WO2000059115A1 - Electric current divider - Google Patents

Electric current divider Download PDF

Info

Publication number
WO2000059115A1
WO2000059115A1 PCT/JP2000/002000 JP0002000W WO0059115A1 WO 2000059115 A1 WO2000059115 A1 WO 2000059115A1 JP 0002000 W JP0002000 W JP 0002000W WO 0059115 A1 WO0059115 A1 WO 0059115A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
output
terminal
differential amplifier
voltage
Prior art date
Application number
PCT/JP2000/002000
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Kimura
Original Assignee
Lucent Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc. filed Critical Lucent Technologies Inc.
Publication of WO2000059115A1 publication Critical patent/WO2000059115A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/62Switching arrangements with several input- output-terminals, e.g. multiplexers, distributors

Definitions

  • the present invention relates to an electronic device, and more particularly, to a current distributor that generates a smooth output according to a control input.
  • the current distributor has characteristics such that the output smoothly changes in accordance with the control voltage.
  • the degree of freedom in designing the gain and operating range of the circuit constituting the current divider decreases.
  • the circuit configuration becomes exponentially complicated.
  • the configuration of a current distributor having output terminals other than the power of 2 is complicated.
  • FIG. 3 in this specification corresponds to FIG. 3 in the same document. Disclosure of the invention
  • An object of the present invention is to provide a current divider whose output changes smoothly according to a control voltage. Still another object of the present invention is to provide a current distributor having an arbitrary number of output terminals of three or more.
  • the current distributor of the present invention includes a control circuit A that generates N output groups that are integers of 3 or more from a pair of control inputs V IP and V IN , and a current input based on an output of the control circuit A. And a differential amplifier B that distributes this current to N output groups.
  • a control circuit A that generates N output groups that are integers of 3 or more from a pair of control inputs V IP and V IN , and a current input based on an output of the control circuit A.
  • a differential amplifier B that distributes this current to N output groups.
  • FIG. 1 is a circuit diagram of a current distributor showing a first embodiment of the present invention
  • FIG. 4 is a circuit diagram of a current distributor showing a second embodiment of the present invention.
  • FIG. 1 showing the first embodiment
  • the left side of the broken line represents the control circuit A
  • the right side represents the differential amplifier B.
  • the control circuit A has a pair of control inputs V1P and VIN, and a voltage output group 3 including N (SSN) output terminals. Further, the control circuit A has a current source group 6 composed of N (I to IN) current sources and a resistance group 8 composed of (N-1) (1 ⁇ to 1 ⁇ -) resistors.
  • Control input VIP is current source I! Is connected to the positive terminal
  • the control input V IN is connected to the positive terminal of the current source I N.
  • Output terminals of the output terminal group 3 is connected to the positive terminal of the current source I
  • the output terminal S 2 is connected to the positive terminal of the current source 1 2.
  • the output terminal S i is connected to the positive terminal of the current source I i.
  • the negative terminal of the current source I ⁇ I N is connected to the common terminal 7 (COM).
  • Each resistance! ⁇ ⁇ ! ⁇ Is arranged between the output lines constituting the output terminal group 3. Specifically, the output resistance between the terminals Si and S 2 are connected, the resistance R 2 is connected between the output terminals S 2 and S 3.
  • a resistor Ri is connected between the voltage output terminals S i and S i +1 .
  • Differential amplifier B has N number of input terminals S to S N, which is also the output terminal of the N control circuit A (S SN), the transistor group 9 of N ( ⁇ ⁇ ).
  • Input terminal Si is the gate of the transistor M 1
  • the input terminal S 2 is connected to the gate of the transistor M 2.
  • the input terminal Si is connected to the gate of the transistor Mi.
  • the sources of the transistors M! To MN are connected to the common terminal 5 (I IN) to which current is input from outside.
  • the drain of each transistor IVh MN It is connected to each of the current output terminals I 01 to I 0N constituting the group 4.
  • a MOS FET is used.
  • bipolar transistors can also be used.
  • the gate of the MOS FET corresponds to the base of the bipolar transistor
  • the source corresponds to the emitter
  • the drain corresponds to the collector.
  • the current input from the current input terminal 5 (I.N) is applied to each of the current output terminals I 01 of the current output terminal group 4 according to the signals of the input terminals Si to SN functioning as the control inputs.
  • ⁇ I ON current output is controlled.
  • the voltage output terminal of the output terminal group 3 from the control circuit A is also a control input terminal group of the differential amplifier B.
  • output terminal group 3 is also referred to as control input terminal group 3.
  • the voltage output S to S N from the control circuit A is also controlled input S! ⁇ S N of the differential amplifier B.
  • both are used interchangeably as appropriate from the context.
  • control input voltage v IP is sufficiently lower than v IN ( ⁇ ⁇ ⁇ !
  • the differential amplifier B of the present invention is a differential circuit having a plurality of control input terminal groups 3 and the same number of current output terminal groups 4.
  • the number of control input terminals included in control input terminal group 3 is two, there is no difference in operation from a normal differential amplifier circuit.
  • the number of control input terminals included in the control input terminal 3 is three or more will be described.
  • the inflow current from the current input terminal 5 (I IN) is applied to each current output terminal I 01 included in the current output terminal group 4 ⁇ Equal to ION.
  • the sum of the currents output from each of the current output terminals I 01 to ION included in the current output terminal group 4 is equal to the injection current from the current input terminal 5 (I IN). That is, it is expressed by the following equation.
  • control input terminals of the control input terminals Si SN included in the control input terminal group 3 eg, the potentials of Si and S are equal, and the remaining control input terminals are the other control input terminals.
  • the current input terminal for example, I 0i , Ioi
  • the current output terminal group 4 corresponding to this low-potential control input terminal (for example, S s)
  • Most of the injected current from input terminal 5 (I, ⁇ ) is distributed, and almost no current flows to the other current output terminals.
  • V! P is V!
  • the control input S1 has the lowest voltage and the control input SN has the highest voltage as described above.
  • the voltages of the other outputs gradually decrease from SN to.
  • the relationship between the output currents of the current output terminals I 01 to I ON of the current output terminal group 4 corresponding to the respective control input terminals Si to SN is expressed by the following equation.
  • the output voltage from the control circuit A is also the control voltage of the differential amplifier B. Therefore, by changing the control inputs V ! P and V IN to the control circuit A (as a result, the output voltage from the control input terminal S SN changes), the current output terminal group 4 of the differential amplifier B is changed. The current output from each current output terminal can be smoothly and continuously changed.
  • FIG. 2 shows a second embodiment of the present invention.
  • the current distributor of the present invention includes three blocks separated by broken lines, that is, a control circuit A, a differential amplifier C, and a differential amplifier B in order from the left.
  • the configuration and operation of the control circuit A and the differential amplifier B shown here are the same as in the first embodiment described above.
  • the second current distributor of the present invention includes the differential amplifier C between the control circuit A and the differential amplifier B. Since the differential amplifier C is an inverting circuit, the polarity of the control circuit A is opposite to that of FIG. That is, the control inputs V IP and V IN to the control circuit A are connected to the output terminals PN and Pi, respectively. Have been.
  • the control circuit A has a V IP and V IN is a pair of control inputs 10 1, 102, N pieces voltage output terminals 1 13 and an output terminal of the ( ⁇ ⁇ ). Further, the control circuit A has a current source group 106 composed of N (I! To IN) current sources and a resistance group 108 composed of ( ⁇ -1) (1 ⁇ to 1 ⁇ -! Resistors. .
  • the control input V IP is connected to the negative terminal of the current source ⁇ ⁇ , and the control input V IN is connected to the negative terminal of the current source I.
  • Voltage output terminal Pi of the voltage output terminal group 1 13 is connected to the negative pin of the current source I i
  • the voltage output terminal P 2 is connected to the negative terminal of the current source 1 2.
  • the voltage output terminal Pi is connected to the negative terminal of the current source Ii.
  • the positive terminals of the current sources Ii to IN are connected to a common terminal 107 (COM).
  • Each resistance Ri ⁇ R N —! Are arranged between the voltage output lines constituting the voltage output terminal group 113. Specifically, the resistance between the voltage output terminal and P 2 are connected, resistor R 2 force between the voltage output terminal P 2 and P 3 ⁇ is connected.
  • a resistor Ri is connected between the voltage output terminals Pi and Pi + 1 .
  • the differential amplifier B has N voltage input terminals SSN, which are also N (SSN) output terminal groups 103 of the differential amplifier C, and N ( ⁇ ! To ⁇ ) transistor groups 109.
  • the control input terminal Si is the gate of the transistor Ml
  • the control input terminal S 2 is connected to the gate of the tiger Njisu evening M 2.
  • the control input terminal Si is connected to the gate of the transistor Mi.
  • the sources of the transistors M! To MN are connected to a common terminal 105 (I IN) into which current is externally injected.
  • each transistor MMN ⁇ drain is connected to each of the current output terminals I 01 to ION of the current output terminal group 104.
  • the differential amplifier C has N (() voltage input terminal groups. This is also the output terminal group of the control circuit A. Further, the differential amplifier C has N (Q QN) transistor groups 1 It has 16 and N (S! SN) voltage output terminal groups 103. These are also the input terminal groups for the differential amplifier B.
  • the voltage control input terminal P is connected to the gate of the transistor, and the voltage control input terminal is used.
  • P 2 is connected to the gate of transistor Q 2.
  • voltage control input terminal Pi is connected to the gate of transistor Qi.
  • the source of the transistor G to Q N are connected to the common terminal 117 (1 s) to external currents are inputted.
  • the drain of each transistor H ⁇ Q N are respectively connected to the voltage output terminal Si ⁇ S N of the voltage output terminal group 103.
  • the drains of the transistors Qi QN are connected to the common terminal 114 (VS) via the resistors RLi RLN constituting the resistor group 115, respectively.
  • MOS FETs were used for the differential amplifiers B and C in the above embodiment.
  • the gate of the MOSFET corresponds to the bipolar transistor base
  • the source corresponds to the emitter
  • the drain corresponds to the collector.
  • the operation of the second embodiment configured as described above is the same as the operation of the first embodiment, except that a power differential amplifier C is added.
  • the amplification degree can be adjusted by adjusting the current and voltage of the common power supply terminal 114 and the current of the terminal 117.
  • the voltage V! P and V! By controlling N, it is possible to provide a current divider having an arbitrary number of outputs whose output current can be controlled continuously.
  • the current divider according to the present invention is suitable for use in an electronic device, in particular, a current divider that generates a smooth output according to a control input.

Landscapes

  • Electronic Switches (AREA)
  • Amplifiers (AREA)

Abstract

An electric current divider having three or more arbitrary numbers of output terminals the outputs of which smoothly vary with the control voltages. The current divider is characterized by having a control circuit (A) which generates N outputs (3) where N is an integer of three or more from a pair of control inputs (VIP, VIN), and a differential amplifier (B) which divides a current input (5) into N current outputs (4). With this constitution, outputs S1-SN constituting the output group (3) are generated from the control inputs (VIP, VIN) to the control circuit (A). The outputs S1-SN then function as control signals for the differential amplifier (B), resulting in an advantage of smoothly and continuously varying the current outputs of the differential amplifier (B).

Description

明糸田書 電流分配器 技術分野  Akitoda Current Divider Technical Field
本発明は、 電子デバイスに関し、 特に、 制御入力に応じて滑らかな出力を生成 する電流分配器に関する。 背景技術  The present invention relates to an electronic device, and more particularly, to a current distributor that generates a smooth output according to a control input. Background art
電流分配器は、 制御電圧に応じて出力が滑らかに変化するような特性を有する のが好ましい。 電源が低電圧化するにつれて電流分配器を構成する回路の利得お よび動作範囲を調整する設計の自由度小さくなる。 また低電圧で動作する回路に おいて電流が分配される出力端子の数が増加すると、 指数関数的に回路構成が複 雑になる。 また回路規模が大きくなると設計段階において回路を調整することが 困難になっている。 また 2のべき数以外の数の出力端子を有する電流分配器の構 成は複雑である。 これに関しては、 文献(1991 IEEE International Sol id-State Circuits Conference, ISSCC91/Session 17/Analog Techniques/paper 17. 5, I SSCC digest of technical papers p. 281 )の図 3を参照されたい。本明細書の図 3は同文献の図 3に対応している。 発明の開示  It is preferable that the current distributor has characteristics such that the output smoothly changes in accordance with the control voltage. As the voltage of the power supply decreases, the degree of freedom in designing the gain and operating range of the circuit constituting the current divider decreases. When the number of output terminals to which current is distributed in a circuit operating at a low voltage increases, the circuit configuration becomes exponentially complicated. Also, as the circuit size increases, it becomes difficult to adjust the circuit at the design stage. In addition, the configuration of a current distributor having output terminals other than the power of 2 is complicated. In this regard, see FIG. 3 of the literature (1991 IEEE International Solid-State Circuits Conference, ISSCC91 / Session 17 / Analog Techniques / paper 17.5, ISSCC digest of technical papers p. 281). FIG. 3 in this specification corresponds to FIG. 3 in the same document. Disclosure of the invention
本発明の目的は、 制御電圧に応じて出力が滑らかに変化する電流分配器を提供 することである。 更に本発明の他の目的は、 3以上の任意の個数の出力端子を有 する電流分配器を提供することである。  An object of the present invention is to provide a current divider whose output changes smoothly according to a control voltage. Still another object of the present invention is to provide a current distributor having an arbitrary number of output terminals of three or more.
本発明の電流分配器は、 一対の制御入力 V I P、 V I Nから 3以上の整数である N 個の出力群を生成する制御回路 Aと、 前記制御回路 Aの出力に応じて、 電流入力 からの電流を N個の出力群に分配する差動増幅器 Bとを有することを特徴とする。 このように構成することにより、 一対の制御入力 V I P、 V I Nにより制御回路 A の出力群を構成する出力 S ! S 'を生成する。 この出力 S S Nが次に差動増幅 器 Bの制御信号として機能し、 差動増幅器 Bの複数の電流出力を滑らかに連続的 に変化させる。 The current distributor of the present invention includes a control circuit A that generates N output groups that are integers of 3 or more from a pair of control inputs V IP and V IN , and a current input based on an output of the control circuit A. And a differential amplifier B that distributes this current to N output groups. With such a configuration, an output S! S 'constituting an output group of the control circuit A is generated by the pair of control inputs VIP and VIN . This output SSN is then differentially amplified. It functions as a control signal for the amplifier B and changes the current outputs of the differential amplifier B smoothly and continuously.
更に本発明は、 第 2の差動増幅器 Cを前記制御回路 Aと差動増幅器 Bの間に有 する。 このように構成することにより増幅度の調整幅が広がる。 図面の簡単な説明 本発明の第 1実施例を示す電流分配器の回路図である,  Further, the present invention includes a second differential amplifier C between the control circuit A and the differential amplifier B. With such a configuration, the adjustment range of the amplification degree is widened. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a current distributor showing a first embodiment of the present invention,
図 2  Figure 2
本発明の第 2実施例を示す電流分配器の回路図である,  FIG. 4 is a circuit diagram of a current distributor showing a second embodiment of the present invention,
図 3  Fig. 3
従来の電流分配器の回路図である。  It is a circuit diagram of the conventional current distributor.
符号の説明  Explanation of reference numerals
1 正側制御入力、 VIP 1 Positive control input, V IP
2 負側制御入力、 V1N 2 Negative control input, V 1N
3 出力端子群、 制御入力端子群 S SN  3 Output terminal group, control input terminal group S SN
4 電流出力端子群、 I01〜I。N 4 Current output terminals, I 01 to I. N
5 電流入力端子、 I TN 5 Current input terminal, I TN
6 電流源群、 〜  6 Current source group, ~
7 共通端子、 COM  7 Common terminal, COM
8 抵抗群、 1^〜1^- 8 resistor group, 1 ^ ~ 1 ^-
9 トランジスタ群、 Mi〜MN 9 Transistor group, Mi to M N
101 正側制御入力、 VIP 101 Positive control input, V IP
102 負側制御入力、 VIN 102 Negative control input, V IN
103 出力端子群、 制御入力端子群 S SN  103 Output terminal group, control input terminal group S SN
104 電流出力端子群、 ICH ION  104 Current output terminal group, ICH ION
105 電流入力端子、 I IN 105 Current input terminal, I IN
106 電流源群、 I 〜  106 current source group, I to
107 共通端子、 COM 108 抵抗群、 1^〜1^—ュ 107 Common terminal, COM 108 resistor group, 1 ^ ~ 1 ^-
109 トランジスタ群、 M】〜MN 109 transistor group, M] to M N
1 13 出力端子群、 制御入力端子群 P! PN  1 13 Output terminal group, control input terminal group P! PN
1 14 共通端子、 VS  1 14 Common terminal, VS
1 15 抵抗群、 Ι 1^〜Ι Ι^  1 15 resistor group, Ι 1 ^ ~ Ι Ι ^
1 1 6 トランジスタ群、 Q!〜QN 1 1 6 Transistor group, Q! ~ Q N
1 17 電流源、 I S 発明を実施するための最良の形態 1 17 Current source, best mode for carrying out the IS invention
次に、 本発明の実施例を図 1、 2を参照して説明する。 第 1実施例を表す図 1 において、 破線の左側は制御回路 Aを、 右側は差動増幅器 Bを表す。  Next, an embodiment of the present invention will be described with reference to FIGS. In FIG. 1 showing the first embodiment, the left side of the broken line represents the control circuit A, and the right side represents the differential amplifier B.
制御回路 Aは、 一対の制御入力 V1Pと VINと、 N個 (S SN) の出力端子か らなる電圧出力群 3を有する。 更に、 制御回路 Aは、 N個 (I 〜IN) の電流源 からなる電流源群 6と、 (N— 1) 個 (1^〜1^- の抵抗からなる抵抗群 8を 有する。 The control circuit A has a pair of control inputs V1P and VIN, and a voltage output group 3 including N (SSN) output terminals. Further, the control circuit A has a current source group 6 composed of N (I to IN) current sources and a resistance group 8 composed of (N-1) (1 ^ to 1 ^-) resistors.
制御入力 VIPは電流源 I!の正端子に接続され、 制御入力 VINは電流源 I Nの正 端子に接続される。出力端子群 3の出力端子 は電流源 I の正端子に接続され、 出力端子 S2は電流源 12の正端子に接続される。一般的に出力端子 S iは電流源 I iの正端子に接続される。 各電流源 I 〜INの負端子は、 共通端子 7 (COM) に 接続されている。 各抵抗!^〜!^ が出力端子群 3を構成する出力ライン間に配 置されている。 具体的に説明すると、 出力端子 Siと S2の間に抵抗 が接続され、 出力端子 S 2と S 3の間に抵抗 R2が接続される。 一般的に電圧出力端子 S iと S i +1 の間に抵抗 Riが接続される。 Control input VIP is current source I! Is connected to the positive terminal, the control input V IN is connected to the positive terminal of the current source I N. Output terminals of the output terminal group 3 is connected to the positive terminal of the current source I, the output terminal S 2 is connected to the positive terminal of the current source 1 2. Generally, the output terminal S i is connected to the positive terminal of the current source I i. The negative terminal of the current source I ~I N is connected to the common terminal 7 (COM). Each resistance! ^ ~! ^ Is arranged between the output lines constituting the output terminal group 3. Specifically, the output resistance between the terminals Si and S 2 are connected, the resistance R 2 is connected between the output terminals S 2 and S 3. Generally, a resistor Ri is connected between the voltage output terminals S i and S i +1 .
差動増幅器 Bは、 制御回路 Aの N個 (S SN) の出力端子でもある N個の入 力端子 S 〜SNと、 N個 (Μ ΜΝ) のトランジスタ群 9を有する。 入力端子 Si がトランジスタ M 1のゲートに、 入力端子 S 2はトランジスタ M2のゲートに接続 される。 一般的に入力端子 Siはトランジスタ Miのゲートに接続される。 各トラ ンジス夕 M!〜MNのソースは、 外部より電流が入力される共通端子 5 ( I IN) に 接続される。 一方各トランジスタ IVh MNのドレインは、 それぞれ電流出力端子 群 4を構成する各電流出力端子 I 01〜 I 0Nに接続される。 Differential amplifier B has N number of input terminals S to S N, which is also the output terminal of the N control circuit A (S SN), the transistor group 9 of N (Μ ΜΝ). Input terminal Si is the gate of the transistor M 1, the input terminal S 2 is connected to the gate of the transistor M 2. Generally, the input terminal Si is connected to the gate of the transistor Mi. The sources of the transistors M! To MN are connected to the common terminal 5 (I IN) to which current is input from outside. On the other hand, the drain of each transistor IVh MN It is connected to each of the current output terminals I 01 to I 0N constituting the group 4.
この実施例では MOS · FETを使用した。 しかしバイポーラ型トランジスタ を用いることも可能である。 この場合、 MOS · FETのゲートはバイポーラ型 トランジスタのベースに、 ソ一スはェミッタに、 ドレインはコレクタに対応する。 また電流の極性を変えることにより、 トランジスタの極性を MOS . FETにお いては P型から N型へ、バイポーラ'トランジスタにおいては PNP型から NPN 型への変更することも可能である。 従って、 上記の実施例とは異なる種類と極性 のトランジスタを用いた変形例も本発明の技術的範囲に含まれる。  In this embodiment, a MOS FET is used. However, bipolar transistors can also be used. In this case, the gate of the MOS FET corresponds to the base of the bipolar transistor, the source corresponds to the emitter, and the drain corresponds to the collector. By changing the polarity of the current, it is possible to change the transistor polarity from P-type to N-type for MOS FETs and from PNP-type to NPN-type for bipolar 'transistors. Therefore, a modification using a transistor having a different type and polarity from the above-described embodiment is also included in the technical scope of the present invention.
以上のような構成において、 電流入力端子 5 ( I .N) から入力された電流が、 制御入力として機能する入力端子 Si〜SNの信号に従って、 電流出力端子群 4の 各電流出力端子 I 01〜 I ONの電流出力が制御される。 次に上記構成の電流分配器 の動作を詳述する。 In the configuration as described above, the current input from the current input terminal 5 (I.N) is applied to each of the current output terminals I 01 of the current output terminal group 4 according to the signals of the input terminals Si to SN functioning as the control inputs. ~ I ON current output is controlled. Next, the operation of the current distributor having the above configuration will be described in detail.
制御回路 Aからの出力端子群 3の電圧出力端子は、 差動増幅器 Bの制御用の入 力端子群でもある。 以下の説明においては出力端子群 3は制御入力端子群 3とも 称する。 従って、 制御回路 Aからの電圧出力 S 〜SNは、 差動増幅器 Bの制御入 力 S !〜 S Nでもある。 以下の説明においては両者を前後の文脈からそれぞれ適宜 交換可能に使用する。 The voltage output terminal of the output terminal group 3 from the control circuit A is also a control input terminal group of the differential amplifier B. In the following description, output terminal group 3 is also referred to as control input terminal group 3. Accordingly, the voltage output S to S N from the control circuit A is also controlled input S! ~ S N of the differential amplifier B. In the following description, both are used interchangeably as appropriate from the context.
一対の制御入力の電圧 VIPと VINの差 (即ち: VIP— VIN) が 0の場合は、 制 御入力端子群 3の N個の電圧入力端子 S i〜 S Nの内、 中央の制御入力端子 S N/2の 電圧が最も低く、 外側にいくにつれて制御入力の電圧が高くなり、 両端の 2つの 制御入力端子 Siと SNの電圧は同一で、 他の出力より高い。 即ちこの場合の制御 入力 3の から SNの出力電圧の関係は次式で表される。 If the difference between the voltages V IP and V IN of the pair of control inputs (ie, V IP — V IN ) is 0, the middle of the N voltage input terminals S i to SN of the control input terminal group 3 The voltage of the control input terminal SN / 2 is the lowest, the voltage of the control input increases toward the outside, and the voltages of the two control input terminals Si and SN at both ends are the same and higher than the other outputs. That is, in this case, the relationship between the control input 3 and the output voltage of SN is expressed by the following equation.
Si>S2>…… >S N/2 <S N/2+1 <…… <SN (1) Si> S 2 >……> SN / 2 <SN / 2 + 1 <…… <SN (1)
O 1 = S N O 1 = SN
上記の説明は Nが偶数の場合であるが、 Nが奇数の場合も中央の制御入力端子 The above explanation is for N even, but when N is odd, the center control input terminal
SN+1/2と SN- 1/2の電圧力最も低く、 外側にいたるにつれて制御入力 SNの電圧が 高くなる点は同様である。 The same applies in that the voltage forces of S N + 1/2 and S N -1/2 are the lowest and the voltage of the control input S N becomes higher toward the outside.
制御入力の電圧 VIPが V より十分低いときは、 出力 Siが最低電圧となり、 出 力 SNが最高電圧となる。 その他の出力の電圧は、 SNから Siへ順に低くなつてい る。 この場合の制御入力群 3の S iから S Nの電圧の関係は次式で表される。 When the control input voltage V IP is sufficiently lower than V, the output Si has the lowest voltage and the output SN has the highest voltage. The other output voltages are decreasing in order from SN to Si. You. In this case, the relationship between the voltages from Si to SN of the control input group 3 is expressed by the following equation.
Si<S2<…… <S N/2 <S N/2+1く ゝ SN (2ノ Si <S 2 <…… <SN / 2 <SN / 2 + 1 ゝ SN (2
逆に、 制御入力の電圧 VIPが VINより十分高いときは、 その逆となる。 即ち制 御入力群 3の制御入力 S から S Nの電圧の関係は次式で表される。 Conversely, the converse is true when the control input voltage V IP is sufficiently higher than V IN . That is, the relationship between the voltages of the control inputs S to SN of the control input group 3 is expressed by the following equation.
Si>S2>…… >S N/2 >S N/2+1 > -… >SN (3) Si> S 2 >……> SN / 2> SN / 2 + 1>-…> SN (3)
以上を一般的に述べると、 制御入力の電圧 vIPが vINより十分低い (νΙΡ<ν!Generally speaking, the control input voltage v IP is sufficiently lower than v INΙΡ <ν!
Ν)第 1状態のときは、 電圧入力端子群 3を構成する Ν個の電圧入力端子 S!〜SN の関係は、 式 (2) を満たし、 制御入力の電圧 VIPが上昇して VINに等しくなる (VIP = VIN)第 2状態のときは、 式 (1) を満たし、 逆に、 制御入力の電圧 Pが VINより十分高い (VIP>VIN) 第 3状態のときは、 式 (3) を満たす。 第 1 状態から第 2状態への遷移期間および第 2状態から第 3状態への遷移期間は、 そ れぞれ、 式 (2) と (1) の間の中間の関係、 式 (1) と (3) の間の中間の関 係を示す。 Ν) In the first state, the relationship between the 電 圧 voltage input terminals S! To SN that constitute the voltage input terminal group 3 satisfies the expression (2), and the control input voltage V IP rises and V In the second state, which is equal to IN (VIP = VIN), equation (1) is satisfied. Conversely, when the control input voltage P is sufficiently higher than V IN (V IP > V IN ), in the third state, And satisfies equation (3). The transition period from the first state to the second state and the transition period from the second state to the third state are respectively an intermediate relation between equations (2) and (1), and equations (1) and (1). The intermediate relationship between (3) is shown.
本発明の差動増幅器 Bは、 複数の制御入力端子群 3とそれと同数の電流出力端 子群 4を持つ差動回路である。 制御入力端子群 3に含まれる制御入力端子の数が 2個の場合は、 通常の差動増幅回路と動作上変わることはない。 次に制御入力端 子 3に含まれる制御入力端子の数が 3個以上の場合について説明する。  The differential amplifier B of the present invention is a differential circuit having a plurality of control input terminal groups 3 and the same number of current output terminal groups 4. When the number of control input terminals included in control input terminal group 3 is two, there is no difference in operation from a normal differential amplifier circuit. Next, a case where the number of control input terminals included in the control input terminal 3 is three or more will be described.
全ての制御入力端子群 3の制御入力端子 S i〜 S Nの電位が等しいときは、 電流 入力端子 5 (I IN) からの流入電流は、 電流出力端子群 4に含まれる各電流出力 端子 I01〜 IONに等しく分配される。 その電流出力端子群 4に含まれる各電流出 力端子 I01〜 IONから出力される電流の合計は、 電流入力端子 5 ( I IN) からの 注入電流に等しくなる。 即ち、 次式で表される。 When the potentials of the control input terminals S i to SN of all the control input terminal groups 3 are equal, the inflow current from the current input terminal 5 (I IN) is applied to each current output terminal I 01 included in the current output terminal group 4 ~ Equal to ION. The sum of the currents output from each of the current output terminals I 01 to ION included in the current output terminal group 4 is equal to the injection current from the current input terminal 5 (I IN). That is, it is expressed by the following equation.
I 01+ I 02+ I 03 +…… + I ON= I IN (4 )  I 01+ I 02+ I 03 + …… + I ON = I IN (4)
制御入力端子群 3に含まれる制御入力端子 S! SNの電位差が大きいと、 最も 低い電圧の制御入力端子 (例: Si) に対応する 1つの電流出力端子 (例: I。i) から、 電流入力端子 5 ( I IN) からの注入電流からの大部分の電流が流れ、 他の 出力端子 (例: Ioi以外の出力端子) からは電流はほとんど出力されない。  If the potential difference between the control input terminals S! SN included in the control input terminal group 3 is large, the current from one current output terminal (eg, I.i) corresponding to the control input terminal with the lowest voltage (eg, Si) Most of the current from the input current from input terminal 5 (I IN) flows, and almost no current is output from other output terminals (eg, output terminals other than Ioi).
具体的に説明すると、 制御入力端子群 3に含まれる制御入力端子 Si SNの内 の 2つの制御入力端子 (例: Si、 S の電位が等しく、 他の残りの制御入力端 子の電位より十分低いときは、 この低電位の制御入力端子 (例: S s」) に対 応する電流出力端子群 4に含まれる電流出力端子 (例: I0i、 Ioi) に、 電流入 力端子 5 ( I ,Ν) からの注入電流の大部分が分配され、 他の残りの電流出力端子 にはほとんど電流は流れない。 Specifically, two control input terminals of the control input terminals Si SN included in the control input terminal group 3 (eg, the potentials of Si and S are equal, and the remaining control input terminals are the other control input terminals). When the potential is sufficiently lower than the potential of the current input terminal, the current input terminal (for example, I 0i , Ioi) included in the current output terminal group 4 corresponding to this low-potential control input terminal (for example, S s) Most of the injected current from input terminal 5 (I, Ν) is distributed, and almost no current flows to the other current output terminals.
上記を制御入力の電圧 (VIP、 VIN) の観点から説明すると、 制御入力の電圧To explain the above in terms of the control input voltage (V IP , VIN),
V! Pが V! Nより十分低いときは、前述したとおり制御入力 S 1が最低電圧となり制 御入力 SNが最高電圧となる。 その他の出力の電圧は、 SNから へ順に低くなつ ている。 すると各制御入力端子 Si〜SNに対応する電流出力端子群 4の電流出力 端子 I 01〜 I ONの出力電流の関係は次式で表される。 V! P is V! When the voltage is sufficiently lower than N, the control input S1 has the lowest voltage and the control input SN has the highest voltage as described above. The voltages of the other outputs gradually decrease from SN to. Then, the relationship between the output currents of the current output terminals I 01 to I ON of the current output terminal group 4 corresponding to the respective control input terminals Si to SN is expressed by the following equation.
I 01 I 02/ ノ Ιθ N/2ノ I 0 N/2 + 1 > > I ON ( 5 )  I 01 I 02 / No Ιθ N / 2 No I 0 N / 2 + 1>> I ON (5)
逆に、 制御入力の電圧 VIPが VINより十分高いときは、 その逆となる。 即ち電 流出力端子 I 01〜 I ONの出力電流の関係は次式で表される。 Conversely, the converse is true when the control input voltage V IP is sufficiently higher than V IN . That is, the relationship between the output currents of the current output terminals I 01 to I ON is expressed by the following equation.
Ιθ1< I 02<…… < I 0 N/2 < I 0 N/2+1 <…… < ION (6)  Ιθ1 <I 02 <…… <I 0 N / 2 <I 0 N / 2 + 1 <…… <ION (6)
一対の制御入力の電圧 VIPと VINの差 (即ち: VIP— VIN) が 0の場合は、 上 記した説明から類推できるように、 電流出力端子 I01〜 IONの出力電流の関係は 次式で表される。 If the difference between the pair of control input voltages V IP and V IN (that is, V IP — V IN ) is 0, the relation between the output currents of the current output terminals I 01 to ION can be inferred from the above description. Is expressed by the following equation.
Ιθ1< Ιθ2<……く I > I 0 N/2+ 1 >…… > Ι θΝ (7)  Ιθ1 <Ιθ2 <…… I> I 0 N / 2 + 1> ……> Ι θΝ (7)
上記したように、 制御回路 Aからの出力電圧は差動増幅器 Bの制御電圧でもあ る。 従って、 制御回路 Aへの制御入力 V!P、 VINを変化させる (その結果、 制御 入力端子 S SNからの出力電圧が変化して) ことにより、 差動増幅器 Bの電流 出力端子群 4の各電流出力端子からの電流出力をなめらかに連続的に変化させる ことができる。 As described above, the output voltage from the control circuit A is also the control voltage of the differential amplifier B. Therefore, by changing the control inputs V ! P and V IN to the control circuit A (as a result, the output voltage from the control input terminal S SN changes), the current output terminal group 4 of the differential amplifier B is changed. The current output from each current output terminal can be smoothly and continuously changed.
次に図 2に本発明の第 2実施例を示す。 本発明の電流分配器は、 破線で区切ら れた 3つのプロック即ち、 左側から順に制御回路 Aと差動増幅器 Cと差動増幅器 Bとから構成される。 ここに示した制御回路 Aと差動増幅器 Bの構成および動作 は、 前述した第 1実施例と同様である。 しかし本発明の第 2の電流分配器は、 制 御回路 Aと差動増幅器 Bとの間に差動増幅器 Cを具備している。 この差動増幅器 Cは反転回路のため、 図 1に比較すると制御回路 Aの極性は逆となっている。 即 ち、 制御回路 Aへの制御入力 VIP、 VINは、 それぞれ出力端子 PNと Piに接続さ れている。 Next, FIG. 2 shows a second embodiment of the present invention. The current distributor of the present invention includes three blocks separated by broken lines, that is, a control circuit A, a differential amplifier C, and a differential amplifier B in order from the left. The configuration and operation of the control circuit A and the differential amplifier B shown here are the same as in the first embodiment described above. However, the second current distributor of the present invention includes the differential amplifier C between the control circuit A and the differential amplifier B. Since the differential amplifier C is an inverting circuit, the polarity of the control circuit A is opposite to that of FIG. That is, the control inputs V IP and V IN to the control circuit A are connected to the output terminals PN and Pi, respectively. Have been.
次に図 2の電流分配器の構成を詳述する。 制御回路 Aは、 一対の制御入力 10 1 , 102である VIPと VINと、 N個 (Ρι〜ΡΝ)の出力端子からなる電圧出力 端子群 1 13を有する。 更に制御回路 Aは、 N個 (I !〜IN) の電流源からなる 電流源群 106と、 (Ν— 1) 個 (1^〜1^—!) の抵抗からなる抵抗群 108を 有する。 Next, the configuration of the current distributor of FIG. 2 will be described in detail. The control circuit A has a V IP and V IN is a pair of control inputs 10 1, 102, N pieces voltage output terminals 1 13 and an output terminal of the (Ρι~Ρ Ν). Further, the control circuit A has a current source group 106 composed of N (I! To IN) current sources and a resistance group 108 composed of (Ν-1) (1 ^ to 1 ^-!) Resistors. .
制御入力 VIPは電流源 ΙΝの負端子に接続され、 制御入力 VINは電流源 I の負 端子に接続される。 電圧出力端子群 1 13の電圧出力端子 Piは電流源 I iの負端 子に接続され、 電圧出力端子 P2は電流源 12の負端子に接続される。 一般的に電 圧出力端子 Piは電流源 I iの負端子に接続される。各電流源 I i〜 INの正端子は、 共通端子 107 (COM) に接続されている。 各抵抗 Ri〜RN—!が電圧出力端子 群 1 13を構成する電圧出力ライン間に配置されている。 具体的に説明すると、 電圧出力端子 と P2の間に抵抗 が接続され、 電圧出力端子 P2と P3の間に抵 抗 R2力 ^接続される。 一般的に電圧出力端子 Piと Pi + 1の間に抵抗 Riが接続され る。 The control input V IP is connected to the negative terminal of the current source Ι 、, and the control input V IN is connected to the negative terminal of the current source I. Voltage output terminal Pi of the voltage output terminal group 1 13 is connected to the negative pin of the current source I i, the voltage output terminal P 2 is connected to the negative terminal of the current source 1 2. Generally, the voltage output terminal Pi is connected to the negative terminal of the current source Ii. The positive terminals of the current sources Ii to IN are connected to a common terminal 107 (COM). Each resistance Ri ~ R N —! Are arranged between the voltage output lines constituting the voltage output terminal group 113. Specifically, the resistance between the voltage output terminal and P 2 are connected, resistor R 2 force between the voltage output terminal P 2 and P 3 ^ is connected. Generally, a resistor Ri is connected between the voltage output terminals Pi and Pi + 1 .
差動増幅器 Bは、 差動増幅器 Cの N個 (S SN) の出力端子群 103でもあ る N個の電圧入力端子 S SNと N個 (Μ!〜ΜΝ) のトランジスタ群 109を有 する。 制御入力端子 Siがトランジスタ Mlのゲートに、 制御入力端子 S2はトラ ンジス夕 M2のゲートに接続される。一般的に制御入力端子 Siはトランジスタ Mi のゲートに接続される。 各トランジスタ M!〜MNのソースは、 外部より電流が注 入される共通端子 105 (I IN) に接続される。 一方各トランジスタ M MN}ド レインは、 それぞれ、 電流出力端子群 104の各電流出力端子 I01〜 IONに接続 される。 The differential amplifier B has N voltage input terminals SSN, which are also N (SSN) output terminal groups 103 of the differential amplifier C, and N (Μ! To ΜΝ) transistor groups 109. The control input terminal Si is the gate of the transistor Ml, the control input terminal S 2 is connected to the gate of the tiger Njisu evening M 2. Generally, the control input terminal Si is connected to the gate of the transistor Mi. The sources of the transistors M! To MN are connected to a common terminal 105 (I IN) into which current is externally injected. On the other hand, each transistor MMN} drain is connected to each of the current output terminals I 01 to ION of the current output terminal group 104.
差動増幅器 Cは、 N個 ( 〜 の電圧入力端子群 1 13を有する。 これは 制御回路 Aの各出力端子群でもある。 さらに差動増幅器 Cは、 N個 (Q QN) のトランジスタ群 1 16と N個 (S! SN) の電圧出力端子群 103を有する。 これは差動増幅器 Bへの各入力端子群でもある。電圧制御入力端子 P がトランジ ス夕 のゲートに、電圧制御入力端子 P 2はトランジスタ Q2のゲートに接続され る。 一般的に電圧制御入力端子 Piはトランジスタ Qiのゲートに接続される。 各 トランジスタ G 〜QNのソースは、外部より電流が入力される共通端子 117(1 s) に接続される。 一方各トランジスタ h〜QNのドレインは、 それぞれ電圧出力 端子群 103の各電圧出力端子 Si〜SNに接続される。 同時に、 各トランジスタ Qi QNのドレインは、 それぞれ抵抗群 115を構成する各抵抗 RLi RLNを 介して共通端子 114 (VS) に接続される。 The differential amplifier C has N (() voltage input terminal groups. This is also the output terminal group of the control circuit A. Further, the differential amplifier C has N (Q QN) transistor groups 1 It has 16 and N (S! SN) voltage output terminal groups 103. These are also the input terminal groups for the differential amplifier B. The voltage control input terminal P is connected to the gate of the transistor, and the voltage control input terminal is used. P 2 is connected to the gate of transistor Q 2. Generally, voltage control input terminal Pi is connected to the gate of transistor Qi. The source of the transistor G to Q N are connected to the common terminal 117 (1 s) to external currents are inputted. On the other hand the drain of each transistor H~Q N are respectively connected to the voltage output terminal Si~S N of the voltage output terminal group 103. At the same time, the drains of the transistors Qi QN are connected to the common terminal 114 (VS) via the resistors RLi RLN constituting the resistor group 115, respectively.
第 1実施例と同様に、 上記の実施例では差動増幅器 B、 Cに MOS . FETを 使用した。 しかしバイポーラ型トランジスタを用いることも可能である。 この場 合、 MOS · FETのゲートはバイポーラ型トランジスタべ一スに、 ソースはェ ミツ夕に、 ドレインはコレクタに対応する。 また電流の極性を変えることにより、 トランジスタの極性を MOS · FETにおいては P型から N型へ、 バイポーラ.ト ランジス夕においては PNP型から NPN型への変更することも可能である。 従 つて、 上記の実施例とは異なる種類と極性のトランジスタを用いた変形例も本発 明の技術的範囲に含まれる。  As in the first embodiment, MOS FETs were used for the differential amplifiers B and C in the above embodiment. However, it is also possible to use a bipolar transistor. In this case, the gate of the MOSFET corresponds to the bipolar transistor base, the source corresponds to the emitter, and the drain corresponds to the collector. By changing the polarity of the current, it is possible to change the transistor polarity from P-type to N-type for MOS FETs and from PNP-type to NPN-type for bipolar transistors. Therefore, modifications using transistors of different types and polarities from the above-described embodiments are also included in the technical scope of the present invention.
次に、 上記のように構成した第 2実施例の動作は、 第 1実施例の動作と基本的 には等価である力 差動増幅器 Cを付加したことにより、 外部より電流が入力さ れる共通端子 117の電流と共通の電源端子 114の電流 ·電圧を調整すること により増幅度を調整することが可能である。  Next, the operation of the second embodiment configured as described above is the same as the operation of the first embodiment, except that a power differential amplifier C is added. The amplification degree can be adjusted by adjusting the current and voltage of the common power supply terminal 114 and the current of the terminal 117.
なお、 特許請求の範囲に記載の参照符号は本発明の理解を容易にするために記 載したのであって、 本発明を限定的に解釈するために用いるべきではない。  It should be noted that reference numerals described in the claims are provided to facilitate understanding of the present invention, and should not be used to limit the present invention.
以上述べたように本発明によれば、 一対の制御入力の電圧 V! Pと V! Nを制御す ることにより、 連続的に出力電流が制御可能な任意の出力数を持つ電流分配器を 提供できる。 産業上の利用可能性  As described above, according to the present invention, the voltage V! P and V! By controlling N, it is possible to provide a current divider having an arbitrary number of outputs whose output current can be controlled continuously. Industrial applicability
以上のように、 本発明に係る電流分配器は、 電子デバイス、 特に、 制御入力に 応じて滑らかな出力を生成する電流分配器に用いるのに適している。  As described above, the current divider according to the present invention is suitable for use in an electronic device, in particular, a current divider that generates a smooth output according to a control input.

Claims

言青求の範囲 Scope of word blue
1. 一対の制御入力 (V!P、 VIN) から 3以上の整数である N個の出力 (3) を生成する制御回路 (A) と、 1. A control circuit (A) that generates N outputs (3) that are integers of 3 or more from a pair of control inputs (V ! P , VIN);
前記制御回路 (A) の出力に応じて、 注入電流 (5) を N個の出力 (4) に分 配する差動増幅器 (B) と  A differential amplifier (B) that distributes an injection current (5) to N outputs (4) in accordance with the output of the control circuit (A);
を有することを特徴とする電流分配器。 A current distributor, comprising:
2. 前記制御回路 (A) は N個の電流源 (6) を有し、 前記各電流源の一端子 力 ^前記出力 (3) の各出力ラインに接続される  2. The control circuit (A) has N current sources (6), and is connected to each output line of one terminal of the current sources ^ the output (3).
ことを特徴とする請求項 1記載の電流分配器。 The current distributor according to claim 1, wherein:
3. 前記各電流源 (6) の他端子が共通端子 (7) に接続されている ことを特徴とする請求項 2記載の電流分配器。  3. The current distributor according to claim 2, wherein the other terminal of each of the current sources (6) is connected to a common terminal (7).
4. 抵抗 (8) が、 前記出力群 (3) の各出力ライン間に接続されている ことを特徴とする請求項 2記載の電流分配器。  4. The current distributor according to claim 2, wherein a resistor (8) is connected between each output line of the output group (3).
5. 前記差動増幅器 (B) は、 N個のトランジスタ (9) を有し、 前記各トラ ンジス夕の一端子が前記出力 (3) の各出力ラインに接続される 5. The differential amplifier (B) has N transistors (9), and one terminal of each transistor is connected to each output line of the output (3).
ことを特徴とする請求項 1記載の電流分配器。 The current distributor according to claim 1, wherein:
6. 前記各トランジスタ (9) の他端子は、 注入電流 (5) に共通に接続され る  6. The other terminal of each transistor (9) is commonly connected to the injection current (5)
ことを特徴とする請求項 5記載の電流分配器。 The current distributor according to claim 5, wherein:
7. 前記制御回路 (A) の出力が、 前記各トランジスタ (9) を制御する ことを特徴とする請求項 5記載の電流分配器。  7. The current distributor according to claim 5, wherein an output of the control circuit (A) controls each of the transistors (9).
8. 前記各トランジスタ (9) は、 MOS · FETである  8. Each transistor (9) is a MOS FET
ことを特徴とする請求項 5記載の電流分配器。 The current distributor according to claim 5, wherein:
9. 第 2の差動増幅器 (C) を、 前記制御回路 (A) と差動増幅器 (B) の間 にさらに有する 9. A second differential amplifier (C) is further provided between the control circuit (A) and the differential amplifier (B).
ことを特徴とする請求項 1記載の電流分配器。 The current distributor according to claim 1, wherein:
10. 前記第 2の差動増幅器 (C) は、 前記制御回路 (A) からの N個の出力 (P) を受け、 前記差動増幅器 (B) を制御する制御出力 (S) を生成する ことを特徴とする請求項 9記載の電流分配器。 10. The second differential amplifier (C) receives N outputs (P) from the control circuit (A) and generates a control output (S) for controlling the differential amplifier (B). The current distributor according to claim 9, wherein:
11. 前記第 2差動増幅器 (C) は、 N個のトランジスタ (116) を有し、 前記各トランジスタの一端子が前記出力 (113)の各出力ラインに接続される ことを特徴とする請求項 9記載の電流分配器。  11. The second differential amplifier (C) has N transistors (116), and one terminal of each transistor is connected to each output line of the output (113). Item 9. The current distributor according to Item 9.
12. 前記各トランジスタ (116)の一端子は、 抵抗 (115) を介して共 通端子 (114) に接続される  12. One terminal of each of the transistors (116) is connected to a common terminal (114) via a resistor (115).
ことを特徴とする請求項 11記載の電流分配器。 12. The current distributor according to claim 11, wherein:
13. 前記各トランジスタ (116) の他端子は、 電流源 (117) に共通に 接続される  13. The other terminal of each of the transistors (116) is commonly connected to a current source (117)
ことを特徴とする請求項 11記載の電流分配器。 12. The current distributor according to claim 11, wherein:
14. 前記制御回路 (A)の出力が、 前記各トランジスタ (116) を制御す る  14. The output of the control circuit (A) controls each of the transistors (116)
ことを特徴とする請求項 11記載の電流分配器。 12. The current distributor according to claim 11, wherein:
15. 前記各トランジスタ (116) は、 MOS · FETである  15. Each of the transistors (116) is a MOS FET
ことを特徴とする請求項 11記載の電流分配器。 12. The current distributor according to claim 11, wherein:
PCT/JP2000/002000 1999-03-30 2000-03-30 Electric current divider WO2000059115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/89631 1999-03-30
JP08963199A JP2001111402A (en) 1999-03-30 1999-03-30 Current divider

Publications (1)

Publication Number Publication Date
WO2000059115A1 true WO2000059115A1 (en) 2000-10-05

Family

ID=13976124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002000 WO2000059115A1 (en) 1999-03-30 2000-03-30 Electric current divider

Country Status (2)

Country Link
JP (1) JP2001111402A (en)
WO (1) WO2000059115A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319850A (en) * 2001-04-23 2002-10-31 Yokogawa Electric Corp Multi-point signal output device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633713Y2 (en) * 1989-04-19 1994-08-31 東光株式会社 Analog switch circuit
JPH07321660A (en) * 1994-05-26 1995-12-08 Toshiba Corp D/a converter circuit
JP2845610B2 (en) * 1990-11-02 1999-01-13 三菱電機株式会社 Differential amplifier circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633713Y2 (en) * 1989-04-19 1994-08-31 東光株式会社 Analog switch circuit
JP2845610B2 (en) * 1990-11-02 1999-01-13 三菱電機株式会社 Differential amplifier circuit
JPH07321660A (en) * 1994-05-26 1995-12-08 Toshiba Corp D/a converter circuit

Also Published As

Publication number Publication date
JP2001111402A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
US5493205A (en) Low distortion differential transconductor output current mirror
US5475343A (en) Class AB complementary output stage
TWI252949B (en) Semiconductor integrated circuit
EP0037406B1 (en) Cmos operational amplifier with reduced power dissipation
US6316997B1 (en) CMOS amplifiers with multiple gain setting control
US5162753A (en) Amplifier arrangement for use as a line driver
CN105765859A (en) Amplifier arrangement
JPH10173445A (en) Amplifier
US6642788B1 (en) Differential cascode amplifier
JP4014383B2 (en) High precision differential switched current source
JPH10501672A (en) Amplification stage
US5777514A (en) Differential to single ended conversion technique for an operational amplifier having low input offset voltage, high speed and high gain
JPH077342A (en) Differential amplifier
JPH07142940A (en) Mosfet power amplifier
EP0655831A1 (en) High performance transconductance operational amplifier, of the CMOS integrated type
US6522175B2 (en) Current/voltage converter and D/A converter
US6784651B2 (en) Current source assembly controllable in response to a control voltage
US6975100B2 (en) Circuit arrangement for regulating the duty cycle of electrical signal
WO2000059115A1 (en) Electric current divider
US6320427B1 (en) High-speed, low-power continuous-time CMOS current comparator
JPH07105722B2 (en) D / A converter
CN114337621A (en) Post driver with voltage protection
US4075575A (en) Input stage for fast-slewing amplifier
JPH03274911A (en) Operational amplifier
CN113671236A (en) Current detection circuit and equipment applied to load resistor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase