WO2000057172A1 - Appareil de chromatographie electrique polyvalent a pression - Google Patents

Appareil de chromatographie electrique polyvalent a pression Download PDF

Info

Publication number
WO2000057172A1
WO2000057172A1 PCT/CN2000/000055 CN0000055W WO0057172A1 WO 2000057172 A1 WO2000057172 A1 WO 2000057172A1 CN 0000055 W CN0000055 W CN 0000055W WO 0057172 A1 WO0057172 A1 WO 0057172A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
detection device
chromatographic column
column
separation
Prior art date
Application number
PCT/CN2000/000055
Other languages
English (en)
French (fr)
Inventor
Chao Yan
Original Assignee
Chao Yan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chao Yan filed Critical Chao Yan
Priority to AU34152/00A priority Critical patent/AU3415200A/en
Priority to US09/914,194 priority patent/US6569325B1/en
Priority to PCT/CN2000/000055 priority patent/WO2000057172A1/zh
Publication of WO2000057172A1 publication Critical patent/WO2000057172A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N2030/285Control of physical parameters of the fluid carrier electrically driven carrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/326Control of physical parameters of the fluid carrier of pressure or speed pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/40Flow patterns using back flushing
    • G01N2030/402Flow patterns using back flushing purging a device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/36Control of physical parameters of the fluid carrier in high pressure liquid systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/40Flow patterns using back flushing

Definitions

  • the utility model relates to a separation detection device in the field of separation analysis, that is, a multi-purpose pressurized electrochromatography device.
  • the separation detection device is mostly composed of a driving device, a chromatographic column, and a detection device.
  • the common ones are as follows: First, a gas chromatography device, which is composed of a gas source, a gas chromatography column, and detection equipment, is mainly suitable for separating gas mixtures and substances with low boiling points and easily vaporizing.
  • the second is a liquid chromatography device, consisting of a high-pressure pump, a steel chromatographic column with a packing, and detection equipment. It is mainly suitable for separating liquid mixtures, and the separation selectivity is good, but because the driving force is not electricity but pressure, the mobile phase is on the stationary phase. It moves forward parabolically, with diffusion, so the column efficiency is low.
  • the third is a capillary electrophoresis device, which is composed of a high-voltage power supply, a capillary tube, and a detection device. Its characteristics are that the driving force is electricity, and the mobile phase moves forward in a plunger in the capillary without diffusion, so high column efficiency can be obtained. However, the selectivity for neutral samples (uncharged) is not good.
  • the fourth is a capillary electrochromatography device, which is composed of a high-voltage power supply, a capillary column with a filler, and a detection device. This device has both high selectivity for liquid chromatography and high column efficiency for capillary electrophoresis. Interrupt the current.
  • This utility model is to develop a new separation and detection device that can maintain the high column efficiency and high selectivity of capillary electrochromatography, and can continuously remove air bubbles, ensure constant current, and simultaneously flush the electrolytic products.
  • This device is also composed of a driving device, a chromatographic column, and a detection device. The difference is that this device also has a high-pressure pump and a high-voltage power supply.
  • the suction end of the high-pressure pump is introduced into the mobile phase through a suction tube, and the output end is connected to two capillary tubes.
  • One of the capillary tubes 18 passes through a one-way width 9 and its end is connected to the tail end of the chromatographic column and a single
  • the restricting column of the check valve 20 is connected; the other capillary 17 extends through the check valve 8 and the check valve 13 to the end, and the check valve 8 and 13 are connected to the injector through the capillary to inject the sample.
  • the detector is connected to the front of the column.
  • the number of said high-pressure pumps may be more than one.
  • the chromatographic column may be a capillary column with a packing.
  • the chromatographic column may be an empty capillary tube.
  • the chromatographic column may be a steel chromatographic column with a packing.
  • the separation and detection device made by using the above scheme can pressurize the column in the forward, reverse, or both ends, thereby ensuring that there are no air bubbles in the column and continuous flow during electrochromatography.
  • Capillary columns can also be flushed forward or backward.
  • this device can replace a capillary electrochromatography device, a capillary electrophoresis device, and a liquid chromatography device, respectively, and its performance is much better than the existing equipment.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • mobile phase 1 mobile phase 2
  • pump 3 pump 4
  • tee 5 tee 6
  • holder 7 check valve 8
  • injector 10 tee 1 1
  • Chromatographic column 12 check valve 13
  • high-pressure power supply 14 detector 15
  • detection tank 16 capillary 17, capillary 18, tee 19, check valve 20, flow restriction column 21, computer 22.
  • this device has two high-pressure pumps 3 and 4, the suction end of the high-pressure pump 3 is inserted into the mobile phase 2 through a suction pipe, and the suction end of the high-pressure pump 4 is inserted into the mobile phase 1 through a suction pipe.
  • the output of the two high-pressure pumps Into the two holes of the tee 5, the other hole of the tee 5 is connected to the other tee 6, and the two capillaries 17 and 18 are connected by the other two holes of the tee 6, and the capillary tube 17 is connected through the check valve 8.
  • the tee 11 is connected to the one-way wide 13 through the tee 11 to protrude outward, and the other hole of the tee 11 is connected to the injector 10 through a pipeline.
  • the other three ports of the injector one is connected to the column 12, one is injected, and the other is used to receive excess sample waste.
  • the capillary 18 is connected to the tee 19 through a check valve 9, and the other hole of the tee 19 is connected to the tail end of the chromatographic column 12, and the other hole extends out of the restricting column 21, and the restricting column 21 is provided with a check valve 20.
  • the high-voltage power supply 14 connects the positive end (ground) of the negative high-voltage power supply to the metal sampler 10 and the negative end to the metal tee 19.
  • a detection window at the rear of the chromatographic column 12 is opposite the optical path of the detector 15.
  • the detector 15 is connected to the computer 22. In use, as long as one pump is turned on and the check valve is adjusted, pressurization in the forward, reverse or bidirectional direction can be achieved. It can also perform forward and reverse flushing.
  • Working examples-1 Pressurized electrochromatography device.
  • a capillary column with an inner diameter of 320 u rn and an outer diameter of 630 ⁇ ⁇ , an effective column length of 20 cm, and a total length of 40 cm, and a 3 u rn ODS packing was used to separate thiourea and benzyl by pressure electrochromatography.
  • Alcohol, naphthalene mixed sample was used to separate thiourea and benzyl by pressure electrochromatography.
  • Miniature liquid chromatography device Turn off the high-voltage power and only drive the pump in the forward direction. At this time, close the check valves 9 and 13, open the check valves 8 and 20, and adjust the restrictor column 21 to make it unobstructed. At this time, choose a capillary with a small inner diameter and a filler.
  • a chromatographic column or a steel column becomes a miniature liquid chromatography device. When a single pump is used, it is equivalent to an ordinary micro liquid chromatography device. When dual or multiple pumps are used, each pump is replaced by a mobile phase with a different concentration ratio, which can be used for gradient micro liquid chromatography. Since it can be flushed in the forward and reverse directions, the work is very convenient.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

多用加压电色谱装置 技术领域
本实用新型是一种涉及分离分析领域的分离检测装置, 即一种多用加压 电色谱装置。
背景技术
目前, 分离检测装置多由驱动装置、 色谱柱以及检测设备所构成。 常见 的有如下几种: 一是气相色谱装置, 由气源、 气相色谱柱及检测设备构成, 主要适用于分离气体混合物和沸点低, 易汽化的物质。 二是液相色谱装置, 由高压泵, 带填料的钢色谱柱和检测设备构成, 主要适用于分离液态混合物, 分离选择性好, 但由于驱动力不是电而是压力, 流动相在固定相上呈抛物线 式前移, 有扩散, 因而柱效较低。 三是毛细管电泳装置, 由高压电源、 毛细 空管和检测设备构成, 其特点是驱动力是电, 流动相在毛细管内呈柱塞式前 移, 无扩散, 因此可以获得较高的柱效, 但对中性样品 (不带电的) 分离选 择性不好。 四是毛细电色谱装置, 由高压电源, 带填料的毛细色谱柱和检测 设备构成, 这种装置既具有液相色谱的高选择性, 又具有毛细管电泳的高柱 效, 但实用过程中常因产生气泡而使电流中断。
发明内容
本实用新型的目的是研制一种既能保持毛细电色谱的高柱效和高选择 性, 又可不断地去除气泡, 保证电流不断, 同时能冲洗电解产物的新型分离 检测装置。
上述目的是由以下技术方案实现的: 这种装置也是由驱动装置, 色谱柱 及检测设备所构成, 所不同的是, 这种装置还带有高压泵和高压电源。
所说的高压泵, 其吸入端通过吸管通入流动相中, 其输出端与两支毛细 管相连接, 其中一支毛细管 18通过单向阔 9, 其末端与色谱柱的尾端以及带 有单向阀 20的限流柱相接; 另一支毛细管 17通过单向阀 8和单向阀 13伸出 末端, 在单向阀 8与 13之间又通过毛细管与进样器相接, 进样器与色谱柱前 端相接。
所说的高压泵的数量可以是一台以上。
所说的色谱柱可以是带填料的毛细色谱柱。
所说的色谱柱可以是毛细空管。 所说的色谱柱可以是带填料的钢色谱柱。
采用上述方案制成的分离检测装置, 可以对色谱柱正向、 反向或两端进 行加压, 从而可以保证作电色谱时色谱柱内无气泡, 不断流。 还可以对毛细 色谱柱进行正向或反向冲洗。 通过对色谱柱两端加压, 可使两端基本无压差, 从而可以使流动相的移动只受电驱动而不受压力驱动, 保证电色谱的高柱 效。 此外, 更换不同的色谱柱, 本装置即可分别代替毛细电色谱装置, 毛细 管电泳装置, 液相色谱装置, 而其性能又大大优于现有设备。
附图概述
图 1是本实用新型的结构示意图。
图中可见: 流动相 1、 流动相 2、 泵 3、 泵 4、 三通 5、 三通 6、 固定 架 7、 单向阀 8、 单向阀 9、 进样器 10、 三通 1 1、 色谱柱 12、 单向阀 13、 高压电源 14、 检测仪 15、 检测槽 16、 毛细管 17、 毛细管 18、 三通 19、 单 向阀 20、 限流柱 21、 计算机 22。
最佳实施方式
下面结合附图介绍一种实施例。
由图可见, 这套装置有两个高压泵 3和 4, 高压泵 3的吸入端由吸管插 入流动相 2中, 高压泵 4的吸入端由吸管插入流动相 1中, 两个高压泵的输 出端进入三通 5的两个孔, 三通 5的另一孔连接另一个三通 6, 由三通 6的 另两个孔接出两支毛细管 17和 18, 毛细管 17通过单向阀 8联接三通 1 1, 并 通过三通 1 1连接单向阔 13向外伸出末端, 三通 1 1的另一孔通过管路连接进 样器 10。 进样器的另外三个口, 一口联接色谱柱 12 , 一口进样, 另一口接 收多余的样品废液。 毛细管 18通过一个单向阀 9连接三通 19, 三通 19的另 一孔接色谱柱 12的尾端,另一孔伸出限流柱 21,限流柱 21上设有单向阀 20。 高压电源 14将负高压电源的正端 (地线) 接在金属进样器 10上, 负端接在 金属三通 19上, 色谱柱 12后部幵一检测窗口与检测器 15的光路相对。 检测 器 15接计算机 22。 使用时, 只要打开一个泵, 调整单向阀, 即可实现正向、 反向或双向加压。 也可进行正、 反向冲洗。
工业应用性
工作举例- 一、加压电色谱装置。采用内径 320 u rn ,外径 630 μ ιη,有效柱长 20cm, 总长 40cm, 3 u rn ODS填料毛细色谱柱, 以加压电色谱法分离硫脲, 苯甲 醇, 萘混合样品。
流动相 1用 75 %乙醇, 流动相 2选用 70 %乙腈与 30 % 4mM硼砂混合。 先将单向阔 9和 13关闭, 单向阀 8和 20打开, 打开泵 3 , 用流动相 2将毛细 色谱柱冲洗干净, 使其达到平衡。 然后, 将单向阀 13关闭, 单向阀 9、 8、 20打开, 对毛细色谱柱两端加压。 这里要说明的是: 由于限流柱 21是由有填 料的毛细管或细内径毛细空管制成, 具有较强的限流作用, 所以打开单向阀 20以后, 既可以回收柱尾液, 又不影响两端加压。 此时, 可在毛细色谱柱两 端加上高压电, 看是否有电流, 电流是否平稳。 若电流平稳, 可以开启检测 系统, 准备进行检测。 首先通过 1个 20nl的进样器, 用注射器将样品从进样 口打入进样器, 然后将进样旋钮扭到进样位置即可进样, 进样前, 先将高压 电关闭, 进样后立刻加上高压电, 几分钟后即可见到三种样品峰。 重复实验 三次, 可见实验的可靠性。 实验完毕后, 关闭泵 3 , 开启泵 4 , 将单向阀 9 和 13关闭, 单向阀 8和 20打开, 用流动相 1将毛细色谱柱冲洗干净。 如果 使用过程中毛细色谱柱堵塞, 也可以反冲, 即关闭单向阀 8和 20, 打开单向 阔 9和 13即可。
二、 毛细管电泳。 取毛细空管为色谱柱, 即成为一种新型毛细管电泳装 置。 与普通毛细管电泳装置相比, 这种装置的进样不是蘸取, 而是通过进样 器, 同样可以进行正向、 反向或两端的加压和冲洗, 性能优于普通毛细管电 泳装置。
三、 微型液相色谱装置。 关闭高压电, 只用泵正向驱动, 此时关闭单向 阀 9和 13, 打开单向阀 8和 20 , 调节限流柱 21使其通畅, 这时, 选细内径 的带填料的毛细色谱柱或钢色谱柱, 即成为一种微型液相色谱装置。 当用单 泵时, 即相当于普通微型液相色谱装置。 当用双泵或多泵时, 各个泵选用浓 度配比不同的流动相做替换, 可以做梯度微型液相色谱。 由于可以进行正反 向冲洗, 工作非常方便。

Claims

权 利 要 求 书
1、 一种分离检测装置, 也是由驱动装置、 色谱柱及检测设备等组成, 其 特征在于: 所说的驱动装置是高压泵和高压电源。
2、 根据权利要求 1所述的分离检测装置, 其特征在于: 所说的高压泵, 其吸入端通过吸管通入流动相中, 其输出端分别与两支毛细管 ( 17 ) 和 ( 18 ) 相连接, 其中一支毛细管 ( 18 ) 通过单向阀 ( 9 ) , 其末端分别与 色谱柱 ( 12 ) 的尾端以及带有单向阀 ( 20 ) 的限流柱 ( 21 ) 相接; 另一支 毛细管 ( 17 ) 通过单向阀 ( 8 ) 和单向阀 ( 13 ) 伸出末端, 在单向阀 (.8 ) 和 ( 13 ) 之间, 又通过毛细管与进样器 ( 10 ) 相接, 进样器 ( 10 ) 与色谱 柱 ( 12 ) 前端相接。
3、 根据权利要求 1所述的分离检测装置, 其特征在于: 所说的高压泵的 数量可以是一台以上。
4、 根据权利要求 1所述的分离检测装置, 其特征在于: 所说的色谱柱可 以是带填料的毛细色谱柱。
5、 根据权利要求 1所述的分离检测装置, 其特征在于: 所说的色谱柱可 以是毛细空管。
6、 根据权利要求 1所述的分离检测装置, 其特征在于: 所说的色谱柱可 以是带填料的钢色谱柱。
PCT/CN2000/000055 1999-03-23 2000-03-20 Appareil de chromatographie electrique polyvalent a pression WO2000057172A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU34152/00A AU3415200A (en) 1999-03-23 2000-03-20 Multiuse pressure electric chromatographic device
US09/914,194 US6569325B1 (en) 1999-03-23 2000-03-20 Multiuse pressure electric chromatographic device
PCT/CN2000/000055 WO2000057172A1 (fr) 1999-03-23 2000-03-20 Appareil de chromatographie electrique polyvalent a pression

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN99206093U CN2373793Y (zh) 1999-03-23 1999-03-23 多用加压电色谱装置
CN9920609.1 1999-03-23
PCT/CN2000/000055 WO2000057172A1 (fr) 1999-03-23 2000-03-20 Appareil de chromatographie electrique polyvalent a pression

Publications (1)

Publication Number Publication Date
WO2000057172A1 true WO2000057172A1 (fr) 2000-09-28

Family

ID=5289418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000055 WO2000057172A1 (fr) 1999-03-23 2000-03-20 Appareil de chromatographie electrique polyvalent a pression

Country Status (4)

Country Link
US (1) US6569325B1 (zh)
CN (1) CN2373793Y (zh)
AU (1) AU3415200A (zh)
WO (1) WO2000057172A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000063600A (ko) * 2000-07-25 2000-11-06 전주한 대형 콘크리트 해상 부유체

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7010964B2 (en) * 2002-10-31 2006-03-14 Nanostream, Inc. Pressurized microfluidic devices with optical detection regions
CN100447567C (zh) * 2004-09-22 2008-12-31 杭州生源医疗保健技术开发有限公司 构建组合离子膜微电色谱的方法
CN1296122C (zh) * 2004-11-25 2007-01-24 上海交通大学 制备型电层析分离化学物质和生物物质的仪器
US20140061133A1 (en) * 2012-08-31 2014-03-06 Joseph Lewis HERMAN Method and Apparatus for Split-Flow-Mixing Liquid Chromatography
CN103884814B (zh) * 2014-04-17 2015-10-14 厦门大学 万伏高压电场增强液相色谱系统
CN104330502B (zh) * 2014-11-27 2015-12-02 王峰 一种液相色谱仪
CN104502472B (zh) * 2014-12-05 2016-06-01 上海交通大学 加压制备型电色谱在线检测与样品收集用电安全保护装置
CN104614457B (zh) * 2015-01-13 2016-08-17 上海交通大学 一套中压制备型电色谱分离装置
CN105699465B (zh) * 2016-03-09 2018-08-17 福州大学 一种加压毛细管电色谱多模式连续分离合成色素的方法
CN110672761A (zh) * 2019-09-26 2020-01-10 上海通微分析技术有限公司 一种用于定量定性分析的加压毛细管电色谱装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600213A1 (en) * 1992-10-30 1994-06-08 E.I. Du Pont De Nemours And Company Field portable liquid chromatographic system
WO1997018579A1 (en) * 1995-11-14 1997-05-22 Yeda Research And Development Co. Ltd. Low-vacuum mass spectrometer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997298A (en) * 1975-02-27 1976-12-14 Cornell Research Foundation, Inc. Liquid chromatography-mass spectrometry system and method
US4632762A (en) * 1985-05-28 1986-12-30 Arnold Ramsland Centrifugal chromatography
US4708782A (en) * 1986-09-15 1987-11-24 Sepragen Corporation Chromatography column-electrophoresis system
US5310463A (en) * 1992-11-13 1994-05-10 Board Of Trustees Of The Leland Stanford Junior University On-column junction for capillary columns
US5246577A (en) * 1990-05-29 1993-09-21 Millipore Corporation Apparatus for effecting capillary electrophoresis
US5935522A (en) * 1990-06-04 1999-08-10 University Of Utah Research Foundation On-line DNA analysis system with rapid thermal cycling
EP0475533B1 (en) * 1990-09-11 1997-02-05 Prince Technologies B.V. Method and apparatus for the introduction of a volume of at least one fluid in a tube, in particular suitable for capillary electrophoresis systems and method and apparatus for separating and/or analyzing a fluid material
US5646048A (en) * 1995-07-24 1997-07-08 Hewlett-Packard Company Microcolumnar analytical apparatus with microcolumnar flow gating interface and method of using the apparatus
US6136187A (en) * 1997-12-09 2000-10-24 The Board Of Trustees Of The Leland Stanford Junior University Separation column containing porous matrix and method of packing column

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600213A1 (en) * 1992-10-30 1994-06-08 E.I. Du Pont De Nemours And Company Field portable liquid chromatographic system
WO1997018579A1 (en) * 1995-11-14 1997-05-22 Yeda Research And Development Co. Ltd. Low-vacuum mass spectrometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000063600A (ko) * 2000-07-25 2000-11-06 전주한 대형 콘크리트 해상 부유체

Also Published As

Publication number Publication date
AU3415200A (en) 2000-10-09
US6569325B1 (en) 2003-05-27
CN2373793Y (zh) 2000-04-12

Similar Documents

Publication Publication Date Title
WO2000057172A1 (fr) Appareil de chromatographie electrique polyvalent a pression
US6290909B1 (en) Sample injector for high pressure liquid chromatography
Debets et al. Switching valve with internal micro precolumn for on-line sample enrichment in capillary zone electrophoresis
CN102460145B (zh) 使中间阀状态的压力差平衡的计量装置的样品注射器
CN108956788B (zh) 用于多维液体分析的阀和分流系统
US5573651A (en) Apparatus and method for flow injection analysis
US20110031268A1 (en) Electrokinetic pump designs and drug delivery systems
Mai et al. Automated capillary electrophoresis with on-line preconcentration by solid phase extraction using a sequential injection manifold and contactless conductivity detection
JP7071556B2 (ja) 高速起動イオンクロマトグラフィシステム及び方法
WO2007095794A1 (fr) Dispositif d'électrochromatographie capillaire haute pression multifonctions
US6436719B1 (en) Displacement chemical regeneration method and apparatus
US6425284B1 (en) Method and apparatus for gas-assisted suppressed chromatography
Pu et al. Combination of flow injection with capillary electrophoresis. Part 6.: A bias-free sample introduction system based on electroosmotic-flow traction
JPS6250659A (ja) 液体クロマトグラフへの試料導入方法
Saavedra et al. Development of a frit-free SPE-based in-column preconcentration system for capillary electrophoresis
CN109932464A (zh) 多维色谱系统及多维色谱分离方法
US11185794B2 (en) Method of fraction collection for a liquid chromatography system
Hardy et al. Construction and investigation of a post-capillary reactor for trace metal analysis by capillary electrophoresis
CN115453003B (zh) 一种多功能色谱分析系统
CN205263041U (zh) 一种反相高效液相色谱柱清洗与再生装置
WO1998041856A1 (en) Liquid chromatography electrochemical detector, liquid chromatograph, and analyzing method using the chromatograph
CN212586291U (zh) 注胶组件
CN215574877U (zh) 一种液相色谱仪检测组件
CN114545014B (zh) 双通道进样系统
Ebber Coupling liquid chromatography with CZE by means of a solenoid valve and an injection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09914194

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase