WO2000046332A1 - Low density enzyme granulates and compositions employing same - Google Patents

Low density enzyme granulates and compositions employing same Download PDF

Info

Publication number
WO2000046332A1
WO2000046332A1 PCT/US2000/002666 US0002666W WO0046332A1 WO 2000046332 A1 WO2000046332 A1 WO 2000046332A1 US 0002666 W US0002666 W US 0002666W WO 0046332 A1 WO0046332 A1 WO 0046332A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
compositions
surfactant
surfactants
laundry detergent
Prior art date
Application number
PCT/US2000/002666
Other languages
English (en)
French (fr)
Inventor
Mark Allen Smerznak
Walter August Maria Broeckx
James Pyott Johnston
Abdennaceur Fredj
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to AU26380/00A priority Critical patent/AU2638000A/en
Priority to CA002360657A priority patent/CA2360657A1/en
Priority to JP2000597394A priority patent/JP2002535980A/ja
Priority to BR0007954-5A priority patent/BR0007954A/pt
Priority to EP00904654A priority patent/EP1149145A1/en
Publication of WO2000046332A1 publication Critical patent/WO2000046332A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38672Granulated or coated enzymes

Definitions

  • This invention relates to laundry detergent products, such as heavy duty aqueous and/or non-aqueous and/or gelled liquid laundry detergents and powder laundry detergents, which include one or more enzyme granulates comprising one or more enzyme granulate density-reducing components and one or more enzymes, and optionally one or more conventional cleaning adjunct materials.
  • laundry detergent products such as heavy duty aqueous and/or non-aqueous and/or gelled liquid laundry detergents and powder laundry detergents, which include one or more enzyme granulates comprising one or more enzyme granulate density-reducing components and one or more enzymes, and optionally one or more conventional cleaning adjunct materials.
  • the present invention fulfills the needs identified above by providing enzyme granulates that have properties such that the tendency of such enzyme granulates to sediment or settle out of liquid and/or granular and/or powder laundry detergent products is reduced; methods of making such enzyme granulates; compositions comprising such enzyme granulates; and products comprising such enzyme granulates.
  • the enzyme granulates of the present invention can be stably suspended into liquid and/or granular and/or powder laundry detergent products.
  • the enzyme granulates of the present invention By stably suspending the enzyme granulates of the present invention in the liquid and/or granular and/or powder laundry detergent products, the enzyme granulates of the present invention have a reduced tendency to sediment and/or settle out of the laundry detergent products during storage and/or transportation.
  • an enzyme granulate comprising an enzyme granulate density-reducing component is provided.
  • liquid and/or granular and/or powder laundry detergent composition comprising the enzyme granulate of the present invention is provided.
  • liquid and/or granular and/or powder laundry detergent product comprising the enzyme granulate of the present invention is provided.
  • a method for laundering fabrics comprising contacting the fabrics with the enzyme granulate of the present invention, preferably a liquid and/or granular and/or powder laundry detergent comprising the enzyme granulate of the present invention, is provided.
  • the present invention relates to enzyme granulates that comprising enzyme granulated density-reducing components which reduce the tendency of such enzyme granulates to sediment and/or settle out of liquid and/or granular and/or powder laundry detergent compositions.
  • Enzyme granulate as used herein is meant to encompass any solid form into which one or more enzymes are physically and/or chemically incorporated.
  • enzyme granulates are low-dusting, free-flowing granules, with a diameter between about 200 and lOOO ⁇ m.
  • Such enzyme granulates can be formed by any suitable granulation process.
  • the enzyme granulate may be a T-granulate, such as the T- granulates made by the process described in U.S. Patent Nos. 4,106,991, 4,661,452 and 4,876,198 all to Novo Nordisk A/S; a granulate made by the spray-chilling or prilling process as described by H. A. Herrmann, I. Good, A.
  • Enzyme granulate density-reducing components herein is meant any component that when incorporated into the enzyme granulate results in the enzyme granulate having a reduced density compared to the density of the enzyme granulate prior to the incorporation of the enzyme granulate density-reducing component(s).
  • Suitable examples of enzyme granulate density-reducing components include, but are not limited to, microspheres (liquid hydrocarbon-containing and/or gas-containing depending upon temperature, and/or hollow), cavities, pores, and other components that result in a reduction of the density of an enzyme granulate compared to the density of the enzyme granulate prior to incorporation of the component(s).
  • the enzyme granulate of the present invention comprises
  • the enzyme granulate density-reducing components are selected from the group consisting of: microspheres, cavity-forming components, pore-forming components and mixtures thereof. More preferably, the enzyme granulate density-reducing component is selected from the group consisting of microspheres, preferably liquid hydrocarbon-containing and/or gas-containing microspheres, more preferably liquid hydrocarbon-containing and/or gas-containing microspheres made of one or more materials selected from the group consisting of: plastics; proteins; silicaceous materials; ceramics and mixtures thereof.
  • Plastic microspheres of the present invention are preferably made of one or more plastics selected from the group consisting of: thermoplastics; acylonitrile; methacrylonitrile; polyacrylonitrile; polymethacrylonitrile and mixtures thereof.
  • Silicaceous microspheres of the present invention are preferably made of one or more silicaceous materials selected from the group consisting of glass.
  • the microspheres of the present invention are capable of expanding such that the microspheres' volume increases. It is even more desirable that the microspheres of the present invention are made of a material such that the density of the expanded microsphere is less than about 0.4 g/mL, more preferably less than about 0.2 g/mL, most preferably less than about 0.1 g/mL.
  • the microspheres contain a suitable expanding agent.
  • the expanding agent can be selected from the group consisting of liquid hydrocarbons, gases, and mixtures thereof.
  • Suitable liquid hydrocarbons are liquid hydrocarbons that are vaporizable at a temperature lower than the softening point of the microsphere material. Examples include, but are not limited to, propane, propylene, butene, n-butane, isobutane, isopentane, neopentane, n- pentane, hexane, heptane, petroleum ether, halogenized methane, tetraalkylsilane and the like.
  • the expanding agents may also be selected from the group consisting of nitrogen, carbon dioxide, oxygen, and mixtures thereof.
  • the expanding agent is isobutane.
  • microspheres are available from Expancel of Sweden (an Akzo Nobel company) under the trademark EXPANCEL®; PQ Corp. under the trade names PM 6545, PM 6550, PM 7220, PM 7228, EXTENDOSPHERES®, LUXSLL®, Q- CEL®, SPHERICEL®; and Malinckrodt under the trademark ALBUMEX®.
  • the enzyme granulates of the present invention preferably have a particle density of from about 0.8 to about 2.1 g/mL, more preferably from about 0.8 to about 1.5 g/mL, most preferably from about 0.9 to about 1.2 g/mL.
  • the preferred enzymes for use in the enzyme granulates of the present invention are selected from proteases, amylases, cellulases and mixtures thereof.
  • Nonlimiting examples of other suitable enzymes include the following:
  • Suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ⁇ -glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, mannanases, more preferably plant cell wall degrading enzymes and non-cell wall-degrading enzymes (WO 98/39403 A) and can, more specifically, include pectinase (WO 98/06808 A, JP 10088472 A, JP 10088485 A); pectolyase (WO98/06805 Al
  • Oxidoreductases an ⁇ Vor their associated antibodies can be used, for example with H O , as taught in WO 98/07816 A.
  • other redox-active enzymes can be used, even, for example, catalases (see, for example JP09316490 A).
  • any oxygenases of extracellular origin especially fungal oxygenase such as dioxygenase of extracellular origin.
  • the latter is most especially quercetinase, catechinase or an anthocyanase, optionally in combination with other suitable oxidase, peroxidase or hydrolytic enzymes, all a taught in WO9828400 A2.
  • the cellulases useful in the present invention include both bacterial or fungal cellulases. Preferably, they will have a pH optimum of between 5 and 12 and a specific activity above 50 CEVU/mg (Cellulose Viscosity Unit).
  • Suitable cellulases are disclosed in U.S. Patent 4,435,307, J61078384 and WO96/02653 which discloses fungal cellulase produced respectively from Humicola insolens, Trichoderma, Thielavia and Sporotrichum.
  • EP 739 982 describes cellulases isolated from novel Bacillus species. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275; DE-OS- 2.247.832 and WO95/26398.
  • cellulases examples include cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea), particularly the Humicola strain DSM 1800.
  • suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of about 50KDa, an isoelectric point of 5.5 and containing 415 amino acids; and a ⁇ 43kD endoglucanase derived from Humicola insolens, DSM 1800, exhibiting cellulase activity; a preferred endoglucanase component has the amino acid sequence disclosed in WO 91/17243.
  • suitable cellulases are the EGLLI cellulases from Trichoderma longibrachiatum described in WO94/21801 to Genencor.
  • Especially suitable cellulases are the cellulases having color care benefits. Examples of such cellulases are cellulases described in European patent application No.
  • Peroxidase enzymes are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc and with a phenolic substrate as bleach enhancing molecule. They are used for "solution bleaching", i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase and haloperoxidase such as chloro- and bromo-peroxidase. Suitable peroxidases and peroxidase-containing detergent compositions are disclosed, for example, in U.S. Patent Nos.
  • Suitable enhancers are selected from the group consisting of substituted phenthiazine and phenoxasine 10-Phenothiazinepropionicacid (PPT), 10- ethylphenothiazine-4-carboxylic acid (EPC), 10-phenoxazinepropionic acid (POP) and 10-methylphenoxazine (described in WO 94/12621), substitued syringates (C3-C5 substitued alkyl syringates), phenols and mixtures thereof.
  • Sodium percarbonate or perborate are preferred sources of hydrogen peroxide.
  • Enzymatic systems may be used as bleaching agents.
  • the hydrogen peroxide may also be present by adding an enzymatic system (i.e. an enzyme and a substrate therefore) which is capable of generating hydrogen peroxide at the beginning or during the washing and/or rinsing process.
  • an enzymatic system i.e. an enzyme and a substrate therefore
  • Such enzymatic systems are disclosed in EP Patent Application 91202655.6 filed October 9, 1991.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034.
  • Suitable lipases include those which show a positive immunological cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescent JAM 1057. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano,” hereinafter referred to as "Amano-P".
  • lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673 from Toyo Jozo Co., Tagata, Japan; Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
  • lipases such as Ml Lipase ⁇ - an d Lipomax ⁇ (Gist-Brocades) and Lipolase ⁇ and Lipolase Ultra ⁇ -(Novo) which have found to be very effective when used in combination with the compositions of the present invention.
  • cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation. Addition of cutinases to laundry compositions have been described in e.g. WO-A-88/09367 (Genencor); WO 90/09446 (Plant Genetic System) and WO 94/14963 and WO 94/14964 (Unilever).
  • phospholipases may be incorporated into the laundry compositions of the present invention.
  • suitable phospholipases included: EC 3.1.1.32 Phospholipase Al; EC 3.1.1.4 Phospholipase A2; EC 3.1.1.5 Lysopholipase; EC 3.1.4.3 Phospholipase C; EC 3.1.4.4.
  • Phospolipase D Commercially available phospholipases include LECITASE® from Novo Nordisk A/S of Denmark and Phospholipase A2 from Sigma. When phospolipases are included in the compositions of the present invention, it is preferred that amylases are also included.
  • the combined action of the phospholipase and amylase provide substantive stain removal, especially on greasy/oily, starchy and highly colored stains and soils.
  • the phospholipase and amylase when present, are incorporated into the compositions of the present invention at a pure enzyme weight ratio between 4500:1 and 1 :5, more preferably between 50:1 and 1 :1.
  • Suitable proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniformis (subtilisin BPN and BPN').
  • One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERNSE® by ⁇ ovo Industries A/S of Denmark, hereinafter " ⁇ ovo".
  • ESPERNSE® ⁇ ovo Industries A/S of Denmark
  • Proteolytic enzymes also encompass modified bacterial serine proteases, such as those described in European Patent Application Serial Number 87 303761.8, filed April 28, 1987 (particularly pages 17, 24 and 98), and which is called herein "Protease B", and in European Patent Application 199,404, Venegas, published October 29, 1986, which refers to a modified bacterial serine proteolytic enzyme which is called "Protease A” herein.
  • Protease C is a variant of an alkaline serine protease from Bacillus in which Lysine replaced arginine at position 27, tyrosine replaced valine at position 104, serine replaced asparagine at position 123, and alanine replaced threonine at position 274.
  • Protease C is described in EP 90915958:4, corresponding to WO 91/06637, Published May 16, 1991. Genetically modified variants, particularly of Protease C, are also included herein.
  • a preferred protease referred to as "Protease D” is a carbonyl hydrolase as described in U.S. Patent No. 5,677,272, and WO95/10591. Also suitable is a carbonyl hydrolase variant of the protease described in WO95/10591, having an amino acid sequence derived by replacement of a plurality of amino acid residues replaced in the precursor enzyme corresponding to position +210 in combination with one or more of the following residues : +33, +62, +67, +76, +100, +101, +103, +104, +107, +128, +129, +130, +132, +135, +156, +158, +164, +166, +167, +170, +209, +215, +217, +218, and +222, where the numbered position corresponds to naturally-occurring subtilisin from Bacillus amyloliquefaciens or to equivalent amino acid residues in other carbonyl hydrolases or subtilisins, such as Bacillus lent
  • proteases described in patent applications EP 251 446 and WO 91/06637, protease BLAP® described in WO91/02792 and their variants described in WO 95/23221.
  • protease from Bacillus sp. NCLMB 40338 described in WO 93/18140 A to Novo.
  • Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 92/03529 A to Novo.
  • a protease having decreased adsorption and increased hydrolysis is available as described in WO 95/07791 to Procter & Gamble.
  • a recombinant trypsin- like protease for detergents suitable herein is described in WO 94/25583 to Novo.
  • Other suitable proteases are described in EP 516 200 by Unilever.
  • proteases are described in PCT publications: WO 95/30010; WO 95/30011 ; and WO 95/29979.
  • Suitable proteases are commercially available as ESPERASE®, ALCALASE®, DURAZYM®, SAVLNASE®, EVERLASE® and KANNASE® all from Novo Nordisk A/S of Denmark, and as MAXATASE®, MAXACAL®, PROPERASE® and MAXAPEM® all from Genencor International (formerly Gist-Brocades of The Netherlands).
  • Preferred proteases useful herein include certain variants ( WO 96/28566 A; WO 96/28557 A; WO 96/28556 A; WO 96/25489 A).
  • Other particularly useful proteases are multiply-substituted protease variants comprising a substitution of an amino acid residue with another naturally occurring amino acid residue at an amino acid residue position corresponding to position 103 of Bacillus amyloliquefaciens subtilisin in combination with a substitution of an amino acid residue with another naturally occurring amino acid residue at one or more amino acid residue positions corresponding to positions 1, 3, 4, 8, 9, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 1 16, 117, 1 19, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166,
  • protease variant includes a substitution set selected from the group consisting of:
  • the protease variant includes a substitution set selected from the group consisting of:
  • the protease variant includes the substitution set 101/103/104/159/232/236/245/248/252, preferably 101 G/l 03 A 1041/159D/232V/ 236H/245R/248D/252K.
  • enzymes and their directly linked inhibitors e.g., protease and its inhibitor linked by a peptide chain as described in WO 98/13483 A
  • enzymes and their non-linked inhibitors used in selected combinations herein include protease with protease inhibitors selected from proteins, peptides and peptide derivatives as described in WO 98/13461 A, WO 98/13460 A, WO 98/13458 A, WO 98/13387 A.
  • Amylases can be used with amylase antibodies as taught in WO 98/07818 A and WO 98/07822 A, lipases can be used in conjunction with lipase antibodies as taught in WO 98/07817 A and WO 98/06810 A, proteases can be used in conjunction with protease antibodies as taught in WO 98/07819 A and WO 98/06811 A, Cellulase can be combined with cellulase antibodies as taught in WO 98/07823 A and WO 98/07821 A. More generally, enzymes can be combined with similar or dissimilar enzyme directed antibodies, for example as taught in WO 98/07820 A or WO 98/06812 A.
  • the preferred enzymes herein can be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin.
  • Preferred selections are influenced by factors such as pH-activity and/or stability optima, thermostability, and stability to active detergents, builders and the like.
  • bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
  • Amylases ( ⁇ and/or ⁇ ) can be included for removal of carbohydrate-based stains.
  • WO94/02597 describes laundry compositions which incorporate mutant amylases. See also WO95/10603.
  • Other amylases known for use in laundry compositions include both ⁇ - and ⁇ -amylases.
  • ⁇ -Amylases are known in the art and include those disclosed in US Pat. no. 5,003,257; EP 252,666; WO/91/00353; FR 2,676,456; EP 285,123; EP 525,610; EP 368,341 ; and British Patent specification no. 1,296,839 (Novo).
  • amylases are stability-enhanced amylases described in WO94/18314 and WO96/05295, Genencor, and amylase variants having additional modification in the immediate parent available from Novo Nordisk NS, disclosed in WO 95/10603. Also suitable are amylases described in EP 277 216.
  • ⁇ -amylases examples are Purafect Ox Am® from Genencor and Termamyl®, Ban® ,Fungamyl® and Duramyl®, all available from ⁇ ovo Nordisk A S Denmark.
  • WO95/26397 describes other suitable amylases : ⁇ -amylases characterised by having a specific activity at least 25% higher than the specific activity of Termamyl® at a temperature range of 25°C to 55°C and at a pH value in the range of 8 to 10, measured by the Phadebas® ⁇ -amylase activity assay. Suitable are variants of the above enzymes, described in WO96/23873 (Novo Nordisk). Other amylolytic enzymes with improved properties with respect to the activity level and the combination of thermostability and a higher activity level are described in WO95/35382.
  • the above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Origin can further be mesophilic or extremophilic (psychrophilic, psychrotrophic, fhermophilic, barophilic, alkalophilic, acidophilic, halophilic, etc.). Purified or non-purified forms of these enzymes may be used.
  • the variants may be designed such that the compatibility of the enzyme to commonly encountered ingredients of such compositions is increased.
  • the variant may be designed such that the optimal pH, bleach or chelant stability, catalytic activity and the like, of the enzyme variant is tailored to suit the particular laundry application.
  • the isoelectric point of such enzymes may be modified by the substitution of some charged amino acids, e.g. an increase in isoelectric point may help to improve compatibility with anionic surfactants.
  • the stability of the enzymes may be further enhanced by the creation of e.g. additional salt bridges and enforcing calcium binding sites to increase chelant stability.
  • Other suitable detergent ingredients that can be added are enzyme oxidation scavengers. Examples of such enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.
  • a range of enzyme materials are also disclosed in WO 9307263 and WO 9307260 to Genencor International, WO 8908694, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101,457, and in U.S. 4,507,219. Enzyme materials particularly useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. 4,261,868.
  • the enzyme granulates of the present invention can be made by any conventional granulation process known in the art, including but not limited to fluid-bed agglomeration/coating; mechanical agglomeration; extrusion; spray-drying; etc. Further, the enzyme granulate density-reducing components of the present invention may be incorporated into the enzyme granulates of the present invention at any step in the granulation process.
  • a preferred granulation process is the T-granulation process an example of which is described in U.S. Patent Nos. 4,106,991, 4,661,452 and 4,876,198 all to Novo Nordisk A/S.
  • the T-granulation process consists of (1) an agglomerator, preferably a "ploughshare” type mixer or Schugi type mixer with horizontal or vertical shafts, equipped with blenders, wherein fibrous cellulose is agglomerated with enzymes; and optionally, (2) a top-spray fluid bed coater, wherein the enzyme granulate produced from step (1) is coated with protective coatings, such as PEG 4000, TiO 2 , and sodium thiosulfate.
  • protective coatings such as PEG 4000, TiO 2 , and sodium thiosulfate.
  • the enzyme granulate density-reducing components of the present invention may be incorporated into the enzyme granulates during the agglomeration step or the coating step of the T-granulation process, preferably the agglomeration step.
  • Another preferred granulation process is the fluidized bed top-spray coating process, an example of which is described in U.S. Patent No. 5,324,649 to Genencor International.
  • the fluidized bed top-spray coating process consists of suspending one or more sugar particles (300-500 ⁇ m) in the coater with the use of air, and then coating the sugar particles with various layers of materials, such as a sugar/starch layer, an enzyme solution layer, another sugar/starch layer and a polymeric layer.
  • the enzyme granulate density- reducing components may be incorporated into the enzyme granulates at any step and at any layer in this process.
  • the laundry compositions of the present invention also comprise, in addition to one or more enzyme granulates of the present invention described hereinbefore, one or more cleaning adjunct materials, preferably compatible with the enzymes in the enzyme granulate(s).
  • cleaning adjunct materials means any liquid, solid or gaseous material selected for the particular type of laundry composition desired and the form of the product (e.g., liquid; granule; powder; gel composition), which materials are also preferably compatible with the enzymes in the enzyme granulates of the present invention.
  • Granular compositions can also be in "compact” form and the liquid compositions can also be in a "concentrated” form.
  • cleaning adjunct materials are readily made by considering the surface, item or fabric to be cleaned, and the desired form of the composition for the laundry conditions during use (e.g., through the wash detergent use).
  • compatible means the cleaning adjunct materials do not reduce the enzymatic activity of the enzymes in the enzyme granulates to such an extent that the enzymes are not effective as desired during normal use situations.
  • suitable cleaning adjunct materials include, but are not limited to, surfactants, builders, bleaches, bleach activators, bleach catalysts, other enzymes, enzyme stabilizing systems, chelants, optical brighteners, soil release polymers, dye transfer agents, dispersants, suds suppressors, dyes, perfumes, colorants, filler salts, hydrotropes, photoactivators, fluorescers, fabric conditioners, hydrolyzable surfactants, perservatives, anti-oxidants, anti-shrinkage agents, anti-wrinkle agents, germicides, fungicides, color speckles, silvercare, anti-tarnish and/or anti-corrosion agents, alkalinity sources, solubilizing agents, carriers, processing aids, pigments and pH control agents as described in U.S. Patent Nos. 5,70
  • cleaning adjunct materials are not compatible with the enzymes in the enzyme granulates within the laundry compositions, then suitable methods of keeping the cleaning adjunct materials and the enzymes in the enzyme granulates separate (not in contact with each other) until combination of the two components is appropriate can be used. Suitable methods can be any method known in the art, such as gelcaps, encapulation, tablets, physical separation, etc.
  • an effective amount of one or more enzyme granulates described above are included in compositions useful for laundering a variety of fabrics in need of cleaning.
  • "effective amount of one or more enzyme granulates” refers to the quantity of enzyme granulates of the present invention described hereinbefore necessary to achieve the enzymatic activity necessary in the specific laundry composition.
  • Such effective amounts are readily ascertained by one of ordinary skill in the art and is based on many factors, such as the particular enzyme used, the laundry application, the specific composition of the laundry composition, and whether a liquid or dry (e.g., granular, powder) composition is required, and the like.
  • the laundry detergent compositions of the present invention comprise:
  • a laundry detergent composition of the present invention comprises one or more enzyme granulates of the present invention such that the density difference between the density of the laundry detergent composition and the density of the enzyme granulates is less than about 0.2 g/mL, more preferably less than about 0.1 g/mL, most preferably less than about 0.05 g/mL.
  • the laundry compositions comprise from about 0.0001%, preferably from about 0.001%, more preferably from about 0.01% by weight of the laundry compositions of one or more enzyme granulates of the present invention, to about 10%, preferably to about 1%, more preferably to about 0.1 %.
  • the enzyme granulates of the present invention comprise one or more enzymes of the present invention such that the enzymes are present in the laundry compositions of the present invention at a level of from about 0.0001% to about 2%, more preferably from about 0.001 % to about 2%, most preferably from about 0.01% to about 1% of pure enzyme by weight of the laundry composition.
  • laundry compositions wherein the enzyme granulates of the present invention may be employed are discussed in further detail below.
  • the laundry compositions may include from about 1% to about 99.9% by weight of the composition of the cleaning adjunct materials.
  • fabric laundry compositions include hand and machine laundry detergent compositions including laundry additive compositions and compositions suitable for use in the soaking and/or pretreatment of stained fabrics.
  • the compositions of the present invention preferably contain both a surfactant and a builder compound and additionally one or more cleaning adjunct materials preferably selected from organic polymeric compounds, bleaching agents, additional enzymes, suds suppressors, dispersants, lime-soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors.
  • Laundry compositions can also contain softening agents, as additional cleaning adjunct materials.
  • compositions of the present invention can also be used as detergent additive products in solid or liquid form.
  • Such additive products are intended to supplement or boost the performance of conventional detergent compositions and can be added at any stage of the laundry process.
  • the density of the laundry detergent compositions herein ranges from 400 to 1200 g/litre, preferably 500 to 950 g/litre of composition measured at 20°C.
  • the "compact" form of the laundry compositions herein is best reflected by density and, in terms of composition, by the amount of inorganic filler salt; inorganic filler salts are conventional ingredients of detergent compositions in powder form; in conventional detergent compositions, the filler salts are present in substantial amounts, typically 17-35% by weight of the total composition. In the compact compositions, the filler salt is present in amounts not exceeding 15% of the total composition, preferably not exceeding 10%, most preferably not exceeding 5% by weight of the composition.
  • the inorganic filler salts, such as meant in the present compositions are selected from the alkali and alkaline-earth-metal salts of sulfates and chlorides.
  • a preferred filler salt is sodium sulfate.
  • Liquid laundry compositions according to the present invention can also be in a "concentrated form", in such case, the liquid laundry compositions according the present invention will contain a lower amount of water, compared to conventional liquid detergents. Typically the water content of the concentrated liquid laundry composition is preferably less than 40%o, more preferably less than 30%, most preferably less than 20% by weight of the laundry composition.
  • Non-aqueous, liquid, heavy-duty detergent compositions in accordance with the present invention are in the form of a stable suspension of solid, substantially insoluble particulate material dispersed throughout a structured, surfactant-containing liquid phase.
  • Such detergent compositions comprise from about 49% to 99.95% by weight of the composition of a structured, surfactant-containing liquid phase formed by combining: i) from about 1% to 80% by weight of said liquid phase of one or more nonaqueous organic diluents; and ii) from about 20% to 99%> by weight of said liquid phase of a surfactant system comprising surfactants selected from the group consisting of anionic, nonionic, cationic surfactants and combinations thereof.
  • the surfactant-containing, non-aqueous liquid phase of the non-aqueous liquid laundry detergent compositions of the present invention will generally comprise from about 52%> to about 98.9% by weight of the detergent compositions herein. More preferably, this liquid phase is surfactant-structured and will comprise from about 55% to 98%o by weight of the compositions. Most preferably, this non-aqueous liquid phase will comprise from about 55% to 70% by weight of the compositions herein. Such a surfactant-containing liquid phase will frequently have a density of from about 0.6 to 1.4 g/cc, more preferably from about 0.9 to 1.3 g/cc.
  • the liquid phase of the detergent compositions herein is preferably formed from one or more non-aqueous organic diluents into which is mixed a surfactant structuring agent which is preferably a specific type of anionic surfactant-containing powder.
  • a surfactant structuring agent which is preferably a specific type of anionic surfactant-containing powder.
  • the major component of the liquid phase of the detergent compositions herein comprises one or more non-aqueous organic diluents.
  • the non-aqueous organic diluents used in this invention may be either surface active, i.e., surfactant, liquids or non- aqueous, non-surfactant liquids referred to herein as non-aqueous solvents.
  • the term "solvent” is used herein to connote the non-surfactant, non-aqueous liquid portion of the compositions herein. While some of the essential and/or optional components of the compositions herein may actually dissolve in the "solvenf'-containing liquid phase, other components will be present as particulate material dispersed within the "solvenf'- containing liquid phase. Thus the term “solvent” is not meant to require that the solvent material be capable of actually dissolving all of the detergent composition components added thereto.
  • the non-aqueous liquid diluent component will generally comprise from about 50% to 100%), more preferably from about 50% to 80%>, most preferably from about 55% to 75%, of a structured, surfactant-containing liquid phase.
  • the liquid phase of the compositions herein, i.e., the non-aqueous liquid diluent component will comprise both non-aqueous liquid surfactants and non-surfactant non-aqueous solvents.
  • non-aqueous surfactant liquids which can be used to form the liquid phase of the compositions herein include the alkoxylated alcohols, ethylene oxide (EO)-propylene oxide (PO) block polymers, polyhydroxy fatty acid amides, alkylpolysaccharides, and the like.
  • Such normally liquid surfactants are those having an HLB ranging from 10 to 16.
  • Most preferred of the surfactant liquids are the alcohol alkoxylate nonionic surfactants.
  • Alcohol alkoxylates are materials which correspond to the general formula:
  • R 1 (C rn H 2m O) n OH wherein R* is a Cg - C ⁇ alkyl group, m is from 2 to 4, and n ranges from about 2 to 12.
  • R ⁇ is an alkyl group, which may be primary or secondary, that contains from about 9 to 15 carbon atoms, more preferably from about 10 to 14 carbon atoms.
  • the alkoxylated fatty alcohols will be ethoxylated materials that contain from about 2 to 12 ethylene oxide moieties per molecule, more preferably from about 3 to 10 ethylene oxide moieties per molecule.
  • the alkoxylated fatty alcohol materials useful in the liquid phase will frequently have a hydrophilic-lipophilic balance (HLB) which ranges from about 3 to 17. More preferably, the HLB of this material will range from about 6 to 15, most preferably from about 8 to 15.
  • HLB hydrophilic-lipophilic balance
  • fatty alcohol alkoxylates useful in or as the non-aqueous liquid phase of the compositions herein will include those which are made from alcohols of 12 to 15 carbon atoms and which contain about 7 moles of ethylene oxide. Such materials have been commercially marketed under the trade names Neodol 25-7 and Neodol 23-6.5 by
  • Neodols include Neodol 1-5, an ethoxylated fatty alcohol averaging 11 carbon atoms in its alkyl chain with about 5 moles of ethylene oxide; Neodol 23-9, an ethoxylated primary C12 - C13 alcohol having about 9 moles of ethylene oxide and Neodol 91-10, an ethoxylated CQ-CU primary alcohol having about
  • Alcohol ethoxylates of this type have also been marketed by
  • Dobanol 91-5 is an ethoxylated C9-C11 fatty alcohol with an average of 5 moles ethylene oxide
  • Dobanol 25-7 is an ethoxylated C12-C1 5 fatty alcohol with an average of 7 moles of ethylene oxide per mole of fatty alcohol.
  • Suitable ethoxylated alcohols include Tergitol 15-S-7 and
  • Tergitol 15-S-9 both of which are linear secondary alcohol ethoxylates that have been commercially marketed by Union Carbide Corporation.
  • the former is a mixed ethoxylation product of C ⁇ ⁇ to C15 linear secondary alkanol with 7 moles of ethylene oxide and the latter is a similar product but with 9 moles of ethylene oxide being reacted.
  • Other types of alcohol ethoxylates useful in the present compositions are higher molecular weight nonionics, such as Neodol 45-11, which are similar ethylene oxide condensation products of higher fatty alcohols, with the higher fatty alcohol being of 14- 15 carbon atoms and the number of ethylene oxide groups per mole being about 11. Such products have also been commercially marketed by Shell Chemical Company.
  • alcohol alkoxylate nonionic surfactant is utilized as part of the non-aqueous liquid phase in the detergent compositions herein, it will preferably be present to the extent of from about 1%> to 60%> of the composition structured liquid phase. More preferably, the alcohol alkoxylate component will comprise about 5%> to 40% of the structured liquid phase. Most preferably, an alcohol alkoxylate component will comprise from about 5% to 35% of the detergent composition structured liquid phase. Utilization of alcohol alkoxylate in these concentrations in the liquid phase corresponds to an alcohol alkoxylate concentration in the total composition of from about 1% > to 60%> by weight, more preferably from about 2% to 40%> by weight, and most preferably from about 5% to 25%o by weight, of the composition.
  • Non-aqueous surfactant liquid which may be utilized in this invention are the ethylene oxide (EO) - propylene oxide (PO) block polymers.
  • Materials of this type are well known nonionic surfactants which have been marketed under the tradename Pluronic. These materials are formed by adding blocks of ethylene oxide moieties to the ends of polypropylene glycol chains to adjust the surface active properties of the resulting block polymers.
  • Pluronic nonionic surfactants of this type are described in greater detail in Davidsohn and Milwidsky; Synthetic Detergents, 7th Ed.; Longman Scientific and Technical (1987) at pp. 34-36 and pp. 189-191 and in U.S. Patents 2,674,619 and 2,677,700. All of these publications are incorporated herein by reference.
  • Pluronic type nonionic surfactants are also believed to function as effective suspending agents for the particulate material which is dispersed in the liquid phase of the detergent compositions herein.
  • R— C— N— Z wherein R is a C . ⁇ alkyl or alkenyl, p is from 1 to 6, and Z is glycityl derived from a reduced sugar or alkoxylated derivative thereof.
  • Such materials include the Cj2-Ci 8 N- methyl glucamides. Examples are N-methyl N-1-deoxyglucityl cocoamide and N-methyl N-1-deoxyglucityl oleamide. Processes for making polyhydroxy fatty acid, amides are know and can be found, for example, in Wilson, U.S. Patent 2,965,576 and Schwartz, U.S. Patent 2,703,798, the disclosures of which are incorporated herein by reference. The materials themselves and their preparation are also described in greater detail in Honsa, U.S. Patent 5,174,937, Issued December 26, 1992, which patent is also incorporated herein by reference.
  • the amount of total liquid surfactant in the preferred surfactant-structured, non- aqueous liquid phase herein will be determined by the type and amounts of other composition components and by the desired composition properties.
  • the liquid surfactant can comprise from about 35% to 70% of the non-aqueous liquid phase of the compositions herein. More preferably, the liquid surfactant will comprise from about 50% to 65%o of a non-aqueous structured liquid phase. This corresponds to a non- aqueous liquid surfactant concentration in the total composition of from about 15%> to 70% by weight, more preferably from about 20% to 50% by weight, of the composition.
  • the liquid phase of the detergent compositions herein may also comprise one or more non-surfactant, non- aqueous organic solvents.
  • non-surfactant non-aqueous liquids are preferably those of low polarity.
  • low- polarity liquids are those which have little, if any, tendency to dissolve one of the preferred types of particulate material used in the compositions herein, i.e., the peroxygen bleaching agents, sodium perborate or sodium percarbonate.
  • relatively polar solvents such as ethanol are preferably not utilized.
  • Suitable types of low-polarity solvents useful in the non-aqueous liquid detergent compositions herein do include non- vicinal C4-C8 alkylene glycols, alkylene glycol mono lower alkyl ethers, lower molecular weight polyethylene glycols, lower molecular weight methyl esters and amides, and the like.
  • a preferred type of non-aqueous, low-polarity solvent for use in the compositions herein comprises the non-vicinal C_ ⁇ -Cg branched or straight chain alkylene glycols.
  • hexylene glycol (4-methyl-2,4-pentanediol), 1,6- hexanediol, 1,3-butylene glycol and 1,4-butylene glycol.
  • Hexylene glycol is the most preferred.
  • non-aqueous, low-polarity solvent for use herein comprises the mono-, di-, tri-, or tetra- C2-C3 alkylene glycol mono C2-C6 alkyl ethers.
  • Such compounds include diethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, dipropolyene glycol monoethyl ether, and dipropylene glycol monobutyl ether.
  • Diethylene glycol monobutyl ether, dipropylene glycol monobutyl ether and butoxy-propoxy-propanol (BPP) are especially preferred.
  • Compounds of the type have been commercially marketed under the trade names Dowanol, Carbitol, and Cellosolve.
  • non-aqueous, low-polarity organic solvent useful herein comprises the lower molecular weight polyethylene glycols (PEGs).
  • PEGs polyethylene glycols
  • Such materials are those having molecular weights of at least about 150.
  • PEGs of molecular weight ranging from about 200 to 600 are most preferred.
  • non-polar, non-aqueous solvent comprises lower molecular weight methyl esters.
  • Such materials are those of the general formula: R*- C(0)-OCH3 wherein R ⁇ ranges from 1 to about 18.
  • suitable lower molecular weight methyl esters include methyl acetate, methyl propionate, methyl octanoate, and methyl dodecanoate.
  • non-aqueous, generally low-polarity, non-surfactant organic solvent(s) employed should, of course, be compatible and non-reactive with other composition components, e.g., bleach and/or activators, used in the liquid detergent compositions herein.
  • a solvent component is preferably utilized in an amount of from about 1%> to 70%) by weight of the liquid phase.
  • a non-aqueous, low-polarity, non- surfactant solvent will comprise from about 10% to 60%> by weight of a structured liquid phase, most preferably from about 20% to 50% by weight, of a structured liquid phase of the composition.
  • non-surfactant solvent in these concentrations in the liquid phase corresponds to a non-surfactant solvent concentration in the total composition of from about 1% to 50% by weight, more preferably from about 5% to 40% by weight, and most preferably from about 10%> to 30%> by weight, of the composition.
  • the ratio of surfactant to non-surfactant liquids e.g., the ratio of alcohol alkoxylate to low polarity solvent
  • the weight ratio of surfactant liquid to non-surfactant organic solvent will range about 50:1 to 1:50. More preferably, this ratio will range from about 3:1 to 1 :3, most preferably from about 2:1 to 1 :2.
  • the non-aqueous liquid phase of the detergent compositions of this invention is prepared by combining with the non-aqueous organic liquid diluents hereinbefore described a surfactant which is generally, but not necessarily, selected to add structure to the non-aqueous liquid phase of the detergent compositions herein.
  • Structuring surfactants can be of the anionic, nonionic, cationic, and/or amphoteric types.
  • Preferred structuring surfactants are the anionic surfactants such as the alkyl sulfates, the alkyl polyalkxylate sulfates and the linear alkyl benzene sulfonates.
  • anionic surfactant material which may be optionally added to the detergent compositions herein as structurant comprises carboxylate-type anionics.
  • Carboxylate-type anionics include the CJ O-CI 8 alkyl alkoxy carboxylates (especially the
  • Ci paraffin sulfonates and the C -C18 olefin sulfonates will generally comprise from about 1%> to 30%> by weight of the compositions herein.
  • one preferred type of structuring anionic surfactant comprises primary or secondary alkyl sulfate anionic surfactants.
  • Such surfactants are those produced by the sulfation of higher C8-C20 fatty alcohols.
  • R is typically a linear Cg - C20 hydrocarbyl group, which may be straight chain or branched chain, and M is a water-solubilizing cation.
  • R is a C1 Q-14 alkyl, and M is alkali metal.
  • R is about C ⁇ 2 an d M is sodium.
  • Conventional secondary alkyl sulfates may also be utilized as a structuring anionic surfactant for the liquid phase of the compositions herein.
  • Conventional secondary alkyl sulfate surfactants are those materials which have the sulfate moiety distributed randomly along the hydrocarbyl "backbone" of the molecule. Such materials may be depicted by the structure:
  • alkyl sulfates will generally comprise from about 1% to 30%> by weight of the composition, more preferably from about 5% to 25% by weight of the composition.
  • Non-aqueous liquid detergent compositions containing alkyl sulfates, peroxygen bleaching agents, and bleach activators are described in greater detail in Kong- Chan et al.; WO 96/10073; Publiched April 4, 1996, which application is incorporated herein by reference.
  • Alkyl polyalkoxylate sulfates are also known as alkoxylated alkyl sulfates or alkyl ether sulfates. Such materials are those which correspond to the formula
  • R ⁇ is a Ci 0-C22 alkyl group, m is from 2 to 4, n is from about 1 to 15, and M is a salt-forming cation.
  • R ⁇ is a C ⁇ -Cjg alkyl, m is 2, n is from about 1 to 10, and M is sodium, potassium, ammonium, alkylammonium or alkanolammonium.
  • R ⁇ is a C12-C16, m is 2, n is from about 1 to 6, and M is sodium.
  • Ammonium, alkylammonium and alkanolammonium counterions are preferably avoided when used in the compositions herein because of incompatibility with peroxygen bleaching agents.
  • alkyl polyalkoxylate sulfates can also generally comprise from about 1%) to 30%) by weight of the composition, more preferably from about 5%> to 25%> by weight of the composition.
  • Non-aqueous liquid detergent compositions containing alkyl polyalkoxylate sulfates, in combination with polyhydroxy fatty acid amides, are described in greater detail in boutique et al; PCT Application No. PCT/US96/04223, which application is incorporated herein by reference.
  • anionic surfactant for use as a structurant in the compositions herein comprises the linear alkyl benzene sulfonate (LAS) surfactants.
  • LAS surfactants can be formulated into a specific type of anionic surfactant-containing powder which is especially useful for incorporation into the non- aqueous liquid detergent compositions of the present invention.
  • Such a powder comprises two distinct phases. One of these phases is insoluble in the non-aqueous organic liquid diluents used in the compositions herein; the other phase is soluble in the non-aqueous organic liquids.
  • this preferred anionic surfactant- containing powder which can be dispersed in the non-aqueous liquid phase of the preferred compositions herein and which forms a network of aggregated small particles that allows the final product to stably suspend other solid particulate materials in the composition.
  • Such a preferred anionic surfactant-containing powder is formed by co-drying an aqueous slurry which essentially contains a) one of more alkali metal salts of Cjo-i ⁇ linear alkyl benzene sulfonic acids; and b) one or more non-surfactant diluent salts.
  • a slurry is dried to a solid material, generally in powder form, which comprises both the soluble and insoluble phases.
  • the linear alkyl benzene sulfonate (LAS) materials used to form the preferred anionic surfactant-containing powder are well known materials. Such surfactants and their preparation are described for example in U.S. Patents 2,220,099 and 2,477,383, incorporated herein by reference.
  • the alkyl benzene surfactant anionic surfactants are generally used in the powder- forming slurry in an amount from about 20 to 70% by weight of the slurry, more preferably from about 20% to 60% by weight of the slurry.
  • the powder- forming slurry also contains a non-surfactant, organic or inorganic salt component that is co-dried with the LAS to form the two-phase anionic surfactant- containing powder.
  • a non-surfactant, organic or inorganic salt component that is co-dried with the LAS to form the two-phase anionic surfactant- containing powder.
  • Such salts can be any of the known sodium, potassium or magnesium halides, sulfates, citrates, carbonates, sulfates, borates, succinates, sulfo- succinates and the like.
  • Sodium sulfate which is generally a bi-product of LAS production, is the preferred non-surfactant diluent salt for use herein. Salts which function as hydrotropes such as sodium sulfo-succinate may also usefully be included.
  • the non-surfactant salts are generally used in the aqueous slurry, along with the LAS, in amounts ranging from about 1 to 50% by weight of the slurry, more preferably from about 5% to 40%) by weight of the slurry.
  • Salts that act as hydrotropes can preferably comprise up to about 3% by weight of the slurry.
  • the aqueous slurry containing the LAS and diluent salt components hereinbefore described can be dried to form the anionic surfactant-containing powder preferably added to the non-aqueous diluents in order to prepare a structured liquid phase within the compositions herein.
  • Any conventional drying technique e.g., spray drying, drum drying, etc., or combination of drying techniques, may be employed. Drying should take place until the residual water content of the solid material which forms is within the range of from about 0.5% to 4%o by weight, more preferably from about 1% to 3% by weight.
  • the anionic surfactant-containing powder produced by the drying operation constitutes two distinct phases, one of which is soluble in the inorganic liquid diluents used herein and one of which is insoluble in the diluents.
  • the insoluble phase in the anionic surfactant-containing powder generally comprises from about 10%) to 45% by weight of the powder, more preferably from about 15%> to 35% by weight of a powder.
  • the anionic surfactant-containing powder that results after drying can comprise from about 45% to 94%>, more preferably from about 60% to 94%>, by weight of the powder of alkyl benzene sulfonic acid salts. Such concentrations are generally sufficient to provide from about 0.5% to 60%, more preferably from about 15% to 60%, by weight of the total detergent composition that is eventually prepared, of the alkyl benzene sulfonic acid salts.
  • the anionic surfactant-containing powder itself can comprise from about 0.45%) to 45%) by weight of the total composition that is eventually prepared.
  • the anionic surfactant-containing powder will also generally contain from about 2% to 50%), more preferably from about 2% to 25% by weight of the powder of the non- surfactant salts.
  • the combined LAS/salt material can be converted to flakes or powder form by any known suitable milling or comminution process.
  • the particle size of this powder will range from 0.1 to 2000 microns, more preferably from about 0.1 to 1000 microns.
  • a structured, surfactant-containing liquid phase of the preferred detergent compositions herein can be prepared by combining the non-aqueous organic diluents hereinbefore described with the anionic surfactant-containing powder as hereinbefore described. Such combination results in the formation of a structured surfactant- containing liquid phase. Conditions for making this combination of preferred structured liquid phase components are described more fully hereinafter in the "Composition Preparation and Use" section. As previously noted, the formation of a structured, surfactant-containing liquid phase pe ⁇ nits the stable suspension of colored speckles and additional functional particulate solid materials within the preferred detergent compositions of this invention.
  • nonionic surfactants specifically, polyhydroxy fatty acid amides of the formula:
  • R— C— N— Z wherein R is a C9.1 7 alkyl or alkenyl, Rj is a methyl group and Z is glycityl derived from a reduced sugar or alkoxylated derivative thereof. Examples are N-methyl N-l- deoxyglucityl cocoamide and N-methyl N-1-deoxyglucityl oleamide. Processes for making polyhydroxy fatty acid amides are known and can be found in Wilson, U.S. Patent 2,965,576 and Schwartz, U.S. Patent 2,703,798, the disclosures of which are incorporated herein by reference.
  • Preferred surfactants for use in the detergent compositions described herein are amine based surfactants of the general formula: R3
  • R ⁇ is a C6-C12 alkyl group
  • n is from about 2 to about 4
  • X is a bridging group which is selected from NH, CONH, COO, or O or X can be absent
  • R3 and R4 are individually selected from H, C1-C4 alkyl, or (CH2-CH2-0(R5)) wherein R5 is H or methyl.
  • Especially preferred amines based surfactants include the following:
  • R ⁇ is a Cg-Ci 2 alkyl group and R5 is H or CH3.
  • Particularly preferred amines for use in the surfactants defined above include those selected from the group consisting of octyl amine, hexyl amine, decyl amine, dodecyl amine, C8-C12 bis(hydroxyethyl)amine, C -C12 bis(hydroxyisopropyl)amine, C -C12 amido-propyl dimethyl amine, or mixtures thereof.
  • the amine based surfactant is described by the formula:
  • the non-aqueous detergent compositions herein preferably comprise from about 0.01% to 50%) by weight, more preferably from about 0.2% to 30%> by weight, of solid phase particulate material which is dispersed and suspended within the liquid phase.
  • particulate material will range in size from about 0.1 to 1500 microns, more preferably from about 0.1 to 900 microns. Most preferably, such material will range in size from about 5 to 200 microns.
  • the particulate material utilized herein can comprise one or more types of detergent composition components which in particulate form are substantially insoluble in the non-aqueous liquid phase of the composition.
  • the types of particulate materials which can be utilized are described in detail as follows: AQUEOUS BASED HEAVY DUTY LIQUID DETERGENTS SURFACTANTS
  • the present invention also comprises aqueous based liquid detergent compositions.
  • the aqueous liquid detergent compositions preferably comprise from about 10% to about 98%>, preferably from about 30% to about 95%>, by weight of an aqueous liquid carrier which is preferably water.
  • the aqueous liquid detergent compositions of the present invention comprise a surfactant system which preferably contains one or more detersive co-surfactants in addition to the branched surfactants disclosed above.
  • the additional co-surfactants can be selected from nonionic detersive surfactant, anionic detersive surfactant, zwitterionic detersive surfactant, amine oxide detersive surfactant, and mixtures thereof.
  • the surfactant system typically comprises from about 5%> to about 70%>, preferably from about 15%> to about 30%, by weight of the detergent composition. i. Anionic Surfactant
  • Anionic surfactants include Cu-Ci8 alkyl benzene sulfonates (LAS) and primary, branched-chain and random C ⁇ Q-C20 a ⁇ yl sulfates (AS), the CI Q-CI secondary (2,3) alkyl sulfates of the formula CH 3 (CH2) x (CHOS0 3 " M + ) CH 3 and CH 3 (CH2)y(CHOS ⁇ 3 " M + ) CH2CH3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the CJ Q-CI S alkyl alkoxy sulfates ("AE X S"; especially EO 1-7 ethoxy sulfates), C ⁇ Q-CI g alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the
  • anionic surfactants useful herein are disclosed in U.S. Patent No. 4,285,841, Barrat et al, issued August 25, 1981, and in U.S. Patent No. 3,919,678, Laughlin et al, issued December 30, 1975.
  • Useful anionic surfactants include the water-soluble salts, particularly the alkali metal, ammonium and alkylolammonium (e.g., monoethanolammonium or triethanolammonium) salts, of organic sulfuric reaction products having in their molecular structure an alkyl group containing from about 10 to about 20 carbon atoms and a sulfonic acid or sulfuric acid ester group.
  • water-soluble salts particularly the alkali metal, ammonium and alkylolammonium (e.g., monoethanolammonium or triethanolammonium) salts, of organic sulfuric reaction products having in their molecular structure an alkyl group containing from about 10 to about 20 carbon atoms and a sulfonic acid or sulfuric acid ester group.
  • alkyl is the alkyl portion of aryl groups.
  • alkyl sulfates especially those obtained by sulfating the higher alcohols (C8-Ci8 carbon atoms) such as those produced by reducing the glycerides of tallow or coconut oil.
  • anionic surfactants herein are the water-soluble salts of alkyl phenol ethylene oxide ether sulfates containing from about 1 to about 4 units of ethylene oxide per molecule and from about 8 to about 12 carbon atoms in the alkyl group.
  • Other useful anionic surfactants herein include the water-soluble salts of esters of a-sulfonated fatty acids containing from about 6 to 20 carbon atoms in the fatty acid group and from about 1 to 10 carbon atoms in the ester group; water-soluble salts of 2- acyloxy-alkane- 1 -sulfonic acids containing from about 2 to 9 carbon atoms in the acyl group and from about 9 to about 23 carbon atoms in the alkane moiety; water-soluble salts of olefm sulfonates containing from about 12 to 24 carbon atoms; and b-alkyloxy alkane sulfonates containing from about 1 to 3 carbon atoms in the alkyl group and from about 8 to 20 carbon atoms in the alkane moiety.
  • Particularly preferred anionic surfactants herein are the alkyl polyethoxylate sulfates of the formula:
  • RO(C 2 H 4 0) x S03-M + wherein R is an alkyl chain having from about 10 to about 22 carbon atoms, saturated or unsaturated, M is a cation which makes the compound water-soluble, especially an alkali metal, ammonium or substituted ammonium cation, and x averages from about 1 to about
  • Preferred alkyl sulfate surfactants are the non-ethoxylated C12-15 primary and secondary alkyl sulfates. Under cold water washing conditions, i.e., less than abut 65°F
  • fatty acids include capric, lauric, myristic, palmitic, stearic, arachidic, and behenic acid.
  • Other fatty acids include palmitoleic, oleic, linoleic, linolenic, and ricinoleic acid.
  • Nonionic and amphoteric surfactants include C ⁇ -Cjg alkyl ethoxylates (AE) including the so-called narrow peaked alkyl ethoxylates and Cg-Ci 2 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy).
  • AE C ⁇ -Cjg alkyl ethoxylates
  • Cg-Ci 2 alkyl phenol alkoxylates especially ethoxylates and mixed ethoxy/propoxy.
  • Cj N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C12-C18 N-methylglucamides. See WO 9,206,154.
  • Other sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as CJ Q-CI S N-(3- methoxypropyl) glucamide. The N-propyl through N-hexyl C12-C18 glucamides can be used for low sudsing.
  • C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain CJ Q-CI O soaps may be used. Examples of nonionic surfactants are described in U.S. Patent No. 4,285,841, Barrat et al, issued August 25, 1981.
  • these surfactants include ethoxylated alcohols and ethoxylated alkyl phenols of the formula R(OC2H4) n OH, wherein R is selected from the group consisting of aliphatic hydrocarbon radicals containing from about 8 to about 15 carbon atoms and alkyl phenyl radicals in which the alkyl groups contain from about 8 to about 12 carbon atoms, and the average value of n is from about 5 to about 15.
  • R is selected from the group consisting of aliphatic hydrocarbon radicals containing from about 8 to about 15 carbon atoms and alkyl phenyl radicals in which the alkyl groups contain from about 8 to about 12 carbon atoms, and the average value of n is from about 5 to about 15.
  • ethoxylated alcohols having an average of from about 10 to abut 15 carbon atoms in the alcohol and an average degree of ethoxylation of from about 6 to about 12 moles of ethylene oxide per mole of alcohol.
  • compositions herein also contain amine oxide surfactants of the formula: Rl (EO) x (PO)y(BO) z N(0)(CH2R')2.qH2 ⁇ (I)
  • the structure (I) provides one long-chain moiety Rl(EO) x (PO)y(BO) z and two short chain moieties, CH2 '.
  • R' is preferably selected from hydrogen, methyl and -CH2OH.
  • R ⁇ is a primary or branched hydrocarbyl moiety which can be saturated or unsaturated, preferably, Rl is a primary alkyl moiety.
  • Rl is a hydrocarbyl moiety having chainlength of from about 8 to about
  • R* may be somewhat longer, having a chainlength in the range C12-C24.
  • the invention also encompasses amine oxides wherein x+y+z is different from zero, specifically x+y+z is from about 1 to about 10, R ⁇ is a primary alkyl group containing 8 to about 24 carbons, preferably from about 12 to about 16 carbon atoms; in these embodiments y + z is preferably 0 and x is preferably from about 1 to about 6, more preferably from about 2 to about 4; EO represents ethyleneoxy; PO represents propyleneoxy; and BO represents butyleneoxy.
  • amine oxides can be prepared by conventional synthetic methods, e.g., by the reaction of alkylethoxysulfates with dimethylamine followed by oxidation of the ethoxylated amine with hydrogen peroxide.
  • Highly preferred amine oxides herein are solids at ambient temperature, more preferably they have melting-points in the range 30°C to 90°C.
  • Amine oxides suitable for use herein are made commercially by a number of suppliers, including Akzo Chemie, Ethyl Corp., and Procter & Gamble. See McCutcheon's compilation and Kirk-Othmer review article for alternate amine oxide manufacturers.
  • Preferred commercially available amine oxides are the solid, dihydrate ADMOX 16 and ADMOX 18, ADMOX 12 and especially ADMOX 14 from Ethyl Corp.
  • Preferred embodiments include dodecyldimethylamine oxide dihydrate, hexadecyldimethylamine oxide dihydrate, octadecyldimethylamine oxide dihydrate, hexadecyltris(ethyleneoxy)dimethyl-amine oxide, tetradecyldimethylamine oxide dihydrate, and mixtures thereof.
  • R' is H
  • R' is CH2OH, such as hexadecylbis(2- hydroxyethyl)amine oxide, tallowbis(2-hydroxyethyl)amine oxide, stearylbis(2- hydroxyefhyl)amine oxide and oleylbis(2- hydroxyethyl)amine oxide.
  • the present invention encompasses a heavy duty gel laundry detergent compositions comprising, by weight of the composition: a) from about 15% to about 40% of an anionic surfactant component which comprises, by weight of the composition:
  • alkyl polyethoxylate sulfates wherein the alkyl group contains from about 10 to about 22 carbon atoms and the polyethoxylate chain contains from 0.5 to about 15, preferably from 0.5 to about 5, more preferably from 0.5 to about 4, ethylene oxide moieties; and (ii) from about 5% to about 20% of fatty acids; and b) one or more of the following ingredients: detersive amine, modified polyamine, polyamide-polyamine, polyethoxylated-polyamine polymers, quaternary ammonium surfactants, suitable electrolyte or acid equivalents thereof, and mixtures thereof.
  • compositions herein may further contain one or more additional detersive additives selected from the group consisting of non-citrate builders, optical brighteners, soil release polymers, dye transfer inhibitors, polymeric dispersing agents, enzymes, suds suppressers, dyes, perfumes, colorants, filler salts, hydrotropes, antiredeposition agents, antifading agent, dye fixative agents, prill/fuzzing reducing agents, and mixtures thereof.
  • additional detersive additives selected from the group consisting of non-citrate builders, optical brighteners, soil release polymers, dye transfer inhibitors, polymeric dispersing agents, enzymes, suds suppressers, dyes, perfumes, colorants, filler salts, hydrotropes, antiredeposition agents, antifading agent, dye fixative agents, prill/fuzzing reducing agents, and mixtures thereof.
  • compositions herein have a viscosity at 20 s ⁇ * shear rate of from about 100 cp to about 4,000 cp, preferably from about 300 cp to about 3,000 cp, more preferably from about 500 cp to about 2,000 cp and are stable upon storage.
  • compositions herein are structured and have a specific rheology.
  • the rheology can be modeled by the following formula: ⁇ - ⁇ o + ⁇ C"- 1 ) where ⁇ is the viscosity of the liquid at a given shear rate, ⁇ 0 is the viscosity at infinite shear rate, ⁇ is the shear rate, n is the shear rate index, and K is the consistency index.
  • the term "structured” indicates a heavy duty liquid composition having a liquid crystalline lamellar phase and an infinite shear viscosity ( ⁇ o) value between 0 and about 3,000cp (centipoise), a shear index (n) value of less than about 0.6, a consistency index value, K, of above about 1,000, and a viscosity ( ⁇ ) measured at 20 s ⁇ l of less than about 10,000cp, preferably less than about 5,000cp.
  • a “zero shear” viscosity is above about 100,000cp wherein “zero shear” is meant a shear rate of 0.001 s"l or less.
  • the yield value of the compositions herein, obtained by plotting viscosity versus stress, is larger than 0.2Pa.
  • compositions herein are clear or translucent, i.e. not opaque.
  • Electrolytes Without being limited by theory, it is believed that the presence of electrolytes acts to control the viscosity of the gel compositions. Thus, the gel nature of the compositions herein are affected by the choice of surfactants and by the amount of electrolytes present. In preferred embodiments herein, the compositions will further comprise from 0%> to about 10%>, more preferably from about 1%> to about 8%>, even more preferably from about 2%> to about 6%, of a suitable electrolyte or acid equivalent thereof. Sodium citrate is a highly preferred electrolyte for use herein.
  • compositions herein may optionally contain from about 0%> to about 10%, by weight, of solvents and hydrotropes.
  • solvent is meant the commonly used solvents in the detergent industry, including alkyl monoalcohol, di-, and tri-alcohols, ethylene glycol, propylene glycol, propanediol, ethanediol, glycerine, etc.
  • hydrotrope is meant the commonly used hydrotropes in the detergent industry, including short chain surfactants that help solubilize other surfactants.
  • hydrotropes include cumene, xylene, or toluene sulfonate, urea, C or shorter chain alkyl carboxylates, and C$ or shorter chain alkyl sulfate and ethoxylated sulfates.
  • Modified polyamine - may comprise at least about 0.05%, preferably from about 0.05% to about 3%, by weight, of a water-soluble or dispersible, modified polyamine agent, said agent comprising a polyamine backbone corresponding to the formula: [ (R 2 ) 2 -N] w - [ R! -N] X - [R! -N] y - [Ri -N] -,
  • each R ⁇ is independently C2-C5 alkylene, alkenylene or arylene; each R ⁇ is independently H, or a moiety of formula OH[(CH2) x O] n , wherein x is from about 1 to about 8 and n is from about 10 to about 50; w is 0 or 1; x+y+z is from about 5 to about 30; and B represents a continuation of this structure by branching; and wherein said polyamine before alkylation has an average molecular weight of from about 300 to about 1,200.
  • R ⁇ is C2-C4 alkylene, more preferably ethylene; R ⁇ is OH[CH2CH2 ⁇ ] n , wherein n is from about 15 to about 30, more preferably n is about 20.
  • the average Molecular Weight of the polyamine before alkylation is from about 300 to about 1200, more preferably from about 500 to about 900, still more preferably from about 600 to about 700, even more preferably from about 600 to about 650.
  • R ⁇ is C2-C4 alkylene, more preferably ethylene;
  • R2 is OH[CH2CH2 ⁇ ] n , wherein n is from about 10 to about 20, more preferably n is about 15.
  • the average Molecular Weight of the polyamine before alkylation is from about 100 to about 300, more preferably from about 150 to about 250, even more preferably from about 180 to about 200.
  • the polyamide-polyamines useful herein will generally comprise from about 0.1 %> to 8%> by the weight of the composition. More preferably, such polyamide-polyamine materials will comprise from about 0.5%o to 4% by weight of the compositions herein. Most preferably, these polyamide-polyamines will comprise from about 1% to 3%> by weight of the composition.
  • polyamide-polyamine materials used in this invention are those which have repeating, substituted amido-amine units which correspond to the general Structural Formula No. I as follows:
  • Rj, R2 and R5 are each independently Cj_4 alkylene, C1.4 alkarylene or arylene. It is also possible to eliminate R ⁇ entirely so that the polyamide-polyamine is derived from oxalic acid.
  • R3 is H, epichlorohydrin, an azetidinium group, an epoxypropyl group or a dimethylaminohydroxypropyl group, and R4 can be H,
  • R4 may also be any of the foregoing groups condensed with C ⁇ .4 alkylene oxide.
  • Ri is preferably butylene, and R2 and R5 are preferably ethylene.
  • R3 is preferably epichlorohydrin.
  • R4 is preferably H.
  • polyamide-polyamine materials useful herein can be prepared by reacting polyamines such as diethylenetriamine, triethylenetetraamine, tetraethylenepentamine or dipropylenetriamine with C2-C12 dicarboxylic acids such as oxalic, succinic, glutaric, adipic and diglycolic acids. Such materials may then be further derivatized by reaction with, for example, epichlorohydrin. Preparation of such materials is described in greater detail in Keim, U.S. Patent 2,296,116, Issued February 23, 1960; Keim, U.S. Patent 2,296,154, Issued February 23, 1960 and Keim, U.S. Patent 3,332,901, Issued July 25, 1967.
  • polyamide-polyamine agents preferred for use herein are commercially marketed by Hercules, Inc. under the tradename Kymene® .
  • Kymene® Especially useful are Kymene 557H® and Kymene 557LX® which are epichlorohydrin adducts of polyamide-polyamines which are the reaction products of diethylenetriamine and adipic acid.
  • Other suitable materials are those marketed by Hercules under the tradenames Reten® and Delsette®> and by Sandoz under the tradename
  • Cartaretin® These polyamide-polyamine materials are marketed in the form of aqueous suspensions of the polymeric material containing, for example, about 12.5% by weight of solids.
  • Detersive Amine - Suitable amine surfactants for use herein include detersive amines according to the formula:
  • R j is a Cg-Ci 2 alkyl group; n is from about 2 to about 4, X is a bridging group which is selected from NH, CONH, COO, or O or X can be absent; and R3 and R4 are individually selected from H, C1 -C4 alkyl, or (CH2-CH2-0(R5)) wherein R5 is H or methyl.
  • Preferred amines include the following:
  • R ⁇ is a Cg-Ci 2 alkyl group and R5 is H or CH3.
  • the amine is described by the formula: R 1 -C(0)-NH-(CH 2 )3-N(CH 3 )2 wherein R ⁇ is C8-C12 alkyl.
  • Particularly preferred amines include those selected from the group consisting of octyl amine, hexyl amine, decyl amine, dodecyl amine, Cg-Ci 2 bis(hydroxyethyl)amine,
  • the detersive amines comprise from about 0.1 %> to about 10%), preferably from about 0.5% to about 5%>, by weight of the composition.
  • Quaternary Ammonium Surfactants from about 1 % to about 6% of a quaternary ammonium surfactant having the formula
  • R ⁇ and R2 are individually selected from the group consisting of C1-C4 alkyl, C1 -C4 hydroxy alkyl, benzyl, and -(C2H4 ⁇ ) x H where x has a value from about 2 to about 5;
  • X is an anion; and
  • R3 and R4 are each a C6-C14 alkyl or (2) R3 is a Cg-Cjs alkyl, and R4 is selected from the group consisting of Cj-C 10 alkyl, Cj-Cio hydroxy alkyl, benzyl, and -(C2H4 ⁇ ) x H where x has a value from 2 to 5.
  • Preferred quaternary ammonium surfactants are the chloride, bromide, and methylsulfate salts.
  • Examples of preferred mono-long chain alkyl quaternary ammonium surfactants are those wherein R ⁇ , R2, and R4 are each methyl and R3 is a Cs-Cjg alkyl; or wherein R3 is C8-I 8 alkyl and R ⁇ , R2, and R4 are selected from methyl and hydroxy- alkyl moieties.
  • ADOGEN 412TM a lauryl trimethyl ammonium chloride commercially available from Witco, is also preferred. Even more highly preferred are the lauryl trimethyl ammonium chloride and myristyl trimethyl ammonium chloride.
  • Alkoxylated quaternary ammonium (AQA) surfactants useful in the present invention are of the general formula:
  • R* is an alkyl or alkenyl moiety containing from about 8 to about 18 carbon atoms, preferably 10 to about 16 carbon atoms, most preferably from about 10 to about
  • R ⁇ and R ⁇ ' are each independently alkyl groups containing from one to about three carbon atoms, preferably methyl; R ⁇ and R ⁇ can vary independently and are selected from hydrogen (preferred), methyl and ethyl, X" is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, to provide electrical neutrality;
  • A is selected from C1-C4 alkoxy, especially ethoxy (i.e., -CH2CH2O-), propoxy, butoxy and mixtures thereofand for formula I, p is from 2 to about 30, preferably 2 to about 15, most preferably 2 to about 8; and for formula II, p is from 1 to about 30, preferably 1 to about
  • 4 and q is from 1 to about 30, preferably 1 to about 4, and most preferably both p and q are 1.
  • quaternary surfactants include the ammonium surfactants such as alkyldimethylammonium halogenides, and those surfactants having the formula:
  • R ⁇ is an alkyl or alkyl benzyl group having from about 8 to about 18 carbon atoms in the alkyl chain, each R ⁇ is selected from the group consisting of -CH2CH2-, -
  • each R 4 is selected from the group consisting of C1 -C4 alkyl, C1 -C4 hydroxyalkyl, benzyl, ring structures formed by joining the two R 4 groups, -CH2CHOHCHOHCOR 6 CHOH- CH2OH wherein R ⁇ is any hexose or hexose polymer having a molecular weight less than about 1000, and hydrogen when y is not O; R ⁇ is the same as R 4 or is an alkyl chain wherein the total number of carbon atoms of R ⁇ plus R ⁇ is not more than about 18; each y is from 0 to about 10 and the sum of the y values is from 0 to about 15; and X is any compatible anion.
  • Polyethoxylated-Polyamine Polymers - Another polymer dispersant fo ⁇ n use herein includes polyethoxyated-polyamine polymers (PPP).
  • the preferred polyethoxylated-polyamines useful herein are generally polyalkyleneamines (PAA's), polyalkyleneimines (PAI's), preferably polyethyleneamine (PENs), polyethyleneimines (PEI's).
  • a common polyalkyleneamine (PAA) is tetrabutylenepentamine. PEA's are obtained by reactions involving ammonia and ethylene dichloride, followed by fractional distillation. The common PEA's obtained are triethylenetetramine (TETA) and teraethylenepentamine (TEP A).
  • the cogenerically derived mixture does not appear to separate by distillation and can include other materials such as cyclic amines and particularly piperazines. There can also be present cyclic amines with side chains in which nitrogen atoms appear. See U.S. Patent 2,792,372, Dickinson, issued May 14, 1957, which describes the preparation of PENs.
  • Polyethoxylated polyamines can be prepared, for example, by polymerizing ethyleneimine in the presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.
  • a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.
  • Specific methods for preparing these polyamine backbones are disclosed in U.S. Patent 2,182,306, Ulrich et al., issued December 5, 1939; U.S. Patent 3,033,746, Mayle et al., issued May 8, 1962; U.S. Patent 2,208,095, Esselmann et al., issued July 16, 1940; U.S. Patent 2,806,839, Crowther, issued September 17, 1957; and U.S. Patent 2,553,696, Wilson, issued May 21, 1951
  • polyethoxyated-polyamine polymers useful for this invention are alkoxylated quaternary diamines of the general formula: where R is selected from linear or branched C2-C12 alkylene, C3-C12 hydroxyalkylene, C4-C12 dihydroxyalkylene, C 8 -C ⁇ dialkylarylene, [(CH 2 CH2 ⁇ ) q CH 2 CH2]- and - CH2CH(OH)CH2 ⁇ -(CH2CH2 ⁇ ) q CH 2 CH(OH)CH2]- where q is from about 1 to about 100.
  • Each Ri is independently selected from C1 -C4 alkyl, C7-C12 alkylaryl, or A.
  • A is of the formula:
  • R3 is selected from H or C1-C3 alkyl, n is from about 5 to about 100, and B is selected from H, Ci -C4 alkyl, acetyl, or benzoyl; X is a water soluble anion.
  • R is selected from C4 to Cg alkylene
  • Ri is selected from Ci -C2 alkyl or C2-C3 hydroxyalkyl
  • A is:
  • R3 where R3 is selected from H or methyl, and n is from about 10 to about 50.
  • R is linear or branched Cg
  • Ri is methyl
  • R3 is
  • n is from about 20 to about 50.
  • Additional alkoxylated quaternary polyamine dispersants which can be used in the present invention are of the general formula:
  • R is selected from linear or branched C2-C12 alkylene, C3-C12 hydroxyalkylene, C4-C12 dihydroxyalkylene, C 8 -C ⁇ 2 dialkylarylene, [(CH 2 CH2 ⁇ )qCH2CH 2 ]- and - CH 2 CH(OH)CH2 ⁇ -(CH2CH 2 0) q CH2CH(OH)CH2]- where q is from about 1 to about 100.
  • Each Ri is independently selected from C1 -C4 alkyl, C7-C12 alkylaryl, or A.
  • R ⁇ may be absent on some nitrogens; however, at least three nitrogens must be quaternized.
  • A is of the formula: (CH-CH 2 -0) n B R3 where R3 is selected from H or C1-C3 alkyl, n is from about 5 to about 100 and B is selected from H, Ci -C4 alkyl, acetyl, or benzoyl; m is from about 0 to about 4, and
  • X is a water soluble anion
  • R is selected from C4 to C ⁇ alkylene
  • R ⁇ is selected from Ci -C2 alkyl or C2-C3 hydroxyalkyl
  • A is:
  • R3 where R3 is selected from H or methyl, and n is from about 10 to about 50; and m is 1.
  • R is linear or branched Cg, R ⁇ is methyl, R3 is
  • n is from about 20 to about 50, and m is 1.
  • the levels of these polyethoxyated-polyamine polymers used can range from about 0.1%) to about 10%>, typically from about 0.4%> to about 5%, by weight.
  • These polyethoxyated-polyamine polymers can be synthesized following the methods outline in U.S. Patent No. 4,664,848, or other ways known to those skilled in the art.
  • Anionic Surfactant - contains alkyl polyethoxylate sulfates and may contain other non-soap anionic surfactants or mixtures thereof.
  • anionic surfactants useful herein are disclosed in U.S. Patent No. 4,285,841, Barrat et al, issued August 25, 1981, and in U.S. Patent No. 3,919,678, Laughlin et al, issued December 30, 1975, both incorporated herein by reference.
  • Useful anionic surfactants include the water-soluble salts, particularly the alkali metal, ammonium and alkylolammonium (e.g., monoethanolammomum or triethanolammonium) salts, of organic sulfuric reaction products having in their molecular structure an alkyl group containing from about 10 to about 20 carbon atoms and a sulfonic acid or sulfuric acid ester group.
  • water-soluble salts particularly the alkali metal, ammonium and alkylolammonium (e.g., monoethanolammomum or triethanolammonium) salts, of organic sulfuric reaction products having in their molecular structure an alkyl group containing from about 10 to about 20 carbon atoms and a sulfonic acid or sulfuric acid ester group.
  • alkyl is the alkyl portion of aryl groups.
  • alkyl sulfates especially those obtained by sulfating the higher alcohols (C8-C18 carbon atoms) such as those produced by reducing the glycerides of tallow or coconut oil.
  • alkyl sulfates especially those obtained by sulfating the higher alcohols (C8-C18 carbon atoms) such as those produced by reducing the glycerides of tallow or coconut oil.
  • linear straight chain alkylbenzene sulfonates in which the average number of carbon atoms in the alkyl group is from about 11 to 13, abbreviated as C ⁇ - C, 3 LAS.
  • anionic surfactants herein are the water-soluble salts of alkyl phenol ethylene oxide ether sulfates containing from about 1 to about 4 units of ethylene oxide per molecule and from about 8 to about 12 carbon atoms in the alkyl group.
  • Other useful anionic surfactants herein include the water-soluble salts of esters of ⁇ -sulfonated fatty acids containing from about 6 to 20 carbon atoms in the fatty acid group and from about 1 to 10 carbon atoms in the ester group; water-soluble salts of 2- acyloxy-alkane-1 -sulfonic acids containing from about 2 to 9 carbon atoms in the acyl group and from about 9 to about 23 carbon atoms in the alkane moiety; water-soluble salts of olefm sulfonates containing from about 12 to 24 carbon atoms; and ⁇ -alkyloxy alkane sulfonates containing from about 1 to 3 carbon atoms in the alkyl group and from about 8 to 20 carbon atoms in the alkane moiety.
  • alkyl polyethoxylate sulfates useful herein are of the formula RO(C H 4 0) x S0 3 -M + wherein R is an alkyl chain having from about 10 to about 22 carbon atoms, saturated or unsaturated, M is a cation which makes the compound water-soluble, especially an alkali metal, ammonium or substituted ammonium cation, and x averages from about 0.5 to about 15.
  • Preferred alkyl sulfate surfactants are the non-ethoxylated C12-15 primary and secondary alkyl sulfates. Under cold water washing conditions, i.e., less than abut 65°F (18.3°C), it is preferred that there be a mixture of such ethoxylated and non-ethoxylated alkyl sulfates.
  • the anionic surfactant component herein comprises fatty acids.
  • fatty acids include saturated and/or unsaturated fatty acids obtained from natural sources or synthetically prepared.
  • fatty acids include capric, lauric, myristic, palmitic, stearic, arachidic, and behenic acid.
  • Other fatty acids include palmitoleic, oleic, linoleic, linolenic, and ricinoleic acid.
  • Nonionic Detergent Surfactants - Suitable nonionic detergent surfactants are generally disclosed in U.S. Patent 3,929,678, Laughlin et al., issued December 30, 1975, and U.S. Patent No. 4,285,841, Barrat et al, issued August 25, 1981.
  • Exemplary, non- limiting classes of useful nonionic surfactants include: C8-C1 g alkyl ethoxylates ("AE"), with EO about 1-22, including the so-called narrow peaked alkyl ethoxylates and C6-C12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), alkyl dialkyl amine oxide, alkanoyl glucose amide, and mixtures thereof.
  • AE alkyl ethoxylates
  • compositions of the present invention will preferably contain up to about 10%, preferably from 0%> to about 5%, more preferably from 0% to about 3%>, by weight of an nonionic surfactant.
  • an nonionic surfactant Preferred are the ethoxylated alcohols and ethoxylated alkyl phenols of the formula R(OC2H4) n OH, wherein R is selected from the group consisting of aliphatic hydrocarbon radicals containing from about 8 to about 15 carbon atoms and alkyl phenyl radicals in which the alkyl groups contain from about 8 to about 12 carbon atoms, and the average value of n is from about 5 to about 15.
  • R is selected from the group consisting of aliphatic hydrocarbon radicals containing from about 8 to about 15 carbon atoms and alkyl phenyl radicals in which the alkyl groups contain from about 8 to about 12 carbon atoms, and the average value of n is from about 5 to about 15.
  • ethoxylated alcohols having an average of from about 10 to abut 15 carbon atoms in the alcohol and an average degree of ethoxylation of from about 6 to about 12 moles of ethylene oxide per mole of alcohol.
  • nonionic surfactants for use herein include:
  • the polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 12 carbon atoms in either a straight chain or branched chain configuration with the alkylene oxide.
  • the ethylene oxide is present in an amount equal to from about 5 to about 25 moles of ethylene oxide per mole of alkyl phenol.
  • nonionic surfactants of this type include Igepal® CO-630, marketed by the GAF Corporation; and Triton® X-45, X-114, X-100, and X-102, all marketed by the Rohm & Haas Company. These compounds are commonly referred to as alkyl phenol alkoxylates, (e.g., alkyl phenol ethoxylates).
  • the condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide can either be straight or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from about 10 to about 20 carbon atoms with from about 2 to about 18 moles of ethylene oxide per mole of alcohol.
  • nonionic surfactants of this type include Tergitol® 15-S-9 (the condensation product of C1 1 -C15 linear secondary alcohol with 9 moles ethylene oxide), Tergitol® 24-L-6 NMW (the condensation product of C12-C14 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; Neodol® 45-9 (the condensation product of C14-C15 linear alcohol with 9 moles of ethylene oxide), Neodol® 23-6.5 (the condensation product of C12-C13 linear alcohol with 6.5 moles of ethylene oxide), Neodol® 45-7 (the condensation product of C14-C15 linear alcohol with 7 moles of ethylene oxide), Neodol® 45-4 (the condensation product of C14-C15 linear alcohol with 4 moles of ethylene oxide), marketed by Shell Chemical Company, and Kyro® EOB (the condensation product of C13-C15 alcohol with 9 moles ethylene oxide), marketed by The Procter & Gamble
  • nonionic surfactants include Dobanol 91-8® marketed by Shell Chemical Co. and Genapol UD-080® marketed by Hoechst. This category of nonionic surfactant is referred to generally as "alkyl ethoxylates.”
  • the hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility.
  • the addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50%> of the total weight of the condensation product, which corresponds to condensation with up to about 40 moles of ethylene oxide.
  • Examples of compounds of this type include certain of the commercially-available Pluronic® surfactants, marketed by BASF.
  • the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine consist of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
  • This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40%> to about 80%> by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 11,000.
  • this type of nonionic surfactant include certain of the commercially available Tetronic® compounds, marketed by BASF.
  • Semi-polar nonionic surfactants are a special category of nonionic surfactants which include water-soluble amine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; water- soluble phosphine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; and water- soluble sulfoxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from about 1 to about 3 carbon atoms.
  • Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula
  • R3(OR4) X N(R5) 2 wherein R ⁇ is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures thereof containing from about 8 to about 22 carbon atoms; R 4 is an alkylene or hydroxyalkylene group containing from about 2 to about 3 carbon atoms or mixtures thereof; x is from 0 to about 3; and each R ⁇ is an alkyl or hydroxyalkyl group containing from about 1 to about 3 carbon atoms or a polyethylene oxide group containing from about 1 to about 3 ethylene oxide groups.
  • the R ⁇ groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
  • amine oxide surfactants in particular include C10-C18 alkyl dimethyl amine oxides and Cg-C ⁇ alkoxy ethyl dihydroxy ethyl amine oxides.
  • Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties.
  • the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.
  • the intersacchari.de bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • a polyalkylene-oxide chain joining the hydrophobic moiety and the polysaccharide moiety.
  • the preferred alkyleneoxide is ethylene oxide.
  • Typical hydrophobic groups include alkyl groups, either saturated or unsaturated, branched or unbranched containing from about 8 to about 18, preferably from about 10 to about 16, carbon atoms.
  • the alkyl group is a straight chain saturated alkyl group.
  • the alkyl group can contain up to about 3 hydroxy groups and/or the polyalkyleneoxide chain can contain up to about 10, preferably less than 5, alkyleneoxide moieties.
  • Suitable alkyl polysaccharides are octyl, nonyl, decyl, undecyldodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl, di-, tri-, tetra-, penta-, and hexaglucosides, galactosides, lactosides, glucoses, fructosides, fructoses and/or galactoses.
  • Suitable mixtures include coconut alkyl, di-, tri-, tetra-, and pentaglucosides and tallow alkyl tetra-, penta-, and hexa-glucosides.
  • the preferred alkylpolyglycosides have the formula
  • R2 ⁇ (C n H 2 nO)t(glycosyl) x wherein R ⁇ is selected from the group consisting of alkyl, alkyl-phenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7.
  • the glycosyl is preferably derived from glucose.
  • the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1 -position).
  • the additional glycosyl units can then be attached between their 1 -position and the preceding glycosyl units 2-, 3- , 4- and/or 6-position, preferably predominantly the 2-position.
  • Fatty acid amide surfactants having the formula: O
  • R 6 -C-N(R 7 ) 2 wherein R ⁇ is an alkyl group containing from about 7 to about 21 (preferably from about 9 to about 17) carbon atoms and each R 7 is selected from the group consisting of hydrogen, C1 -C4 alkyl, C1 -C4 hydroxyalkyl, and -(C2H4 ⁇ ) x H where x varies from about 1 to about 3.
  • Preferred amides are Cg-C20 ammonia amides, monoethanolamides, dietha- nolamides, and isopropanolamides.
  • Cationic/amphoteric - Non-quaternary, cationic detersive surfactants can also be included in detergent compositions of the present invention.
  • Cationic surfactants useful herein are described in U.S. Patent 4,228,044, Cambre, issued October 14, 1980.
  • Ampholytic surfactants can be incorporated into the detergent compositions hereof. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight chain or branched.
  • One of the aliphatic substituents contains at least about 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water-solubilizing group, e.g., carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 to Laughlin et al., issued
  • ampholytic surfactants include C 2 -C18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and Cg-Ci 2 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C12-C1 8 betaines and sulfobetaines
  • AE alkyl ethoxylates
  • Cg-Ci 2 alkyl phenol alkoxylates especially ethoxylates and mixed ethoxy/propoxy
  • C12-C1 8 betaines especially ethoxylates and mixed ethoxy/propoxy
  • sultaines Ci Q -C ⁇ g amine oxides, and mixtures thereof.
  • Polyhydroxy Fatty Acid Amide Surfactant may also contain polyhydroxy fatty acid amide surfactant.
  • the polyhydroxy fatty acid amide surfactant component comprises compounds of the structural formula: O R 1
  • R* is H, C1 -C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferably C1 -C4 alkyl, more preferably C ⁇ or C2 alkyl, most preferably C] alkyl (i.e., methyl); and R 2 is a C5-C31 hydrocarbyl, preferably straight chain C7-C19 alkyl or alkenyl, more preferably straight chain C9-C17 alkyl or alkenyl, most preferably straight chain C1 1-C15 alkyl or alkenyl, or mixtures thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
  • Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z will be a glycityl.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose.
  • high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
  • Z preferably will be selected from the group consisting of -CH 2 -(CHOH) n -CH 2 OH, -CH(CH 2 OH)-(CHOH) n . 1 -
  • n is an integer from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic mono saccharide.
  • R' is H or a cyclic or aliphatic mono saccharide.
  • Most preferred are glycityls wherein n is 4, particularly -CH2-
  • R can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2- hydroxy ethyl, or N-2-hydroxy propyl.
  • R2-CO-N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide, etc.
  • Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1- deoxygalactityl, 1 -deoxymannityl, 1-deoxymaltotriotityl, etc.
  • polyhydroxy fatty acid amides are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N-alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine with a fatty aliphatic ester or triglyceride in a condensation/amidation step to form the N-alkyl, N-polyhydroxy fatty acid amide product.
  • Processes for making compositions containing polyhydroxy fatty acid amides are disclosed, for example, in G.B. Patent Specification 809,060, published February 18, 1959, by Thomas Hedley & Co., Ltd., U.S.
  • Granular and/or powder laundry detergent compositions preferably comprise, in addition to the enzyme granulates of the present invention, one or more cleaning adjunct materials as described herein.
  • laundry detergent compositions of the present invention as described hereinbefore may optionally include, in addition to the enzyme granulates of the present invention, cleaning adjunct materials described below.
  • the present invention includes important embodiments comprising at least one biodegradably branched and/or crystallinity disrupted and/or mid-chain branched surfactant or surfactant mixture.
  • biodegradably branched and/or crystallinity disrupted and/or mid-chain branched indicate that such surfactants or surfactant mixtures are characterized by the presence of surfactant molecules having a moderately non-linear hydrophobe; more particularly, wherein the surfactant hydrophobe is not completely linear, on one hand, nor is it branched to an extent that would result in unacceptable biodegradation.
  • the preferred biodegradably branched surfactants are distinct from the known commercial LAS, ABS, Exxal, Lial, etc. types, whether branched or unbranched.
  • the biodegradably branched materials comprise particularly positioned light branching, for example from about one to about three methyl, and/or ethyl, and/or propyl or and/or butyl branches in the hydrophobe, wherein the branching is located remotely from the surfactant headgroup, preferably toward the middle of the hydrophobe.
  • branching is located remotely from the surfactant headgroup, preferably toward the middle of the hydrophobe.
  • Typically from one to three such branches can be present on a single hydrophobe, preferably only one.
  • Such biodegradably branched surfactants can have exclusively linear aliphatic hydrophobes, or the hydrophobes can include cycloaliphatic or aromatic substitution.
  • MCB analogs of common linear alkyl sulfate, linear alkyl poly(alkoxylate) and linear alkylbenzenesulfonate surfactants said surfactant suitably being selected from mid- chain-C ⁇ -C 4 -branched Cg-Cig-alkyl sulfates, mid-chain-C ⁇ -C 4 -branched C 8 -Ci 8 -alkyl ethoxylated, propoxylated or butoxylated alcohols, mid-chain-C ⁇ -C 4 -branched C 8 -Cj - alkyl ethoxysulfates, mid-chain-C ⁇ -C 4 -branched C 8 -C ⁇ 6 -alkyl benzenesulfonates and mixtures thereof.
  • the surfactants can in general be in acid or salt, for example sodium, potassium, ammonium or substituted ammonium, form.
  • the biodegradably branched surfactants offer substantial improvements in cleaning performance and/or usefulness in cold water and/or resistance to water hardness and/or economy of utilization.
  • Such surfactants can, in general, belong to any known class of surfactants, e.g., anionic, nonionic, cationic, or zwitterionic.
  • the biodegradably branched surfactants are synthesized through processes of Procter & Gamble, Shell, and Sasol.
  • W098/23712 A published 06/04/98 includes disclosure of MCB nonionic surfactants including MCB primary alkyl polyoxyalkylenes of formula (1): CH 3 CH 2 (CH 2 ) w C(R)H(CH 2 ) x C(R 1 )H(CH 2 ) y C(R 2 )H(CH 2 ) z (EO/PO) m OH (1), where the total number of carbon atoms in the branched primary alkyl moiety of this formula, including the R, R 1 and R 2 branching, but not including the carbon atoms in the EO/PO alkoxy moiety, is preferably 14-20, and wherein further for this surfactant mixture, the average total number of carbon atoms in the MCB primary alkyl hydrophobe moiety is preferably 14.5-17.5, more preferably 15-17; R, R 1 and R 2 are each independently selected from hydrogen and 1-3C alkyl, preferably methyl, provided R, R 1 and R 2 are not all hydrogen and,
  • W097/38957 A also discloses (i) production of MCB alkyl sulphate surfactants by sulphating (I) or (II); (ii) preparation of MCB alkylethoxy sulphates which comprises ethoxylating and then sulphating (I) or (II); (iii) preparation of MCB alkyl carboxylate surfactants which comprises oxidising (I) or (II) or their aldehyde intermediates and (iv) preparation of MCB acyl taurate, MCB acyl isethionate, MCB acyl sarcosinate or MCB acyl N-methylglucamide surfactants using the branched alkyl carboxylates as feedstock.
  • W097/38956 A published 10/23/97 discloses the preparation of mid- to near mid-chain branched alpha olefins which is effected by: (a) preparing a mixture of carbon monoxide and hydrogen; (b) reacting this mixture in the presence of a catalyst under Fischer-Tropsch conditions to prepare a hydrocarbon mixture comprising, the described olefins; and (c) separating the olefins from the hydrocarbon mixture.
  • W097/38956 A further discloses the preparation of mid- to near mid-chain branched alcohols by reacting the olefins described with CO/H 2 under Oxo conditions.
  • These alcohols can be used to prepare (1) MCB sulphate surfactants by sulphating the alcohols; (2) MCB alkyl ethoxy sulphates by ethoxylating, then sulphating, the alcohols; or (3) branched alkyl carboxylate surfactants by oxidising the alcohols or their aldehyde intermediates.
  • the branched carboxylates formed can be used as a feedstock to prepare branched acyl taurate, acyl isethionate, acyl sarcosinate or acyl N-methylglucamide surfactants, etc.
  • WO97/39091 A published 10/23/97 includes disclosure of a detergent surfactant composition comprising at least 0.5 (especially 5, more especially 10, most especially 20) wt% of longer alkyl chain, MCB surfactant of formula (I).
  • WO97/39089 A published 10/23/97 includes disclosure of liquid cleaning compositions comprising: (a) as part of surfactant system 0.1-50 (especially 1-40) wt % of a mid-chain branched surfactant of formula (I); (b) as the other part of the surfactant system 0.1-50 wt% of co-surfactant(s); (c) 1-99.7 wt% of a solvent; and (d) 0.1-75 wt% of adjunct ingredients.
  • the surfactant composition has an average total number of C atoms in the A-X moiety of 14.5-17.5 (especially 15-17); and B is a hydrophilic moiety selected from sulphates, polyoxyalkylene (especially polyoxyethylene and polyoxypropylene) and alkoxylated sulphates.
  • WO97/39088 A published 10/23/97 includes disclosure of a surfactant composition comprising 0.001-100%) of MCB primary alkyl alkoxylated sulphate(s) of formula (I): CH 3 CH 2 (CH) w CHR(CH 2 ) x CHR 1 (CH 2 ) y CHR 2 (CH 2 ) z OS0 3 M (I) wherein the total number
  • R 1 of C atoms in compound (I) including R, R and R is preferably 14-20 and the total number of C atoms in the branched alkyl moieties preferably averages 14.5-17.5 (especially 15-17);
  • M are cations especially selected from Na, K, Ca, Mg, quaternary alkyl ammonium of formula N R R 6 (LI); M is especially Na and/or K;
  • R 3 , R 4 , R 5 , R 6 are selected from H, 1-22C alkylene, 4-22C branched alkylene, 1-6C alkanol, 1-22C alkenylene, and/or 4-22C branched alkenylene;
  • w, x, y 0-13;
  • z is at least 1; w+x+y+z
  • WO97/39088 A also discloses (1) a surfactant composition comprising a mixture of branched primary alkyl sulphates of formula (I) as above.
  • M is a water-soluble cation;
  • a detergent composition comprising: (a) 0.001-99%) of MCB primary alkyl alkoxylated sulphate of formula (Hi) and/or (IV).
  • the compounds are ethoxylated with average degree of ethoxylation of 0.1-10.
  • the alkyl alkoxylated sulphates may be produced directly from the polyoxyalkylene alcohol by sulphating with S0 3 and neutralising.
  • WO 98/23566 A Shell, published 06/04/98 discloses branched primary alcohol compositions having 8-36 C atoms and an average number of branches per mol of 0.7-3 and comprising ethyl and methyl branches. Also disclosed are: (1) a branched primary alkoxylate composition preparable by reacting a branched primary alcohol composition as above with an oxirane compound; (2) a branched primary alcohol sulphate preparable by sulphating a primary alcohol composition as above; (3) a branched alkoxylated primary alcohol sulphate preparable by alkoxylating and sulphating a branched alcohol composition as above; (4) a branched primary alcohol carboxylate preparable by oxidising a branched primary alcohol composition as above; (5) a detergent composition comprising: (a) surfactant(s) selected from branched primary alcohol alkoxylates as in (1), branched primary alcohol sulphates as in (2), and branched alkoxylated primary
  • Biodegradably branched surfactants useful herein also include the modified alkylaromatic, especially modified alkylbenzenesulfonate surfactants described in copending commonly assigned patent applications (P&G Case Nos. 7303P, 7304P).
  • these surfactants include (P&G Case 6766P) alkylarylsulfonate surfactant systems comprising from about 10% to about 100%o by weight of said surfactant system of two or more crystallinity-disrupted alkylarylsulfonate surfactants of formula (B-Ar- D)a(M c l + )b wherein D is SO3 " , M is a cation or cation mixture, q is the valence of said cation, a and b are numbers selected such that said composition is electroneutral; Ar is selected from benzene, toluene, and combinations thereof; and B comprises the sum of at least one primary hydrocarbyl moiety containing from 5 to 20 carbon atom
  • compositions also include (P&G Case 7303P) surfactant mixtures comprising (preferably, consisting essentially of): (a) from about 60%o to about 95 % by weight (preferably from about 65 % to about 90%>, more preferably from about 70% to about 85%o) of a mixture of branched alkylbenzenesulfonates having formula (I):
  • L and R is from 9 to 15, more preferably, 10 to 14) and further, wherein L has no substituents other than A, R 1 and R 2 ;
  • M is a cation or cation mixture (preferably selected from H, Na, K, Ca, Mg and mixtures thereof, more preferably selected from H, Na, K and mixtures thereof, more preferably still, selected from H, Na, and mixtures thereof) having a valence q (typically from 1 to 2, preferably 1);
  • a and b are integers selected such that said compounds are electroneutral (a is typically from 1 to 2, preferably 1, b is 1);
  • R 1 is C ⁇ -C alkyl (preferably C ⁇ -C 2 alkyl, more preferably methyl);
  • R 2 is selected from H and C ⁇ -C 3 alkyl (preferably H and C ⁇ -C 2 alkyl, more preferably H and methyl, more preferably H and methyl provided that in at least about 0.5, more preferably 0.7, more preferably 0.9 to 1.0 mo
  • Y is an unsubstituted linear aliphatic moiety consisting of carbon and hydrogen having two methyl termini, and wherein Y has an average carbon content of from about 10.0 to about 14.0 (preferably from about 11.0 to about 13.0, more preferably 11.5 to 12.5 carbon atoms); (preferably said mixture of nonbranched alkylbenzenesulfonates is further characterized by a sum of carbon atoms in Y, of from 9 to 15, more preferably 10 to 14); and wherein said composition is further characterized by a 2/3-phenyl index of from about 350 to about 10,000 (preferably from about 400 to about 1200, more preferably from about 500 to about 700) (and also preferably wherein said surfactant mixture has a 2-mefhyl-2-phenyl index of less than about 0.3, preferably less than about 0.2, more preferably less than about 0.1, more preferably still, from 0 to 0.05).
  • surfactant mixtures comprising the product of a process comprising the steps of: alkylating benzene with an alkylating mixture; sulfonating the product of (I); and neutralizing the product of (LI); wherein said alkylating mixture comprises: (a) from about 1% to about 99.9%, by weight of branched C 7 -C o monoolefins, said branched monoolefins having structures identical with those of the branched monoolefins formed by dehydrogenating branched parafins of formula R j LR 2 wherein L is an acyclic aliphatic moiety consisting of carbon and hydrogen and containing two terminal methyls; R 1 is Ci to C 3 alkyl; and R 2 is selected from H and Cj to C alkyl; and (b) from about 0.1 % to about 85%o, by weight of C 7 -
  • Bleaching System The laundry compositions of the present invention may comprise a bleaching system.
  • Bleaching systems typically comprise a "bleaching agent” (source of hydrogen peroxide) and an "initiator” or “catalyst".
  • bleaching agents will typically be at levels of from about 1%, preferably from about 5% to about 30%), preferably to about 20%> by weight of the composition.
  • the amount of bleach activator will typically be from about 0.1 %, preferably from about 0.5% to about 60%, preferably to about 40%> by weight, of the bleaching composition comprising the bleaching agent-plus-bleach activator.
  • Bleaching Agents Hydrogen peroxide sources are described in detail in the herein incorporated Kirk Othmer's Encyclopedia of Chemical Technology, 4th Ed (1992, John Wiley & Sons), Vol. 4, pp. 271-300 "Bleaching Agents (Survey)", and include the various forms of sodium perborate and sodium percarbonate, including various coated and modified forms.
  • the preferred source of hydrogen peroxide used herein can be any convenient source, including hydrogen peroxide itself.
  • perborate e.g., sodium perborate (any hydrate but preferably the mono- or tetra-hydrate), sodium carbonate peroxyhydrate or equivalent percarbonate salts, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, or sodium peroxide
  • sources of available oxygen such as persulfate bleach (e.g., OXONE, manufactured by DuPont).
  • Sodium perborate monohydrate and sodium percarbonate are particularly preferred. Mixtures of any convenient hydrogen peroxide sources can also be used.
  • a preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1,250 micrometers.
  • the percarbonate can be coated with a silicate, borate or water-soluble surfactants.
  • Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
  • compositions of the present invention may also comprise as the bleaching agent a chlorine-type bleaching material.
  • a chlorine-type bleaching material such agents are well known in the art, and include for example sodium dichloroisocyanurate (“NaDCC").
  • NaDCC sodium dichloroisocyanurate
  • chlorine-type bleaches are less preferred for compositions which comprise enzymes.
  • the peroxygen bleach component in the composition is formulated with an activator (peracid precursor).
  • the activator is present at levels of from about 0.01%, preferably from about 0.5%, more preferably from about 1% to about 15%), preferably to about 10%, more preferably to about 8%, by weight of the composition.
  • Preferred activators are selected from the group consisting of tetraacetyl ethylene diamine (TAED), benzoylcaprolactam (BzCL), 4- nitrobenzoylcaprolactam, 3-chlorobenzoylcaprolactam, benzoyloxybenzenesulphonate
  • BOBS nonanoyloxybenzenesulphonate
  • NOBS phenyl benzoate
  • PhBz decanoyloxybenzenesulphonate
  • BZVL benzoylvalerolactam
  • Cg-OBS perhydrolyzable esters and mixtures thereof, most preferably benzoylcaprolactam and benzoylvalerolactam.
  • Particularly preferred bleach activators in the pH range from about 8 to about 9.5 are those selected having an OBS or VL leaving group.
  • Preferred hydrophobic bleach activators include, but are not limited to, nonanoyloxybenzenesulphonate (NOBS), 4-[N-(nonaoyl) amino hexanoyloxyj-benzene sulfonate sodium salt (NACA-OBS) an example of which is described in U.S. Patent No. 5,523,434, dodecanoyloxybenzenesulphonate (LOBS or C12-OBS), 10- undecenoyloxybenzenesulfonate (UDOBS or C1 1 -OBS with unsaturation in the 10 position), and decanoyloxybenzoic acid (DOBA).
  • NOBS nonanoyloxybenzenesulphonate
  • NACA-OBS 4-[N-(nonaoyl) amino hexanoyloxyj-benzene sulfonate sodium salt
  • DOBA decanoyloxybenzoic acid
  • Preferred bleach activators are those described in U.S. 5,698,504 Christie et al., issued December 16, 1997; U.S. 5,695,679 Christie et al. issued December 9, 1997; U.S. 5,686,401 Willey et al., issued November 11, 1997; U.S. 5,686,014 Hartshorn et al., issued November 11, 1997; U.S. 5,405,412 Willey et al, issued April 11, 1995; U.S. 5,405,413 Willey et al, issued April 11, 1995; U.S. 5,130,045 Mitchel et al., issued July 14, 1992; and U.S. 4,412,934 Chung et al., issued November 1, 1983, and copending patent applications U. S. Serial Nos. 08/709,072, 08/064,564, all of which are incorporated herein by reference.
  • the mole ratio of peroxygen bleaching compound (as AvO) to bleach activator in the present invention generally ranges from at least 1 :1, preferably from about 20:1, more preferably from about 10: 1 to about 1:1, preferably to about 3:1.
  • Quaternary substituted bleach activators may also be included.
  • the present laundry compositions preferably comprise a quaternary substituted bleach activator (QSBA) or a quaternary substituted peracid (QSP); more preferably, the former.
  • QSBA quaternary substituted bleach activator
  • QSP quaternary substituted peracid
  • Preferred QSBA structures are further described in U.S. 5,686,015 Willey et al., issued November 11, 1997; U.S. 5,654,421 Taylor et al., issued August 5, 1997; U.S. 5,460,747 Gosselink et al, issued October 24, 1995; U.S. 5,584,888 Miracle et al., issued December 17, 1996; and U.S. 5,578,136 Taylor et al., issued November 26, 1996; all of which are incorporated herein by reference.
  • bleach activators useful herein are amide-substituted as described in U.S. 5,698,504, U.S. 5,695,679, and U.S. 5,686,014 each of which are cited herein above.
  • Preferred examples of such bleach activators include: (6- octanamidocaproyl)oxybenzenesulfonate,(6-nonanamidocaproyl) oxybenzenesulfonate, (6-decanamidocaproyl)oxybenzenesulfonate and mixtures thereof.
  • bleaching results can be obtained from bleaching systems having with in-use pH of from about 6 to about 13, preferably from about 9.0 to about 10.5.
  • activators with electron-withdrawing moieties are used for near-neutral or sub-neutral pH ranges.
  • Alkalis and buffering agents can be used to secure such pH.
  • Acyl lactam activators as described in U.S. 5,698,504, U.S. 5,695,679 and U.S. 5,686,014, each of which is cited herein above, are very useful herein, especially the acyl caprolactams (see for example WO 94-28102 A) and acyl valerolactams (see U.S. 5,503,639 Willey et al., issued April 2, 1996 incorporated herein by reference).
  • compositions and methods may utilize metal-containing bleach catalysts that are effective for use in bleaching compositions.
  • metal-containing bleach catalysts that are effective for use in bleaching compositions.
  • Preferred are manganese and cobalt-containing bleach catalysts.
  • One type of metal-containing bleach catalyst is a catalyst system comprising a transition metal cation of defined bleach catalytic activity, such as copper, iron, titanium, ruthenium tungsten, molybdenum, or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra (methylenephosphonic acid) and water-soluble salts thereof.
  • a transition metal cation of defined bleach catalytic activity such as copper, iron, titanium, ruthenium tungsten, molybdenum, or manganese cations
  • an auxiliary metal cation having little or no bleach catalytic activity such as zinc or aluminum cations
  • a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid
  • compositions herein can be catalyzed by means of a manganese compound.
  • a manganese compound Such compounds and levels of use are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Patent Nos. 5,576,282; 5,246,621; 5,244,594; 5,194,416; and 5,114,606; and European Pat. App. Pub. Nos.
  • Preferred examples of these catalysts include Mn ⁇ 2( u -C)3( ,7-trimethyl- 1,4,7- triazacyclononane)2(PF6)2, Mn ⁇ i2(u-O) ⁇ (u-OAc)2(l,4,7-trime hyl- 1,4,7- triazacyclononane)2(ClO4)2, Mn ⁇ 4(u-O)6(l ,4,7-triazacyclononane)4(Cl ⁇ 4)4, MnHI- Mn IV 4(u-O) ⁇ (u-OAc)2-(l,4,7-trimethyl-l,4,7-triazacyclononane)2(Cl ⁇ 4)3, Mn rv ( 1,4,7- trimethyl-l,4,7-triazacyclononane)- (OCH3)3(PFg), and mixtures thereof.
  • metal-based bleach catalysts include those disclosed in U.S. Patent Nos. 4,430,243 and U.S. 5,114,611.
  • the use of manganese with various complex ligands to enhance bleaching is also reported in the following: U.S. Patent Nos. 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161; and 5,227,084.
  • Cobalt Metal Complexes - Cobalt bleach catalysts useful herein are known, and are described, for example, in U.S. Patent Nos. 5,597,936; 5,595,967; and 5,703,030; and M. L. Tobe, "Base Hydrolysis of Transition-Metal Complexes", Adv. Inorg. Bioinorg.
  • cobalt catalyst useful herein are cobalt pentaamine acetate salts having the formula [Co(NH3)5 ⁇ Ac] Ty, wherein "OAc” represents an acetate moiety and “Ty” is an anion, and especially cobalt pentaamine acetate chloride, [Co(NH 3 ) 5 OAc]Cl2; as well as [Co(NH 3 ) 5 OAc](OAc) 2 ;
  • cobalt catalysts are readily prepared by known procedures, such as taught for example in U.S. Patent Nos. 5,597,936; 5,595,967; and 5,703,030; in the Tobe article and the references cited therein; and in U.S. Patent 4,810,410; J. Chem. Ed. (1989), 66 (12), 1043-45; The Synthesis and Characterization of Inorganic Compounds, W.L. Jolly (Prentice-Hall; 1970), pp. 461-3; Inorg. Chem.. 18, 1497-1502 (1979); Inorg. Chem., 21, 2881-2885 (1982); Inorg. Chem.. 18, 2023-2025 (1979); Inorg. Synthesis, 173-176 (1960); and Journal of Physical Chemistry. 56, 22-25 (1952).
  • Transition Metal Complexes of Macropolycyclic Rigid Ligands - Compositions herein may also suitably include as bleach catalyst a transition metal complex of a macropolycyclic rigid Iigand.
  • macropolycyclic rigid Iigand is sometimes abbreviated as "MRL” in discussion below.
  • the amount used is a catalytically effective amount, suitably about 1 ppb or more, for example up to about 99.9%>, more typically about 0.001 ppm or more, preferably from about 0.05 ppm to about 500 ppm (wherein "ppb” denotes parts per billion by weight and "ppm” denotes parts per million by weight).
  • Suitable transition metals e.g., Mn are illustrated hereinafter.
  • Macropolycyclic means a MRL is both a macrocycle and is polycyclic.
  • Polycyclic means at least bicyclic.
  • the term “rigid” as used herein herein includes “having a superstructure” and “cross-bridged”. "Rigid” has been defined as the constrained converse of flexibility: see D.H. Busch., Chemical Reviews.. (1993), 93, 847-860, incorporated by reference.
  • rigid as used herein means that the MRL must be determinably more rigid than a macrocycle ("parent macrocycle") which is otherwise identical (having the same ring size and type and number of atoms in the main ring) but lacking a superstructure (especially linking moieties or, preferably cross-bridging moieties) found in the MRL's.
  • parent macrocycle which is otherwise identical (having the same ring size and type and number of atoms in the main ring) but lacking a superstructure (especially linking moieties or, preferably cross-bridging moieties) found in the MRL's.
  • the practitioner will use the free form (not the metal-bound form) of the macrocycles.
  • Rigidity is well-known to be useful in comparing macrocycles; suitable tools for determining, measuring or comparing rigidity include computational methods (see, for example, Zimmer, Chemical Reviews. (1995), 95(38), 2629-2648 or Hancock et al., Inorganica Chimica Acta. (1989), 164,
  • Preferred MRL's herein are a special type of ultra-rigid Iigand which is cross- bridged.
  • a "cross-bridge” is nonlimitingly illustrated in 1.11 hereinbelow. In 1.11, the cross-bridge is a -CH2CH2- moiety. It bridges N 1 and N 8 in the illustrative structure. By comparison, a "same-side" bridge, for example if one were to be introduced across N and N 12 m • 1.11, would not be sufficient to constitute a "cross-bridge” and accordingly would not be preferred.
  • Suitable metals in the rigid Iigand complexes include Mn(II), Mn(LII), Mn(IV), Mn(V), Fe(II), Fe(IH), Fe(IV), Co(I), Co(II), Co(IE), Ni(I), Ni(H), Ni(III), Cu(I), Cu(fl), Cu(UI), Cr(H), Cr( ⁇ i), Cr(IV), Cr(V), Cr(VI), V(III), V(IV), V(V), Mo(IV), Mo(V), Mo(VI), W(IV), W(V), W(VI), Pd(II), Ru(H), Ru(III), and Ru(IV).
  • Preferred transition- metals in the instant transition-metal bleach catalyst include manganese, iron and chromium.
  • the MRL's (and the corresponding transition-metal catalysts) herein suitably comprise:
  • a covalently connected non-metal superstructure capable of increasing the rigidity of the macrocycle, preferably selected from
  • a bridging superstructure such as a linking moiety
  • a cross-bridging superstructure such as a cross-bridging linking moiety
  • superstructure is used herein as defined in the literature by Busch et al., see, for example, articles by Busch in "Chemical Reviews”.
  • Preferred superstructures herein not only enhance the rigidity of the parent macrocycle, but also favor folding of the macrocycle so that it co-ordinates to a metal in a cleft.
  • Suitable superstructures can be remarkably simple, for example a linking moiety such as any of those illustrated in Fig. 1 and Fig. 2 below, can be used.
  • n is an integer, for example from 2 to 8, preferably less than 6, typically 2 to 4, or
  • Fig. 2 wherein m and n are integers from about 1 to 8, more preferably from 1 to 3; Z is N or CH; and T is a compatible substituent, for example H, alkyl, trialkylammonium, halogen, nitro, sulfonate, or the like.
  • the aromatic ring in 1.10 can be replaced by a saturated ring, in which the atom in Z connecting into the ring can contain N, O, S or C.
  • Suitable MRL's are further nonlimitingly illustrated by the following compound:
  • this Iigand is named 5,12-dimethyl-l,5,8,12-tetraazabicyclo[6.6.2]hexadecane using the extended von Baeyer system. See "A Guide to IUPAC Nomenclature of Organic Compounds: Recommendations 1993", R. Panico, W.H. Powell and J-C Richer (Eds.), Blackwell Scientific Publications, Boston, 1993; see especially section R-2.4.2.1.
  • Transition-metal bleach catalysts of Macrocyclic Rigid Ligands which are suitable for use in the invention compositions can in general include known compounds where they conform with the definition herein, as well as, more preferably, any of a large number of novel compounds expressly designed for the present laundry or laundry uses, and non-limitingly illustrated by any of the following:
  • Hexafluorophosphate Aquo-hydroxy-5,12-dimethyl-l,5,8,12-tetraazabicyclo[6.6.2]hexadecaneManganese(III)
  • compositions and laundry processes herein can be adjusted to provide on the order of at least one part per hundred million of the active bleach catalyst species in the aqueous washing medium, and will preferably provide from about 0.01 ppm to about 25 ppm, more preferably from about 0.05 ppm to about 10 ppm, and most preferably from about 0.1 ppm to about 5 ppm, of the bleach catalyst species in the wash liquor.
  • typical compositions herein will comprise from about 0.0005%. to about 0.2%, more preferably from about 0.004%. to about 0.08%, of bleach catalyst, especially manganese or cobalt catalysts, by weight of the bleaching compositions.
  • compositions herein may comprise one or more other bleach catalysts.
  • Preferred bleach catalysts are zwitterionic bleach catalysts, which are described in U.S. Patent No. 5,576,282 (especially 3-(3,4-dihydroisoquinolinium) propane sulfonate.
  • Other bleach catalysts include cationic bleach catalysts are described in U.S. Patent Nos. 5,360,569, 5,442,066, 5,478,357, 5,370,826, 5,482,515, 5,550,256, and WO 95/13351, WO 95/13352, and WO 95/13353.
  • PAP phthalimido- peroxy-caproic acid
  • Enzyme Stabilizers - Enzymes for use in detergents can be stabilized by various techniques. Enzyme stabilization techniques are disclosed and exemplified in U.S. 3,600,319, EP 199,405 and EP 200,586. Enzyme stabilization systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532. The enzymes employed herein can be stabilized by the presence of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes. Suitable enzyme stabilizers and levels of use are described in U.S. Pat. Nos. 5,705,464, 5,710,115 and 5,576,282.
  • compositions described herein preferably comprise one or more detergent builders or builder systems.
  • the compositions will typically comprise at least about 1%> builder, preferably from about 5%, more preferably from about 10%> to about 80%., preferably to about 50%>, more preferably to about 30%> by weight, of detergent builder. Lower or higher levels of builder, however, are not meant to be excluded.
  • Preferred builders for use in the detergent and laundry compositions, particularly dishwashing compositions, described herein include, but are not limited to, water-soluble builder compounds, (for example polycarboxylates) as described in U.S. Patent Nos. 5,695,679, 5,705,464 and 5,710,115.
  • suitable polycarboxylates are disclosed in U.S. Patent Nos. 4,144,226, 3,308,067 and 3,723,322.
  • Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly titrates.
  • Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates (see, for example, U.S. Patent Nos. 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137), phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates.
  • polyphosphates exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates
  • phosphonates see, for example, U.S. Patent Nos. 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137
  • phytic acid silicates
  • carbonates including bi
  • non-phosphate builders are required in some locales.
  • the compositions herein function surprisingly well even in the presence of the so-called "weak” builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt” situation that may occur with zeolite or layered silicate builders.
  • Suitable silicates include the water-soluble sodium silicates with an Si0 2 :Na 0 ratio of from about 1.0 to 2.8, with ratios of from about 1.6 to 2.4 being preferred, and about 2.0 ratio being most preferred.
  • the silicates may be in the form of either the anhydrous salt or a hydrated salt. Sodium silicate with an Si0 :Na 0 ratio of 2.0 is the most preferred.
  • Silicates, when present, are preferably present in the detergent and laundry compositions described herein at a level of from about 5% to about 50% by weight of the composition, more preferably from about 10% to about 40%> by weight.
  • Partially soluble or insoluble builder compounds which are suitable for use in the detergent and laundry compositions, particularly granular detergent compositions, include, but are not limited to, crystalline layered silicates, preferably crystalline layered sodium silicates (partially water-soluble) as described in U.S. Patent No. 4,664,839, and sodium aluminosilicates (water-insoluble).
  • these builders are typically present at a level of from about 1% to 80% by weight, preferably from about 10%> to 70% by weight, most preferably from about 20% to 60%) by weight of the composition.
  • Crystalline layered sodium silicates having the general formula NaMSi x ⁇ 2 x +l-yH2 ⁇ wherein M is sodium or hydrogen, x is a number from about 1.9 to about 4, preferably from about 2 to about 4, most preferably 2, and y is a number from about 0 to about 20, preferably 0 can be used in the compositions described herein.
  • Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043.
  • the most preferred material is delta-Na2Si ⁇ 5, available from Hoechst AG as NaSKS-6
  • NaSKS-6 silicate builder
  • NaSKS-6 silicate builder does not contain aluminum.
  • NaSKS-6 has the delta-Na2Si ⁇ 5 morphology form of layered silicate.
  • SKS-6 is a highly preferred layered silicate for use in the compositions described herein herein, but other such layered silicates, such as those having the general formula NaMSi x ⁇ 2 x +i -yH2 ⁇ wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used in the compositions described herein.
  • layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms.
  • the delta-Na2Si ⁇ 5 (NaSKS-6 form) is most preferred for use herein.
  • Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
  • the crystalline layered sodium silicate material is preferably present in granular detergent compositions as a particulate in intimate admixture with a solid, water-soluble ionizable material.
  • the solid, water-soluble ionizable material is preferably selected from organic acids, organic and inorganic acid salts and mixtures thereof.
  • Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations.
  • Aluminosilicate builders have the empirical formula:
  • the aluminosilicate builder is an aluminosilicate zeolite having the unit cell formula:
  • aluminosilicate builders are preferably in hydrated form and are preferably crystalline, containing from about 10%) to about 28%., more preferably from about 18%. to about 22% water in bound form. These aluminosilicate ion exchange materials can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived.
  • aluminosilicate ion exchange material A method for producing aluminosilicate ion exchange materials is disclosed in U.S. 3,985,669.
  • Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite MAP and Zeolite HS and mixtures thereof.
  • the crystalline aluminosilicate ion exchange material has the formula:
  • the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
  • Zeolite X has the formula:
  • Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
  • succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof.
  • a particularly preferred compound of this type is dodecenylsuccinic acid.
  • succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in
  • Fatty acids e.g., C12-C18 monocarboxylic acids
  • the aforesaid builders especially citrate and/or the succinate builders, to provide additional builder activity.
  • Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
  • Dispersants One or more suitable polyalkyleneimine dispersants may be incorporated into the laundry compositions of the present invention. Examples of such suitable dispersants can be found in European Patent Application Nos. 111,965, 111,984, and 112,592; U.S. Patent Nos. 4,597,898, 4,548,744, and 5,565,145. However, any suitable clay/soil dispersent or anti-redepostion agent can be used in the laundry compositions of the present invention.
  • polymeric dispersing agents which include polymeric polycarboxylates and polyethylene glycols, are suitable for use in the present invention.
  • Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
  • Particularly suitable polymeric polycarboxylates can be derived from acrylic acid.
  • acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
  • the average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 5,000.
  • Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in U.S. 3,308,067.
  • Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent.
  • Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
  • the average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000.
  • the ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1 :1, more preferably from about 10:1 to 2:1.
  • Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts.
  • Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982, as well as in EP 193,360, published September 3, 1986, which also describes such polymers comprising hydroxypropylacrylate.
  • Still other useful dispersing agents include the maleic/acrylic/vinyl alcohol terpolymers.
  • Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 terpolymer of acrylic/maleic/vinyl alcohol.
  • PEG polyethylene glycol
  • PEG can exhibit dispersing agent performance as well as act as a clay soil removal- antiredeposition agent.
  • Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000.
  • Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders.
  • Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of about 10,000.
  • compositions according to the present invention may optionally comprise one or more soil release agents.
  • soil release agents will generally comprise from about 0.01%>, preferably from about 0.1%), more preferably from about 0.2%) to about 10%, preferably to about 5%, more preferably to about 3% by weight, of the composition.
  • suitable soil release polymers are disclosed in: U.S. Patent Nos.
  • compositions of the present invention herein may also optionally contain a chelating agent which serves to chelate metal ions and metal impurities which would otherwise tend to deactivate the bleaching agent(s).
  • a chelating agent which serves to chelate metal ions and metal impurities which would otherwise tend to deactivate the bleaching agent(s).
  • Useful chelating agents can include amino carboxylates, phosphonates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof. Further examples of suitable chelating agents and levels of use are described in U.S. Pat. Nos. 5,705,464, 5,710,115, 5,728,671 and 5,576,282.
  • compositions herein may also contain water-soluble methyl glycine diacetic acid (MGDA) salts (or acid form) as a chelant or co-builder useful with, for example, insoluble builders such as zeolites, layered silicates and the like.
  • MGDA water-soluble methyl glycine diacetic acid
  • these chelating agents will generally comprise from about 0.1% to about 15%., more preferably from about 0.1 % to about 3.0% by weight of the detergent compositions herein.
  • Suds suppressor - Another optional ingredient is a suds suppressor, exemplified by silicones, and silica-silicone mixtures. Examples of suitable suds suppressors are disclosed in U.S. Patent Nos. 5,707,950 and 5,728,671. These suds suppressors are normally employed at levels of from 0.001% to 2% by weight of the composition, preferably from 0.01%> to 1%> by weight.
  • Softening agents - Fabric softening agents can also be incorporated into laundry detergent compositions in accordance with the present invention.
  • Inorganic softening agents are exemplified by the smectite clays disclosed in GB-A-1 400 898 and in U.S. 5,019,292.
  • Organic softening agents include the water insoluble tertiary amines as disclosed in GB-A-1 514 276 and EP-B-011 340 and their combination with mono C12- C14 quaternary ammonium salts are disclosed in EP-B-026 527 and EP-B-026 528 and di-long-chain amides as disclosed in EP-B-0 242 919.
  • Other useful organic ingredients of fabric softening systems include high molecular weight polyethylene oxide materials as disclosed in EP-A-0 299 575 and 0 313 146.
  • Levels of smectite clay are normally in the range from 2% to 20%>, more preferably from 5%> to 15%> by weight, with the material being added as a dry mixed component to the remainder of the formulation.
  • Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5%> to 5% by weight, normally from 1%> to 3%> by weight whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1%o to 2%, normally from 0.15% to 1.5% by weight.
  • Non-limiting examples of softener-compatible anions for the quaternary ammonium compounds and amine precursors include chloride or methyl sulfate.
  • Dye transfer inhibition can also include compounds for inhibiting dye transfer from one fabric to another of solubilized and suspended dyes encountered during fabric laundering and conditioning operations involving colored fabrics.
  • the detergent compositions according to the present invention can also comprise from 0.001% to 10 %, preferably from 0.01% to 2%, more preferably from 0.05% to 1% by weight of polymeric dye transfer inhibiting agents.
  • Said polymeric dye transfer inhibiting agents are normally incorporated into detergent compositions in order to inhibit the transfer of dyes from colored fabrics onto fabrics washed therewith. These polymers have the ability to complex or adsorb the fugitive dyes washed out of dyed fabrics before the dyes have the opportunity to become attached to other articles in the wash.
  • Especially suitable polymeric dye transfer inhibiting agents are polyamine N- oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone polymers, polyvinyloxazolidones and polyvinyhmidazoles or mixtures thereof. Examples of such dye transfer inhibiting agents are disclosed in U.S. Patent Nos. 5,707,950 and 5,707,951.
  • Additional suitable dye transfer inhibiting agents include, but are not limited to, cross-linked polymers.
  • Cross-linked polymers are polymers whose backbone are interconnected to a certain degree; these links can be of chemical or physical nature, possibly with active groups n the backbone or on branches; cross-linked polymers have been described in the Journal of Polymer Science, volume 22, pages 1035-1039.
  • the cross-linked polymers are made in such a way that they form a three-dimensional rigid structure, which can entrap dyes in the pores formed by the three-dimensional structure.
  • the cross-linked polymers entrap the dyes by swelling.
  • Such cross-linked polymers are described in the co-pending European patent application 94870213.9.
  • pH and Buffering Variation Many of the detergent and laundry compositions described herein will be buffered, i.e., they are relatively resistant to pH drop in the presence of acidic soils. However, other compositions herein may have exceptionally low buffering capacity, or may be substantially unbuffered. Techniques for controlling or varying pH at recommended usage levels more generally include the use of not only buffers, but also additional alkalis, acids, pH-jump systems, dual compartment containers, etc., and are well known to those skilled in the art.
  • adjuncts can include one or more materials for assisting or enhancing laundry performance, treatment of the substrate to be cleaned, or designed to improve the aesthetics of the compositions.
  • Adjuncts which can also be included in compositions of the present invention, at their conventional art-established levels for use (generally, adjunct materials comprise, in total, from about 30%> to about 99.9%, preferably from about 70%) to about 95%, by weight of the compositions), include other active ingredients such as non-phosphate builders, color speckles, silvercare, anti-tarnish and/or anti-corrosion agents, dyes, fillers, germicides, alkalinity sources, hydrotropes, anti- oxidants, perfumes, solubilizing agents, carriers, processing aids, pigments, and pH control agents as described in U.S. Patent Nos. 5,705,464, 5,710,115, 5,698,504, 5,695,679, 5,686,014 and 5,646,101.
  • the invention herein also encompasses a laundering pretreatment process for fabrics which have been soiled or stained comprising directly contacting said stains and/or soils with a highly concentrated form of the laundry composition set forth above prior to washing such fabrics using conventional aqueous washing solutions.
  • the laundry composition remains in contact with the soil/stain for a period of from about 30 seconds to 24 hours prior to washing the pretreated soiled/stained substrate in conventional manner. More preferably, pretreatment times will range from about 1 to 180 minutes.
  • the present invention also encompasses the inclusion of instructions on the use of the enzyme granulate containing compositions of the present invention with the packages containing the compositions herein or with other forms of advertising associated with the sale or use of the compositions.
  • the instructions may be included in any manner typically used by consumer product manufacturing or supply companies. Examples include providing instructions on a label attached to the container holding the composition; on a sheet either attached to the container or accompanying it when purchased; or in advertisements, demonstrations, and/or other written or oral instructions which may be connected to the purchase or use of the compositions.
  • the instructions will include a description of the use of the composition, for instance, the recommended amount of composition to use in a washing machine to clean the fabric; the recommended amount of composition to apply to the fabric; if soaking or rubbing is appropriate .
  • compositions of the present invention are preferably included in a product.
  • the product preferably comprises a composition comprising one or more enzyme granulates of the present invention, and optionally one or more cleaning adjunct materials, and further comprises instructions for using the product to launder fabrics by contacting a fabric in need of cleaning with an effective amount of the composition such that the composition cleans the fabric.
  • compositions of the present invention can be suitably prepared by any process chosen by the formulator, non-limiting examples of which are described in U.S. 5,691,297 Nassano et al., issued November 11, 1997; U.S. 5,574,005 Welch et al, issued November 12, 1996; U.S. 5,569,645 Dinniwell et al., issued October 29, 1996; U.S. 5,565,422 Del Greco et al, issued October 15, 1996; U.S. 5,516,448 Capeci et al., issued May 14, 1996; U.S. 5,489,392 Capeci et al., issued February 6, 1996; U.S. 5,486,303 Capeci et al., issued January 23, 1996 all of which are incorporated herein by reference.
  • compositions of the present invention can be formulated into any suitable laundry detergent composition, non-limiting examples of which are described in U.S. 5,679,630 Baeck et al., issued October 21, 1997; U.S. 5,565,145 Watson et al., issued October 15, 1996; U.S. 5,478,489 Fredj et al., issued December 26, 1995; U.S. 5,470,507 Fredj et al., issued November 28, 1995; U.S. 5,466,802 Panandiker et al., issued November 14, 1995; U.S. 5,460,752 Fredj et al., issued October 24, 1995; U.S. 5,458,810 Fredj et al., issued October 17, 1995; U.S. 5,458,809 Fredj et al., issued October 17, 1995; U.S. 5,288,431 Huber et al., issued February 22, 1994 all of which are incorporated herein by reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
PCT/US2000/002666 1999-02-02 2000-02-02 Low density enzyme granulates and compositions employing same WO2000046332A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU26380/00A AU2638000A (en) 1999-02-02 2000-02-02 Low density enzyme granulates and compositions employing same
CA002360657A CA2360657A1 (en) 1999-02-02 2000-02-02 Low density enzyme granulates and compositions employing same
JP2000597394A JP2002535980A (ja) 1999-02-02 2000-02-02 低密度酵素顆粒およびそれを使用する組成物
BR0007954-5A BR0007954A (pt) 1999-02-02 2000-02-02 Granulados enzimáticos de baixa densidade e composições empregando os mesmos
EP00904654A EP1149145A1 (en) 1999-02-02 2000-02-02 Low density enzyme granulates and compositions employing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11842699P 1999-02-02 1999-02-02
US60/118,426 1999-02-02

Publications (1)

Publication Number Publication Date
WO2000046332A1 true WO2000046332A1 (en) 2000-08-10

Family

ID=22378514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/002666 WO2000046332A1 (en) 1999-02-02 2000-02-02 Low density enzyme granulates and compositions employing same

Country Status (7)

Country Link
EP (1) EP1149145A1 (zh)
JP (1) JP2002535980A (zh)
CN (1) CN1343247A (zh)
AU (1) AU2638000A (zh)
BR (1) BR0007954A (zh)
CA (1) CA2360657A1 (zh)
WO (1) WO2000046332A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11976035B2 (en) 2019-06-12 2024-05-07 Nouryon Chemicals International B.V. Process for the production of diacyl peroxides
US11976034B2 (en) 2019-06-12 2024-05-07 Nouryon Chemicals International B.V. Process for the production of diacyl peroxides

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2963356T3 (es) * 2019-06-12 2024-03-26 Nouryon Chemicals Int Bv Método para aislar ácido carboxílico a partir de una corriente lateral acuosa

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252664A (en) * 1978-10-30 1981-02-24 Colgate-Palmolive Company Effervescent granules
GB2168377A (en) * 1984-12-17 1986-06-18 Procter & Gamble Stable liquid dishwashing detergent containing abrasive, clay and low density particles
US4931195A (en) * 1987-07-15 1990-06-05 Colgate-Palmolive Company Low viscosity stable non-aqueous suspension containing organophilic clay and low density filler

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1129163T3 (da) * 1998-11-13 2011-03-21 Danisco Us Inc Granulat med lav massefylde i fluidiseret lag
ATE321838T1 (de) * 1999-01-08 2006-04-15 Genencor Int Zusammensetzungen mit niedriger dichte und partikeln der diese enthalten

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252664A (en) * 1978-10-30 1981-02-24 Colgate-Palmolive Company Effervescent granules
GB2168377A (en) * 1984-12-17 1986-06-18 Procter & Gamble Stable liquid dishwashing detergent containing abrasive, clay and low density particles
US4931195A (en) * 1987-07-15 1990-06-05 Colgate-Palmolive Company Low viscosity stable non-aqueous suspension containing organophilic clay and low density filler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1149145A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11976035B2 (en) 2019-06-12 2024-05-07 Nouryon Chemicals International B.V. Process for the production of diacyl peroxides
US11976034B2 (en) 2019-06-12 2024-05-07 Nouryon Chemicals International B.V. Process for the production of diacyl peroxides

Also Published As

Publication number Publication date
EP1149145A1 (en) 2001-10-31
JP2002535980A (ja) 2002-10-29
BR0007954A (pt) 2001-11-06
AU2638000A (en) 2000-08-25
CN1343247A (zh) 2002-04-03
CA2360657A1 (en) 2000-08-10

Similar Documents

Publication Publication Date Title
US6503876B1 (en) Stable non-aqueous liquid laundry detergents comprising low density particles
EP1151077A1 (en) Low density particulate solids useful in laundry detergents
US6699828B1 (en) Aqueous liquid detergent compositions comprising an effervescent system
US6348441B1 (en) Method of laundering soiled fabrics by non-aqueous detergent formulated to control dye transfer and sudsing in high efficiency washing machines
CA2380328C (en) Detergent compositions comprising hydrotropes
US6949496B1 (en) Detergent compositions comprising hydrotropes
WO1997032951A1 (en) Secondary alkyl sulfate particles with improved solubility by compaction/coating process
CA2313475A1 (en) Non-aqueous liquid detergent compositions containing ethoxylated quaternized amine clay compounds
US6844305B1 (en) Aqueous liquid detergent compositions comprising a polymeric stabilization system
US6656899B1 (en) Nonaqueous liquid detergent with wash-water soluble low-density filler particles
US5955418A (en) Secondary alkyl sulfate surfactant with improved solubility by kneading/extruding process
CA2381896A1 (en) Aqueous liquid detergent compositions comprising a polymeric stabilization system
WO2000046332A1 (en) Low density enzyme granulates and compositions employing same
WO2000066704A1 (en) Microspheres useful in detergent compositions
MXPA01007838A (en) Low density enzyme granulates and compositions employing same
EP1754774B1 (en) Detergent compositions comprising hydrotropes
MXPA01008079A (es) Detergentes liquidos para lavanderia no acuosos, estables, que comprenden particulas de baja densidad
MXPA01008081A (en) Low density particulate solids useful in laundry detergents
CA2248263C (en) Secondary alkyl sulfate surfactant with improved solubility by kneading/extruding process
WO2000047706A1 (en) Methods for reducing damage to laundered fabrics

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00804663.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ CZ DE DE DK DK DM EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2360657

Country of ref document: CA

Ref document number: 2360657

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2000 597394

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/007838

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2000904654

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000904654

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

CR1 Correction of entry in section i

Free format text: PAT. BUL. 24/2002 UNDER (81) ADD "US"

WWW Wipo information: withdrawn in national office

Ref document number: 2000904654

Country of ref document: EP