WO2000045453A1 - BATTERIE MnO2/Zn EN COUCHE MINCE A ELECTROLYTE POLYMERE CONDUCTEUR PROTONIQUE - Google Patents

BATTERIE MnO2/Zn EN COUCHE MINCE A ELECTROLYTE POLYMERE CONDUCTEUR PROTONIQUE Download PDF

Info

Publication number
WO2000045453A1
WO2000045453A1 PCT/FR2000/000179 FR0000179W WO0045453A1 WO 2000045453 A1 WO2000045453 A1 WO 2000045453A1 FR 0000179 W FR0000179 W FR 0000179W WO 0045453 A1 WO0045453 A1 WO 0045453A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
battery
polymer
zinc
batteries
Prior art date
Application number
PCT/FR2000/000179
Other languages
English (en)
Inventor
Farouk Tedjar
Christiane Poinsignon
Original Assignee
Recupyl S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Recupyl S.A. filed Critical Recupyl S.A.
Publication of WO2000045453A1 publication Critical patent/WO2000045453A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Mn / Zn batteries which are the subject of this patent filing meet these criteria.
  • Manganese dioxide is an abundant, non-polluting and inexpensive material used as a cathode in alkaline batteries in combination with zinc. Its capacity (300mAh.g "l) is comparable to that of Nickel hydroxide (290mAh.g” *), its potential, slightly lower than that of the couple Ni ⁇ + tNi ⁇ "1" , avoids the release of spontaneous oxygen and therefore self-discharge.
  • Zinc is also an abundant metal, inexpensive and less polluting than cadmium, a byproduct of its mineralurgy. Its mass capacity: 820 mAh.g " ⁇ (against 480 for Cd), its redox potential (-760mV / ENH against -100mV for Cd) make it a good candidate as a negative electrode for Mn / Zn batteries, provided you master its cyclability.
  • alkaline batteries that can be recharged over ten cycles have been available on the market.
  • These are conventional alkaline batteries as in RENEWAL batteries, rechargeable batteries from RAYOVAC, RAM batteries (CANADA) and BOOMERANG offered by Leclanché (SWITZERLAND) in which the liquid electrolyte is KOH 9 M (pH "14) and whose potential for discharge is limited.
  • KOH 9 M pH "14
  • SWITZERLAND Leclanché
  • concentrated KOH the oxidation of zinc is facilitated by its solubilization in zincate. This solubilization of zinc species leads during the recharging stage to dendritic growths and changes in shape, sources of short circuits.
  • FR83.107 describes an all-solid battery by associating MnO2 and Zinc with acid uranyl phosphate, separated from the Zn electrode by a double phosphate layer of Na-Zn. This battery has not given rise to any further development.
  • Zinc-Mn ⁇ 2 batteries with thin film polymer electrolyte are new systems based on the reversibility of the reactions occurring in the two electrodes during the redox cycle.
  • the reduction of Mn ⁇ 2 is a homogeneous reaction between pH 13 and 5. It corresponds to the reduction of Mn 4+ to Mn 3+ by the reversible insertion of the proton-electron couple which induces a topotactic transformation of orthorhombic Mn ⁇ 2 into orthorhombic MnOOH.
  • the polymer electrolyte is in the state of hydration induced by water adsorbed by the ionic functions carried by the polymer.
  • the shaping of a thin film of 100 ⁇ m in total thickness is obtained by the production of composite electrodes obtained by mixing the polymer electrolyte with submicronic to nanometric particles of electrode material.
  • the reversibility of Mn ⁇ 2 in solid electrolyte was obtained with an anode in palladium hydride as well as the reversibility of the zinc electrode in liquid electrolyte KOH, K2S, without any loss of capacity over 40 cycles at 70% depth of discharge .
  • the formulation of the polymer electrolyte is established: it is a basic proton conducting polymer electrolyte carrying amino functional groups, sulphonamide or sulphonamide on the cathode side, to which mercaptan alkyl chains have been added on the anode side.
  • the polymer network has the necessary chemical and electrochemical stability and can be easily modified by grafting the appropriate chemical chains: modified polysulfones are currently used.
  • the polymer components used are metallized PET films 12 ⁇ m thick, and the anode and cathode polymer electrolytes based on modified polysulfone.
  • a battery based on manganese dioxide-polymer-zinc is entirely recyclable by the processes developed for the recycling of conventional Leclanché systems.
  • recycling is more extensive insofar as the degradation by hydrolysis of the polymers leaves a metallic matrix easily recyclable according to a reducing acid route which makes it possible to produce a solution of mixed zinc ⁇ nanganese sulfate.
  • Obtaining zinc and manganese dioxide is no longer a problem. It has been described by us in EP93-0448.
  • One of the advantages provided by the invention lies mainly in the use of a solid polymer electrolyte which will play both the role of ionic conductor and of separator.
  • This polymer is advantageously chosen from commercial thermoplastic polymers: polysulfonated.
  • the product referenced UDEL PI 700 is chemically modified to obtain an anionic ionomer by grafting of propyl tri methyl ammonium group and propylmercaptan links on the anode side and tri methylammonium groups and sulfonamide links on the cathode side. .
  • Methyl groups can be replaced by ethyl radiacals.
  • the electroactive manganese dioxide and suitable for this application is obtained by anodic oxidation of a molar acid solution of hot manganese sulfate with a solution of ammonium or sodium persulfate under stoichiometric conditions to complete the oxidation of manganese ions.
  • This reaction is carried out at a temperature between 85 and 105 ° C but preferably fixed at 95 ° C. Oxidation is carried out very slowly by monitoring the pH and the redox potential of the solution.
  • the product is filtered, washed and dried in a fluidized bed at 100 ° C for 4 hours.
  • the electroactive manganese dioxide and suitable for this application is obtained by electrochemical oxidation in the presence of a suspension of acetylene black or graphite in a bath of acid manganese sulfate. Electrochemical oxidation is carried out at 95 ° C. on an anodized titanium or graphite anode at current densities varying between 0.5 mA / cm 2 and 1.5 mA / cm 2 .
  • the reversibility of zinc can only be obtained by ensuring the functioning of this electrode as a second type electrode.
  • This operating mode is advantageously obtained by combining zinc sulphide with metallic zinc.
  • the cyclability of the zinc electrode is obtained below pH 13 even in liquid electrolyte thanks to these conditions which allow the oxidation of Zn to be controlled, its deposition to reduction and reduces the hydrogen overvoltage.
  • the anode consists of a composite electrode formed by the mixture of zinc flakes and a sulfur derivative of zinc in a polymer electrolyte matrix: polysulfoné modified by tri methyl ammonium links and propylmercaptan links.
  • Each compartment will be produced separately by assembling the metallized polymer film supporting the composite electrode film and the polymer electrolyte film. The anodic and cathodic sandwiches will then be joined together to give the battery in thin film whose thickness will not exceed 100 microns.
  • the anode compartment will be on a PET film covered with Cu.
  • the complexing agent is a quaternary ammonium and mercaptan.
  • the metallized film is replaced by a polymer film of the Oppano type loaded with graphite.
  • the cathode compartment will use a film coated with Ni.
  • the metal film is replaced by a polymer loaded with graphite.
  • Electrochemical behavior of single electrodes The mono electrodes produced according to the mode described above are shaped according to a layer configuration analogous to their battery operation using a reference electrode Hg-HgO and an auxiliary electrode made of platinum. The curves reported in Figures 1 and 2 show the electrochemical performance obtained.
  • Curve 1 relates to the cyclic stress of the manganese dioxide electrode at 87 mV / h. For a better understanding of the curves only the sweeps between the 50 e111 and the 60 e111 cycle are shown. There is no significant loss of capacity. Curve 2 represents the behavior on cyclic scanning of the zinc electrode. Again, there is no noticeable loss of capacity between the start of operation and the 20 e1 "cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

La présente invention décrit un mode de réalisation d'une batterie MnO2/Zn en film mince à électrolyte polymère conducteur protonique. Le système électrochimique objet de l'invention est caractérisé par: une haute densité d'énergie et une bonne aptitude au fonctionnement cyclique, une parfaite recyclabilité en fin de vie, une bonne sécurité d'utilisation et de stockage par rapport aux systèmes à électrolytes organiques et à anode de lithium.

Description

BATTERIE MnO/Zn EN COUCHE MINCE A ELECTROLYTE POLYMERE CONDUCTEUR PROTONIQUE
Le développement de l'électronique portable est à l'origine de la demande importante de batteries de 0,5 à 1 Ah, légère, puissantes facilement rechargeables, fiables et bon marché, non polluantes et recycables : cette demande double tous les trois ans. Les batteries Mn/Zn objet de ce dépôt de brevet répondent à ces critères. Le dioxyde de Manganèse est un matériau abondant, non polluant et peu cher utilisé comme cathode dans les piles alcalines en association avec le zinc. Sa capacité (300mAh.g"l) est comparable à celle de l'hydroxyde de Nickel (290mAh.g"*), son potentiel, légèrement inférieur à celui du couple Ni^+tNi^"1", évite les dégagements d'oxygène spontanés et par conséquent l'auto décharge. Le Zinc est également un métal abondant, peu cher et moins polluant que le cadmium, sous produit de sa minéralurgie. Sa capacité massique : 820 mAh.g"^ (contre 480 pour Cd), son potentiel redox (-760mV/ENH contre -lOOmV pour Cd) en font un bon candidat comme électrode négative pour les batteries Mn/Zn, à condition de maîtriser sa cyclabilité.
ETAT DE L'ART 1- Piles alcalines rechargeable à electrolyte liquide .
Depuis moins d'une dizaine d'années des piles alcalines rechargeables sur une dizaine de cycles sont proposées sur le marché. Ce sont des piles alcalines classiques comme dans les piles RENEWAL, piles rechargeables de RAYOVAC, piles RAM (CANADA) et BOOMERANG proposées par Leclanché (SUISSE) dans lesquelles l'électrolyte liquide est KOH 9 M (pH » 14) et dont le potentiel de décharge est limité. En KOH concentrée, l'oxydation du zinc est facilitée par sa solubilisation en zincate. Cette solubilisation des espèces zinc entraîne pendant l'étape de recharge des croissances dendritiques et des changements de forme, sources de court circuits. Dans le compartiment cathodique un processus hétérogène intervient pour la réduction de Mnθ2 : il conduit à la solubilisation des espèces Mn^+ produites par la réduction du dioxyde suivie de leur réduction en Mn^+; la réoxydation conduisant alors à un mélange d'oxyhydroxides puis à δ-Mn02 beaucoup moins électroactif que le matériau de départ et responsable de la perte de capacité de la batterie au cours du temps. Cette mise en solution irréversible est partiellement évitée en limitant le potentiel de réduction.
Quelques tentatives de batteries en film mince ont été publiées récemment mais leur épaisseur est de l'ordre 0.5 à 1 mm (Kordesch, ISE 1997 Paris). En outre ces systèmes utilisent toujours KOH 9N comme electrolyte, avec les inconvénients qu'il implique. Mais aucune batterie de cette forme n'a été commercialisée jusqu'à maintenant.
2- Batteries tout solide.
FR83.107 décrit une batterie tout solide en associant Mn02 et Zinc avec le phosphate d'uranyle acide, séparé de l'électrode de Zn par une couche de phosphate double de Na-Zn. Cette batterie n'a donné lieu à aucun développement ultérieur.
3- Batteries à electrolyte Polymère Actuellement la batterie en film mince à electrolyte polymère est l'innovation technologique majeure des cinquante dernières années. La mise en forme de film mince conduit à augmenter la densité d'énergie des batteries. Basée sur les lois fondamentales de la thermodynamique la puissance spécifique de la batterie dP/dV peut être exprimée par la relation suivante
Figure imgf000003_0001
pour un volume V, un rendement énergétique η, une EMF moyenne E, une conductivité ionique σ et une épaisseur totale d. Il apparaît ainsi important de réduire l'épaisseur de la batterie pour obtenir des hautes densités d'énergie.
Actuellement les batteries en film mince en voie de commercialisation sont uniquement des batteries au lithium. Cette nouvelle technologie est appliquée par HydroQuebec dans "les batteries au lithium à electrolyte polymère sec" et plus récemment par BellCore dans les " batteries plastiques à lithium ion" utilisant un electrolyte gélifié. Pour les batteries alcalines Zn-Mn utilisant un electrolyte polymère aucune batterie de ce type n'a encore été proposé jusqu'à présent, et par voie de conséquence, aucune technologie industrielle n'est présente sur le marché. OBJET ET PRESENTATION DE L'INVENTION
La recherche fondamentale réalisée depuis 1988 nous a permis de définir les conditions de réversibilité et de cyclabilité des deux électrodes : dioxyde de manganèse (Batteries and Batterγ materials 13 (1994) 148-158, Electrochem. Acta , 39 (1994) 2321-2331, J. Material Chemistry 3 12, (1993)1227-1229
> électrode de zinc Electrochimica Acta 39 (1994) 1401-1407, FR 91/14448
Le développement d'électrolytes polymères conducteurs protoniques acides aussi bien que basiques
(Electrochim. Acta, 27 (9) (1992) 1603, Chemistry of Materials. 7(1995) 828-839,. EP 97401613 ) nous a conduit à envisager la réalisation de batteries Mn-Zn à electrolyte polymère capables d'opérer à des températures supérieures à 50°C avec une grande durée de vie. L'innovation technologique que représente la mise en forme de film mince des batteries peut être appliquée à ce couple d'électrodes. Cette nouvelle technologie évite les limitations intrinsèques dues au transport de matière dans l'électrolyte liquide.
Comparativement les batteries Zinc-Mnθ2 à electrolyte polymère film mince sont de nouveaux systèmes basés sur la réversibilité des réactions intervenant dans les deux électrodes durant le cycle redox . La réduction de Mnθ2 est une réaction homogène entre pH 13 et 5. Elle correspond à la réduction de Mn4+ en Mn3+ par l'insertion réversible du couple proton-électron qui induit une transformation topotactique de Mnθ2 orthorhombique en MnOOH orthorhombique.
Par contre du côté anodique, à des valeurs de pH égales ou inférieures à 14, il est nécessaire de modifier la composition du compartiment anodique pour obtenir la réversibilité de l'électrode de zinc, grâce à l'oxydation réversible de Zn en ZnS qui intervient pratiquement au même potentiel que celle de Zn en ZnO. Les deux réactions anodique et cathodique peuvent intervenir en même temps grâce à l'utilisation d'un electrolyte polymère fonctionnant au même pH mais portant du côté anodique la fonction chimique convenable pour assurer la formation du sulfure de Zn. Les compositions chimiques légèrement différentes des deux compartiments anodique et cathodique ne peuvent intervenir qu'en electrolyte polymère qui est à la fois un séparateur et un electrolyte. Dans notre cas l'eau est nécessaire pour l'oxydation de l'anode et assurer un bon transport du proton dans l'électrolyte et un bon transfert protonique à l'interface electrolyte électrode : l'électrolyte polymère est dans l'état d'hydratation induit par l'eau adsorbée par les fonctions ioniques portées par le polymère.
L'état solide de l'électrolyte polymère et l'utilisation de polymères métallisés ou chargés en graphite comme collecteurs de courant conduisent à une batterie "plastique" c'est à dire déformable sans perte d'électroactivité. La mise en forme de film mince de 100 μm d'épaisseur totale est obtenue grâce à la réalisation d'électrodes composites obtenues en mélangeant l'électrolyte polymère à des particules submicroniques à nanomètriques de matériau d'électrode. L'utilisation d'électrolytes polymères hydratés et de polymères métallisés comme collecteurs de courant du Polyéthylène Téréphatalate de 12μm d'épaisseur recouvert d'une couche de Ni ou Cu de 0,5 μm ou bien le polymère chargé en graphite permettent un triple avantage : diminution du poids de la batterie, > sollicitation plus profonde des masses actives des matériaux d'électrodes, énergie massique plus importante (de 150 à 200 Wh.kg"*).
La réversibilité de Mnθ2 en electrolyte solide a été obtenue avec une anode en hydrure de palladium de même que la réversibilité de l'électrode de zinc en electrolyte liquide KOH, K2S , sans aucune perte de capacité sur 40 cycles à 70% de profondeur de décharge. La formulation de l'électrolyte polymère est établie : c'est un electrolyte polymère basique conducteur protonique porteur de groupes fonctionnels aminés, sulfamide ou sulphonamide du côté cathodique, auxquels ont été ajoutées des chaînes alkyles mercaptan du côté anodique.
Le réseau polymère a la stabilité chimique et électrochimique nécessaires et peut être aisément modifiés par le greffage des chaînes chimiques adaptées : des polysulfones modifiés sont actuellement utilisés. Les composants polymères utilisés sont des films métallisés de PET de 12 μm d'épaisseur, et les electrolytes polymères anodiques et cathodiques à base de polysulfone modifié. Enfin une telle batterie à base de dioxyde de manganèse-polymère-zinc est entièrement recyclable par les procédés développés pour le recyclage des systèmes Leclanché classiques. Par. l'absence de mercure et- e chlorure, le recyclage est plus poussé dans la mesure où la dégradation par hydrolyse des polymères laisse une matrice métallique aisément recyclable selon une voie acide réductrice qui permet de produire une solution de sulfate mixte zinc →nanganèse. L'obtention d zinc et de dioxyde de manganèse n'est plus problématique. Elle a été décrite par nous dans EP93-0448.
EXEMPLE :
L'exemple suivant décrit l'invention pour une meilleure compréhension et sans en être exhaustif.
L'électrolyte-séparateur:
Un des avantages apportés par l'invention réside principalement dans l'utilisation d'un electrolyte polymérique solide qui va jouer à la fois le rôle de conducteur ionique et de séparateur.
Ce polymère est avantageusement choisi parmi les polymères commerciaux thermoplastique: polysulfoné. Dans l'objet de cette invention le produit référencié UDEL PI 700 est modifié par voie chimique pour obtenir un ionomère anionique par le greffage de groupe propyl tri methyl ammonium et des chaînons propylmercaptan du cote anodique et des groupes tri methylammonium et des chaînons sulfonamide cote cathodique.
Des groupement méthyl peuvent être remplacés par des radiacaux ethyl. Préparation des matériaux cathodiques :
Dans un premier mode d'obtention, le dioxyde de manganèse électroactif et adapté à cette application est obtenu par oxydation anodique d'une solution acide molaire de sulfate de manganèse à chaud par une solution de persulfate d'ammonium ou de sodium dans les conditions stoéchiométriques pour achever l'oxydation des ions manganèse. Cette réaction est menée à une température comprise entre 85 et 105°C mais de préférence fixée à 95°C. L'oxydation est menée très lentement par suivi du pH et du potentiel redox de la solution. A la fin de la réaction, le produit est filtré, lavé et séché en lit fluidisé à 100°C pendant 4heures.
Dans un second mode d'obtention, le dioxyde de manganèse électroactif et adapté à cette application est obtenu par oxydation électrochimique en présence d'une suspension de noir d'acétylène ou de graphite dans un bain de sulfate de manganèse acide. L'oxydation électrochimique est menée à 95°C sur une anode en titane anodisée ou en graphite à des densités de courants variant entre 0,5 mA/cm2 et 1,5 mA/cm2.
Préparation de l'anode en zinc :
La réversibilité du zinc ne peut être obtenue qu'en assurant le fonctionnement de cette électrode en électrode de deuxième espèce. Ce mode de fonctionnement est obtenu avantageusement obtenu en associant du sulfure du zinc au zinc métallique. La cyclabilité de l'électrode de zinc est obtenue en dessous de pH 13 même en electrolyte liquide grâce à ces conditions qui permettent le contrôle de l'oxydation du Zn, son dépôt à la réduction et diminue la surtension d'hydrogène. L'anode se compose d'une électrode composite formée par le mélange de paillettes de zinc et d'un dérivé soufré du zinc dans une matrice d'électrolyte polymère : polysulfoné modifiée par des chaînons tri methyl ammonium et des chaînons propylmercaptan.
Réalisation du système complet:
Chaque compartiment sera réalisé séparément par l'assemblage du film polymère métallisé supportant le film d'électrode composite et le film d'électrolyte polymère. Les sandwichs anodique et cathodique seront ensuite accolés pour donner la batterie en film mince dont l'épaisseur n'excédera pas 100 microns. Le compartiment anodique se fera sur un film de PET recouvert de Cu. Dans une autre application l'agent de complexation est un ammonium quaternaire et mercaptan. Dans ce cas le film métallisé est remplacé par un film de polymère du type Oppano chargé en graphite.
Le compartiment cathodique utilisera un film recouvert de Ni. Quand le montage bipolaire est privilégié, le film métallique est remplacé par un polymère charge en graphite. Comportement électrochimique des mono électrodes : Les mono électrodes réalisées selon le mode décrit auparavant sont mises en forme selon une configuration couche analogue à leur fonctionnement en batterie en utilisant une électrode de référence Hg-HgO et une électrode auxiliaire en platine. Les courbes reportées sur les figures 1 et 2 montrent les performances électrochimiques obtenues.
La courbes 1 est relative à la sollicitation cyclique de l'électrode de dioxyde de manganèse à 87 mV/h. Pour une meilleure compréhension des courbes seuls les balayages entre le 50e111 et le 60e111 cycle sont représentés. On n'observe pas de perte notable de capacité. La courbe 2 représente le comportement au balayage cyclique de l'électrode en zinc. Là aussi on n'observe pas de perte de capacité notable entre le début du fonctionnement et le 20e1" cycle.

Claims

REVENDICATIONS:
1. Générateur électrochimique en couche mince et rechargeable caractérisé en ce que l'électrolyte utilisé est un polymère conducteur protonique.
2. Générateur électrochimique selon la revendication 1 caractérisé en ce que la cathode se compose de dioxyde de manganèse mis en forme à l'aide d'un polymère protonique.
3. Générateur électrochimique selon la revendication 1 caractérisé en ce que l'anode se compose de zinc et de sulfure de zinc mis en forme à l'aide d'un polymère protonique.
4. Générateur électrochimique selon la revendication 1 caractérisé en ce que le polymère est avantageusement choisi parmi les polysulfones modifiées.
5. . Générateur électrochimique selon la revendication 1 caractérisé en ce que les contacts des électrodes sont réalisés en polytéréphatalate métallisé.
6. Générateur électrochimique selon les revendications 1, 2 et 3 caractérisé en ce que la batterie est mise en forme de manière à obtenir une épaisseur totale maximale de 100 microns
PCT/FR2000/000179 1999-01-29 2000-01-27 BATTERIE MnO2/Zn EN COUCHE MINCE A ELECTROLYTE POLYMERE CONDUCTEUR PROTONIQUE WO2000045453A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9901190A FR2789230B3 (fr) 1999-01-29 1999-01-29 BATTERIE Mn02/Zn EN FILM MINCE A ELECTROLYTE POLYMERE CONDUCTEUR PROTONIQUE DE HAUTE DENSITE D'ENERGIE ET SON MODE DE REALISATION
FR99/01190 1999-01-29

Publications (1)

Publication Number Publication Date
WO2000045453A1 true WO2000045453A1 (fr) 2000-08-03

Family

ID=9541513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/000179 WO2000045453A1 (fr) 1999-01-29 2000-01-27 BATTERIE MnO2/Zn EN COUCHE MINCE A ELECTROLYTE POLYMERE CONDUCTEUR PROTONIQUE

Country Status (2)

Country Link
FR (1) FR2789230B3 (fr)
WO (1) WO2000045453A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359949A (ja) * 1989-07-27 1991-03-14 Yuasa Battery Co Ltd 電池
WO1992010528A1 (fr) * 1990-12-05 1992-06-25 Centre National De La Recherche Scientifique (Cnrs) Membranes a base de polyorganosiloxanes sulfones, leur preparation et leur application comme conducteurs ioniques solides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359949A (ja) * 1989-07-27 1991-03-14 Yuasa Battery Co Ltd 電池
WO1992010528A1 (fr) * 1990-12-05 1992-06-25 Centre National De La Recherche Scientifique (Cnrs) Membranes a base de polyorganosiloxanes sulfones, leur preparation et leur application comme conducteurs ioniques solides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 209 (E - 1072) 28 May 1991 (1991-05-28) *

Also Published As

Publication number Publication date
FR2789230A1 (fr) 2000-08-04
FR2789230B3 (fr) 2001-03-02

Similar Documents

Publication Publication Date Title
EP2022116B1 (fr) Electrode textile et accumulateur contenant une telle electrode.
EP1339642B1 (fr) Procede d'obtention de particules a base de li4ti5o12, li(4-a)zati5o12, or li4zbti(5-b)o12
US5658689A (en) Rechargeable lithium battery having a specific electrolyte
EP3365937B1 (fr) Procédé de fabrication d'un accumulateur du type sodium-ion
FR2727794A1 (fr) Pile secondaire au lithium
JPH09501001A (ja) 再充電可能リチウム電池の電極
EP1846331B1 (fr) Procede de modification d'un oxyde lithie comprenant au moins un metal de transition utilisant des ions de phosphate
FR2733974A1 (fr) Procede de production d'un oxyde de nickel contenant du lithium
FR2629947A1 (fr) Pile secondaire a electrolyte non aqueux
FR2935544A1 (fr) Collecteur de courant pour anode de generateur electrochimique primaire au lithium
FR3009134A1 (fr) Materiaux d'electrode positive de batterie au lithium a base d'un oxyde lamellaire surlithie
JP2000100429A (ja) 電極構造体及び二次電池
EP2583347B1 (fr) Accumulateur electrochimique au lithium a architecture bipolaire fonctionnant sur la base d'un couple d'electrodes lithium-soufre
EP0863562B1 (fr) Matière active positive pour électrode de nickel d'accumulateur à électrolyte alcalin
WO2014114864A1 (fr) Batterie au lithium
EP3701580B1 (fr) Collecteur de courant et ensemble collecteur de courant-electrode pour accumulateur fonctionnant selon le principe d'insertion et desinsertion ionique
EP3331064B1 (fr) Utilisation de l'acide 4,5-imidazoledicarboxylique comme matériau actif d'électrode
FR2786029A1 (fr) Batterie electrique a electrolyte non aqueux
WO2000045453A1 (fr) BATTERIE MnO2/Zn EN COUCHE MINCE A ELECTROLYTE POLYMERE CONDUCTEUR PROTONIQUE
EP3063127A1 (fr) Materiau d'electrode pour batterie organique comprenant des derives de l'acide benzene-bisdithioïque
EP3255712B1 (fr) Procede de fabrication d'une electrode pour accumulateur fonctionnant sur le principe d'insertion et desinsertion ionique ou de formation d'alliage
EP3671913A1 (fr) Procédé de fabrication d'une électrode de zinc par voie aqueuse
WO2014068216A1 (fr) Procede pour la preparation d'une batterie au lithium
WO2014038681A1 (fr) Electrode pour pile primaire ou pile secondaire siège d'une réaction locale régulée, et pile primaire ou secondaire l'utilisant
KR20030006745A (ko) 리튬-황 전지용 양극 및 그 제조 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA IL JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase