WO2000043663A1 - Refroidisseur egr - Google Patents

Refroidisseur egr Download PDF

Info

Publication number
WO2000043663A1
WO2000043663A1 PCT/JP2000/000218 JP0000218W WO0043663A1 WO 2000043663 A1 WO2000043663 A1 WO 2000043663A1 JP 0000218 W JP0000218 W JP 0000218W WO 0043663 A1 WO0043663 A1 WO 0043663A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
exhaust gas
cooling water
tube
egr cooler
Prior art date
Application number
PCT/JP2000/000218
Other languages
English (en)
French (fr)
Inventor
Makoto Tsujita
Keiichi Nakagome
Katsuji Inoue
Yoji Yamashita
Original Assignee
Hino Motors, Ltd.
Sankyo Radiator Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11011776A external-priority patent/JP2000213424A/ja
Priority claimed from JP11158053A external-priority patent/JP2000345925A/ja
Priority claimed from JP25154699A external-priority patent/JP4248095B2/ja
Application filed by Hino Motors, Ltd., Sankyo Radiator Co., Ltd. filed Critical Hino Motors, Ltd.
Priority to EP00900811A priority Critical patent/EP1148231A4/en
Priority to KR1020017009059A priority patent/KR20010102981A/ko
Publication of WO2000043663A1 publication Critical patent/WO2000043663A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1653Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having a square or rectangular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • F28F1/405Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element and being formed of wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/029Other particular headers or end plates with increasing or decreasing cross-section, e.g. having conical shape

Definitions

  • the present invention relates to an EGR cooler that is attached to an EGR device that recirculates engine exhaust gas to reduce generation of nitrogen oxides and cools exhaust gas for recirculation.
  • FIG. 1 is a cross-sectional view showing an example of a conventional EGR cooler.
  • reference numeral 1 denotes a shell formed in a cylindrical shape. Plates 2 and 2 are fixed so that both ends of a large number of tubes 3 extending in parallel with the axial extension line X of the shell 1 are fixed to each of the plates 2 and 2 in a penetrating state. Tube 3 extends axially inside shell 1.
  • a cooling water inlet 4 is provided near one end of the shell 1
  • a cooling water outlet 5 is provided near the other end of the shell 1
  • cooling water 9 is provided at the cooling water inlet 4. From the inside of the shell 1, flows outside the tube 3, and is discharged from the cooling water outlet 5 to the outside of the shell 1.
  • bonnets 6A and 6B are fixed to the opposite sides of the shells 1 of the plates 2 and 2 so as to cover the end faces of the plates 2 and 2, respectively.
  • An exhaust gas inlet 7 is provided at the center of the other hood 6B, and an exhaust gas outlet 8 is provided at the center of the other bonnet 6B.
  • one bonnet 6 A has a taper section 6 X extending from the exhaust gas inlet 7 to the shell 1 side in a straight outline, and a shell 1.
  • the flow of the exhaust gas 10 introduced from the exhaust gas inlet 7 flows from the inner peripheral surface of the tapered portion 6X.
  • the conventional arrangement of the tubes 3 is arranged in a staggered pattern based on a triangle as shown by a two-dot chain line in the figure, so that the tubes 3 are formed in a cylindrical shape.
  • a relatively large gap is formed between the shell 1 thus formed and the outer tube 3, and the cooling water 9 introduced from the cooling water inlet 4 tends to preferentially flow on the outer periphery having less flow resistance. Because the cooling water 9 does not reach the center side where the tubes 3 are densely arranged, the heat exchange efficiency of the center tube 3 is worse than that of the outer tube 3 for such a reason. However, the temperature of the center tube 3 becomes higher than that of the outer tube 3, which may cause local thermal deformation.
  • the cooling water 9 supplied from the cooling water inlet 4 to the inside of the shell 1 does not flow uniformly toward the cooling water outlet 5 with respect to the inner cross section of the shell 1.
  • the path 12 in Fig. 1 after flowing into the inside of the shell 1 from the cooling water inlet 4, it bends toward the cooling water outlet 5 and diagonally turns to the cooling water outlet 5.
  • the main flow is toward the cooling water inlet 4 and the cooling water outlet 5 in the shell 1, and the cooling water 9 stagnates near the corner on the side facing the cooling water outlet 5 to form a cooling water stagnation section 13.
  • a tube near the cooling water stagnant portion 13 There was also a risk that the temperature of 3 would become locally high and cause thermal deformation.
  • Figs. 5 and 6 show another example of a conventional EGR cooler.
  • the shell 1 is moved vertically (the axis It is formed in a flat box shape (direction perpendicular to the extension line X), and each bonnet 6A, 6B is connected to the exhaust gas inlet 7 or the exhaust gas.
  • the end face of the shell 1 extends from the outlet 8 toward the shell 1 side in the long side direction (vertical direction in the illustrated example) to cover the entire end face of the plate 2.
  • the exhaust gas 10 introduced into the bonnet 6A from the exhaust gas inlet 7 tends to flow straight while maintaining the flow direction at the time of introduction. Is weakened, so that it is difficult to diffuse to the outside of the end face of the shell 1 in the long side direction.
  • the gas flow is separated at the portion near the exhaust gas inlet 7 in the bonnet 6A, and turbulence is likely to occur.
  • the exhaust gas 10 flows into the tube 3 at the center in the long side direction of the end surface of the shell 1, and the tube 3 becomes hot mainly on the exhaust gas 10 inlet side, causing local thermal deformation.
  • the amount of exhaust gas 10 distributed to the tube 3 on the outer side in the long side direction of the end face of the shell 1 is insufficient, which causes a problem that the heat exchange efficiency in this portion is deteriorated.
  • Fig. 7 shows yet another example of a conventional EGR cooler.
  • the bonnet is omitted due to the problem of mounting on the vehicle, and the axial center of the seal 1 is extended.
  • the gas pipes 11, 11 extending in a direction substantially perpendicular to the line X are bent about 90 ° to both ends of the shell 1 and are directly connected to each other.
  • the shape of the connection-side end of the shell 1 with respect to the shell 1 is a bowl-like shape that simulates the bonnets 6A and 6B (see FIG. 1) in the prior art examples of FIGS.
  • the gas pipes 11 and 11 are connected to both ends of the shell 1 by bending them at substantially right angles. Due to the sharp bending of the gas pipe 11 on the side, the gas flow separates inside the corner and turbulence occurs, and the exhaust gas 10 tends to flow unevenly to the tube 3 facing the outside of the corner , There is a risk that the UBE 3 may become hot on the inlet side of the exhaust gas 10 and cause local thermal deformation, while the amount of the exhaust gas 10 distributed to the tube 3 facing the inside of the corner portion may decrease. Insufficient heat exchange caused the problem of poor heat exchange efficiency in this area.
  • the present invention has been made in view of the above-described circumstances, and provides an EGR cooler capable of improving the heat exchange efficiency between exhaust gas and cooling water as compared with the conventional EGR cooler. If there is a concern, we provide an EGR cooler that can prevent thermal deformation at the same time. Disclosure of the invention
  • the EGR cooler according to claim 1 of the present invention includes a tube, and a shell surrounding the tube, supplies and discharges cooling water inside the seal, and allows exhaust gas to pass through the tube through exhaust gas.
  • the exhaust gas flowing through the tube is swirled along the plurality of spiral projections and becomes turbulent.
  • the exhaust gas contacts the inner peripheral surface of the tube evenly and sufficiently, and the heat exchange efficiency of the EGR cooler is greatly improved.
  • the pitch of the spiral projection formed on the inner peripheral surface of the tube is reduced, the inclination angle of the spiral projection with respect to the flow of the exhaust gas 10 becomes large and approaches a right angle.
  • the spiral with respect to the flow of the exhaust gas is reduced.
  • the inclination angle of the projection can be kept small, and the turning force can be increased without increasing the pressure loss.
  • An EGR cooler includes a tube, and a shell surrounding the tube, for supplying and discharging cooling water inside the shell, and passing exhaust gas into the tube.
  • An EGR cooler configured to exchange heat between the exhaust gas and the cooling water, wherein a spiral wire is inserted into the tube.
  • the invention according to claim 3 of the present invention provides a shell formed in a cylindrical shape, a plate fixed to both ends in the axial direction of the shell so as to close a shell end face, and an opposite shell side of the plate.
  • a shell fixed to cover the end face of the plate, and a tube extending in the axial direction through the inside of the shell and having both ends fixed to the respective plates.
  • An EGR cooler for supplying and discharging water and passing heat through the exhaust gas from one bonnet side to the other bonnet side in the tube to exchange heat between the exhaust gas and the cooling water, wherein the exhaust gas inlet side
  • the bonnet has a concave shape with the bonnet facing outward, and has a bell-mouth shape whose diameter gradually increases in the flow direction of exhaust gas.
  • the tendency of the exhaust gas to flow in a laminar flow without separating along the inner peripheral surface of the bonnet increases, and turbulence is less likely to occur in the outer peripheral portion in the bonnet, and Same as the center side for the placed tube
  • the exhaust gas is easily introduced, so that the exhaust gas is evenly distributed to each tube, and the heat exchange efficiency is greatly improved.
  • the center tube and the outer tube are uniformly heated. Thermal deformation due to local high temperature is avoided.
  • the invention according to claim 4 of the present invention provides a shell formed in a cylindrical shape, a plate fixed to both ends of the shell in the axial direction so as to close a shell end face, and a plate opposite to the shell.
  • a bonnet fixed so as to enclose the end face of the plate, and a tube extending in the axial direction inside the shell and having both ends penetrating and fixed to the respective plates, and a cooling water inside the shell.
  • An EGR cooler for supplying and discharging air and passing the exhaust gas from one bonnet side to the other bonnet side in the tube to exchange heat between the exhaust gas and the cooling water, wherein the exhaust gas outlet side
  • the hood has a bowl-like shape with a convex surface facing outward and the diameter gradually decreases in the exhaust gas flow direction.
  • the exhaust gas that has escaped from the tube on the outer circumferential side forms a laminar flow along the inner circumferential surface of the bonnet and can smoothly change its direction, so that the pressure rise at the outlet of the tube on the outer circumferential side
  • the ventilation resistance of the exhaust gas in the tubes on the outer peripheral side decreases, and it becomes easier for the exhaust gas to be introduced into the tubes arranged on the outer peripheral side as in the center side.
  • Exhaust gas is evenly distributed and heat exchange efficiency is greatly improved.
  • both the center tube and the outer tube are heated uniformly, so that thermal deformation due to local high temperature is avoided. .
  • the invention according to claim 5 of the present invention provides a shell formed in a cylindrical shape, a plate fixed to both ends of the shell in the axial direction so as to close a seal end face, and a plate opposite to the shell.
  • a tube extending axially through the inside of the shell and having both ends penetratingly fixed to the respective plates, supplying and discharging cooling water to the inside of the shell, and one of the tubes in the tube.
  • An EGR cooler for exchanging heat between the exhaust gas and the cooling water by passing the exhaust gas from the bonnet side to the other bonnet side, wherein each tube has a concentric multiple circumferential shape centered on the axis of the shell. It is characterized by being arranged in.
  • the outer peripheral tube can be arranged along the cylindrical shell, and the gap between the two can be significantly reduced.
  • the tendency for the cooling water to flow preferentially on the outer peripheral side is greatly suppressed, and when arranging the same number of tubes with the same diameter as in the past, the gap between each tube is secured wider than before, and the center Since the cooling water reaches the tube on the side as well, the tube on the center side and the tube on the outer side are cooled uniformly, so that the local rise in temperature of the tube is avoided.
  • the efficiency of heat exchange between exhaust gas and cooling water will also be greatly improved.
  • the invention according to claim 6 of the present invention is directed to a shell formed into a cylindrical shape, a plate fixed to both ends of the shell in the axial direction so as to close a shell end face, and a plate opposite to the shell side of the plate.
  • a bonnet fixed so as to enclose the end face of the plate; and a tube extending in the axial direction inside the shell and having both ends penetrating and fixed to the respective plates.
  • An EGR cooler for exchanging heat between the exhaust gas and the cooling water through the exhaust gas from one bonnet side to the other bonnet side in the supply / discharge tube, and one end of the shell in the axial direction of the shell.
  • the cooling water inlet at one axial end of the shell can be removed. Cooling water does not stagnate at the position facing the diametrical direction, and the cooling water stagnation does not occur here, so that the local increase in the temperature of the tube at one axial end of the shell can be avoided. As a result, the heat exchange efficiency between the exhaust gas and the cooling water will be greatly improved.
  • the invention according to claim 7 of the present invention is characterized in that the shell is formed in a flat box shape and has both ends opened in the axial direction, and is fixed to both ends in the axial direction of the shell so as to close the shell end faces.
  • An EGR cooler that supplies cooling water to the inside of the shell and passes exhaust gas from one bonnet side to the other bonnet side in the tube to exchange heat between the exhaust gas and the cooling water.
  • the exhaust-gas inlet-side ponnet is rapidly expanded from the exhaust gas inlet, which opens on the extension of the axis of the shell, toward the shell side toward the long side of the seal end face to cover the entire plate end face.
  • a portion close to the exhaust gas inlet is formed to have a bell-mouth-shaped cross-sectional shape with a concave surface facing outward so that gas flow does not separate, and faces the exhaust gas inlet in the bonnet on the exhaust gas inlet side
  • a pair of guide plates that are curved in an arc shape outward in the long side direction of the shell end surface from the direction along the extension of the axis of the shell are arranged in an eight-shape, and sandwiched between the guide plates.
  • the shell end In the middle position, the shell end It features a round bar that extends in the direction of the short side of the surface and cuts off the main flow of exhaust gas.
  • the exhaust gas introduced into the bonnet from the exhaust gas inlet is smoothly changed in flow direction by each guide plate, and is well diffused outward in the long side direction of the shell end face.
  • the flow of the exhaust gas passing between the guide plates is also diffused well by hitting the round bar and being divided, and furthermore, at the portion of the hood on the exhaust gas inlet side close to the exhaust gas inlet.
  • the tendency of the gas flow to flow as a laminar flow without separating along the curved surface is strengthened, and the turbulence of the gas flow in the bonnet on the exhaust gas entry side is less likely to occur.
  • the exhaust gas can be easily introduced into the tubes arranged in the pipes, so that the exhaust gas can be introduced and distributed almost uniformly to all the tubes, and the local increase in the temperature of the tubes can be avoided. Becomes, the heat exchange efficiency between the exhaust gas and the cooling water also will be greatly improved.
  • the invention according to claim 8 of the present invention provides a shell formed in a cylindrical shape, a plate fixed to both ends in the axial direction of the shell so as to close a shell end face, and a shaft inside the shell.
  • a tube extending in the axial direction and having both ends penetrated and fixed to the respective plates, for supplying and discharging cooling water inside the shell, and inside the tube, from one end to the other end in the axial direction of the shell.
  • An EGR cooler that exchanges heat between the exhaust gas and the cooling water through the exhaust gas toward the shell, and extends at both ends in the axial direction of the shell in a direction substantially perpendicular to the axial extension of the shell.
  • the gas pipe While gradually increasing the diameter of the gas pipe, the gas pipe is gently bent so as not to cause separation of the gas flow, and the axis extension of the shell and the axis of each gas pipe intersect at a required angle.
  • the connection is characterized in that:
  • the exhaust gas guided toward one end in the axial direction of the shell forms a laminar flow along the inner peripheral surface of the gas pipe and can smoothly change its direction.
  • the direction of the flow after the change does not completely match the axial direction of the shell, and the plate is abutted against the plate at one end in the axial direction of the shell with uniform flow velocity distribution. Therefore, it is possible to introduce and distribute exhaust gas substantially evenly to all the tubes while suppressing turbulence of the gas flow at one end in the axial direction of the shell.
  • Exhaust gas that has escaped to the other end in the center direction also forms a laminar flow along the inner peripheral surface of the gas pipe, can be smoothly changed in direction, and receives local ventilation at the outlet of each tube. Since the tube is discharged smoothly without any trouble, the local high temperature of the tube is avoided, and the heat exchange efficiency between the exhaust gas and the cooling water is greatly improved.
  • FIG. 1 is a cross-sectional view showing an example of a conventional EGR cooler
  • FIG. 2 is a cross-sectional view showing details of an exhaust gas inlet side bonnet of FIG. 1
  • FIG. 3 is an exhaust gas outlet side of FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 2
  • FIG. 5 is a cross-sectional view showing another example of the conventional EGR cooler
  • FIG. 8 is an example of a mode for carrying out the invention described in claim 1 of the present invention.
  • FIG. 9 is a schematic diagram showing the case where the spiral projections of FIG. 8 are one-row, FIG.
  • FIG. 10 is a schematic diagram showing the case where the pitch of the spiral projections of FIG. 9 is reduced
  • FIG. 11 is a schematic view showing a case where the spiral projections of FIG. 8 are two-row
  • FIG. 12 is an enlarged view showing an example of an embodiment for carrying out the invention described in claim 2 of the present invention.
  • FIG. 13 is a sectional view showing an example of an embodiment of the invention described in claim 3 of the present invention.
  • FIG. 14 is a cross-sectional view showing an embodiment of the invention described in claim 4 of the present invention.
  • FIG. 15 is a sectional view showing an example of the present invention.
  • FIG. 16 is a sectional view showing an example of an embodiment of the invention described in claim 5, FIG.
  • FIG. 16 is a sectional view showing an example of an embodiment of the invention described in claim 6 of the present invention
  • FIG. FIG. 18 is a cross-sectional view showing an example of an embodiment of the invention described in claim 7 of the present invention
  • FIG. 18 is a cross-sectional view showing an example of the embodiment of the invention described in claim 8 of the present invention.
  • FIG. 8 is an enlarged sectional view showing an example of an embodiment of the invention described in claim 1 of the present invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • the EGR cooler configured substantially in the same manner as the EGR cooler described earlier with reference to FIG. In the form, spiral projections 14 and 15 are formed.
  • the two spiral projections 14 and 15 are arranged so as to coexist on the inner peripheral surface of the tube 3 by changing the phase by 180 ° in the circumferential direction.
  • the spiral projections 14 and 15 facing each other in the diametric direction cross each other in opposite directions, and the strength of the tube 3 against bending stress increases. Become.
  • the inner peripheral surface of the tube 3 may be cut so as to leave a plurality of spiral projections 14 and 15.
  • FIG. 12 is an enlarged sectional view showing an example of an embodiment of the invention described in claim 2 of the present invention.
  • the shell 1 is formed in a cylindrical container shape
  • a structure is adopted in which both ends of the tube 3 are penetrated and fixed to both end surfaces in the axial direction of the shell 1, and the diameter and the wall thickness of the tube 3 are increased to increase the cross-sectional area and the strength of the flow path.
  • the number of tubes 3 is reduced to the minimum necessary.
  • a gas flange 1 is attached to the tip of the tube 3 that protrudes outside the shell 1.
  • a line for recirculating the exhaust gas 10 is appropriately branched and directly connected to the gas flange 16.
  • a coil spring-shaped spiral wire 17 is inserted into the EGR cooler having such a structure over substantially the entire length in the tube 3, and both ends of the spiral wire 17 are welded 18 to the tube 3. It is fixed to the inner peripheral surface. That is, the embodiment shown in FIG. 12 is suitable when the diameter of the tube 3 is large and the wall thickness is large, and forms the spiral projections 14 and 15 as described above with reference to FIG. There is an advantage that processing is easier than doing. Then, the exhaust gas 10 passing through the tube 3 is swirled along the spiral wire 17 and becomes turbulent. As a result, the frequency of contact and the contact distance to the inner peripheral surface of the tube 3 are increased, and the exhaust gas 10 10 is uniformly and sufficiently in contact with the inner peripheral surface of the tube 3, so that the heat exchange efficiency of the EGR cooler can be greatly improved.
  • FIG. 13 shows an example of an embodiment for carrying out the invention described in claim 3 of the present invention.
  • the configuration is substantially the same as the EGR cooler described above with reference to FIG.
  • the bonnet 6A on the inlet side of the exhaust gas 10 has a concave surface facing outward and is formed in a bell-mouth shape whose diameter gradually increases in the flow direction of the exhaust gas 10.
  • FIG. 14 shows an example of an embodiment for carrying out the invention described in claim 4 of the present invention.
  • the ponnet 6B on the exit side of the exhaust gas 10 is formed to have a bowl-like shape having a convex surface facing outward and having a diameter gradually decreasing in the flow direction of the exhaust gas 10.
  • the exhaust gas 10 that has escaped from the outer tube 3 can form a laminar flow along the inner surface of the bonnet 6B and smoothly change its direction.
  • the pressure rise is less likely to occur at the outlet part of 3, so that the ventilation resistance of the exhaust gas 10 in the outer tube 3 is reduced, and the outer tube 3 is also exhausted similarly to the center. Since the gas 10 is easily introduced, the exhaust gas 10 is evenly distributed to each of the tubes 3 and the heat exchange efficiency is greatly improved. Thus, heat deformation due to local high temperature is avoided.
  • FIG. 15 shows an example of an embodiment for carrying out the invention described in claim 5 of the present invention.
  • the tubes 3 are arranged in a concentric multiple circumference centered on the axis ⁇ of the shell 1, and the same diameter and the same diameter as in Fig. 4 are shown in Fig. 15 The number of tubes 3 is arranged.
  • the tubes 3 on the outer peripheral side can be arranged along the cylindrical shell 1 and the gap between the two can be significantly reduced, so that the cooling water inlet The tendency of the cooling water 9 introduced into the shell 1 from 4 to flow preferentially on the outer peripheral side is greatly suppressed.
  • the space between the tubes 3 is reduced. Gap The cooling water 9 is sufficiently secured to reach the center tube 3 more than before, so that both the center tube 3 and the outer tube 3 are cooled uniformly and the tube 3 Local high temperature is avoided, and the heat exchange efficiency between the exhaust gas 10 and the cooling water 9 is greatly improved.
  • FIG. 16 shows an example of an embodiment for carrying out the invention described in claim 6 of the present invention.
  • the configuration is substantially the same as that of the EGR cooler described above with reference to FIG.
  • a bypass outlet 19 for extracting a part of the cooling water 9 introduced from the cooling water inlet 4 is provided at a position diametrically opposite to the cooling water inlet 4 at one axial end of the shell 1. Provided.
  • the exhaust gas 10 of the engine is dispersed from the exhaust gas inlet 7 through the inside of one bonnet 6A, passes through a number of tubes 3, and enters the inside of the other bonnet 6B. While cooling water 9 is recirculated from the exhaust gas outlet 8 to the engine, cooling water 9 is supplied from the cooling water inlet 4 to the inside of the shell 1 and flows toward the cooling water outlet 5.
  • the cooling water inlet 4 By introducing a part of the introduced cooling water 9 from the bypass outlet 19 while introducing the cooling water 9 into the inside of the shell 1 from the cooling water inlet 4, the cooling water inlet 4 at one axial end of the shell 1 On the other hand, the cooling water 9 does not stagnate at the position facing the diametrical direction, and the cooling water stagnation portion does not occur here, so the local high temperature of the tube 3 at one end of the shell 1 in the axial direction is reduced. Will be avoided and exhaust Heat exchange efficiency of the scan 1 0 and the cooling water 9 also will be greatly improved.
  • FIG. 17 shows an example of the embodiment of the invention described in claim 7 of the present invention.
  • the EGR cooler described above with reference to FIGS. 5 and 6 is omitted.
  • the bonnet 6 A on the exhaust gas 10 inlet side was moved from the exhaust gas inlet 7 opened on the axial extension X of the shell 1.
  • a pair of guide plates 21, 21, which are curved in an arc shape outward from the direction along the long side of the end face of the shell 1, are arranged in an eight-shape, and are sandwiched between the guide plates 21, 21.
  • a round bar 22 extending in the short side direction of the end face of the shell 1 (corresponding to the horizontal direction in FIG. 6) and dividing the main flow of the exhaust gas 10 is provided.
  • the exhaust gas 10 introduced into the bonnet 6A from the exhaust gas inlet 7 is smoothly changed in flow direction by the guide plates 21 and 21 so that the long side of the end face of the shell 1 Direction, and the flow of exhaust gas 10 that has passed between the guide plates 21, 21 collides with the round bar 22, and is separated well.
  • the gas flow in the bonnet 6A near the exhaust gas inlet 7 is more likely to flow in a laminar flow without separating along the curved surface portion 20 at the portion near the exhaust gas inlet 7.
  • the turbulence of the gas flow in 6 A is less likely to occur, and the exhaust gas 10 is easily introduced into the tubes 3 arranged on the outer side in the long side direction of the shell 1 end face. Exhaust gas 10 is introduced and distributed almost evenly and the local high temperature of tube 3 There would be avoided, the heat exchange efficiency between the exhaust gas 1 0 and the cooling water 9 also will be greatly improved.
  • FIG. 18 shows an example of an embodiment for carrying out the invention described in claim 8 of the present invention.
  • the configuration is substantially the same as that of the EGR cooler described earlier with reference to FIG.
  • gas pipes 11 extending in a direction substantially perpendicular to the axial extension line X of the shell 1 are provided at both axial ends of the shell 1. While gradually increasing the aperture, the gas flow is gently bent so as not to cause separation of the gas flow, and the required extension angle S between the axial extension line X of the shell 1 and the axial center line y of each of the gas pipes 11 and 11 is set. And are connected so as to intersect.
  • the exhaust gas 10 guided toward one axial end of the shell 1 forms a laminar flow along the inner peripheral surface of the gas pipe 11 and smoothly changes its direction.
  • the flow direction after the change is not completely matched with the axial direction of the shell 1 and is made to strike the plate 2 at one axial end of the shell 1 while maintaining a uniform flow velocity distribution.
  • Exhaust gas 10 that has passed through the tube 3 to the other axial end of the shell 1 also forms a laminar flow along the inner peripheral surface of the gas pipe 11 and can smoothly change its direction. Since it will be discharged smoothly without receiving local ventilation resistance at the exit part, Exhaust gas 10 flows almost evenly for all tubes 3, which avoids local rise in temperature of tube 3, and greatly improves the heat exchange efficiency between exhaust gas 10 and cooling water 9. Will be done.
  • EGR cooler of the present invention is not limited to the above-described embodiment, and the structures shown in the drawings may be applied individually, but may be appropriately combined with each other. By using this, it is possible to synergistically obtain the effect of improving the heat exchange efficiency between the exhaust gas and the cooling water.
  • heat exchange may be performed as a counter flow, and various changes may be made without departing from the spirit of the present invention.
  • the EGR cooler according to the present invention is suitable for being attached to an EGR device that recirculates engine exhaust gas to reduce the generation of nitrogen oxides.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

明 細 書
E G Rクーラ 技術分野
この発明は、 エンジンの排気ガスを再循環して窒素酸化物の発生を低減 させる E G R装置に付属されて再循環用排気ガスを冷却する E G Rクーラ に関する。 背景技術
第 1図は従来の E G Rクーラの一例を示す断面図であって、 図中 1は円 筒状に形成されたシェルを示し、 該シェル 1の軸心方向両端には、 シェル 1の端面を閉塞するようプレート 2 , 2が固着されていて、 該各プレート 2 , 2には、 シェル 1の軸心延長線 Xと平行に延びる多数のチューブ 3の 両端が貫通状態で固着されており、 これら多数のチューブ 3はシェル 1の 内部を軸心方向に延びている。
そして、 シェル 1の一方の端部近傍には冷却水入口 4が設けられ、 シェ ル 1の他方の端部近傍には冷却水出口 5が設けられており、 冷却水 9が冷 却水入口 4からシェル 1の内部に供給されてチューブ 3の外側を流れ、 冷 却水出口 5からシェル 1の外部に排出されるようになっている。
更に、 各プレート 2, 2の反シェル 1側には、 ボンネッ ト 6 A , 6 Bが 前記各プレート 2 , 2の端面を被包するように固着され、 一方のボンネッ ト 6 Aの中央には排気ガス入口 7が、 他方のボンネット 6 Bの中央には排 気ガス出口 8が夫々設けられており、 エンジンの排気ガス 1 0が排気ガス 入口 7から一方のボンネット 6 Aの内部に入り、 多数のチューブ 3を通る 間に該チューブ 3の外側を流れる冷却水 9との熱交換により冷却された後 に、 他方のボンネット 6 Bの内部に排出されて排気ガス出口 8からェンジ ンに再循環するようになっている。
しかしながら、 斯かる従来の E G Rクーラにおいては、 排気ガス 1 0が チューブ 3内をストレートに流れ、 チューブ 3の内周面に対して排気ガス 1 0が十分に接触しないために熱交換効率が悪いという問題があった。 また、 第 2図に拡大して示す如く、 一方のボンネット 6 Aが、 排気ガス 入口 7からシェル 1側に向け直線状の外形線を成して拡張するテ一パ部 6 Xと、 シェル 1と略同径に形成された円筒部 6 yとにより形成されていた が、 このような形状では、 排気ガス入口 7から導入された排気ガス 1 0の 流れがテーパ部 6 Xの内周面から剥離し易く、 該テーパ部 6 Xから円筒部 6 yにかけての内側部分に乱流化が起こって、 プレート 2の外周側に配置 されたチューブ 3に対し排気ガス 1 0が導入され難くなるので、 このよう な各チューブ 3に対する排気ガス 1 0の不均等な分配によっても熱交換効 率が悪くなるという問題があり、 更には、 中心側のチューブ 3が外周側の チューブ 3より高温化して局部的な熱変形が生じる虞れも招いていた。 一方、 第 3図に拡大して示す如く、 他方のボンネッ ト 6 Bも前述した一 方のボンネット 6 Aと同様に形成されていた為、 外周側のチューブ 3を抜 け出た排気ガス 1 0がボンネット 6 Aのテーパ部 6 Xに衝突して急激に流 れの向きを変えられることにより外周側のチューブ 3の出口部分で圧力上 昇が起こり、 この圧力上昇が外周側のチューブ 3における排気ガス 1 0の 通気抵抗となって、 該排気ガス 1 0が外周側のチューブ 3に対し一層導入 され難くなるので、 このような理由によっても各チューブ 3に対する排気 ガス 1 0の不均等な分配が生じて熱交換効率が悪くなつたり、 中心側のチ ュ一ブ 3が外周側のチューブ 3より高温化して局部的な熱変形が生じたり する虞れを招いていた。
更には、 第 4図に示すように、 従来におけるチューブ 3の配列は、 図中 に二点鎖線で示す如き三角形を基調とした千鳥状に並べて配列するように なっていた為、 円筒状に形成されたシェル 1と外周側のチューブ 3との間 に比較的大きな隙間が形成されてしまい、 冷却水入口 4から導入した冷却 水 9が流通抵抗の少ない外周側を優先的に流れる傾向が生じる一方、 チュ —ブ 3が密集配置された中心側へは冷却水 9が十分に行き届かないので、 このような理由によっても中心側のチューブ 3における熱交換効率が外周 側のチューブ 3より悪くなつたり、 中心側のチューブ 3が外周側のチュ一 ブ 3より高温化して局部的な熱変形が生じたりする虞れを招いていた。 また、 前述した如き従来の E G Rクーラにおいては、 冷却水入口 4から シェル 1の内部に供給された冷却水 9が、 シェル 1の内部断面に対して均 等に冷却水出口 5に向かって流れないという不具合もあり、 第 1図中に経 路 1 2で示すように、 冷却水入口 4からシェル 1の内部に流入した後、 冷 却水出口 5の方に屈曲して斜めに冷却水出口 5に向かう流れが主流となり, シェル 1内における冷却水入口 4及び冷却水出口 5に対峙する側の隅部近 傍で冷却水 9が澱んで冷却水停滞部 1 3が生じてしまう為、 この部分での 熱交換効率が悪くなるという問題があり、 特に高温の排気ガス 1 0が導入 されることになる冷却水入口 4に対し直径方向に対峙する位置では、 冷却 水停滞部 1 3付近でチューブ 3が局部的に高温になって熱変形を起こす虞 れもあった。
第 5図及び第 6図は従来における E G Rクーラの別の例を示すもので、 ここに図示している E G Rクーラでは、 車両への搭載上の問題からシェル 1を縦方向 (シェル 1の軸心延長線 Xに対し直角な方向) に扁平な箱型形 状に形成しており、 各ボンネット 6 A, 6 Bを排気ガス入口 7又は排気ガ ス出口 8からシェル 1側に向け該シェル 1の端面の長辺方向 (図示する例 では上下方向) 外側へ拡張してプレート 2, 2の端面全域を被包させるよ うにしている。
このような扁平な箱型形状を成す E G Rクーラにおいては、 排気ガス入 口 7からボンネット 6 A内に導入された排気ガス 1 0が、 その導入時の流 れの向きのまま直伸して流れる傾向が強くなる為、 シェル 1の端面の長辺 方向外側に拡散され難く、 しかも、 ボンネッ ト 6 A内の排気ガス入口 7に 近い部分でガス流が剥離して乱流化が起こり易いという不具合があり、 こ れによって、 シェル 1の端面の長辺方向中央のチューブ 3に偏って排気ガ ス 1 0が流れ込み、 当該チューブ 3が主として排気ガス 1 0の入側で高温 化して局部的な熱変形を起こす虞れがあり、 他方、 シェル 1の端面の長辺 方向外側のチューブ 3に分配される排気ガス 1 0の量が不足し、 この部分 での熱交換効率が悪くなるという問題を招いていた。
第 7図は従来における E G Rク一ラの更に別の例を示すもので、 ここに 図示している E G Rクーラでは、 車両への搭載上の問題からボンネッ トを 省略し、 シヱル 1の軸心延長線 Xに対し略直角な向きに延びるガス配管 1 1, 1 1を前記シェル 1の両端部に対し約 9 0 ° 屈曲させて直接的に接続 するようにしており、 しかも、 各ガス配管 1 1 , 1 1におけるシェル 1に 対する接続側端部の形状を先の第 1図〜第 4図の従来例におけるボンネッ ト 6 A , 6 B (第 1図参照) を摸した椀型形状としてある。
このような形式とした E G Rク一ラにおいては、 シェル 1の両端部に対 しガス配管 1 1 , 1 1を略直角に屈曲させて接続するようにしていた為、 特に排気ガス 1 0の入側においてガス配管 1 1の急激な屈曲によりコーナ 部分の内側でガス流が剥離して乱流化が起こってしまい、 そのコーナ部分 の外側に面したチューブ 3に偏って排気ガス 1 0が流れ込み易く、 当該チ ユーブ 3が排気ガス 1 0の入側で高温化して局部的な熱変形を起こす虞れ があり、 他方、 コーナ部分の内側に面したチューブ 3に対して分配される 排気ガス 1 0の量が不足し、 この部分での熱交換効率が悪くなるという問 題を招いていた。
本発明は、 上述の実情に鑑みて成されたもので、 排気ガスと冷却水との 熱交換効率を従来より向上し得る E G Rクーラを提供するものであり、 特 に局部的な熱変形の発生が懸念されるものについては、 その熱変形も同時 に防止し得るようにした E G Rクーラを提供している。 発明の開示
本発明の請求項 1に記載の E G Rクーラは、 チューブと、 該チューブを 包囲するシェルとを備え、 該シヱルの内部に冷却水を給排し且つ前記チュ —ブ内に排気ガスを通して該排気ガスと前記冷却水とを熱交換するように した E G Rクーラであって、 前記チューブの内周面に複数条のスパイラル 状突起を形成したことを特徴とするものである。
このようにチューブの内周面に複数条のスパイラル状突起を形成すれば、 チューブ内を流れる排気ガスが、 複数条のスパイラル状突起に沿い旋回流 となって乱流化し、 チューブの内周面に対する接触頻度や接触距離が増加 する結果、 排気ガスがチューブの内周面に満遍なく且つ十分に接触するこ とになり、 E G Rクーラの熱交換効率が大幅に向上される。
尚、 チューブの内周面に形成する一条のスパイラル状突起のピッチをつ めた場合には、 排気ガス 1 0の流れに対するスパイラル状突起の傾斜角が 大きくなつて直角に近付き、 その結果として圧損が大きくなることが想定 されるが、本発明では特に複数条のスパイラル状突起を形成しているので、 スパイラル状突起のピッチをつめても、 排気ガスの流れに対するスパイラ ル状突起の傾斜角を小さく抑えることが可能で、 圧損を高めずに旋回力を 大きくすることが可能である。
また、 本発明の請求項 2に記載の E G Rクーラは、 チューブと、 該チュ —ブを包囲するシェルとを備え、 該シェルの内部に冷却水を給排し且つ前 記チューブ内に排気ガスを通して該排気ガスと前記冷却水とを熱交換する ようにした E G Rクーラであって、 前記チューブ内に螺旋状線材を嵌挿し たことを特徴とするものである。
このようにチューブ内に螺旋状線材を嵌揷すれば、 チューブ内を流れる 排気ガスが螺旋状線材に沿い旋回流となって乱流化し、 チューブの内周面 に対する接触頻度や接触距離が増加する結果、 排気ガスがチューブの内周 面に満遍なく且つ十分に接触することになり、 E G Rクーラの熱交換効率 が大幅に向上される。
また、本発明の請求項 3に記載の発明は、 円筒状に形成されたシェルと、 該シェルの軸心方向両端にシェル端面を閉塞するよう固着されたプレート と、 該プレー卜の反シェル側にプレート端面を被包するよう固着されたポ ンネッ卜と、 前記シェルの内部を軸心方向に延び且つその両端を前記各プ レートに貫通固着されたチューブとを備え、 前記シェルの内部に冷却水を 給排し且つ前記チューブ内には一方のボンネット側から他方のボンネット 側に向け排気ガスを通して該排気ガスと前記冷却水とを熱交換するように した E G Rクーラであって、 排気ガス入側のボンネッ トを外側に向け凹面 を成して排気ガスの流れ方向に口径が漸増するベルマウス形状としたこと を特徴とするものである。
このようにすれば、 排気ガスがボンネットの内周面に沿い剥離せずに層 流を成して流れる傾向が強まり、 ボンネッ ト内における外周部分で乱流化 が起こり難くなつて、 外周側に配置されたチューブに対しても中心側と同 様に排気ガスが導入され易くなるので、 各チューブに対し排気ガスが均等 に分配されて熱交換効率が大幅に向上され、 しかも、 中心側のチューブも 外周側のチューブも一様に加熱されて局部的な高温化による熱変形が回避 されることになる。
また、本発明の請求項 4に記載の発明は、 円筒状に形成されたシェルと、 該シェルの軸心方向両端にシェル端面を閉塞するよう固着されたプレート と、 該プレー卜の反シェル側にプレート端面を被包するよう固着されたボ ンネットと、 前記シェルの内部を軸心方向に延び且つその両端を前記各プ レートに貫通固着されたチューブとを備え、 前記シェルの内部に冷却水を 給排し且つ前記チューブ内には一方のボンネッ ト側から他方のボンネット 側に向け排気ガスを通して該排気ガスと前記冷却水とを熱交換するように した E G Rクーラであって、 排気ガス出側のボンネットを外側に向け凸面 を成して排気ガスの流れ方向に口径が漸減する椀型形状としたことを特徴 とするものである。
このようにすれば、 外周側のチューブを抜け出た排気ガスがボンネット の内周面に沿い層流を成して滑らかに流れの向きを変えられるので、 外周 側のチューブの出口部分で圧力上昇が起こり難くなり、 これにより外周側 のチューブにおける排気ガスの通気抵抗が低下して、 外周側に配置された チューブに対しても中心側と同様に排気ガスが導入され易くなるので、 各 チューブに対し排気ガスが均等に分配されて熱交換効率が大幅に向上され、 しかも、 中心側のチューブも外周側のチューブも一様に加熱されて局部的 な高温化による熱変形が回避されることになる。
更に、 本発明の請求項 5に記載の発明は、 円筒状に形成されたシェルと、 該シェルの軸心方向両端にシヱル端面を閉塞するよう固着されたプレート と、 該プレー卜の反シェル側にプレート端面を被包するよう固着されたボ ンネットと、 前記シェルの内部を軸心方向に延び且つその両端を前記各プ レートに貫通固着されたチューブとを備え、 前記シェルの内部に冷却水を 給排し且つ前記チューブ内には一方のボンネッ ト側から他方のボンネット 側に向け排気ガスを通して該排気ガスと前記冷却水とを熱交換するように した E G Rクーラであって、 各チューブをシェルの軸線を中心とした同心 の多重円周状に配列したことを特徴とするものである。
このようにすれば、 円筒状に形成されたシェルに対し外周側のチューブ を沿わせて並べることが可能となり、 両者間の隙間を著しく縮小すること が可能となるので、 シェル内に導入された冷却水が外周側を優先的に流れ る傾向が大幅に抑制され、 しかも、 従来と同じ口径で同じ本数のチューブ を配置するに際し、 該各チューブ間の隙間が従来より広く確保されて、 中 心側のチューブへも冷却水が十分に行き届くことになるので、 中心側のチ ュ一ブも外周側のチューブも一様に冷却されてチューブの局所的な高温化 が回避されることになり、 排気ガスと冷却水との熱交換効率も大幅に向上 されることになる。
本発明の請求項 6に記載の発明は、 円筒状に形成されたシェルと、 該シ エルの軸心方向両端にシェル端面を閉塞するよう固着されたプレー卜と、 該プレートの反シェル側にプレート端面を被包するよう固着されたボンネ ットと、 前記シェルの内部を軸心方向に延び且つその両端を前記各プレー トに貫通固着されたチューブとを備え、 シェルの内部に冷却水を給排し且 つチューブ内には一方のボンネット側から他方のボンネット側に向け排気 ガスを通して該排気ガスと冷却水とを熱交換するようにした E G Rクーラ であって、 シェルの軸心方向一端側に、 該シェル内へ冷却水を導入する為 の冷却水入口を設けると共に、 シェルの軸心方向他端側には、 該シェル内 から冷却水を排出する為の冷却水出口を設け、 且つシェルの軸心方向一端 側における冷却水入口に対し直径方向に対峙する位置には、 冷却水入口か ら導入した冷却水の一部を抜き出す為のバイパス出口を設けたことを特徴 とするものである。
而して、 冷却水を冷却水入口からシェルの内部に導入しながら、 その導 入した冷却水の一部をバイパス出口から抜き出すようにすると、 シェルの 軸心方向一端側における冷却水入口に対し直径方向に対峙する位置で冷却 水が澱まなくなり、 ここに冷却水停滞部が生じてしまうことがなくなるの で、 シェルの軸心方向一端側でチューブの局所的な高温化が回避されるこ とになり、 排気ガスと冷却水との熱交換効率も大幅に向上されることにな る。
また、 本発明の請求項 7に記載の発明は、 扁平な箱型形状に形成されて 軸心方向両端を開放したシェルと、 該シェルの軸心方向両端にシェル端面 を閉塞するよう固着されたプレー卜と、 該プレー卜の反シェル側にプレー ト端面を被包するよう固着されたボンネッ 卜と、 前記シェルの内部を軸心 方向に延び且つその両端を前記各プレートに貫通固着されたチューブとを 備え、 シェルの内部に冷却水を給排し且つチューブ内には一方のボンネッ 卜側から他方のボンネット側に向け排気ガスを通して該排気ガスと冷却水 とを熱交換するようにした E G Rクーラであって、 排気ガス入側のポンネ ッ トを、 シェルの軸心延長線上に開口した排気ガス入口からシェル側に向 け急激にシヱル端面の長辺方向へ拡張してプレート端面全域を被包し且つ その排気ガス入口に近い部分をガス流の剥離が生じないよう外側に向け凹 面を成す曲面部としたベルマウス型の断面形状に形成し、 排気ガス入側の ボンネット内における排気ガス入口に臨む位置に、 シェルの軸心延長線に 沿う方向からシェル端面の長辺方向外側へ円弧状に湾曲する一対のガイ ド 板を八の字型に配設し、 該各ガイ ド板に挟まれた中間位置には、 シェル端 面の短辺方向に延びて排気ガスの主流を分断する丸棒を配設したことを特 徴とするものである。
このようにすれば、 排気ガス入口からボンネッ ト内に導入された排気ガ スが、 各ガイ ド板により滑らかに流れの向きを変更されてシェル端面の長 辺方向外側に良好に拡散され、 しかも、 各ガイ ド板の間を通過してしまつ た排気ガスの流れも丸棒に突き当たって分断されることにより良好に拡散 され、 更には、 排気ガス入側のボンネットにおける排気ガス入口に近い部 分でガス流が曲面部に沿い剥離せずに層流を成して流れる傾向が強まり、 排気ガス入側のボンネット内でガス流の乱流化が起こり難くなつて、 シェ ル端面の長辺方向外側に配置されたチューブに対しても排気ガスが導入さ れ易くなるので、 全てのチューブについて排気ガスを略均等に導入分配す ることが可能となり、チューブの局所的な高温化が回避されることになり、 排気ガスと冷却水との熱交換効率も大幅に向上されることになる。
また、本発明の請求項 8に記載の発明は、 円筒状に形成されたシェルと、 該シェルの軸心方向両端にシェル端面を閉塞するよう固着されたプレー卜 と、 前記シェルの内部を軸心方向に延び且つその両端を前記各プレートに 貫通固着されたチューブとを備え、 シェルの内部に冷却水を給排し且つチ ュ一ブ内にはシェルの軸心方向一端側から他端側に向け排気ガスを通して 該排気ガスと冷却水とを熱交換するようにした E G Rクーラであって、 シ エルの軸心方向両端に、 該シェルの軸心延長線に対し略直角な向きに延び るガス配管を徐々に口径を漸増させつつガス流の剥離が生じないよう緩や かに曲げ且つ前記シェルの軸心延長線と前記各ガス配管の軸心線とが所要 の角度を有して交差するように接続したことを特徴とするものである。 このようにすれば、 シェルの軸心方向一端側に向け導かれる排気ガスが ガス配管の内周面に沿い層流を成して滑らかに流れの向きを変えられ、 し かも、 その変更した後の流れの向きを完全にはシェルの軸心方向と一致さ せずに一様な流速分布のままシェルの軸心方向一端側のプレートに突き当 たらせるようにしているので、 シェルの軸心方向一端側でガス流の乱流化 を抑制しつつ全てのチューブに対し偏りなく排気ガスを略均等に導入分配 することが可能となり、 他方、 各チューブを通りシェルの軸心方向他端側 へ抜け出た排気ガスもガス配管の内周面に沿い層流を成して滑らかに流れ の向きを変えられ、 各チューブの出口部分で局部的な通気抵坊を受けるこ となく円滑に排出されることになるので、 チューブの局所的な高温化が回 避されることになり、 排気ガスと冷却水との熱交換効率も大幅に向上され ることになる。 図面の簡単な説明
第 1図は従来の E G Rクーラの一例を示す断面図、 第 2図は第 1図の排 気ガス入側のボンネッ卜の詳細を示す断面図、 第 3図は第 1図の排気ガス 出側のボンネッ 卜の詳細を示す断面図、 第 4図は第 2図の I V— I V矢視 の断面図、 第 5図は従来の E G Rクーラの別の例を示す断面図、 第 6図は 第 5図の V I—V I矢視の断面図、 第 7図は従来の E G Rクーラの更に別 の例を示す断面図、 第 8図は本発明の請求項 1に記載の発明を実施する形 態の一例を示す拡大断面図、 第 9図は第 8図のスパイラル状突起が一条で ある場合を示す模式図、 第 1 0図は第 9図のスパイラル状突起のピッチを 小さくした場合を示す模式図、 第 1 1図は第 8図のスパイラル状突起が二 条である場合を示す模式図、 第 1 2図は本発明の請求項 2に記載の発明を 実施する形態の一例を示す拡大断面図、 第 1 3図は本発明の請求項 3に記 載の発明を実施する形態の一例を示す断面図、 第 1 4図は本発明の請求項 4に記載の発明を実施する形態の一例を示す断面図、 第 1 5図は本発明の 請求項 5に記載の発明を実施する形態の一例を示す断面図、 第 1 6図は本 発明の請求項 6に記載の発明を実施する形態の一例を示す断面図、 第 1 7 図は本発明の請求項 7に記載の発明を実施する形態の一例を示す断面図、 第 1 8図は本発明の請求項 8に記載の発明を実施する形態の一例を示す断 面図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図示例と共に説明する。
第 8図は、 本発明の請求項 1に記載の発明を実施する形態の一例を示す 拡大断面図であって、第 1図と同一部分については同一符号を付してある。 本形態例においては、 先に第 1図で説明した E G Rクーラと略同様に構 成した E G Rクーラに関し、プレート 2を貫通するチューブ 3の内周面に、 複数条 (第 8図に示す実施の形態ではニ条) のスパイラル状突起 1 4, 1 5を形成している。
肉厚の薄いチューブ 3においては、 複数条のスパイラル状突起 1 4 , 1 5を形成するにあたり、チューブ 3を外から螺旋状に凹ませる押圧加工を、 螺旋凸条を有するロール等で施せば、 外から押圧した箇所が、 チューブ 3 の内周面に複数条のスパイラル状突起 1 4 , 1 5として形成されることに なる。
そして、第 8図に図示するように、例えばニ条のスパイラル状突起 1 4, 1 5が、 チューブ 3の内周面において、 互いに周方向に 1 8 0 ° 位相を変 えて並存するようにすれば、 長手方向の各位置で直径方向に相対するスパ イラル状突起 1 4, 1 5の向きが逆向きとなって交差することになり、 チ ュ一ブ 3の曲げ応力に対する強度が高まることになる。
ただし、 肉厚の厚いチューブ 3においては、 複数条のスパイラル状突起 1 4, 1 5を形成するにあたり、 複数条のスパイラル状突起 1 4 , 1 5を 残すようにチューブ 3の内周面を切削加工しても良い。
而して、 このようにチューブ 3の内周面に複数条のスパイラル状突起 1 4, 1 5を形成すると、 チューブ 3の中を通る排気ガス 1 0がスパイラル 状突起 1 4, 1 5に沿い旋回流となって乱流化し、 チューブ 3の内周面に 対する接触頻度や接触距離が増加する結果、 排気ガス 1 0がチューブ 3の 内周面に満遍なく且つ十分に接触することになり、 E G Rクーラの熱交換 効率を大幅に向上することが可能となる。
尚、 例えば、 第 9図に模式的に示す如く、 チューブ 3の内周面に排気ガ ス 1 0の流れに対する傾斜角 αで一条のスパイラル状突起 1 4のみを形成 した場合には、 スパイラル状突起 1 4のピッチ Ρをつめると、 第 1 0図に 示す如く、スパイラル状突起 1 4の傾斜角 βが大きくなつて直角に近付き、 その結果として圧損が大きくなることが想定されるが、 本形態例では特に 複数条のスパイラル状突起 1 4, 1 5を形成しているので、 第 1 1図に示 す如く、 スパイラル状突起 1 4 , 1 5の相互間のピッチ Ρをつめても、 排 気ガス 1 0の流れに対するスパイラル状突起 1 4, 1 5の傾斜角ァを小さ く抑えることが可能で、 圧損を高めずに旋回力を大きくすることが可能で ある。
第 1 2図は、 本発明の請求項 2に記載の発明を実施する形態の一例を示 す拡大断面図であって、 本形態例においては、 シェル 1を円筒容器状に形 成し、 チューブ 3の両端を前記シェル 1の軸心方向両端面に対し貫通固着 せしめるようにした構造を採用しており、 しかも、 前記チューブ 3の口径 及び肉厚を増加して流路断面積及び強度を上げ、 チューブ 3の本数を必要 最小限に減らすようにしている。
尚、 シェル 1の外部に張り出したチューブ 3の先端にはガスフランジ 1 6を設け、 該ガスフランジ 1 6に対し、 排気ガス 1 0を再循環するライン を適宜に分岐して直接接続できるようにしてある。
そして、 このような構造とした E G Rクーラに対し、 コイルスプリング 状の螺旋状線材 1 7をチューブ 3内の略全長に亘つて嵌挿し、 この螺旋状 線材 1 7の両端を溶接 1 8によりチューブ 3の内周面に固定している。 即ち、 第 1 2図に示す形態例は、 チューブ 3の口径が大きく且つ肉厚が 大きい場合に適したものであり、 先に説明した第 8図の如きスパイラル状 突起 1 4, 1 5を形成するよりも加工が容易であるという利点がある。 そして、 チューブ 3の中を通る排気ガス 1 0は、 螺旋状線材 1 7に沿い 旋回流となって乱流化し、 チューブ 3の内周面に対する接触頻度や接触距 離が増加する結果、 排気ガス 1 0がチューブ 3の内周面に満遍なく且つ十 分に接触することになり、 E G Rクーラの熱交換効率を大幅に向上するこ とが可能となる。
第 1 3図は、 本発明の請求項 3に記載の発明を実施する形態の一例を示 すもので、 本形態例においては、 先に第 1図で説明した E G Rクーラと略 同様に構成した E G Rクーラに関し、 排気ガス 1 0の入側のボンネット 6 Aを外側に向け凹面を成して排気ガス 1 0の流れ方向に口径が漸増するべ ルマウス形状として形成している。
このようにすれば、 排気ガス入口 7から導入された排気ガス 1 0がボン ネッ 卜 6 Aの内周面に沿い剥離せずに層流を成して流れる傾向が強まり、 ボンネット 6 A内における外周部分で乱流化が起こり難くなつて、 外周側 に配置されたチューブ 3に対しても中心側と同様に排気ガス 1 0が導入さ れ易くなるので、 各チューブ 3に対し排気ガス 1 0が均等に分配されて熱 交換効率が大幅に向上され、 しかも、 中心側のチューブ 3も外周側のチュ ーブ 3も一様に加熱されて局部的な高温化による熱変形が回避されること になる。
また、 第 1 4図は、 本発明の請求項 4に記載の発明を実施する形態の一 例を示すもので、 本形態例においては、 先に第 1図で説明した E G Rクー ラと略同様に構成した E G Rクーラに関し、 排気ガス 1 0の出側のポンネ ッ ト 6 Bを外側に向け凸面を成して排気ガス 1 0の流れ方向に口径が漸減 する椀型形状として形成している。
このようにすれば、 外周側のチューブ 3を抜け出た排気ガス 1 0がボン ネッ ト 6 Bの内周面に沿い層流を成して滑らかに流れの向きを変えられる ので、 外周側のチューブ 3の出口部分で圧力上昇が起こり難くなり、 これ により外周側のチューブ 3における排気ガス 1 0の通気抵抗が低下して、 外周側に配置されたチューブ 3に対しても中心側と同様に排気ガス 1 0が 導入され易くなるので、 各チューブ 3に対し排気ガス 1 0が均等に分配さ れて熱交換効率が大幅に向上され、 しかも、 中心側のチューブ 3も外周側 のチューブ 3も一様に加熱されて局部的な高温化による熱変形が回避され ることになる。
また、 第 1 5図は、 本発明の請求項 5に記載の発明を実施する形態の一 例を示すもので、 本形態例においては、 先に第 1図で説明した E G Rクー ラと略同様に構成した E G Rクーラに関し、 各チューブ 3をシェル 1の軸 線〇を中心とした同心の多重円周状に配列しており、 第 1 5図における図 示では、 第 4図と同じ口径で同じ本数のチューブ 3を配置している。
このようにすれば、 円筒状に形成されたシェル 1に対し外周側のチュー ブ 3を沿わせて並べることが可能となり、 両者間の隙間を著しく縮小する ことが可能となるので、 冷却水入口 4からシェル 1内に導入された冷却水 9が外周側を優先的に流れる傾向が大幅に抑制され、 しかも、 従来と同じ 口径で同じ本数のチューブ 3を配置するに際し、 該各チューブ 3間の隙間 が従来より広く確保されて、 中心側のチューブ 3へも冷却水 9が十分に行 き届くことになるので、 中心側のチューブ 3も外周側のチューブ 3も一様 に冷却されてチューブ 3の局所的な高温化が回避されることになり、 排気 ガス 1 0と冷却水 9との熱交換効率も大幅に向上されることになる。
第 1 6図は、 本発明の請求項 6に記載の発明を実施する形態の一例を示 すもので、 本形態例においては、 先に第 8図で説明した E G Rクーラと略 同様に構成した E G Rクーラに関し、 シェル 1の軸心方向一端側における 冷却水入口 4に対し直径方向に対峙する位置に、 冷却水入口 4から導入し た冷却水 9の一部を抜き出す為のバイパス出口 1 9を設けている。
而して、 このようにすれば、 エンジンの排気ガス 1 0が排気ガス入口 7 から一方のボンネット 6 Aの内部を経て分散して多数のチューブ 3を通り, 他方のボンネット 6 Bの内部に入って排気ガス出口 8からエンジンに再循 環する一方、 冷却水 9が冷却水入口 4からシェル 1の内部に供給されて冷 却水出口 5へ向かって流れることになるが、 このとき、 冷却水 9を冷却水 入口 4からシェル 1の内部に導入しながら、 その導入した冷却水 9の一部 をバイパス出口 1 9から抜き出すようにすると、 シェル 1の軸心方向一端 側における冷却水入口 4に対し直径方向に対峙する位置で冷却水 9が澱ま なくなり、 ここに冷却水停滞部が生じてしまうことがなくなるので、 シェ ル 1の軸心方向一端側でチューブ 3の局所的な高温化が回避されることに なり、 排気ガス 1 0と冷却水 9との熱交換効率も大幅に向上されることに なる。
第 1 7図は、 本発明の請求項 7に記載の発明を実施する形態の一例を示 すもので、 本形態例においては、 先に第 5図及び第 6図で説明した E G R クーラと略同様に構成した E G Rクーラに関し、 排気ガス 1 0入側のボン ネット 6 Aを、 シェル 1の軸心延長線 X上に開口した排気ガス入口 7から シェル 1側に向け急激にシェル 1端面の長辺方向 (図示する例では上下方 向) へ拡張してプレート 2端面全域を被包し且つその排気ガス入口 7に近 い部分をガス流の剥離が生じないよう外側に向け凹面を成す曲面部 2 0と したベルマウス型の断面形状に形成し、 ボンネット 6 A内における排気ガ ス入口 7に臨む位置に、 シェル 1の軸心延長線 Xに沿う方向からシェル 1 端面の長辺方向外側へ円弧状に湾曲する一対のガイ ド板 2 1, 2 1を八の 字型に配設し、 該各ガイ ド板 2 1 , 2 1に挟まれた中間位置には、 シェル 1端面の短辺方向 (第 6図中における左右方向に相当) に延びて排気ガス 1 0の主流を分断する丸棒 2 2を配設している。
このようにすれば、 排気ガス入口 7からボンネット 6 A内に導入された 排気ガス 1 0が、 各ガイ ド板 2 1 , 2 1により滑らかに流れの向きを変更 されてシェル 1端面の長辺方向外側に良好に拡散され、 しかも、 各ガイ ド 板 2 1 , 2 1の間を通過してしまった排気ガス 1 0の流れも丸棒 2 2に突 き当たって分断されることにより良好に拡散され、 更には、 ボンネット 6 Aにおける排気ガス入口 7に近い部分でガス流が曲面部 2 0に沿い剥離せ ずに層流を成して流れる傾向が強まり、 排気ガス 1 0入側のボンネット 6 A内でガス流の乱流化が起こり難くなつて、 シェル 1端面の長辺方向外側 に配置されたチューブ 3に対しても排気ガス 1 0が導入され易くなるので、 全てのチューブ 3について排気ガス 1 0が略均等に導入分配されてチュー ブ 3の局所的な高温化が回避されることになり、 排気ガス 1 0と冷却水 9 との熱交換効率も大幅に向上されることになる。
第 1 8図は、 本発明の請求項 8に記載の発明を実施する形態の一例を示 すもので、 本形態例においては、 先に第 7図で説明した E G Rクーラと略 同様に構成した E G Rクーラに関し、 シェル 1の軸心方向両端に、 該シェ ル 1の軸心延長線 Xに対し略直角な向きに延びるガス配管 1 1, 1 1を 徐々に口径を漸増させつつガス流の剥離が生じないよう緩やかに曲げ且つ 前記シェル 1の軸心延長線 Xと前記各ガス配管 1 1, 1 1の軸心線 yとが 所要の角度 Sを有して交差するように接続している。
このようにすれば、 シェル 1の軸心方向一端側に向け導かれる排気ガス 1 0がガス配管 1 1の内周面に沿い層流を成して滑らかに流れの向きを変 えられ、 しかも、 その変更した後の流れの向きを完全にはシェル 1の軸心 方向と一致させずに一様な流速分布のままシェル 1の軸心方向一端側のプ レート 2に突き当たらせるようにしているので、 シェル 1の軸心方向一端 側でガス流の乱流化を抑制しつつ全てのチューブ 3に対し偏りなく排気ガ ス 1 0を略均等に導入分配することが可能となり、 他方、 各チューブ 3を 通りシェル 1の軸心方向他端側へ抜け出た排気ガス 1 0もガス配管 1 1の 内周面に沿い層流を成して滑らかに流れの向きを変えられ、 各チューブ 3 の出口部分で局部的な通気抵抗を受けることなく円滑に排出されることに なるので、 全てのチューブ 3について略均等に排気ガス 1 0が流れてチュ ーブ 3の局所的な高温化が回避されることになり、 排気ガス 1 0と冷却水 9との熱交換効率も大幅に向上されることになる。
尚、 本発明の E G Rクーラは、 上述の形態例にのみ限定されるものでは なく、 各図面に示した構造は、 夫々の構造を個別に適用しても良いが、 互 いに適宜に組み合わせて用いることにより、 排気ガスと冷却水との熱交換 効率を向上する効果を相乗的に得ることが可能であること、 また、 図示し た例では冷却水を排気ガスの流れに対し並行流として熱交換させる場合を 示したが、 対向流として熱交換させるようにしても良いこと、 その他、 本 発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論で ある。 産業上の利用可能性
以上のように、 本発明にかかる E GRクーラは、 エンジンの排気ガスを 再循環して窒素酸化物の発生を低減させる E GR装置に付属させて用いる のに適している。

Claims

請 求 の 範 囲
1 . チューブと、 該チューブを包囲するシェルとを備え、 該シェルの内 部に冷却水を給排し且つ前記チューブ内に排気ガスを通して該排気ガスと 前記冷却水とを熱交換するようにした E G Rクーラであって、 前記チュー ブの内周面に複数条のスパイラル状突起を形成したことを特徴とする E G Rクーラ。
2 . チューブと、 該チューブを包囲するシェルとを備え、 該シェルの内 部に冷却水を給排し且つ前記チューブ内に排気ガスを通して該排気ガスと 前記冷却水とを熱交換するようにした E G Rクーラであって、 前記チュー ブ内に螺旋状線材を嵌挿したことを特徴とする E G Rクーラ。
3 . 円筒状に形成されたシェルと、 該シェルの軸心方向両端にシェル端 面を閉塞するよう固着されたプレートと、 該プレートの反シェル側にプレ ―ト端面を被包するよう固着されたボンネッ卜と、 前記シェルの内部を軸 心方向に延び且つその両端を前記各プレー卜に貫通固着されたチューブと を備え、 前記シェルの内部に冷却水を給排し且つ前記チューブ内には一方 のボンネッ 卜側から他方のボンネッ 卜側に向け排気ガスを通して該排気ガ スと前記冷却水とを熱交換するようにした E G Rクーラであって、 排気ガ ス入側のボンネットを外側に向け凹面を成して排気ガスの流れ方向に口径 が漸増するベルマウス形状としたことを特徴とする E G Rクーラ。
4 . 円筒状に形成されたシェルと、 該シェルの軸心方向両端にシェル端 面を閉塞するよう固着されたプレー卜と、 該プレー卜の反シェル側にプレ ―ト端面を被包するよう固着されたボンネッ卜と、 前記シェルの内部を軸 心方向に延び且つその両端を前記各プレートに貫通固着されたチューブと を備え、 前記シェルの内部に冷却水を給排し且つ前記チューブ内には一方 のボンネット側から他方のボンネット側に向け排気ガスを通して該排気ガ スと前記冷却水とを熱交換するようにした E G Rクーラであって、 排気ガ ス出側のボンネットを外側に向け凸面を成して排気ガスの流れ方向に口径 が漸減する椀型形状としたことを特徴とする E G Rクーラ。
5 . 円筒状に形成されたシェルと、 該シェルの軸心方向両端にシェル端 面を閉塞するよう固着されたプレートと、 該プレー卜の反シェル側にプレ 一ト端面を被包するよう固着されたボンネッ卜と、 前記シェルの内部を軸 心方向に延び且つその両端を前記各プレー卜に貫通固着されたチューブと を備え、 前記シェルの内部に冷却水を給排し且つ前記チューブ内には一方 のボンネット側から他方のボンネッ ト側に向け排気ガスを通して該排気ガ スと前記冷却水とを熱交換するようにした E G Rクーラであって、 各チュ —ブをシェルの軸線を中心とした同心の多重円周状に配列したことを特徴 とする E G Rクーラ。
6 . 円筒状に形成されたシェルと、 該シェルの軸心方向両端にシェル端 面を閉塞するよう固着されたプレートと、 該プレー卜の反シェル側にプレ —ト端面を被包するよう固着されたボンネッ卜と、 前記シェルの内部を軸 心方向に延び且つその両端を前記各プレートに貫通固着されたチューブと を備え、 シェルの内部に冷却水を給排し且つチューブ内には一方のポンネ ッ ト側から他方のボンネット側に向け排気ガスを通して該排気ガスと冷却 水とを熱交換するようにした E G Rクーラであって、 シェルの軸心方向一 端側に、 該シヱル内へ冷却水を導入する為の冷却水入口を設けると共に、 シェルの軸心方向他端側には、 該シェル内から冷却水を排出する為の冷却 水出口を設け、 且つシェルの軸心方向一端側における冷却水入口に対し直 径方向に対峙する位置には、 冷却水入口から導入した冷却水の一部を抜き 出す為のバイパス出口を設けたことを特徴とする E G Rクーラ。
7 . 扁平な箱型形状に形成されて軸心方向両端を開放したシェルと、 該 シェルの軸心方向両端にシェル端面を閉塞するよう固着されたプレートと, 該プレートの反シェル側にプレート端面を被包するよう固着されたポンネ ッ卜と、 前記シェルの内部を軸心方向に延び且つその両端を前記各プレー トに貫通固着されたチューブとを備え、 シェルの内部に冷却水を給排し且 つチューブ内には一方のボンネッ 卜側から他方のボンネット側に向け排気 ガスを通して該排気ガスと冷却水とを熱交換するようにした E G Rクーラ であって、 排気ガス入側のボンネットを、 シェルの軸心延長線上に開口し た排気ガス入口からシェル側に向け急激にシェル端面の長辺方向外側へ拡 張してプレート端面全域を被包し且つその排気ガス入口に近い部分をガス 流の剥離が生じないよう外側に向け凹面を成す曲面部としたベルマウス型 の断面形状に形成し、 排気ガス入側のボンネッ卜内における排気ガス入口 に臨む位置に、 シェルの軸心延長線に沿う方向からシェル端面の長辺方向 へ円弧状に湾曲する一対のガイ ド板を八の字型に配設し、 該各ガイ ド板に 挟まれた中間位置には、 シェル端面の短辺方向に延びて排気ガスの主流を 分断する丸棒を配設したことを特徴とする E G Rクーラ。
8 . 円筒状に形成されたシェルと、 該シェルの軸心方向両端にシェル端 面を閉塞するよう固着されたプレー卜と、 前記シェルの内部を軸心方向に 延び且つその両端を前記各プレートに貫通固着されたチューブとを備え、 シェルの内部に冷却水を給排し且つチューブ内にはシェルの軸心方向一端 側から他端側に向け排気ガスを通して該排気ガスと冷却水とを熱交換する ようにした E G Rクーラであって、 シェルの軸心方向両端に、 該シェルの 軸心延長線に対し略直角な向きに延びるガス配管を徐々に口径を漸増させ つつガス流の剥離が生じないよう緩やかに曲げ且つ前記シェルの軸心延長 線と前記各ガス配管の軸心線とが所要の角度を有して交差するように接続 したことを特徴とする E GRクーラ。
PCT/JP2000/000218 1999-01-20 2000-01-19 Refroidisseur egr WO2000043663A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00900811A EP1148231A4 (en) 1999-01-20 2000-01-19 EGR COOLER
KR1020017009059A KR20010102981A (ko) 1999-01-20 2000-01-19 Egr 쿨러

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP11/11776 1999-01-20
JP11011776A JP2000213424A (ja) 1999-01-20 1999-01-20 Egrク―ラ
JP11158053A JP2000345925A (ja) 1999-06-04 1999-06-04 Egrクーラ
JP11/158053 1999-06-04
JP11/251546 1999-09-06
JP25154699A JP4248095B2 (ja) 1999-09-06 1999-09-06 Egrクーラ

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09889389 A-371-Of-International 2001-07-17
US10/356,611 Division US6684938B2 (en) 1999-01-20 2003-02-03 EGR cooler
US10/356,610 Division US20030111209A1 (en) 1999-01-20 2003-02-03 EGR cooler

Publications (1)

Publication Number Publication Date
WO2000043663A1 true WO2000043663A1 (fr) 2000-07-27

Family

ID=27279573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000218 WO2000043663A1 (fr) 1999-01-20 2000-01-19 Refroidisseur egr

Country Status (3)

Country Link
EP (1) EP1148231A4 (ja)
KR (1) KR20010102981A (ja)
WO (1) WO2000043663A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831252A1 (fr) * 2001-07-10 2003-04-25 Denso Corp Echangeur de chaleur de gaz d'echappement
US6684938B2 (en) * 1999-01-20 2004-02-03 Hino Motors, Ltd. EGR cooler
WO2004031565A1 (ja) * 2002-10-02 2004-04-15 Hino Motors, Ltd. Egrクーラ

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2199036B1 (es) * 2001-10-26 2004-11-16 Valeo Termico, S.A. Intercambiador de calor, especialmente para el enfriamiento de gases en un sistema de recirculacion de gases de escape.
DE10216773B4 (de) * 2002-04-15 2004-09-16 Benteler Automobiltechnik Gmbh Kühler für ein dem Hauptabgasstrom eines Verbrennungsmotors entnommenes Abgas
ES2263394B1 (es) * 2006-02-01 2007-11-16 Sener, Ingenieria Y Sistemas, S.A. Colector de seccion transversal variable y pared delgada para paneles de absorcion solar.
DE102008038629B4 (de) 2008-08-12 2019-12-05 Mahle International Gmbh Abgaskühler für ein Kraftfahrzeug
DE102009034723A1 (de) * 2009-07-24 2011-01-27 Behr Gmbh & Co. Kg Wärmetauscher und Aufladesystem
CN101943529A (zh) * 2010-09-29 2011-01-12 西安航天华威化工生物工程有限公司 高温气体干法降温装置及方法
CN103470409A (zh) * 2013-10-06 2013-12-25 无锡优萌汽车部件制造有限公司 一种egr冷却器
KR102142662B1 (ko) 2014-10-17 2020-08-07 현대자동차주식회사 차량용 egr 쿨러
PL409856A1 (pl) * 2014-10-20 2015-06-08 Feerum Spółka Akcyjna Rurowy wymiennik ciepła typu gaz-gaz
KR102166999B1 (ko) 2015-10-26 2020-10-16 한온시스템 주식회사 배기가스 쿨러
FR3098579B1 (fr) * 2019-07-08 2022-04-29 Renaults S A S Conduit de guidage de l’écoulement d’un flux de gaz comportant une ailette de perturbation de l’écoulement
FR3137752A1 (fr) * 2022-07-07 2024-01-12 Valeo Systemes Thermiques Dispositif de régulation thermique, notamment de refroidissement

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153347A (ja) * 1974-05-30 1975-12-10
JPS5214258A (en) * 1975-07-22 1977-02-03 Allied Chem Inlet cone for heat transmission tube heat exchanger
JPS5222706B2 (ja) * 1974-04-25 1977-06-18
JPS57160590U (ja) * 1981-03-30 1982-10-08
JPS6015877B2 (ja) * 1976-06-25 1985-04-22 昭和電工株式会社 熱交換器
JPH027418Y2 (ja) * 1982-09-06 1990-02-22
JPH09310991A (ja) * 1996-05-20 1997-12-02 Usui Internatl Ind Co Ltd Egrガス冷却装置
US5732688A (en) * 1996-12-11 1998-03-31 Cummins Engine Company, Inc. System for controlling recirculated exhaust gas temperature in an internal combustion engine
US5785030A (en) * 1996-12-17 1998-07-28 Dry Systems Technologies Exhaust gas recirculation in internal combustion engines
JPH10259763A (ja) * 1997-03-19 1998-09-29 Toyota Motor Corp Egr用冷却装置
JPH10281015A (ja) * 1997-04-02 1998-10-20 Calsonic Corp Egrガス冷却装置
JPH10318050A (ja) * 1997-05-14 1998-12-02 Usui Internatl Ind Co Ltd Egrガス冷却装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB330590A (en) * 1929-03-12 1930-06-12 William Henry Owen Improvements relating to air heaters
US3826304A (en) * 1967-10-11 1974-07-30 Universal Oil Prod Co Advantageous configuration of tubing for internal boiling
JP3907269B2 (ja) * 1997-05-06 2007-04-18 臼井国際産業株式会社 伝熱管およびこれを使用したegrガス冷却装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222706B2 (ja) * 1974-04-25 1977-06-18
JPS50153347A (ja) * 1974-05-30 1975-12-10
JPS5214258A (en) * 1975-07-22 1977-02-03 Allied Chem Inlet cone for heat transmission tube heat exchanger
JPS6015877B2 (ja) * 1976-06-25 1985-04-22 昭和電工株式会社 熱交換器
JPS57160590U (ja) * 1981-03-30 1982-10-08
JPH027418Y2 (ja) * 1982-09-06 1990-02-22
JPH09310991A (ja) * 1996-05-20 1997-12-02 Usui Internatl Ind Co Ltd Egrガス冷却装置
US5732688A (en) * 1996-12-11 1998-03-31 Cummins Engine Company, Inc. System for controlling recirculated exhaust gas temperature in an internal combustion engine
US5785030A (en) * 1996-12-17 1998-07-28 Dry Systems Technologies Exhaust gas recirculation in internal combustion engines
JPH10259763A (ja) * 1997-03-19 1998-09-29 Toyota Motor Corp Egr用冷却装置
JPH10281015A (ja) * 1997-04-02 1998-10-20 Calsonic Corp Egrガス冷却装置
JPH10318050A (ja) * 1997-05-14 1998-12-02 Usui Internatl Ind Co Ltd Egrガス冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1148231A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6684938B2 (en) * 1999-01-20 2004-02-03 Hino Motors, Ltd. EGR cooler
FR2831252A1 (fr) * 2001-07-10 2003-04-25 Denso Corp Echangeur de chaleur de gaz d'echappement
WO2004031565A1 (ja) * 2002-10-02 2004-04-15 Hino Motors, Ltd. Egrクーラ
US7594536B2 (en) 2002-10-02 2009-09-29 Hino Motors, Ltd. EGR cooler
KR100971617B1 (ko) * 2002-10-02 2010-07-22 히노 지도샤 가부시키가이샤 배기가스 재순환 쿨러

Also Published As

Publication number Publication date
KR20010102981A (ko) 2001-11-17
EP1148231A4 (en) 2008-02-13
EP1148231A1 (en) 2001-10-24

Similar Documents

Publication Publication Date Title
WO2000043663A1 (fr) Refroidisseur egr
US6684938B2 (en) EGR cooler
AU2007207217B2 (en) Tube bundle heat exchanger
US20090000775A1 (en) Shell and tube heat exchanger
JP4926892B2 (ja) 熱交換器のフランジ接続構造
WO2013150818A1 (ja) 伝熱管とそれを用いた熱交換器
KR101793752B1 (ko) 가스용, 특히 엔진의 배기 가스용 열교환기
WO2004031565A9 (ja) Egrクーラ
CN101614493A (zh) 用于机动车辆排气管路的换热器、制造换热器的方法和装配工具
JP2009091948A (ja) Egrクーラ
JP2002054511A (ja) Egrクーラ
US9841240B2 (en) Heat exchanger
JP2000111277A (ja) 2重配管式熱交換器
KR20150144723A (ko) 유동 디플렉터
JP2001074380A (ja) Egrクーラ
JPH1183352A (ja) 熱交換器
JPH02195196A (ja) 熱交換器
JP2008008568A (ja) 熱交換器
JP2004124809A (ja) Egrクーラ
JP2000045884A (ja) Egrクーラ
JP2000345925A (ja) Egrクーラ
JP2009114924A (ja) Egrクーラ
JP2000161871A (ja) 2重配管式熱交換器
WO2017073139A1 (ja) 気化器
JP2000130964A (ja) 2重配管式熱交換器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000900811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09889389

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020017009059

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000900811

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017009059

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020017009059

Country of ref document: KR