筒体の下部に設けられ筒体内の液および気体を攪拌混合
しながら吸込むとともに周囲に吐出するポンプとを具備
したことを特徴とする気液混合溶解装置。
1. A cylinder inserted into a liquid and sucking liquid and gas from above, and a pump provided at the lower part of the cylinder and sucking the liquid and gas inside the cylinder while stirring and mixing and discharging the liquid and gas to the surroundings. A gas-liquid mixing and dissolving apparatus characterized by the above-mentioned.
【請求項2】 筒体は、 液中に開口される吸液口を有するとともに吸液口から内
部に吸込まれた液を滝状に落下させるストレート筒部を
具備したことを特徴とする請求項1記載の気液混合溶解
装置。
2. The cylinder according to claim 1, wherein the cylinder has a liquid suction port opened in the liquid, and has a straight cylindrical portion for causing the liquid sucked into the liquid suction port to fall in a waterfall shape. 2. The gas-liquid mixing and dissolving apparatus according to 1.
【請求項3】 吸液口は、 ストレート筒部の接線方向に設けられたことを特徴とす
る請求項2記載の気液混合溶解装置。
3. The gas-liquid mixing and dissolving apparatus according to claim 2, wherein the liquid suction port is provided in a tangential direction of the straight cylindrical portion.
【請求項4】 筒体は、 ストレート筒部の下部に設けられ下方に向って漸次小径
のテーパ筒部を具備したことを特徴とする請求項2また
は3記載の気液混合溶解装置。
4. The gas-liquid mixing and dissolving apparatus according to claim 2, wherein the cylindrical body has a tapered cylindrical portion provided at a lower portion of the straight cylindrical portion and having a gradually decreasing diameter toward the lower side.
【請求項5】 ポンプは、 筒体の下端に固定されたケーシングと、 ケーシングの内部に回転自在に設けられたポンプ羽根
と、 ポンプ羽根の中心に接続された主軸と、 主軸を回動する駆動装置とを具備したことを特徴とする
請求項1乃至4のいずれか記載の気液混合溶解装置。
5. A pump fixed to a lower end of a cylindrical body, a pump blade rotatably provided inside the casing, a main shaft connected to the center of the pump blade, and a drive for rotating the main shaft. The gas-liquid mixing and dissolving apparatus according to any one of claims 1 to 4, further comprising an apparatus.
【請求項6】 ケーシングは、円筒状に形成され、 ケーシングの円筒周面から突出された複数の吐出ノズル
を具備したことを特徴とする請求項5記載の気液混合溶
解装置。
6. The gas-liquid mixing and dissolving apparatus according to claim 5, wherein the casing is formed in a cylindrical shape and includes a plurality of discharge nozzles protruding from a cylindrical peripheral surface of the casing.
【請求項7】 ポンプ羽根は、 主軸に直角に取付けられた複数の皿形の回転翼と、 これらの回転翼の少なくとも対向面に設けられ回転翼の
表面抵抗を増加させる抵抗増加手段とを具備したことを
特徴とする請求項5または6記載の気液混合溶解装置。
7. The pump blade includes a plurality of dish-shaped rotors mounted at right angles to the main shaft, and resistance increasing means provided on at least the opposing surfaces of the rotors to increase the surface resistance of the rotors. The gas-liquid mixing and dissolving apparatus according to claim 5 or 6, wherein:
【請求項8】 複数の皿形の回転翼は、 斜め下向きに折曲された折曲周縁部を有し、 折曲周縁部に抵抗増加手段が径方向に設けられたことを
特徴とする請求項7記載の気液混合溶解装置。
8. A plurality of dish-shaped rotors having a bent peripheral edge bent obliquely downward, and a resistance increasing means provided radially on the bent peripheral edge. Item 7. A gas-liquid mixing / dissolving apparatus according to Item 7.
【請求項9】 筒体は、液槽の上部で固定され、 ポンプは、液槽の底部の近傍に配置されたことを特徴と
する請求項1乃至8のいずれか記載の気液混合溶解装
置。
9. The gas-liquid mixing and dissolving apparatus according to claim 1, wherein the cylinder is fixed at an upper part of the liquid tank, and the pump is arranged near a bottom part of the liquid tank. .
【請求項10】 駆動装置は、ポンプの下側に一体的に
設けられたことを特徴とする請求項5乃至9のいずれか
記載の気液混合溶解装置。
10. The gas-liquid mixing and dissolving apparatus according to claim 5, wherein the driving device is integrally provided below the pump.
JP2001156717A 2001-05-25 2001-05-25 Gas-liquid mixing and dissolving device Expired - Fee Related JP4377087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001156717A JP4377087B2 (en) 2001-05-25 2001-05-25 Gas-liquid mixing and dissolving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001156717A JP4377087B2 (en) 2001-05-25 2001-05-25 Gas-liquid mixing and dissolving device

Publications (2)

Publication Number Publication Date
JP2002346356A true JP2002346356A (en) 2002-12-03
JP4377087B2 JP4377087B2 (en) 2009-12-02

Family

ID=19000690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156717A Expired - Fee Related JP4377087B2 (en) 2001-05-25 2001-05-25 Gas-liquid mixing and dissolving device

Country Status (1)

Country Link
JP (1) JP4377087B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108305A1 (en) * 2004-05-06 2005-11-17 Woo Ram Lee Apparatus for mixing watertreatment agent
JP2007083108A (en) * 2005-09-20 2007-04-05 Sharp Corp Method and apparatus for treating liquid
WO2007105585A1 (en) * 2006-03-10 2007-09-20 Yukio Nakajima Liquid purifying treatment apparatus
KR100831440B1 (en) 2007-03-23 2008-05-22 한상배 The submersible Mixer and Aerator with the function of vertical circulation of fluid
JP2009039600A (en) * 2007-08-06 2009-02-26 Reo Laboratory Co Ltd Ultra-fine bubble production device
KR101228789B1 (en) * 2010-07-21 2013-01-31 주식회사 일성종합기계 A creating vacuum cleaner of micro-bubble
KR101347269B1 (en) * 2012-09-26 2014-01-06 숭실대학교산학협력단 Bridge type agitator apparatus for water & wastewater processing
KR200470651Y1 (en) 2012-09-26 2014-01-06 숭실대학교산학협력단 advanced forming plate
CN106967584A (en) * 2017-05-04 2017-07-21 南昌大学 A kind of automated cell suspension blows and beats evenly mixing device
CN107321200A (en) * 2017-08-30 2017-11-07 中山市精典电器有限公司 A kind of gas and water high-speed mixing device
KR101899444B1 (en) * 2017-02-20 2018-09-17 동명대학교산학협력단 high performance water circulation apparatus using solar
KR20180113329A (en) * 2017-04-06 2018-10-16 김종철 Bubble generator for air purification
JP2019198857A (en) * 2018-05-15 2019-11-21 リンナイ株式会社 Gas-liquid mixer
KR102039306B1 (en) * 2019-06-21 2019-12-02 박승훈 Micro bubble product device for water quality improvement
JP2020044529A (en) * 2018-09-13 2020-03-26 リンナイ株式会社 Gas-liquid mixer

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108305A1 (en) * 2004-05-06 2005-11-17 Woo Ram Lee Apparatus for mixing watertreatment agent
JP2007083108A (en) * 2005-09-20 2007-04-05 Sharp Corp Method and apparatus for treating liquid
WO2007105585A1 (en) * 2006-03-10 2007-09-20 Yukio Nakajima Liquid purifying treatment apparatus
KR100831440B1 (en) 2007-03-23 2008-05-22 한상배 The submersible Mixer and Aerator with the function of vertical circulation of fluid
JP2009039600A (en) * 2007-08-06 2009-02-26 Reo Laboratory Co Ltd Ultra-fine bubble production device
KR101228789B1 (en) * 2010-07-21 2013-01-31 주식회사 일성종합기계 A creating vacuum cleaner of micro-bubble
KR101347269B1 (en) * 2012-09-26 2014-01-06 숭실대학교산학협력단 Bridge type agitator apparatus for water & wastewater processing
KR200470651Y1 (en) 2012-09-26 2014-01-06 숭실대학교산학협력단 advanced forming plate
KR101899444B1 (en) * 2017-02-20 2018-09-17 동명대학교산학협력단 high performance water circulation apparatus using solar
KR20180113329A (en) * 2017-04-06 2018-10-16 김종철 Bubble generator for air purification
KR102006477B1 (en) * 2017-04-06 2019-08-01 김종철 Bubble generator for air purification
CN106967584A (en) * 2017-05-04 2017-07-21 南昌大学 A kind of automated cell suspension blows and beats evenly mixing device
WO2019041414A1 (en) * 2017-08-30 2019-03-07 中山市精典电器有限公司 Gas-and-water high-speed mixing device
CN107321200A (en) * 2017-08-30 2017-11-07 中山市精典电器有限公司 A kind of gas and water high-speed mixing device
JP2019198857A (en) * 2018-05-15 2019-11-21 リンナイ株式会社 Gas-liquid mixer
JP7228442B2 (en) 2018-05-15 2023-02-24 リンナイ株式会社 Gas-liquid mixer
JP2020044529A (en) * 2018-09-13 2020-03-26 リンナイ株式会社 Gas-liquid mixer
JP7190375B2 (en) 2018-09-13 2022-12-15 リンナイ株式会社 Gas-liquid mixer
KR102039306B1 (en) * 2019-06-21 2019-12-02 박승훈 Micro bubble product device for water quality improvement

Also Published As

Publication number Publication date
JP4377087B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP2002346356A (en) Gas/liquid mixing dissolving device
JP4418019B1 (en) Rotating body for stirring and stirring device
KR101165660B1 (en) Underwater aeration device
JP5252409B2 (en) Microbubble generator
US20080143000A1 (en) Submersible hollow shaft motor and submersible floating aerator comprising the same
JP4039430B2 (en) Impeller
US4917577A (en) High speed centrifugal oxygenator
JP5188997B2 (en) Aeration stirrer
KR100801851B1 (en) Jet starchy
US4305894A (en) Arrangement in apparatus for mixing gases with and dissolving gases in liquids
US20090213684A1 (en) Apparatus for distribution of a gas into a body of liquid
KR20180044516A (en) Impeller
KR200449930Y1 (en) Floating type surface aeration apparatus
JP2000107792A (en) Air diffusion-agitation apparatus
JP2004188260A (en) Underwater aeration apparatus
JP2004188259A (en) Underwater aeration apparatus
JP4104965B2 (en) Underwater aeration equipment
KR200388330Y1 (en) Ozone mixed type pump
JPH03229696A (en) Air bubble generator
JP2003236357A (en) Stirring blade for fine bubble producing apparatus and fine bubble producing apparatus
JP3348226B2 (en) Drain drain pump
JP2009270579A (en) Drainage pump
JP3828061B2 (en) Underwater aerator
KR200309221Y1 (en) the micro bubble device install a centrifugal multistage pump
KR102123417B1 (en) Apparatus for generating the micro bubbles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees