WO2000042359A1 - Method and device for reducing temperature of exhaust gas utilizing hot water - Google Patents

Method and device for reducing temperature of exhaust gas utilizing hot water Download PDF

Info

Publication number
WO2000042359A1
WO2000042359A1 PCT/JP1999/007162 JP9907162W WO0042359A1 WO 2000042359 A1 WO2000042359 A1 WO 2000042359A1 JP 9907162 W JP9907162 W JP 9907162W WO 0042359 A1 WO0042359 A1 WO 0042359A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
hot water
temperature
water
solution
Prior art date
Application number
PCT/JP1999/007162
Other languages
English (en)
French (fr)
Inventor
Masayuki Kumada
Keiji Mukai
Original Assignee
Takuma Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co.,Ltd. filed Critical Takuma Co.,Ltd.
Priority to KR1020007003991A priority Critical patent/KR100345408B1/ko
Priority to EP99959931A priority patent/EP1065444B1/en
Priority to DE69942997T priority patent/DE69942997D1/de
Publication of WO2000042359A1 publication Critical patent/WO2000042359A1/ja
Priority to US09/639,662 priority patent/US6523811B1/en
Priority to US10/301,734 priority patent/US6712343B2/en
Priority to US10/756,417 priority patent/US6841138B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/48Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/13001Preventing or reducing corrosion in chimneys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Definitions

  • the present invention is used for treating exhaust gas discharged from a combustion device such as a refuse incinerator or a boiler.
  • the present invention relates to a method and an apparatus for reducing the temperature of exhaust gas, which can prevent damage due to operation and troubles due to accumulation of dust, and can also remove acid gas in exhaust gas.
  • Exhaust gas emitted from combustion equipment such as refuse incinerators and boilers is generally purified by gas purification equipment and then released to the atmosphere.
  • an exhaust gas temperature reduction device configured to spray water into the exhaust gas and to reduce the exhaust gas temperature by using the sensible heat and latent heat of evaporation of the water is generally used.
  • FIGS. 9 and 10 show examples of a conventional exhaust gas cooling device.
  • 21 is a gas cooling chamber
  • 21 a is an exhaust gas inlet
  • 21 b is an exhaust gas cooling device.
  • Exhaust gas outlet 2 1c is ash outlet
  • 22 is dewarmed water tank
  • 23 is pressurized pump
  • 24 is dewarmed water nozzle
  • 25 is temperature control device
  • 25a is temperature detector
  • 26 is reduced Hot water control valve
  • 27 is an injection pump
  • 28 is an air compressor
  • 29 is a compressed air tank
  • 30 is a mixer
  • G h is high-temperature exhaust gas
  • G 1 is low-temperature exhaust gas
  • C is ash.
  • high-pressure water from the cooling water tank 22 added by the pressurizing pump 23 is supplied to the cooling water nozzle installed near the exhaust gas inlet 21 a. It is sprayed into the gas cooling chamber 21 through 24. The temperature of the sprayed water rises when it comes into contact with the high-temperature exhaust gas Gh, and when it reaches the boiling point, it evaporates to steam.
  • the high-temperature exhaust gas G h in the gas cooling chamber 21 is cooled by the sensible heat of the sprayed water, the latent heat of evaporation, and the sensible heat of water vapor, and is cooled to a predetermined temperature. And it is derived from the exhaust gas outlet 21b.
  • the amount of water sprayed into the gas cooling chamber 21 is adjusted by the temperature detection signal from the temperature detector 25 a via the temperature control device 25 to adjust the opening of the temperature-reducing water flow control valve 26.
  • the temperature of the low-temperature exhaust gas G 1 derived from the exhaust gas outlet 21 b is controlled by controlling the amount of water sprayed into the gas cooling chamber 21 by changing the amount of water returned to the desuperheated water tank 22. Is maintained at a desired temperature.
  • the water sent from the temperature reduction water tank 22 by the injection pump 27 and the compressed air tank 29 from the compressed air tank 29 The water is atomized by mixing the high-pressure air and in the mixer 30. Thereafter, the atomized water is sprayed from the mixer 30 into the gas cooling chamber 21 through a desuperheated water nozzle 24 provided near the exhaust gas inlet 21a.
  • the temperature of the sprayed water rises due to contact with the high-temperature exhaust gas G h and evaporates into steam when the boiling point is reached.
  • the high-temperature exhaust gas G h in the gas cooling chamber 21 is sprayed. Cooled by the sensible heat of water, latent heat of vaporization, and the sensible heat of water vapor. That is, the temperature of the low-temperature exhaust gas G 1 is maintained at a set value by adjusting the amount of sprayed water, and the like, in exactly the same manner as in FIG.
  • the conventional exhaust gas temperature-reducing devices shown in FIGS. 9 and 10 can reduce the temperature of the high-temperature exhaust gas Gh to a desired temperature using inexpensive water, and exhibit excellent practical utility. is there.
  • the particle size of atomized desuperheated water is usually as small as about 30 to 100 / m, as shown in FIG. Compared with the one-fluid system, the frequency of inconvenience caused by the adhesion of water droplets is relatively low.
  • the amount of exhaust gas 9 0, 0 0 O Nm 3 ZH, hot exhaust gas G h inlet exhaust gas temperature 2 4 0 ° C When the temperature of the exhaust gas is reduced to a low-temperature exhaust gas G1 at an outlet exhaust gas temperature of 180 ° C., when the exhaust gas temperature reducing device of the one-fluid type shown in FIG. 9 is used, the inner diameter is about 480 m.
  • the heat load of the gas cooling chamber is usually 5, 0 00 ⁇ 1 0, OOO kcal / m 3 ⁇ H ( unit volume of the gas cooling chamber, unit of time per (The amount of heat that can be taken away from the exhaust gas).
  • the heat load in the gas cooling room is 7 OOO kcal / m 3 ⁇ H. Disclosure of Invention I (Problem to be solved)
  • the present invention has the above-mentioned problems in the conventional exhaust gas cooling apparatus, that is, (a) In the case of the one-fluid system, since the particle diameter of atomized reduced-temperature water is coarse, water droplets are deposited on the wall of the gas cooling chamber. Direct operation may damage the refractory material, or may make dust difficult to operate smoothly due to adhesion and accumulation of dust. (Mouth) In the case of the two-fluid system, compressed air equipment is required, equipment and running costs. (C) It takes a long time for the atomized water particles to evaporate, so that the gas cooling chamber cannot be downsized significantly. By reducing the particle size of water particles to a significantly smaller size than before, an exhaust gas temperature reduction method that can reduce the temperature of exhaust gas efficiently and inexpensively with an extremely small exhaust gas temperature reduction device. To provide an exhaust gas temperature reduction device used for this Than it is.
  • the present inventor attempts to atomize water using a deheated water nozzle in a one-fluid type exhaust gas deheater using only water through the design, manufacture and testing of many exhaust gas deheaters. No matter how much the temperature-reduced water nozzle is improved or the pressure of the temperature-reduced water is increased, it is difficult to reduce the particle size of the atomized temperature-reduced water to about 100 m or less. I learned that the room volume could not be reduced significantly.
  • the present inventor has made a common sense practice in the design of this kind of exhaust gas desuperheater, that is, ⁇ using room temperature water of about 20 to 30 ° C as desuperheated water, In addition, the latent heat of evaporation is effectively used for cooling the high-temperature exhaust gas.
  • the pressurized hot water having a temperature equal to or higher than the boiling point of water or a gas-liquid two-phase flow containing steam in a part of the pressurized hot water is atomized and ejected from the conventional deheated water nozzle.
  • the invention of the present application is based on the above-mentioned idea that overturns the ordinary technical common sense or practice of the present inventors.
  • the invention of claim 2 has a basic configuration of the invention in which pressurized hot water having a temperature higher than the boiling point of water under atmospheric pressure is sprayed as desuperheated water into a gas cooling chamber or an exhaust gas duct. .
  • hot water taken out of the deaerator or continuous blow water of the boiler is used as a part of the pressurized hot water. Things.
  • the invention of claim 4 is the invention of claim 1, claim 2 or claim 3, wherein pressurized hot water containing steam as a part thereof is used as desuperheated water.
  • hot pressurized water containing an alkaline solution is used as temperature-reduced water.
  • the invention of claim 6 is the invention of claim 5, wherein the heated alkaline solution is mixed into hot water.
  • the invention of claim 7 is the invention of claim 5 or claim 6, wherein the alkaline solution is an alkaline aqueous solution or an alkaline slurry solution.
  • the alkaline aqueous solution is an aqueous solution containing sodium hydroxide (caustic soda)
  • the alkaline slurry solution is a slurry solution containing calcium hydroxide (slaked lime).
  • the invention of claim 9 provides a gas cooling chamber having a gas inlet, a gas outlet, and an ash outlet, and a hot water reservoir storing pressurized hot water having a temperature higher than the boiling point of water under atmospheric pressure.
  • a deheated water nozzle that sprays hot water from the hot water tank into the gas cooling chamber, a deheated water control valve that regulates the amount of hot water supplied to the deheated water nozzle, and temperature detection of low-temperature exhaust gas flowing out of the gas outlet From the temperature detector And a temperature control device that controls the opening and closing of the temperature-reducing water flow control valve based on the detection signal.
  • the invention of claim 10 is characterized in that an exhaust gas duct through which exhaust gas flows, a hot water reservoir storing pressurized hot water at a temperature higher than the boiling point of water under atmospheric pressure, and a hot water reservoir.
  • a deheated water nozzle that sprays hot water into the exhaust gas duct, a deheated water amount control valve that adjusts the amount of hot water supplied to the deheated water nozzle, and a temperature detector for the low-temperature exhaust gas that flows out of the exhaust gas duct outlet.
  • the basic configuration of the present invention is to include a temperature control device that controls opening and closing of the temperature-reducing water control valve based on a detection signal from the temperature detector.
  • the invention of claim 11 is the invention according to claim 9 or claim 10, wherein hot water is supplied to the desuperheated water nozzle by the internal pressure of the hot water tank.
  • the invention according to claim 12 is a gas cooling chamber having a gas inlet, a gas outlet, and an ash outlet, and a hot water reservoir storing pressurized hot water having a temperature higher than the boiling point of water under atmospheric pressure.
  • Nku An alkaline solution tank storing an alkaline solution, a mixer for mixing the hot water from the hot water tank and the alkaline solution from the alkaline solution tank, and hot water containing the alkaline solution from the mixer.
  • a temperature-reducing water nozzle sprayed into the gas cooling chamber a temperature-reducing water flow control valve that regulates the flow rate of hot water containing the alkaline solution supplied to the temperature-reducing water nozzle, and a flow rate of the alkaline solution supplied to the mixer Control valve for adjusting the temperature of the low-temperature exhaust gas flowing out from the gas outlet; an acid gas concentration detector for the low-temperature exhaust gas; and a reduced-temperature water amount based on a detection signal from the temperature detector.
  • the basic structure of the present invention includes a temperature control device that controls opening and closing of a control valve, and an acid gas concentration control device that controls opening and closing of an alkaline solution amount control valve based on a detection signal from the acid gas concentration detector. Is shall.
  • an alkaline solution heater for heating the alkaline solution is provided on the alkaline solution inlet side of the mixer.
  • the invention of claim 14 is the invention of claim 12 or claim 13, wherein the alkaline solution tank stores an alkaline aqueous solution or an alkaline slurry solution. This is an alkaline solution tank.
  • the invention according to claim 15 stores an exhaust gas duct through which exhaust gas flows, a hot water tank storing pressurized hot water at a temperature higher than the boiling point of water under atmospheric pressure, and an alkaline solution.
  • a mixer for mixing the alkaline solution from the alkaline solution tank with the hot water from the alkaline solution tank; and hot water containing the alkaline solution from the mixer.
  • Nozzle for spraying water into an exhaust gas duct, a temperature-reducing water control valve for adjusting the flow rate of hot water containing an alkaline solution to be supplied to the temperature-reducing water nozzle, and an alkaline solution to be supplied to the mixer.
  • An alkaline solution amount control valve for adjusting the flow rate, a temperature detector for the low-temperature exhaust gas flowing out from the outlet of the exhaust gas duct, an acid gas concentration detector for the low-temperature exhaust gas, and a temperature-reducing water based on a detection signal from the temperature detector.
  • Temperature control for opening and closing the quantity control valve Apparatus and acidic which controls the opening and closing of the Al force Li solution control valve by the detection signal from the acid gas concentration detector
  • a gas concentration control device is a basic configuration of the present invention.
  • the invention of claim 16 is the invention of claim 15, wherein an alkaline solution heater for heating the alkaline solution is provided on the alkaline solution inlet side of the mixer.
  • the invention according to claim 17 is the invention according to claim 15 or claim 16, wherein the alkaline solution solution is stored with an alkaline solution or an alkaline slurry solution. This is a solution tank with a strong force.
  • the discharge source of the high-temperature exhaust gas may be any combustion device such as a refuse incinerator or a boiler, and the present invention can be applied to all types of combustion exhaust gas.
  • the temperature of the high-temperature exhaust gas Gh supplied to the gas cooling chamber can be set to a temperature of 1,000 to 150
  • the temperature of the low-temperature exhaust gas G1 derived from the gas cooling chamber can be set to a temperature of 100 ° C or more.
  • the temperature of the high-temperature exhaust gas Gh is about 900 ° C to 10000 ° C
  • the temperature of the low-temperature exhaust gas G1 is 150 ° C to 250 ° C. ° C
  • set the temperature of high-temperature exhaust gas Gh to 200 ° C to 400 ° C, and the temperature of low-temperature exhaust gas G1 to 120 to 250, respectively. can do.
  • the shape of the gas cooling chamber may be either a vertical type or a horizontal type, and its cross-sectional shape can be freely selected from a circle, an ellipse, a square, and the like.
  • the form of the exhaust gas duct may be either horizontally long or vertically long, and its cross-sectional shape may be any of a circle, an ellipse, and a square.
  • the pressurized hot water Wt is water maintained at a temperature higher than the boiling point of water under atmospheric pressure (100 ° C.), and is so-called high-pressure high-temperature water.
  • the pressure of the hot compressed water Wt is selected available-to a value of 1 kg / cm 2 ⁇ G or ⁇ 1 0 0 kgZcm 2 ⁇ G position physician, 3 considering the pressure resistance of the hot water tank 2, etc. It is desirable to choose between 10 kgZ cm 2 ⁇ G.
  • pressurized hot water Wt is in a state in which steam is partially contained inside it (so-called two-phase fluid ), But the lower the steam content, the better.
  • the hot water generated in the deaerator can be used as de-heated water as it is.
  • the piping from the deaerator is required as the hot water Wt supply facility, and the exhaust gas temperature reduction device can be configured at extremely low cost.
  • the combustion device is a boiler or an incinerator with a waste heat boiler
  • continuous blow water from the boiler can be used as part of the hot water used as desuperheated water.
  • boiler water hot water
  • Part is discharged outside. Since the boiler water discharged to the outside is usually alkaline water with a pH of 8.5 to 11.8, it has a dechlorination and desulfurization effect in the exhaust gas, and is equipped with exhaust gas desalination 'desulfurization equipment. In, the amount of drug used for this can be reduced.
  • the gas cooling chamber is vertical, it is desirable to install the desuperheater nozzle for atomizing the pressurized hot water near the gas inlet of the high-temperature exhaust gas Gh above it. It is selected as appropriate according to the configuration of the gas cooling chamber and the number of nozzles for cooling water. The same applies to the case where hot pressurized water is blown into the exhaust gas duct.
  • the structure of the temperature-reducing water nozzle may be any structure, and for example, a known screw-type or collision-type water spray nozzle may be used.
  • the number of nozzles for the cooling water nozzles depends on the shape of the gas cooling Force appropriately selected depending on the number of nozzles provided in the nozzles and the required amount of hot water to be ejected ⁇
  • conventional industrial waste incinerators incineration amount 300 tonZD, exhaust gas amount 90
  • 00 ONm 3 ZH exhaust gas secondary cooling
  • hot water temperature 142.9 ° C, pressure 3 kg / cm 2 G saturated water
  • the hot water sprayed from the desuperheated water nozzle has a high temperature and a high pressure considerably higher than the boiling point (10 ° C.) under the atmospheric pressure.
  • the temperature-reduced water nozzle it rapidly boil under reduced pressure near the nozzle outlet and become fine particles, and evaporate instantaneously after being sprayed to become water vapor, so that water droplets do not evaporate Also, it does not directly hit the wall surface of the gas cooling chamber.
  • the volume of the gas cooling chamber can be reduced, and the equipment cost and the installation space can be reduced.
  • evaporation chamber heat load could be a 5 0, 0 0 0 ⁇ 1 5 0 , 0 00 kca 1 / m s ⁇ ⁇ .
  • the exhaust gas cooling device of the present invention has There 50 the thermal load is, 0 0 0 ⁇ 1 5 0, 00 0 kca 1 / m 3 ⁇ can be selected from H, it is possible to reduce the volume of the gas cooling chamber 1 to 1 5-1 1 5 Was.
  • a configuration may be adopted in which a desuperheated water nozzle is inserted into a high-temperature exhaust gas duct and a hot water is directly sprayed into the high-temperature exhaust gas duct without providing a gas cooling chamber in some cases. Is also possible.
  • the amount of sprayed water is slightly larger than when using conventional low-temperature water due to the sensible heat of hot water.
  • conventional exhaust gas temperature reduction equipment Required if the temperature of the desuperheated water in the device is 20 ° C and the temperature of the hot water in the exhaust gas desuperheater of the present invention is 142.9 ° C (saturated water at a pressure of 3 kg cm 2 G).
  • the amount of hot water will be about 1.2 times.
  • the alkaline solution may be in the form of an alkaline aqueous solution, or may be in the form of an alkaline slurry solution.
  • the temperature of the hot water solution mixed into the hot water may be higher than the boiling point of water at atmospheric pressure when the temperature of the desuperheated water after mixing the hot water solution becomes higher than the boiling point of water at atmospheric pressure. Need not be heated to a high temperature. If the mixing of the alkaline solution causes the temperature of the desuperheated water to be lower than the boiling point of the water at atmospheric pressure, it is necessary to mix the alkaline solution into the hot water. It is desirable to heat to the temperature.
  • the strength of the alkaline solution in the alkaline solution may be any. However, when used in the form of an alkaline aqueous solution, sodium hydroxide (caustic soda * NaOH) or magnesium hydroxide (Mg (OH) 2 ) is preferred. Further, when used in the form of an alkaline slurry solution, hydroxide calcium ⁇ (slaked lime 'Ca (OH) 2) or quicklime (CaO), calcium carbonate (C AC_ ⁇ 3) sodium carbonate (Na 2 COs), etc. Is preferred.
  • the total amount of the alkaline agent in the alkaline solution mixed into the hot water is appropriately adjusted according to the type of the acidic gas in the exhaust gas to be removed, the amount of the acidic gas removed, and the exhaust gas temperature. In this way, an amount of 0.8 to 1.5 equivalent of an alkaline agent is mixed into the hot water.
  • FIG. 1 is an explanatory view showing an embodiment of a method and apparatus for reducing exhaust gas according to the present invention.
  • FIG. 2 is a partial vertical cross-sectional view of the desuperheated water nozzle used in the present invention.
  • FIG. 3 is an ee view of FIG.
  • FIG. 4 is a front view showing another embodiment of the exhaust gas temperature reducing method and apparatus according to the present invention.
  • FIG. 5 is a diagram of FIG.
  • FIG. 6 shows still another embodiment of the exhaust gas temperature reducing method and apparatus according to the present invention, and is an explanatory diagram in a case where an alkaline aqueous solution is mixed into hot water as an alkaline solution. is there.
  • FIG. 7 shows still another embodiment of the exhaust gas temperature reduction method and apparatus according to the present invention, and is an explanatory diagram in a case where an alkaline slurry solution is mixed into hot water as an alkaline solution.
  • FIG. 8 is a curve showing the acidic gas removal characteristics in the exhaust gas according to the example of the present invention.
  • FIG. 9 is a system diagram showing an example of a conventional exhaust gas cooling device.
  • FIG. 10 is a system diagram showing another example of the conventional exhaust gas cooling apparatus.
  • 1 is a gas cooling chamber
  • la is an exhaust gas inlet
  • lb is an exhaust gas outlet
  • lc is an ash outlet
  • 1 d is an airtight holding device
  • 2 is a hot water tank
  • 3 is a pump
  • 4 is a deheated water nozzle
  • 4 a is a spout
  • 4b is a main body
  • 4c is a spiral
  • 4d is a water culvert
  • 5 is a temperature control device
  • 5a is an exhaust gas temperature detector at the outlet side
  • 5a is an exhaust gas temperature detector at the outlet side
  • 6 is the amount of water reduction Control valve
  • G h is high temperature exhaust gas
  • G 1 is low temperature exhaust gas
  • S is heated steam
  • C is ash
  • Wt is hot water
  • 7 duct
  • 7a is flange for mounting desuperheated water nozzle
  • 7 b is duct outlet
  • 8 is an alkaline solution tank
  • 8a is an alkaline agent supply
  • FIG. 1 shows an embodiment of the exhaust gas temperature reduction method and apparatus according to the present invention.
  • 1 is a gas cooling chamber
  • la is an exhaust gas inlet
  • lb is an exhaust gas outlet
  • lc is an ash outlet.
  • Id is an airtight maintenance device
  • 2 is a hot water tank
  • 3 is a pump
  • 4 is a deheated water nozzle
  • 5 is a temperature control device
  • 5 a is an exhaust gas temperature detector at the outlet side
  • 5 b is an exhaust gas temperature detector at the inlet side Vessel
  • 6 is a dewatering water control valve
  • Gh is high temperature exhaust gas
  • G1 is low temperature exhaust gas
  • S is heated steam
  • Wt hot water
  • C is ash.
  • gas cooling chamber 1 is formed in a so-called tower shape, and the wall surface is formed in a heat insulating structure using a known heat-resistant material.
  • An exhaust gas inlet 1 a is located above the gas cooling chamber 1, an exhaust gas outlet 1 b is located below the gas cooling chamber 1, an ash outlet 1 c is located at the lower end of the inverted cone below, and an airtight holding device (open / close damper) 1 d is provided. Is provided.
  • gas cooling chamber 1 may have a form other than the tower type shown in FIG.
  • the high-temperature exhaust gas G h (temperature of about 240, flow rate of about 90 °) discharged from the waste heat boiler (not shown) of the industrial waste incinerator into the gas cooling chamber 1 is used. , 00 O Nm 3 / H), but the temperature of the high-temperature exhaust gas G h for which the temperature is to be reduced is desirably 100 ° C. to 150 ° C. or so.
  • the exhaust gas to be cooled may be exhaust gas from any combustion device, and the flow rate thereof is not particularly limited.
  • the hot water tank 2 is made of a metal heat-resistant and pressure-resistant ink tank having the required capacity and is protected by heat insulating material.
  • water (pressurized hot water W t) having a temperature higher than the boiling point (at 100) under atmospheric pressure is stored. is temperature 1 4 2.
  • Water Wt is stored in a hot water tank 2 having a pressure resistance of 1 O kgZcm 2 .
  • steam S for heating is introduced into a hot water tank 2 from a waste heat boiler (not shown) provided in an industrial waste incinerator, and is heated by the heat of the heated steam S.
  • the temperature of the hot water Wt is maintained at the value of 142.9.
  • the heat of the combustion gas and the combustion exhaust gas are used. It is also possible to adopt a configuration utilizing
  • the continuous water from the boiler is used as a part of hot water, or if the boiler equipment is provided with a deaerator, degassing is performed. It is also possible to use high-temperature and high-pressure water generated in the vessel as hot water Wt or a part of hot water Wt.
  • the pump 3 is for supplying hot water Wt to the deheated water nozzle 4, and the pump 3 is configured to supply pressure loss of piping between the hot water tank 2 and the deheated water nozzle 4 and the position of the deheated water nozzle 4. It will be installed only when necessary due to the water head.
  • the desuperheated water nozzle 4 is a known hollow cone type nozzle as shown in FIGS. 2 and 3, and in the present embodiment, three jet ports 4a are provided at an angular interval of 120 ° C.
  • One nozzle is provided at the center of the upper part of the gas cooling chamber 1.
  • 4b is a main body
  • 4c is a spiral
  • 4d is a water introduction hole.
  • the injection angle of each outlet 4a of the cooling water nozzle 4 is about 60 ° (when the ejection pressure is 3 kgf Zcm 2 ), and the flow rate is about 3.8 IZm in (the ejection pressure 3 kgf Zcm
  • a hollow cone type spray nozzle as shown in FIG. 2 is used as the desuperheated water nozzle 4, but the type and structure of the desuperheated water nozzle 4 may be any.
  • conventional room temperature water can be sprayed with a particle size of about 190 to 300 m under a pressure of 2 to 3 kg f Zcm2, it can be used satisfactorily in the present invention. it can.
  • the temperature control device 5 has an exhaust gas temperature detector 5b on the inlet side and an exhaust gas temperature detector on the outlet side.
  • Low temperature exhaust gas G 1 discharged from the exhaust gas outlet 1 by adjusting the amount of hot water sprayed into the gas cooling chamber 1 by receiving the temperature detection signal from the temperature detector 5 a and controlling the opening and closing of the dewatering water amount control valve 6 Is maintained at a set value.
  • a thermostat type temperature detector is used as the exhaust gas temperature detectors 5a and 5b, but the type of the temperature detector used is not limited. You may.
  • the dewatering water control valve 6 is provided in the hot water supply pipe.
  • the dewatering water flow is provided in the return pipe of the hot water Wt.
  • the control valve 6 may be provided, and any method may be used as long as the amount of hot water supplied to the desuperheated water nozzle 4 can be adjusted.
  • the hot water in the hot water tank 2 is sent to the reduced-temperature water nozzle 4 by the internal pressure in the hot water tank 2 and / or the pressurized water supply force of the pump 3.
  • the water is sprayed from the desuperheater nozzle 4 into the high-temperature exhaust gas G h.
  • the hot water Wt sprayed from the desuperheated water nozzle 4 is high-pressure water at a temperature significantly higher than the boiling point (100 ° C) under atmospheric pressure.
  • the low-temperature exhaust gas G1 cooled to a predetermined temperature is attracted to the outside through the exhaust gas outlet 1b, and ash (dust and the like) C in the separated exhaust gas is discharged from the ash outlet 1c to the outside. It is discharged to.
  • the required volume of the gas cooling chamber 1 is 3 0 0 0 mm and a height of 6000 mm.
  • the high-temperature exhaust gas Gh described above was sufficiently reduced to a low-temperature exhaust gas G1 at a predetermined temperature (180 ° C).
  • the required capacity of the gas cooling chamber was about 4800 mm0 X 900 OmmH, and it has been confirmed that the size of the gas cooling chamber 1 can be significantly reduced in the present invention.
  • the spray water amount of the hot water Wt is increased by about 20% as compared with the case where conventional water (20 ° C) is used.
  • FIGS. 4 and 5 show another embodiment of the exhaust gas temperature reducing method and apparatus according to the present invention.
  • the exhaust gas duct 7 for deriving the high temperature exhaust gas Gh discharged from the waste incinerator is provided on the side surface of the exhaust gas duct 7.
  • the configuration is such that a flange 7a for mounting the desuperheated water nozzle 4 is provided, and the hot water Wt is sprayed from the desuperheated water nozzle 4 mounted on the flange 7a into the hot exhaust gas Gh in the duct 7.
  • FIGS. 4 and 5 The embodiment shown in FIGS. 4 and 5 is different from the embodiment shown in FIGS. 1 and 2 only in that the gas cooling chamber 1 is replaced by a vertically long exhaust gas duct 7. This is exactly the same as in FIGS. 1 and 2.
  • the hot water Wt is sprayed into the duct 7 to produce 9 000 ONm 3 H.
  • the high-temperature exhaust gas Gh at a temperature of 240 ° C is continuously connected to the low-temperature exhaust gas G 1 at about 180 ° C at the duct outlet 7 b. The temperature could be reduced.
  • FIGS. 6 and 7 show a third embodiment of the exhaust gas temperature reduction method and apparatus according to the present invention.
  • the hot water nozzle 4 injects hot water Wt with hot water into the high temperature exhaust gas Gh in the gas cooling chamber 1 to remove the acidic components in the exhaust gas at the same time as the temperature of the exhaust gas is reduced (or neutralized). ).
  • 8 is an alkaline solution tank
  • 8a is an alkaline agent supply device
  • 8b is a stirrer
  • 9 is an alkaline solution pump
  • 10 is an alkaline solution flow control valve
  • 1 1 is an alkaline solution heater
  • 1 1a is a drain discharge valve
  • 1 2 is a mixer of hot water Wt and an alkaline solution Wp
  • 13 is an acid gas concentration control device
  • 13 a is low temperature exhaust gas.
  • G 1 acid gas concentration detector, S, is a heating steam
  • P is an alkali
  • Wp is an alkaline solution.
  • the other components are the same as those in Figs. 1 and 2.
  • an alkaline aqueous solution is used as the alkaline solution Wp mixed into the hot water Wt.
  • sodium hydroxide (caustic soda ) Is dissolved in the alkaline solution tank 8 in which the alkaline solution P is dissolved.
  • the alkaline agent P that forms the alkaline aqueous solution may be any other than sodium hydroxide as long as it is soluble in water.
  • magnesium hydroxide (Mg (OH) 2) may be used. May be.
  • the concentration of the alkaline agent in the aqueous alkaline solution stored in the tank 8 is appropriately selected according to the temperature of the water and the solubility of the alkaline agent P used in the water W, and the alkaline agent P is used.
  • the alkaline agent concentration is selected to be 20 to 30%.
  • the alkaline slurry solution used as the alkaline solution Wp to be mixed into the hot water Wt is used.
  • a solid-liquid mixture (slurry) in which an alkaline agent P such as lime (slaked lime 'Ca (OH) 2) is suspended in a dispersed state is stored in the alkaline solution tank 8 ⁇
  • alkali agent P, 7XW it may be one as long as it is distributed to the inner to form a slurry other than the above calcium hydroxide, for example slaked lime (CaO) or calcium carbonate (C AC_ ⁇ 3) , And sodium carbonate (Na 2 C ⁇ 3 ) can be used.
  • CaO slaked lime
  • Ca AC_ ⁇ 3 calcium carbonate
  • Na 2 C ⁇ 3 sodium carbonate
  • the mixing amount of the alkaline solution Wp into the hot water Wt is determined by the detection signal from the acidic gas concentration detector 13 a in the low temperature exhaust gas G 1 via the acidic gas concentration control device 13.
  • the adjustment is performed by controlling the opening and closing of the aqueous solution flow control valve 10, whereby the concentration of the acidic gas in the low-temperature exhaust gas G1 is maintained at a predetermined set value.
  • the mixing amount of the alkaline solution Wp in the hot water Wt is determined based on the temperature of the low-temperature exhaust gas G1, the type of acid gas to be removed, the target acid gas removal rate, and the like. 1.0 to 1.5 times as much as the amount of acid gas to be removed in the hot water Wt is mixed into the hot water Wt.
  • the alkaline solution heater 11 heats the alkaline solution Wp mixed into the hot water Wt to a predetermined temperature, and the temperature of the alkaline deheated water flowing out of the mixer 12 is significantly increased. To prevent the drop.
  • the mixing amount of the alkaline solution Wp is small or the temperature of the alkaline solution Wp is relatively high (for example, 80 ° (: up to 90 ° C), the disturbance to the hot water Wt during mixing is relatively small. Therefore, in such a case, the installation of the alkaline solution heater 11 can be omitted.
  • the configuration is such that the alkaline desuperheated water is injected into the gas cooling chamber 1, but the alkaline desuperheated water is replaced by the gas cooling chamber 1.
  • Exhaust gas flow rate 900,00 ONm 3 / h (exhaust gas from waste heat boiler of industrial waste incinerator ⁇ HC1 concentration in exhaust gas 800 ppm), high-temperature exhaust gas Gh at a temperature of 240 ° C 180
  • a tower-type cooling device having a cylindrical gas cooling chamber was formed.
  • the cooling chamber 1 has an inner diameter of 3000 mm and a height of 600 mm.
  • the high temperature exhaust gas G h is sufficiently reduced by using the gas cooling chamber 1 at a predetermined temperature (180 ° C.). The temperature could be reduced.
  • the supply amount of the alkaline agent P to the amount of HC1 in the exhaust gas was 1.0 in equivalent ratio, and the removal rate of HC1 detected by the acid gas concentration detector 13a was the low-temperature exhaust gas. It was about 93% when the temperature of G1 was 180 ° C.
  • the calculation of the supply amount of the alkaline solution Wp is as follows.
  • the removal of the acidic gas in the exhaust gas by spraying the NaOH aqueous solution is based on the following reaction formula.
  • NaCI or the like is post-processed by an electrolysis method or the like. However, since these processing methods are already known, the description thereof is omitted here.
  • the alkaline solution heater 11 in consideration of disturbance to hot water Wt when an alkaline solution (25% NaOH aqueous solution) Wp at room temperature (25 ° C.) is mixed, the alkaline solution heater 11 is used in the present embodiment.
  • the heating solution Wp is heated to about 80 ° C and then supplied to the mixer 12 Even if the heater 11 is not used, the alkaline hot water at the outlet side of the mixer 11 Due to the temperature drop, the amount of spray water from the desuperheated water nozzle 4 only slightly decreased, and no particular problem occurred.
  • FIG. 8 shows the state of the change in the acid gas (HC 1) removal rate when the supply amount of the Na ⁇ H aqueous solution Wp supplied to the mixer 12 was changed in Example 3.
  • Curve A shows the value when the temperature of the low-temperature exhaust gas G1 is set to 180 ° C
  • curve B shows the value when the temperature of the low-temperature exhaust gas G1 is set to 150 ° C.
  • the vertical axis of the curve is the acid gas removal rate%
  • the horizontal axis is the amount of supply expressed by the equivalent ratio of Na ⁇ H.
  • the sprayed hot water since pressurized hot water is used as desuperheated water, the sprayed hot water rapidly decompresses and boil near the outlet of the desuperheated water nozzle, and has a particle size of several im. It becomes a spray with fine particles and evaporates instantaneously to water vapor.
  • the instantaneous evaporation of the sprayed hot water greatly improves the cooling performance of the spray water and makes it possible to significantly reduce the size of the gas cooling chamber. That is, in the gas cooling chamber to decrease warm water prior cold water, to a thermal load force generally about 5 0 0 0 ⁇ 1 5 0 0 0 kca 1 / m 3 ⁇ about H of the gas cooling chamber in contrast, the in gas cooling chamber of the temperature reducing apparatus according to the present invention, to increase the gas cooling chamber heat load 5 0, 0 0 0 ⁇ 1 5 0 , 0 0 0 kca 1 / m 3 ⁇ about H This makes it possible to significantly reduce the size of the gas cooling chamber.
  • the equipment can be configured very simply and running costs can be significantly reduced.
  • the incinerator or boiler equipment is provided with a deaerator, the hot water from the deaerator can be used as it is. All you need is facilities. As a result, the exhaust gas cooling system can be configured at extremely low cost.
  • the gas cooling chamber itself can be reduced in capacity, or hot water can be sprayed into a duct for high-temperature exhaust gas without providing a gas cooling chamber, so that equipment costs can be significantly reduced.
  • the continuous blow water of the boiler can be used as part of hot water for cooling water, and the blow water is alkaline with energy saving. As a result, the amount of chemicals in the flue gas desalination and desulfurization equipment can be reduced.
  • the acidic gas in the exhaust gas can be removed at a high removal rate with a smaller amount of alkaline agent, and the exhaust gas can be reduced. It is possible to further reduce the size of the acid gas removal equipment installed downstream of the heating device and reduce the amount of chemicals used.
  • the alkaline solution to be mixed into the hot water does not need to be heated to a high temperature, particularly by heating.
  • the temperature of the hot water slightly higher, the alkaline solution at room temperature can be mixed into the hot water.
  • stable operation of the exhaust gas temperature reduction device can be performed.
  • the present invention has excellent practical utility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Description

明 細 書
熱水を利用した排ガス減温方法及びその装置
技術分野
本発明は、 ごみ焼却炉やボイラ等の燃焼装置から排出される排ガスの処理 に利用されるものであり、 排ガス減温装置の大幅な小型化、 噴霧水によるガ ス冷却室ゃ排ガスダク卜の損傷の防止、 ダストの堆積等による運転上のトラ ブルの防止を図れると共に、 併せて排ガス内の酸性ガスを除去することもで きるようにした排ガス減温方法とその装置に関するものである。
背景技術
ごみ焼却炉ゃボイラ等の燃焼装置から排出される排ガスは、 一般にガス浄 化装置により浄化されたあと、 大気中へ放散されて行く。
ところで、 排ガスの浄化処理に際しては、 使用するガス浄化装置の種類に 応じて排ガス温度を適宜の温度、 例えば約 1 2 0 °C〜2 5 0 °C程度にまで減 温しなければならないケースがあり、 この様な場合には、 一般に水を排ガス 内へ噴霧し、 水の顕熱及び蒸発潜熱を利用して排ガス温度を低下させるよう にした構成の排ガス減温装置が、 汎用されている。
図 9及び図 1 0は、 従前の排ガス減温装置の例を示すものであり、 図 9及 び図 1 0に於いて 2 1はガス冷却室、 2 1 aは排ガス入口、 2 1 bは排ガス 出口、 2 1 cは灰出口、 2 2は減温水タンク、 2 3は加圧ポンプ、 2 4は減 温水ノズル、 2 5は温度制御装置、 2 5 aは温度検出器、 2 6は減温水量制 御弁、 2 7は噴射ポンプ、 2 8は空気圧縮機、 2 9は圧縮空気夕ンク、 3 0 は混合器、 G hは高温排ガス、 G 1は低温排ガス、 Cは灰である。
即ち、 図 9の排ガス減温装置に於いては、 先ず、 加圧ポンプ 2 3により加 された減温水タンク 2 2からの高圧水が、 排ガス入口部 2 1 aの近傍に設 けた減温水ノズル 2 4を通してガス冷却室 2 1内へ噴霧される。 噴霧された 水は、 高温排ガス G hと接触することにより温度が上昇し、 沸点に達すると 蒸発して水蒸気となる。 一方、 ガス冷却室 2 1内の高温排ガス G hは、 噴霧された水の顕熱と蒸発 潜熱と水蒸気の顕熱により冷却され、 所定の温度にまで減温されたあと、 低 温排ガス G 1 となって、 排ガス出口 2 1 bから導出されて行く。
また、 ガス冷却室 2 1内へ噴霧する水の量は、 温度検出器 2 5 aからの温 度検出信号により、 温度制御装置 2 5を介して減温水量制御弁 2 6の開度を 調整することにより制御されており、 減温水タンク 2 2へのリターン水量を 変えてガス冷却室 2 1内へ噴霧する水量を制御することにより、 排ガス出口 2 1 bから導出する低温排ガス G 1の温度が、 所望の温度に保持されている また、 図 1 0の排ガス減温装置に於いては、 先ず噴射ポンプ 2 7により減 温水タンク 2 2から送水された水と、 圧縮空気タンク 2 9からの高圧空気と が混合器 3 0内で混合されることにより、 水が霧化される。 その後、 霧化さ れた水は、 混合器 3 0から排ガス入口部 2 1 aの近傍に設けた減温水ノズル 2 4を通してガス冷却室 2 1内へ噴霧される。
尚、 噴霧された水の温度が高温排ガス G hと接角虫することにより上昇し、 沸点に達すると蒸発して水蒸気となること、 ガス冷却室 2 1内の高温排ガス G hが噴霧された水の顕熱と蒸発潜熱と水蒸気の顕熱により冷却されること 、 ガス冷却室 2 1内へ噴霧する水量が温度制御器 2 5を介して減温水量制御 弁 2 6の開度調整をすることにより制御されること、 低温排ガス G 1の温度 が噴霧水量の調整により設定値に保持されること等は、 図 9の場合と全く同 様である。
前記図 9及び図 1 0に示した従前の排ガス減温装置は、 安価な水を用いて 高温排ガス G hを所望の温度にまで減温することができ、 優れた実用的効用 を奏するものである。
しかし、 上記従前の排ガス減温装置にも解決すべき問題が多く残されてお り、 その中でも (ィ) 水滴がガス冷却室の壁面に直接当って流下することに より、 耐火材の破損を生じたり、 壁面にダストが付着,堆積してガス冷却室 の安定した運転が困難になること、 及び (口) ガス冷却室が大形となり、 排 ガス減温装置の小形化が図れないこと等が、 重要な問題点となつている。 即ち、 前記図 9の水のみを用いる一流体方式の場合には、 減温水の圧力を 上昇したり或いは減温水ノズル 2 4に工夫を施したとしても、 減温水を微小 な粒子径の噴霧体に霧化することが困難であり、 霧化された減温水の粒子径 は通常 7 0〜3 0 0〃m程度であって、 比較的粗い値となっている。 そのた め、 霧化した減温水を限られた空間内で完全に蒸発させることが困難となり 、 水滴がガス冷却室の壁面に直接当ることにより、 耐火材の破損を生ずるこ とになる。
また、 耐火材が破損しなくても、 水滴によって濡れた耐火材の表面にダス ト等が付着堆積し、 この付着した堆積物が順次成長することによりガス冷却 室内の排ガス通路抵抗が大きく変動し、 ガス冷却室の円滑な運転が困難にな ることがある。
また、 前記図 1 0の水と圧縮空気を用いる二流体方式の場合には、 霧化し た減温水の粒子径は通常 3 0〜 1 0 0 / m程度の小粒径となり、 図 9に示し た一流体方式の場合に比較して、 水滴の付着に起因する不都合の発生頻度は 比較的少なくなる。
しかし、 この場合には、 圧縮空気設備のイニシャルコストやランニングコ ス卜がかかることになり、 経済性の点に難点がある。
更に、 前記霧化した減温水の温度が沸点温度にまで上昇し且つこれが完全 に蒸発するまでには、 相当の時間を必要とする。 そのため、 ガス冷却室内に 於ける排ガスの滞留時間を充分に長くとる必要があり、 結果として大容積の ガス冷却室を必要とすることになる。
例えば、 約 3 0 0 TZDの産業廃棄物を焼却処理する産業廃棄物焼却炉に 於いて、 排ガス量 9 0, 0 0 O Nm 3 ZH、 入口排ガス温度 2 4 0 °Cの高温 排ガス G hを、 出口排ガス温度 1 8 0 °Cの低温排ガス G 1に減温する場合、 前記図 9の一流体方式の排ガス減温装置を用いた際には、 内径約 4 8 0 0 m m0、 高さ約 9 000mmのガス冷却室を必要とし、 排ガス入口 2 1 a、 排 ガス出口 2 1 b及び灰出口 2 1 cを含めた排ガス減温装置の全高は、 約 1 8 0, 0 0 0 mmとなる。
尚、 従前の排ガス減温装置の設計に於いては、 ガス冷却室の熱負荷は通常 5, 0 00〜 1 0, O O O k c a l /m3 · H (ガス冷却室の単位容積、 単 位時間当りに排ガスから奪うことのできる熱量) の値に選定されており、 こ の例ではガス冷却室熱負荷を 7 O O O k c a l /m3 · Hとしている。 発明の開示 I (解決しょうとする課題)
本発明は、 従前の排ガス減温装置に於ける上述の如き問題、 即ち (ィ) 一 流体方式の場合には、 霧化した減温水の粒子径が粗いため、 水滴がガス冷却 室の壁面へ直接当つて耐火材を破損したり、 ダスト等の付着■堆積により円 滑な運転が困難になること、 (口) 二流体方式の場合には、 圧縮空気設備が 必要となり、 設備費及びランニングコストが高かくつくこと、 (ハ) 霧化し た水粒子の蒸発までに時間がかかるため、 ガス冷却室の大幅な小形化が図れ ないこと等の問題を解決せんとするものであり、 霧化した水粒子の粒径を従 前よりも大幅に小粒径化することにより、 極く小形の排ガス減温装置でもつ て安価に、 しかも効率よく排ガスを減温できるようにした排ガス減温方法と 、 これに用いる排ガス減温装置を提供するものである。
発明の開示 H (解決しょうとする課題)
本件発明者は、 数多くの排ガス減温装置の設計、 製作及び試験等を通して 、 水のみを用いる一流体方式の排ガス減温装置に於いては、 減温水ノズルを 用いて水を霧化しようとする限り、 如何に減温水ノズルに改良を加えたり或 いは減温水の圧力を高めても、 霧化した減温水の粒子径を約 1 0 0 m以下 にすることは困難であり、 従ってガス冷却室の容積も大幅に減少させること ができないことを知得した。
そこで、 本件発明者は、 従前のこの種排ガス減温装置の設計に於ける常識 的な慣行、 即ち 「減温水として 20〜30°C程度の常温水を用い、 水の顕熱 及び蒸発潜熱を高温排ガスの冷却に有効に活用する。 」 と云う慣行から離れ 、 「水の沸点以上の温度を有する加圧熱水又は加圧熱水の一部に蒸気を含ん だ気液二相流を、 従前の減温水ノズルから霧化噴出する。 」 ことを着想した 大気圧下に於ける水の沸点以上の温度を有する加圧熱水を用いる場合には
、 従前の一流体方式の場合に比較して、 排ガスの冷却に活用できる水の顕熱 分が減少するため、 必要とする水量は若干増加する。
しかし、 当該加圧熱水を減温水ノズルからガス冷却室内へ噴出した場合に は、 減温水ノズルの出口近傍で所謂減圧沸騰を生じることになり、 霧化した 水の粒径は数 1 0 m〜数 mの微小粒径となって、 ガス冷却室内で短時間 内に急速に蒸発されることになり、 排ガスの冷却効果の向上及びガス冷却室 の小形化の可能性があるからである。
本願発明は、 本件発明者等の通常の技術的常識又は慣行を覆す前記着想と
、 当該着想を基にした数多くの排ガス減温試験の結果に基づレ、て創作された ものであり、 請求項 1の発明は、 大気圧下での水の沸点よりも高い温度の加 圧熱水を減温水として排ガス内へ噴霧することを発明の基本構成とするもの である。
請求項 2の発明は、 ガス冷却室又は排ガスダクト内へ大気圧下での水の沸 点よりも高い温度の加圧熱水を減温水として噴霧することを発明の基本構成 とするものである。
請求項 3の発明は、 請求項 1又は請求項 2の発明に於いて、 脱気器から取 り出した熱水又はボイラの連続ブロー水を加圧熱水の一部として利用するよ うにしたものである。
請求項 4の発明は、 請求項 1、 請求項 2又は請求項 3の発明に於いて、 蒸 気をその一部に含有した加圧熱水を減温水とするようにしたものである。 請求項 5の発明は、 請求項 1又は請求項 2の発明に於いて、 アルカリ性溶 液を含んだ加圧熱水を減温水とするようにしたものである。 請求項 6の発明は、 請求項 5の発明に於いて、 加熱したアルカリ性溶液を 熱水内へ混合するようにしたものである。
請求項 7の発明は、 請求項 5又は請求項 6の発明に於いて、 アルカリ性溶 液を、 アル力リ性の水溶液又はアル力リ性のスラリ一溶液としたものである 請求項 8の発明は、 請求項 7の発明に於いて、 アルカリ性の水溶液を水酸 化ナトリウム (苛性ソーダ) を含んだ水溶液に、 またアルカリ性のスラリー 溶液を水酸化カルシウム (消石灰) を含んだスラリー溶液としたものである 請求項 9の発明は、 ガス入口とガス出口と灰出口とを備えたガス冷却室と 、 大気圧下での水の沸点よりも高レ、温度の加圧熱水を貯留した熱水夕ンクと 、 熱水タンクからの熱水をガス冷却室内へ噴霧する減温水ノズルと、 減温水 ノズルへ供給する熱水量を調整する減温水量制御弁と、 ガス出口から流出す る低温排ガスの温度検出器と、 前記温度検出器からの検出信号により減温水 量制御弁を開閉制御する温度制御装置とから構成したことを発明の基本構成 とするものである。
請求項 1 0の発明は、 排ガスが流通する排ガスダクトと、 大気圧下での水 の沸点よりも高レ、温度の加圧熱水を貯留した熱水夕ンクと、 熱水夕ンクから の熱水を排ガスダクト内へ噴霧する減温水ノズルと、 減温水ノズルへ供給す る熱水量を調整する減温水量制御弁と、 排ガスダク卜の出口から流出する低 温排ガスの温度検出器と、 前記温度検出器からの検出信号により減温水量制 御弁を開閉制御する温度制御装置とから構成したことを発明の基本構成とす るものである。
請求項 1 1の発明は、 請求項 9又は請求項 1 0の発明に於いて、 熱水タン クの内圧により熱水を減温水ノズルへ供給するようにしたものである。 請求項 1 2の発明は、 ガス入口とガス出口と灰出口とを備えたガス冷却室 と、 大気圧下での水の沸点よりも高レ、温度の加圧熱水を貯留した熱水夕ンク と、 アルカリ性溶液を貯留したアルカリ性溶液タンクと、 熱水タンクからの 熱水とアルカリ性溶液タンクからのアルカリ性溶液とを混合する混合器と、 前記混合器からのアル力リ性溶液を含む熱水をガス冷却室内へ噴霧する減温 水ノズルと、 減温水ノズルへ供給するアル力リ性溶液を含んだ熱水の流量を 調整する減温水量制御弁と、 前記混合器へ供給するアルカリ性溶液の流量を 調整するアル力リ性溶液量制御弁と、 ガス出口から流出する低温排ガスの温 度検出器と、 前記低温排ガスの酸性ガス濃度検出器と、 前記温度検出器から の検出信号により減温水量制御弁を開閉制御する温度制御装置と、 前記酸性 ガス濃度検出器からの検出信号によりアルカリ性溶液量制御弁を開閉制御す る酸性ガス濃度制御装置とを発明の基本構成とするものである。
請求項 1 3の発明は、 請求項 1 2の発明に於いて、 アルカリ性溶液を加熱 するアル力リ性溶液加熱器を混合器のアル力リ性溶液入口側に設けるように したものである。
請求項 1 4の発明は、 請求項 1 2又は請求項 1 3の発明に於いて、 アル力 リ性溶液タンクを、 アル力リ性の水溶液又はアル力リ性のスラリ一溶液を貯 留したアルカリ性溶液タンクとしたものである。
請求項 1 5の発明は、 排ガスが流通する排ガスダクトと、 大気圧下での水 の沸点よりも高い温度の加圧熱水を貯留した熱水夕ンクと、 アル力リ性溶液 を貯留したアル力リ性溶液夕ンクと、 熱水夕ンクからの熱水とアル力リ性溶 液タンクからのアルカリ性溶液とを混合する混合器と、 前記混合器からのァ ルカリ性溶液を含む熱水を排ガスダクト内へ噴霧する減温水ノズルと、 減温 水ノズルへ供給するアル力リ性溶液を含んだ熱水の流量を調整する減温水量 制御弁と、 前記混合器へ供給するアルカリ性溶液の流量を調整するアルカリ 性溶液量制御弁と、 排ガスダク卜の出口から流出する低温排ガスの温度検出 器と、 前記低温排ガスの酸性ガス濃度検出器と、 前記温度検出器からの検出 信号により減温水量制御弁を開閉制御する温度制御装置と、 前記酸性ガス濃 度検出器からの検出信号によりアル力リ性溶液量制御弁を開閉制御する酸性 ガス濃度制御装置とを発明の基本構成とするものである。
請求項 1 6の発明は、 請求項 1 5の発明に於いて、 アルカリ性溶液を加熱 するアル力リ性溶液加熱器を混合器のアル力リ性溶液入口側に設けるように したものである。
請求項 1 7の発明は、 請求項 1 5又は請求項 1 6の発明に於いて、 アル力 リ性溶液夕ンクを、 アル力リ性の水溶液又はアル力リ性のスラリ一溶液を貯 留したアル力リ性溶液タンクとしたものである。
前記高温排ガスの排出源は、 ごみ焼却炉やボイラ等の如何なる燃焼装置で あってもよく、 本発明は全ての種類の燃'焼排ガスの減温に適用することがで きる。
また、 ガス冷却室へ供給する高温排ガス Ghの温度は 1 000で〜 1 50 でに、 ガス冷却室から導出する低温排ガス G 1の温度は 1 00°C以上の温度 に夫々設定可能であり、 例えば、 本発明を所謂排ガスの一次冷却に用いる場 合には、 高温排ガス Ghの温度は約 9 0 0 °C〜 1 000°C、 低温排ガス G 1 の温度は 1 5 0°C〜25 0°Cに、 また排ガスの二次冷却に用いる場合には、 高温排ガス Ghの温度は 200°C〜4 0 0 °C、 低温排ガス G 1の温度は 1 2 0で〜 250で程度に夫々設定することができる。
前記ガス冷却室の形態は、 竪型或いは横型の何れであってもよく、 また、 その断面形伏も円形、 楕円形、 角形等を自由に選定できる。
同様に、 前記排ガスダクトの形態は、 横長或いは縦長の何れであってもよ く、 また、 その断面形状も円形、 楕円形、 角形等の何れであってもよい。 前記加圧熱水 Wtは、 大気圧下に於ける水の沸点 ( 1 00°C) よりも高い 温度に保持されている水であり、 所謂高圧 '高温水である。 加圧熱水 Wtの 圧力は 1 kg/cm2 · G以上〜 1 0 0 kgZcm2 · G位いの値に選定可 能であるが、 熱水タンク 2の耐圧力等を考慮すれば 3〜1 0 kgZ cm2 · Gの間に選定するのが望ましい。
また、 加圧熱水 Wtは、 その内部に蒸気を一部含んだ伏態 (所謂二相流体 ) であってもよいが、 蒸気の含有量は少ない方が望ましい。
熱水をつくるための熱源としては、 燃焼装置が廃熱ボイラを附設した焼却 炉の場合には廃熱ボイラからの水蒸気を、 また、 ボイラの場合には蒸発した 水蒸気の一部を利用することができる。
また、 廃熱ボイラを附設しない焼却炉にあっては、 排ガス熱交換器を設け てそこからの水蒸気を用いるか、 或は独立した小容量の蒸気ボイラ又は電気 ボイラを設置する。
なお、 焼却炉の廃熱ボイラゃボイラに脱気器が付属されているときには、 脱気器内で生成された熱水をそのま、減温水として利用することができる。 この場合、 熱水 W tの供給設備としては脱気器からの配管設備だけがあれば 良く、 排ガス減温装置を極めて安価に構成することができる。
更に、 燃焼装置がボイラ又は廃熱ボイラを附設した焼却炉の場合には、 減 温水として用いる熱水の一部としてボイラからの連続ブロー水を利用するこ とができる。 大多数のボイラ設備に於いては、 ボイラ水内の腐食防止剤等の 濃度上昇を防止して、 安定した腐食防止機能を発揮することができるように するため、 ボイラ水 (熱水) の一部を外部へ排出するようにしている。 この 外部へ排出されるボイラ水は通常 p H 8 . 5〜1 1 . 8のアルカリ水である ので、 排ガス中の脱塩素や脱硫効果があり、 排ガス脱塩'脱硫設備を付属し ているものにおいては、 これに使用する薬剤量を低減することができる。 加圧熱水を霧化する減温水ノズルは、 ガス冷却室が竪型の場合には、 その 上方の高温排ガス G hのガス入口近傍に設けるのが望ましいが、 減温水ノズ ルの取付位置は、 ガス冷却室の形態と減温水ノズルの取付け個数に応じて適 宜に選定される。 尚、 このことは、 排ガスダクト内へ加圧熱水を噴出する場 合においても、 同様である。
また、 当該減温水ノズルの構造は如何なる構造のものであってもよく、 例 えば公知のスクリユー式や衝突式の水噴霧ノズルの使用も可能である。 更に、 減温水ノズルの取付数は、 ガス冷却室ゃ排ガスダクトの形状や一個 のノズルに設けた噴出口の数、 必要とする熱水噴出量等によつて適宜に選定 される力 \ 例えば従前の産業廃棄物焼却炉 〔焼却量 30 0 t onZD、 排ガ ス量 9 0, 0 0 ONm3 ZH、 排ガス 2次冷却 (高温排ガス Ghの温度 24 0 °C、 低温排ガス G 1の温度 1 8 0 °C) 、 熱水 (温度 1 42. 9 °C、 圧力 3 kg/cm2 Gの飽和水) 〕 の排ガス減温装置に於いては、 後述するように 3個の噴出口を有する減温水ノズル 1個を、 ガス冷却室の上方部に設けてい 。
本発明によれば、 減温水ノズルより噴霧される熱水は、 大気圧下に於ける 沸点 ( 1 0 o°c) よりも相当に高い高温で且つ高圧となっている。 その結果 、 減温水ノズルより噴霧されると、 ノズル噴出口の出口近傍で急激に減圧沸 騰をして微粒子になると共に、 噴霧されたあと瞬時に蒸発して水蒸気となる ため、 水滴が蒸発しないま、直接にガス冷却室の壁面に当ることはない。 その結果、 ガス冷却室の容積を小さくすることが可能となり、 設備費ゃ設 備スペースも小さくすることができる。 例えば、 前記従前の産業廃棄物焼却 炉の廃ガスボイラ出口側に設けた排ガス減温装置に於いて、 高温排ガスの温 度を 24 0 °Cから 1 80°Cへ 60で減温した場合に、 蒸発室熱負荷は 5 0, 0 0 0〜1 5 0, 0 00 k c a 1 /ms · Ηとすることができた。
即ち、 従前の排ガス減温装置に於けるガス冷却室の熱負荷 (5, 0 00〜 1 0, 00 O k c a 1/m3 - H) に比較して、 本発明の排ガス減温装置に 於いては熱負荷を 50, 0 0 0〜1 5 0, 00 0 k c a 1 /m3 · Hに選定 することができ、 ガス冷却室 1の容積を 1 5〜 1 1 5に小さくすること ができた。
また、 本発明に於いては、 場合によってはガス冷却室を設けることなく、 減温水ノズルを高温排ガスダクト中に挿入して、 熱水を直接に高温排ガスダ クト内へ噴霧する構成とすることも可能である。
減温水に熱水を利用する場合、 熱水の顕熱の関係から従来の低温水を使用 するときに比べて噴霧水量は若干量増加する。 例えば、 従来の排ガス減温装 置における減温水の温度を 20°C、 本発明の排ガス減温装置における熱水の 温度を 1 42. 9°C (圧力 3 kg cm2 Gに於ける飽和水) とした場合、 必要とする熱水量は約 1. 2倍程度となる。 しかし、 この程度の増量では熱 水系の配管サイズを特に増す必要はなく、設備費の大幅なコストアツプには ならない。
排ガス内の塩化水素 (HC 1) や硫黄酸化物 (S〇2 ) 等の酸性ガスを除 去する場合には、 アル力リ性溶液を混合した熱水を減温水として減温水ノズ ルから排ガス内へ噴出する。
また、 前記アルカリ性溶液は、 アルカリ性水溶液の形態であってもよく、 或いはアル力リ性スラリ一溶液の形態であってもよい。
熱水内へ混合するアル力リ性溶液の温度は、 当該アル力リ性溶液を混合し たあとの減温水の温度が大気圧下での水の沸点よりも高レ、温度となる場合に は、 特に加熱によって高温にする必要はない。 し力、し、 アルカリ性溶液の混 合によって、 減温水の温度が大気圧下での水の沸点よりも低い温度となる場 合には、 アルカリ性溶液を熱水内へ混入する前に、 必要な温度にまで加熱す るのが望ましい。
前記アル力リ性溶液内のアル力リ斉 ¾は、 何如なるものであってもよいが、 アルカリ性水溶液の形態で使用する場合には、 水酸化ナトリウム (苛性ソー ダ * NaOH) や水酸化マグネシウム (Mg (OH) 2 ) が好適である。 また、 アルカリ性スラリー溶液の形態で使用する場合には、 水酸化カルシ ゥ厶 (消石灰 ' Ca (OH) 2 ) や生石灰 (CaO) 、 炭酸カルシウム (C aC〇3 ) 炭酸ナトリウム (Na2 COs ) 等が好適である。
前記熱水内へ混合するアル力リ性溶液内のアル力リ剤の総量は、 除去すベ き排ガス内の酸性ガスの種類やその除去量、 排ガス温度によって適宜に調整 され、 通常は当量比で 0. 8〜 1. 5に相当する量のアル力リ剤が熱水内へ 混合される。
図面の簡単な説明 図 1は、 本発明に係る排ガス減温方法及び装置の実施形態を示す説明図で ある。
図 2は、 本発明で使用する減温水ノズルの一部縦断面図である。
図 3は、 図 2のィーィ視図である。
図 4は、 本発明に係る排ガス減温方法及び装置の他の実施形態を示す正面 図である。
図 5は、 図 4のィーィ視図である。
図 6は、 本発明に係る排ガス減温方法及び装置の更に他の実施形態を示す ものであり、 アル力リ性溶液としてアル力リ性水溶液を熱水内へ混合する場 合の説明図である。
図 7は、 本発明に係る排ガス減温方法及び装置の更に他の実施形態を示す ものであり、 アルカリ性溶液としてアル力リ性スラリ一溶液を熱水内へ混合 する場合の説明図である。
図 8は、 本発明の実施例に係る排ガス内の酸性ガス除去特性を示す曲線で ある。
図 9は、 従前の排ガス減温装置の例を示す系統図である。
図 1 0は、 従前の排ガス減温装置の他の例を示す系統図である。
符号の説明
1はガス冷却室、 l aは排ガス入口、 l bは排ガス出口、 l cは灰出口、 1 dは気密保持装置、 2は熱水タンク、 3はポンプ、 4は減温水ノズル、 4 aは噴出口、 4 bは本体、 4 cは螺旋子、 4 dは導水孑し、 5は温度制御装置 、 5 aは出口側の排ガス温度検出器、 5 aは出口側の排ガス温度検出器、 6 は減水量制御弁、 G hは高温排ガス、 G 1は低温排ガス、 Sは加熱蒸気、 C は灰、 W tは熱水、 7はダクト、 7 aは減温水ノズル取付用フランジ、 7 b はダクト出口、 8はアルカリ性溶液タンク、 8 aはアルカリ剤供給装置、 8 bは攪拌機、 9はアルカリ性溶液ポンプ、 1 0はアルカリ性溶液流量制御弁 、 1 1はアルカリ性溶液加熱器、 1 1 aはドレ一ン弁、 1 2は混合器、 1 3 は酸性ガス濃度制御装置、 1 3 aは低温排ガスの酸性ガス濃度検出器、 Wp はアルカリ性溶液、 Pはアルカリ剤、 I は水、 S , は加熱用蒸気。
発明を実施するための最良の形態
図 1は、 本発明に係る排ガス減温方法及び装置の一つの実施形態を示すも のであり、 図 1に於いて 1はガス冷却室、 l aは排ガス入口、 l bは排ガス 出口、 l cは灰出口、 I dは気密保持装置、 2は熱水タンク、 3はポンプ、 4は減温水ノズル、 5は温度制御装置、 5 aは出口側の排ガス温度検出器、 5 bは入口側の排ガス温度検出器、 6は減温水量制御弁、 G hは高温排ガス 、 G 1は低温排ガス、 Sは加熱蒸気、 W tは熱水、 Cは灰である。
図 1を参照して、 ガス冷却室 1は所謂塔型に形成されており、 壁面は公知 の耐熱材を用レ、て断熱構造に形成されている。
また、 ガス冷却室 1の上方には排ガス入口 1 a、 下部側方には排ガス出口 1 b、 下方の逆円錐部の下端には灰出口 1 c及び気密保持装置 (開閉ダンバ ) 1 dが夫々設けられている。
尚、 当該ガス冷却室 1の形態やその断面形状等は、 図 1に示した塔型以外 のものであってもよいことは勿論である。
また、 本実施形態に於いては、 前記ガス冷却室 1内へ産業廃棄物焼却炉の 廃熱ボイラ (図示省略) から排出されてくる高温排ガス G h (温度約 2 4 0 、 流量約 9 0 , 0 0 O Nm3 /H) を導入しているが、 減温の対象となる 高温排ガス G hの温度は 1 0 0 0 °C〜1 5 0 °C位いが望ましい。
更に、 減温の対象となる排ガスは、 如何なる燃焼装置からの排ガスであつ てもよく、 その流量にも特に制約はない。
熱水夕ンク 2は所要の容量を有する金属製の耐熱 ·耐圧夕ンクから形成さ れており、 断熱材により保護されている。
当該熱水夕ンク 2内には、 大気圧下に於ける沸点 ( 1 0 0で) よりも高温 の水 (加圧された熱水 W t ) が貯留されており、 本実施形態に於いては、 温 度 1 4 2 . 9 °C (圧力 3 k gZ c m2 Gに於ける飽和水) の高温 '高圧の熱 水 Wtが、 耐圧 1 O kgZcm2 の熱水タンク 2内に貯留されている。 図 1の本実施形態に於いては、 産業廃棄物焼却炉に設けた廃熱ボイラ (図 示省略) から加熱用の蒸気 Sが熱水タンク 2内へ導入され、 当該加熱蒸気 S の熱により、 熱水 Wtの温度が前記 1 42. 9での値に保持されている。 尚、 熱水 Wtの加熱源としては、 本実施形態のようにボイラからの水蒸気 の熱を利用する構成以外に、 燃焼ガスや燃焼排ガスの熱、 別途に設けた加熱 用バーナゃ電熱器の熱を利用する構成とすることも可能である。
また、 ボイラ設備が設けられている場合には、 所謂ボイラからの連続プロ 一水を熱水の一部として利用したり、 或いはボイラ設備に脱気器が設けられ ている場合には、 脱気器内で生成された高温 ·高圧水を熱水 W t又は熱水 W tの一部として利用することも可能である。
前記ポンプ 3は熱水 W tを減温水ノズル 4へ供給するためのものであり、 当該ポンプ 3は、 熱水タンク 2と減温水ノズル 4間の配管の圧力損失や減温 水ノズル 4の位置水頭等の関係から、 必要な場合にのみ設置される。
前記減温水ノズル 4は、 図 2及び図 3に示すような公知のホロコーン型ノ ズルであり、 本実施態様に於いては 1 20°Cの角度間隔で 3ケの噴出口 4 a を設けたノズルが、 ガス冷却室 1の上方部中央に 1ケ設けられている。 尚、 図 2に於いて、 4 bは本体、 4 cは螺旋子、 4 dは導水孔である。 また、 減温水ノズル 4の各噴出口 4 aの噴射角度は約 60° (噴出圧 3 k g f Zcm2 のとき) 、 流量は約 3. 8 IZm i n (噴出圧 3 kg f Zcm
2 ) に夫々設定されている。
更に、 本実施形態に於いては、 図 2に示すようなホロコーン型の噴霧ノズ ルを減温水ノズル 4として利用しているが、 減温水ノズル 4の種類や構造は 如何なるものであってもよく、 従前の常温水を 2〜3 kg f Zcm2 の圧力 下で 1 90〜 300 m程度の粒子径の噴霧水にできるものであれば、 本発 明に於し、ても十分使用することができる。
温度制御装置 5は、 入口側の排ガス温度検出器 5 b及び出口側の排ガス温 度検出器 5 aからの温度検出信号を受け、 減温水量制御弁 6を開閉制御する ことによってガス冷却室 1内へ噴霧する熱水量を調整し、 排ガス出口 1 か ら排出する低温排ガス G 1の温度を設定値に保持するものである。
尚、 本実施形態に於いては、 排ガス温度検出器 5 a · 5 bとしてサ一モス タッ ト型の温度検出器を使用しているが、 使用する温度検出器の種類は如何 なるものであってもよい。
また、 本実施形態では、 熱水供給配管路内へ減温水量制御弁 6を介設する 構成としているが、 従前の図 6のように、 熱水 W tのリターン配管路内に減 温水量制御弁 6を介設するようにしてもよく、 減温水ノズル 4へ供給する熱 水量を調整できさえすれば、 如何なる方式であってもよい。
燃焼装置からの高温排ガス G hの減温に際しては、 熱水タンク 2内の熱水 W tカ\ 熱水タンク 2内の内圧及び又はポンプ 3の加圧送水力によって減温 水ノズル 4へ送られ、 減温水ノズル 4から高温排ガス G h内へ噴霧される。 減温水ノズル 4から噴霧された熱水 W tは、 大気圧下における沸点 (1 0 0 °C) よりも相当に高い温度の高圧水であるため、 減温水ノズル 4の噴出口
4 aの出口近傍で急激に減圧沸騰をし、 粒子径が約数 1 0 z m〜数 mの微 細粒子になると共に、 瞬時に蒸発して水蒸気となり、 ガス冷却室 1内の高温 排ガス G hとの熱交換によりこれを冷却する。
また、 所定の温度にまで冷却された低温排ガス G 1は排ガス出口 1 bを通 して外部へ誘引され、 更に、 分離された排ガス内の灰 (ダスト等) Cは、 灰 出口 1 cより外部へ排出されて行く。
実施例 1
排ガス流量 9 0 , 0 0 O Nm3 /H (産業廃棄物焼却炉の廃熱ボイラから の排ガス) 、 温度 2 4 0 °Cの高温排ガス G hを 1 8 0 °Cにまで減温するため に、 円筒形のガス冷却室 1を有する塔型減温装置を形成した。 熱水 W tの温 度 1 4 2 . 9 "C (圧力 3 k gZ c m2 · Gの飽和水) 、 噴霧する熱水量 2 .
5 t 0 n / h rとしたとき、 必要とするガス冷却室 1の容積は内径 3 0 0 0 mm、 高さ 6000 mmとなり、 当該ガス冷却室 1を用いて前言己高温排ガス Ghを十分に所定温度 ( 1 80°C) の低温排ガス G 1に減温することができ た。
同条件の排ガスを従前の塔型減温装置 (20°Cの水、 噴霧する水量約 2 t 0 n/h) で処理した場合には、 必要とするガス冷却室の容量が約 4 800 mm0 X 90 0 OmmHとなり、 これに比較して、 本発明に於いてはガス冷 却室 1の大幅な小形化を図れることが、 確認されている。
尚、 本発明に於いては、 熱水 Wtの噴霧水量が、 従前の水 (20°C) を用 いる場合に比較して、 約 20%ほど増加することになる。
また、 本発明に於いては、 ガス冷却室 1の壁面への水滴の付着による耐火 材の損傷やダスト等の付着'堆積によるトラブルは全く発生せず、 極めて安 定した高温排ガスの連続的な減温を行なうことができた。
図 4及び図 5は、 本発明による排ガス減温方法及び装置の他の実施形態を 示すものであり、 廃棄物焼却炉より排出された高温排ガス G hの導出用の排 ガスダクト 7の側面に、 減温水ノズル 4の取付用フランジ 7 aを設け、 当該 フランジ 7 aに取付けした減温水ノズル 4からダクト 7内の高温排ガス G h 内へ熱水 W tを噴霧する構成としたものである。
尚、 図 4及び図 5に示す実施形態は、 図 1及び図 2に示した実施形態に於 けるガス冷却室 1が縦長の排ガスダクト 7に替つただけであり、 その他の装 置の構成は図 1及び図 2の場合と全く同一である。
実施例 2
噴霧する熱水を 1 42. 9て、 3 kg/cm2 · Gの飽和水、 ダクト内径 20 0 Omm ø、 ダクトの長さ L = 70 0 Ommとし、 減温水ノズル 4から 3. 4 t onZhの熱水 Wtをダクト 7内へ噴霧することにより、 9 000 ONm3 H. 温度 24 0 °Cの高温排ガス Ghを、 ダクト出口 7 bに於いて 約 1 80°Cの低温排ガス G 1に連続的に減温することができた。
また、 この時、 ダクト 7の内壁面へ水滴の付着は全く見られず、 従って水 滴の付着に起因するダスト等の付着 ·堆積も皆無になることが確認されてい 図 6及び図 7は、 本発明による排ガス減温方法及び装置の第 3の実施形態 を示すものであり、 減温水ノズル 4からアル力リ性の熱水 W tをガス冷却室 1内の高温排ガス G h内へ噴射することにより、 排ガスの減温と同時に排ガ ス内の酸性成分を除去 (若しくは中和) するようにしたものである。
図 6及び図 7に於いて、 8はアル力リ性溶液夕ンク、 8 aはアル力リ剤供 給装置、 8 bは攪拌機、 9はアルカリ性溶液ポンプ、 1 0はアルカリ性溶液 流量制御弁、 1 1はアルカリ性溶液加熱器、 1 1 aはドレーン排出弁、 1 2 は熱水 W tとアル力リ性溶液 Wpとの混合器、 1 3は酸性ガス濃度制御装置 、 1 3 aは低温排ガス G 1の酸性ガス濃度検出器、 S , は加熱用蒸気、 Pは アルカリ斉 |J、 W, は水、 Wpはアルカリ性溶液であり、 これ等の各部材を除 いて、 当該排ガス減温装置を構成するその他の機器装置は、 図 1及び図 2の 場合と全く同様である。
即ち、 前記図 6に於いては、 熱水 W t内へ混合するアルカリ性溶液 Wpと してアルカリ性水溶液が使用されており、 例えば、 水 W, 内へ水酸化ナトリ ゥム (苛性ソーダ · N a O H) 等のアル力リ剤 Pを溶解させたアル力リ性水 溶液が、 アル力リ性溶液タンク 8内に貯留されている。
尚、 アルカリ性水溶液を形成するアルカリ剤 Pとしては、 水溶性のもので あれば上記水酸化ナトリウム以外のものであつてもよく、 例えば水酸化マグ ネシゥ厶 (M g ( O H) 2 ) 等を使用してもよい。
また、 タンク 8内に貯留されるアル力リ性水溶液内のアル力リ剤濃度は、 水 の温度や使用するアルカリ剤 Pの水 W, に対する溶解度に応じて適宜 に選定され、 アルカリ剤 Pが水酸化ナトリウムの場合には、 アルカリ剤濃度 は 2 0〜3 0 %に選定されている。
一方、 前記図 7に於いては、 熱水 W t内へ混合するアルカリ性溶液 Wpと して了ルカリ性スラリ一溶液が使用されており、 例えば水 W, 内へ水酸化力 ルシゥム (消石灰 ' C a (OH) 2 ) 等のアルカリ剤 Pを分散状に懸濁せし めた固液混合体 (スラリー) がアルカリ性溶液タンク 8内に貯留されている ο
尚、 アルカリ剤 Pとしては、 7XW, 内へ分散してスラリーを形成するもの であれば上記水酸化カルシウム以外のものであってもよく、 例えば消石灰 ( CaO) や炭酸カルシウム (C aC〇3 ) 、 炭酸ナトリウム (Na2 C〇3 ) 等の使用が可能である。
前記熱水 Wt内へのアル力リ性溶液 Wpの混合量は、 低温排ガス G 1内の 酸性ガス濃度検出器 1 3 aからの検出信号により、 酸性ガス濃度制御装置 1 3を介してアル力リ性溶液流量制御弁 1 0を開 ·閉制御することにより調整 されており、 これにより、 前記低温排ガス G 1内の酸性ガス濃度は所定の設 定値に保持される。
尚、 熱水 Wt内へのアルカリ性溶液 Wpの混合量は、 低温排ガス G 1の温 度や除去の対象である酸性ガスの種類、 目的とする酸性ガスの除去率等から 決定され、 通常は排ガス内の除去すべき酸性ガス量に対して当量比で 1. 0 〜 1. 5倍の量のアル力リ剤 Pが熱水 Wt内へ混入される。
前記アル力リ性溶液加熱器 1 1は、 熱水 Wt内へ混入するアル力リ性溶液 Wpを所定の温度にまで加熱し、 混合器 1 2から流出するアルカリ性の減温 水の温度が大幅に低下するのを防止する。
尚、 アルカリ性溶液 Wpの混合量が少なかったり、 或いはアルカリ性溶液 Wpの温度が比較的高温 (例えば 80° (:〜 9 0°C) の場合には、 混合時の熱 水 Wtに対する外乱が比較的少ない。 従って、 このような場合には、 前記ァ ルカリ性溶液加熱器 1 1の設置を省略することが可能である。
尚、 前記図 6及び図 7に示した実施形態に於いては、 アルカリ性の減温水 をガス冷却室 1内へ噴射する構成としているが、 アルカリ性の減温水を前記 ガス冷却室 1に替えて図 4及び図 5のような排ガスダクト 7内へ噴射する構 成としてもよいことは、 勿論である。 実施例 3
排ガス流量 9 0, 00 ONm3 /h (産業廃棄物焼却炉の廃熱ボイラから の排ガス ·排ガス中の HC 1濃度 8 00 p pm) 、 温度 24 0°Cの高温排ガ ス Ghを 1 80°Cにまで減温するために、 円筒形のガス冷却室を有する塔型 減温装置を形成した。 熱水 W tの温度 1 42. 9 °C (圧力 3 k c m2 · Gの飽和水) 、 アルカリ性溶液 (濃度 25%の NaOH水溶液) Wpの温度 25で、 熱水 W tの供給量 1. 9 t 0 nノ h、 アルカリ性溶液 W pの供給量 0. 6 0 6 t 0 n/h、 噴霧するアル力リ性の熱水の供給量約 2. 56 t o nZhとしたとき、 必要とするガス冷却室 1の容積は内径 30 00 mm,高 さ 6 0 0 0 mmとなり、 当該ガス冷却室 1を用いて前記高温排ガス G hを十 分に所定温度 (1 8 0°C) の低温排ガス W1に減温することができた。 また、 この時の排ガス内の HC 1量に対するアルカリ剤 Pの供給量は、 当 量比で 1. 0であり、 酸性ガス濃度検出器 1 3 aで検出した HC 1の除去率 は、 低温排ガス G 1の温度が 1 80°Cのときに約 9 3%であった。
尚、 アルカリ性溶液 Wpの供給量の算出は下記の通りである。
HC 1濃度が 80 0 p pmである排ガス 9 0, 00 ONm3 Zh中の HC 1量は、 9 X 1 04 X 80 0 X 1 0 '6=72Nm3 Zhである。
また、 72Nm3 /hの HC 1の当量数/ hは、 72 22. 4 = 3. 2 1 4 kmo 1/hとなる。 当量比が 1であるから、 供給する NaOHの当量 数 Zhは 3. 2 1 4 kmo 1 /h rとなり、 この当量数/ h rの Na〇Hを 、 濃度 25%の NaOH水溶液 Wpでもって供給する場合、 NaOH水溶液 Wpの供給量は、 4 0 kgZkmo l x 3. 2 1 4 kmo 1 /h x 1 00/ 25=6 0 6 kgZhとなる。
前記 N a OH水溶液の噴霧による排ガス内の酸性ガスの除去は、 次の反応 式によるものである。
NaOH + HC 1→Na C 1十 H2
Na OH + S02 + 1 /202 →Na2 S〇4 +H2 O 尚、 生成した Na C I等は、 電気分解法等によって後処理されるが、 これ 等の処理方法は既に公知であるため、 ここではその説明を省略する。
尚、 常温 (25°C) のアルカリ性溶液 (25%NaOH水溶液) Wpを混 合した際の熱水 Wtに対する外乱を考慮して、 本実施例では、 アルカリ性溶 液加熱器 1 1によって前記アル力リ性溶液 Wpを約 80°Cに加熱してから、 混合器 1 2へ供給するようにしている力 加熱器 1 1を使用しない場合でも 、 混合器 1 1の出口側に於けるアルカリ性熱水の温度が低下することにより 、 減温水ノズル 4からの噴霧水量力若干低下するだけであり、 特に問題を生 じることはなかった。
又、 排ガスが高濃度の酸性ガスを含有する場合には、 アルカリ性溶液 Wt の混合量が増加することにより、 混合後の熱水 W tの温度が更に低下するこ とになる力 混合前の熱水 Wtの温度を高目に設定することにより、 加熱器 1 1を設けなくても十分に対応できることが判明した。
図 8は、 実施例 3に於いて、 混合器 1 2へ供給する Na〇H水溶液 Wpの 供給量を変化させた場合の酸性ガス (HC 1 ) 除去率の変化の状態を示すも のであり、 曲線 Aは低温排ガス G 1の温度を 1 80°Cに設定した時の値を、 また曲線 Bは低温排ガス G 1の温度を 1 50°Cに設定した値を夫々示すもの である。 尚、 曲線の縦軸は酸性ガス除去率%、 横軸は N a〇Hの当量比で表 わした供給量である。 図 8からも明らかなように、 低温排ガス G 1の温度 が低レ、ほど除去率は向上する。 下記の第 1表は、 前記図 8に示した実施例の 具体的な測定数値を示すものである。
表 1
Figure imgf000023_0001
1 低温排ガス温度 1 5 O 'C
※? 低温排ガス温度 1 8 0。C 発明の効果
本発明に於いては、 減温水として加圧熱水を用いているため、 噴霧された 熱水は、 減温水ノズルの噴出口の近傍に於いて急激に減圧沸騰をし、 粒径が 数 i m程度の微粒子伏の噴霧体となると共に、 瞬時に蒸発をして水蒸気とな 。
これにより、 噴霧された熱水が水滴のままで直接にガス冷却室の壁面へ衝 突 ·付着することが皆無となり、 水滴の付着に起因するガス冷却室壁面の損 傷やダストの堆積によるトラブルが完全に防止されることになる。
また、 噴霧された熱水が瞬時に蒸発されることにより噴霧水の冷却性能が 大幅に向上し、 ガス冷却室の大幅な小形化が可能となる。 即ち、 従前の常温 水を減温水とするガス冷却室にあっては、 ガス冷却室の熱負荷力通常約 5 0 0 0〜1 5 0 0 0 k c a 1 /m3 · H程度であるのに対して、 本発明に係る 減温装置のガス冷却室に於いては、 ガス冷却室熱負荷を 5 0 , 0 0 0〜1 5 0 , 0 0 0 k c a 1 /m3 · H程度に高めることが可能となり、 ガス冷却室 の大幅な小型化が可能となる。
更に、 熱水タンクの加圧力が充分である場合には、 加圧ポンプが必要でな くなり、 設備が極めて簡素に構成できるうえ、 ランニングコストの大幅な引 下げが可能となる。
焼却炉やボイラ設備に脱気器が付属されている場合には、 脱気器の熱水を そのま、利用することができ、 減温水設備としては減温水ノズルと脱気器か らの配管設備のみがあれば良い。 その結果、 排ガス減温設備を極めて安価に 構成することができる。
また、 ガス冷却室自体を小容量に、 或はガス冷却室を設けずに高温排ガス 用のダクト中に熱水を噴霧することもできるため、 設備費の大幅な低減が可 能となる。
更に、 ボイラ及び廃熱ボイラを附設した焼却炉にあっては、 ボイラの連続 ブロー水を減温水用の熱水の一部に利用することができ、 省エネルギーと共 に、 ブロー水がアルカリ性であることから、 排ガス脱塩 ·脱硫設備の薬剤量 を節減することができる。
減温水ノズルへ供給する熱水をアル力リ性の熱水とした場合には、 排ガス 内の酸性ガスをより少ない量のアルカリ剤でもって、 高除去率で除去するこ とができ、 排ガス減温装置の下流側に設置する酸性ガス除去設備の一層の小 形化並びに使用薬剤量の削減を図ることができる。
また、 熱水内へ混合するアルカリ性溶液は、 特に加熱することにより高温 としなくてもよく、 熱水の温度を若干高目に設定することにより、 常温のァ ルカリ性溶液を熱水内へ混合し乍ら、 排ガス減温装置の安定した運転を行な うことができる。
本発明は上述の通り、 優れた実用的効用を奏するものである。

Claims

請 求 の 範 囲
1 . 大気圧下で水の沸点よりも高い温度の加圧熱水を減温水として排ガス内 へ噴霧することを特徴とする、 焼却炉やボイラ設備における熱水を利用した 排ガス減温方法。
2 . ガス冷却室又は排ガスダクト内へ大気圧下での水の沸点よりも高い温度 の加圧熱水を減温水として噴霧することを特徴とする、 焼却炉やボイラ設備 における熱水を利用した排ガス減温方法。
3 . 脱気器から取り出した熱水又はボイラの連続ブロー水を加圧熱水の一部 として利用するようにした請求項 1又は請求項 2の記載の熱水を利用した排 ガス減温方法。
4 . 蒸気をその一部に含有した加圧熱水を減温水とするようにした請求項 1 、 請求項 2又は請求項 3に記載の熱水を利用した排ガス減温方法。
5 . アル力リ性溶液を含んだ加圧熱水を減温水とするようにした請求項 1又 は請求項 2に記载の熱水を利用した排ガス減温方法。
6 . 加熱したアルカリ性溶液を熱水内へ混合するようにした請求項 5に記載 の熱水を利用した排ガス減温方法。
7 . アル力リ性溶液を、 アル力リ性の水溶液又はアル力リ性のスラリ一溶液 とした請求項 5又は請求項 6に記載の熱水を利用した排ガス減温方法。
8 . アル力リ性の水溶液を水酸化ナトリゥ厶 (苛性ソーダ) を含んだ水溶液 に、 またアルカリ性のスラリー溶液を水酸化カルシウム (消石灰) を含んだ スラリ一溶液とした請求項 7に記載の熱水を利用した排ガス減温方法。
9 . ガス入口とガス出口と灰出口とを備えたガス冷却室と、 大気圧下での水 の沸点よりも高い温度の加圧熱水を貯留した熱水夕ンクと、 熱水夕ンクから の熱水をガス冷却室内へ噴霧する減温水ノズルと、 減温水ノズルへ供給する 熱水量を調整する減温水量制御弁と、 ガス出口から流出する低温排ガスの温 度検出器と、 前記温度検出器からの検出信号により減温水量制御弁を開閉制 御する温度制御装置とから構成したことを特徴とする熱水を利用した排ガス
10. 排ガスが流通する排ガスダクトと、 大気圧下での水の沸点よりも高い温 度の加圧熱水を貯留した熱水タンクと、 熱水タンクからの熱水を排ガスダク ト内へ噴霧する減温水ノズルと、 減温水ノズルへ供給する熱水量を調整する 減温水量制御弁と、 排ガスダクトの出口から流出する低温排ガスの温度検出 器と、 前記温度検出器からの検出信号により減温水量制御弁を開閉制御する 温度制御装置とから構成したことを特徴とする熱水を利用した排ガス減温装 置。
1 1. 熱水タンクの内圧により、 熱水を減温水ノズルへ供給するようにした請 求項 9又は請求項 1 0に記載の熱水を利用した排ガス減温装置。
12. ガス入口とガス出口と灰出口とを備えたガス冷却室と、 大気 E下での水 の沸点よりも高レ、温度の加圧熱水を貯留した熱水タンクと、 アル力リ性溶液 を貯留したアル力リ性溶液夕ンクと、 熱水夕ンクからの熱水とアル力リ性溶 液タンクからのアル力リ性溶液とを混合する混合器と、 前記混合器からのァ ルカリ性溶液を含む熱水をガス冷却室内へ噴霧する減温水ノズルと、 減温水 ノズルへ供給するアル力リ性溶液を含んだ熱水の流量を調整する減温水量制 御弁と、 前記混合器へ供給するアル力リ性溶液の流量を調整するアル力リ性 溶液量制御弁と、 ガス出口から流出する低温排ガスの温度検出器と、 前記低 温排ガスの酸性ガス濃度検出器と、 前記温度検出器からの検出信号により減 温水量制御弁を開閉制御する温度制御装置と、 前記酸性ガス濃度検出器から の検出信号によりアルカリ性溶液量制御弁を開閉制御する酸性ガス濃度制御 装置とから構成したことを特徴とする熱水を利用した排ガス減温装置。
13. アル力リ性溶液を加熱するアル力リ性溶液加熱器を混合器のアル力リ性 溶液入口側に設けるようにした請求項 1 2に記載の熱水を利用した排ガス減 温装置。
14. アル力リ性溶液夕ンクを、 アル力リ性の水溶液又はアル力リ性のスラリ —溶液を貯留したアル力リ性溶液夕ンクとした請求項 1 2又は請求項 1 3に 記載の熱水を利用した排ガス減温装置。
15. 排ガスが流通する排ガスダクトと、 大気圧下での水の沸点よりも高い温 度の加圧熱水を貯留した熱水夕ンクと、 アル力リ性溶液を貯留したアル力リ 性溶液夕ンクと、 熱水タンクからの熱水とアル力リ性溶液夕ンクからのアル 力リ性溶液とを混合する混合器と、 前記混合器からのアル力リ性溶液を含む 熱水を排ガスダクト内へ噴霧する減温水ノズルと、 減温水ノズルへ供給する アル力リ性溶液を含んだ熱水の流量を調整する減温水量制御弁と、 前記混合 器へ供給するアル力リ性溶液の流量を調整するアル力リ性溶液量制御弁と、 排ガスダク卜の出口から流出する低温排ガスの温度検出器と、 前記低温排ガ スの酸性ガス濃度検出器と、 前記温度検出器からの検出信号により減温水量 制御弁を開閉制御する温度制御装置と、 前記酸性ガス濃度検出器からの検出 信号によりアル力リ性溶液量制御弁を開閉制御する酸性ガス濃度制御装置と から構成したことを特徴とする熱水を利用した排ガス減温装置。
16. アル力リ性溶液を加熱するアル力リ性溶液加熱器を混合器のアル力リ性 溶液入口側に設けるようにした請求項 1 5に記載の熱水を利用した排ガス減
17. アル力リ性溶液タンクを、 アル力リ性の水溶液又はアル力リ性のスラリ 一溶液を貯留したアル力リ性溶液夕ンクとした請求項 1 5又は請求項 1 6に 記載の熱水を利用した排ガス減温装置。
PCT/JP1999/007162 1999-01-18 1999-12-20 Method and device for reducing temperature of exhaust gas utilizing hot water WO2000042359A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020007003991A KR100345408B1 (ko) 1999-01-18 1999-12-20 열수를 이용한 배출가스 감온방법 및 그 장치
EP99959931A EP1065444B1 (en) 1999-01-18 1999-12-20 Method for reducing the temperature of exhaust gas utilizing hot water
DE69942997T DE69942997D1 (de) 1999-01-18 1999-12-20 Verfahren zur Reduzierung der Abgastemperatur mittels Warmwasser
US09/639,662 US6523811B1 (en) 1999-01-18 2000-08-16 Method and device for temperature reduction of exhaust gas by making use of thermal water
US10/301,734 US6712343B2 (en) 1999-01-18 2002-11-22 Method and device for temperature reduction of exhaust gas by making use of thermal water
US10/756,417 US6841138B2 (en) 1999-01-18 2004-01-14 Method and device for temperature reduction of exhaust gas by making use of thermal water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP884799 1999-01-18
JP11/8847 1999-01-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/639,662 Continuation US6523811B1 (en) 1999-01-18 2000-08-16 Method and device for temperature reduction of exhaust gas by making use of thermal water

Publications (1)

Publication Number Publication Date
WO2000042359A1 true WO2000042359A1 (en) 2000-07-20

Family

ID=11704153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007162 WO2000042359A1 (en) 1999-01-18 1999-12-20 Method and device for reducing temperature of exhaust gas utilizing hot water

Country Status (5)

Country Link
EP (1) EP1065444B1 (ja)
KR (1) KR100345408B1 (ja)
DE (1) DE69942997D1 (ja)
TW (1) TW418305B (ja)
WO (1) WO2000042359A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW539828B (en) * 2001-08-17 2003-07-01 Nippon Oxygen Co Ltd Cooling method and apparatus of emission gas with high temperature, and burning handling apparatus
KR101013447B1 (ko) * 2003-11-21 2011-02-09 모영환 구근 수확기
KR100837612B1 (ko) * 2007-05-30 2008-06-12 이선영 반건식 반응탑용 염화수소· 황산화물 제거장치
CN103953936A (zh) * 2014-05-04 2014-07-30 杨志军 一种可控制废气中污染物排放的烟囱
CH710092A1 (de) * 2014-09-10 2016-03-15 Robert Stucki Verfahren zur raschen Abkühlung von Abgasen und Einspritzkühlvorrichtung.
FI20146081A (fi) 2014-12-10 2016-06-11 Evac Oy Jätteenkäsittelylaitteisto
KR102146647B1 (ko) * 2020-02-24 2020-08-20 임창호 열교환장치가 구비된 폐기물의 친환경 처리시스템
KR102146646B1 (ko) * 2020-02-24 2020-08-20 임창호 폐기물의 친환경 처리시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560894A (en) 1992-09-16 1996-10-01 Hokkaido Electric Power Co., Inc. Process for treatment of exhaust gas
JPH09187615A (ja) * 1996-01-12 1997-07-22 Babcock Hitachi Kk 水蒸気凝集集塵装置及び集塵方法
JPH09250722A (ja) * 1996-03-14 1997-09-22 Mitsui Eng & Shipbuild Co Ltd 廃棄物処理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804521A (en) * 1986-11-07 1989-02-14 Board Of Regents, The University Of Texas System Process for removing sulfur from sulfur-containing gases
NZ308045A (en) * 1995-05-30 2000-01-28 Thermal Energy Internat Inc Flue gas scrubbing and waste heat recovery system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560894A (en) 1992-09-16 1996-10-01 Hokkaido Electric Power Co., Inc. Process for treatment of exhaust gas
JPH09187615A (ja) * 1996-01-12 1997-07-22 Babcock Hitachi Kk 水蒸気凝集集塵装置及び集塵方法
JPH09250722A (ja) * 1996-03-14 1997-09-22 Mitsui Eng & Shipbuild Co Ltd 廃棄物処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1065444A4 *

Also Published As

Publication number Publication date
KR20010015759A (ko) 2001-02-26
DE69942997D1 (de) 2011-01-13
KR100345408B1 (ko) 2002-07-24
EP1065444A1 (en) 2001-01-03
EP1065444A4 (en) 2009-08-26
EP1065444B1 (en) 2010-12-01
TW418305B (en) 2001-01-11

Similar Documents

Publication Publication Date Title
WO2000042359A1 (en) Method and device for reducing temperature of exhaust gas utilizing hot water
CN103499098A (zh) 一种高浓度有机废液焚烧设备及工艺
JP3869604B2 (ja) 熱水を利用した排ガス減温方法及びその装置
JP2010523316A (ja) ガスから二酸化イオウを分離する方法及び装置
US6523811B1 (en) Method and device for temperature reduction of exhaust gas by making use of thermal water
US11383995B2 (en) Apparatus and method for treating hydrogen sulfide and ammonia in wastewater streams
KR100250365B1 (ko) 중질유에멀션연료연소장치
EP0869316B1 (en) Heavy oil emulsified fuel combustion apparatus
EP0690742A1 (en) Method and apparatus for cleaning of hot gas and extraction of energy therefrom
JP4578268B2 (ja) 排ガス減温装置に於ける一流体噴霧ノズルの腐食防止方法
CN208869345U (zh) 用于干渣冷却的脱硫废水零排放装置
JP2004028558A (ja) 熱水を利用した排ガス減温方法及びその装置
RU2812625C1 (ru) Вакуумный деаэратор периодического действия системы отопления и горячего водоснабжения (два варианта)
CN114275836B (zh) 一种利用烟气余热处理含盐污水的方法和装置
JP4230398B2 (ja) 熱水を利用した排ガス減温装置及び排ガス減温方法
CN103884203B (zh) 气液接触式余热回收器
CN218774577U (zh) 喷射装置及烟气脱硝系统
JP5104444B2 (ja) 水微細化ユニット及び水微細化装置とそれを用いたサウナ装置
KR200163329Y1 (ko) 응축수무방류형물유동층열교환기
JP2001324128A (ja) 排ガス冷却方法
Robert Van Durme et al. Improving Cooling Performance of Gas Conditioning Towers/Downcomers to Reduce Plant Emissions
CN2647416Y (zh) 燃烧设备烟气净化器
RU2253621C1 (ru) Деаэратор
CN204778917U (zh) 一种有机废水处理装置
JP2001269530A (ja) 水スプレー装置及びそれを備えるガス冷却システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020007003991

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999959931

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 09639662

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999959931

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007003991

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007003991

Country of ref document: KR