WO2000041259A1 - Alkali storage battery and its core - Google Patents

Alkali storage battery and its core Download PDF

Info

Publication number
WO2000041259A1
WO2000041259A1 PCT/JP1999/007268 JP9907268W WO0041259A1 WO 2000041259 A1 WO2000041259 A1 WO 2000041259A1 JP 9907268 W JP9907268 W JP 9907268W WO 0041259 A1 WO0041259 A1 WO 0041259A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
graphite
plating
core
alloy
Prior art date
Application number
PCT/JP1999/007268
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Ohmura
Tatsuo Tomomori
Hideo Ohmura
Original Assignee
Toyo Kohan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co., Ltd. filed Critical Toyo Kohan Co., Ltd.
Priority to JP2000592897A priority Critical patent/JP4386230B2/en
Priority to AU17996/00A priority patent/AU1799600A/en
Publication of WO2000041259A1 publication Critical patent/WO2000041259A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1243Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a core for an alkaline storage battery and a battery using the same.
  • the present invention relates to a core for a battery such as an alkaline storage battery, and more particularly to a core for an electrode plate and a battery used for a positive electrode plate or a negative electrode plate of the battery.
  • the alkaline battery as a secondary battery serving as various power sources, which is widely used because it can be repeatedly used economically for a long period of time, and is small and lightweight.
  • the alkaline battery usually has a structure in which a positive electrode plate coated with nickel hydroxide and a negative electrode plate coated with a hydrogen storage alloy are sealed in a case via a separator.
  • the negative electrode of an alkaline storage battery has been a nickel-plated perforated metal obtained by mechanically drilling a steel plate and applying a hydrogen storage alloy.
  • foamed nickel coated with nickel hydroxide has been used for the positive electrode.
  • a foamed resin is nickel-plated, and then subjected to a high-temperature heat treatment in an oxygen-containing gas to volatilize and remove the resin component to obtain a highly porous support.
  • Such a punched metal has a disadvantage that nickel oxide or hydroxide having a high resistance is formed on the surface due to aging in an alkaline electrolyte and the surface resistance is increased.
  • the production of a foamed nickel body requires the selection of raw materials and the subsequent production process to be extremely complicated, and in order to use it for a battery core, strict control of production conditions is required.
  • the present inventors have conducted intensive studies to solve this problem and provide a lower cost and higher performance battery core.
  • the core as an electrode plate is resistant to an alkaline electrolyte and has a high resistance. Black that does not produce oxides or hydroxides When nickel plating with lead dispersed was used, irregularities were formed on the surface, and it was found that the anchoring effect improved the retention of the active material. Disclosure of the invention
  • a positive electrode plate and a negative electrode plate are formed by attaching an active material to a core forming a plate-shaped current collector, and these two electrode plates are sealed in a case via a separator.
  • a thin steel plate is coated with graphite-dispersed nickel or a graphite-dispersed nickel alloy to have a convex surface, and that the core has excellent H4 retention with the active material.
  • the nickel alloy plating layer is desirably any one of a nickel-cobalt alloy, a nickel-cobalt-iron alloy, a nickel-manganese alloy, a nickel-phosphorus alloy, and a nickel-bismuth alloy.
  • a diffusion layer or a nickel layer be formed below the graphite-dispersed nickel plating layer or the graphite-dispersed nickel alloy plating layer.
  • the graphite dispersed nickel plating layer or the graphite dispersed nickel plating layer has a graphite content of 0.1 to 25% by weight.
  • the mild steel sheet is coated with graphite-dispersed nickel or a graphite-dispersed nickel alloy to form a core for an alkaline storage battery, and a nickel hydroxide slurry is applied on the core.
  • a nickel hydroxide slurry is applied on the core.
  • a positive electrode plate or a slurry containing a hydrogen storage alloy is applied on a core to form a negative electrode plate.
  • a cold rolled steel sheet of ordinary steel particularly one based on a low carbon aluminum killed steel interconnected material is used.
  • the carbon content is 0.003% by weight or less.
  • Ultra-low carbon steel, non-aging steel to which metals such as niobium and titanium are added, or stainless steel sheet containing 3 to 18% by weight of chromium can also be used. These steel plates may be steel plates that have been drilled in advance.
  • nickel plating As for the surface-treated steel sheet, it is desirable to first apply nickel plating on the steel sheet.
  • This nickel plating is hereinafter referred to as “base nickel” plating.
  • the purpose of the base nickel plating is to ensure sufficient corrosion resistance even after being formed into a core.
  • a bath used for ordinary nickel plating such as a watt bath, a sulfamic acid bath, a borofluoride bath, and a chloride bath, can be used in the present invention.
  • Nickel plating includes electrolytic plating and electroless plating.Electroless plating can also be used, but in general, electrolytic plating, which can control bath thickness and control plating thickness, is used. easy.
  • a bath in order to obtain a uniform plating layer is preferably subjected to air agitation or the like to blow air into the tub.
  • the pH of the bath is preferably in the acidic range of 3.5 to 5.5, and the bath temperature is preferably 40 to 60 ° C.
  • the nickel adhesion amount of the nickel plating layer is preferably about 0.5 to 5.
  • This base nickel plating is preferably formed on both sides of the steel sheet from the viewpoint of ensuring corrosion resistance, and the thickness of the plating layer is preferably 0.5 to 5 m.
  • the underlying Nigel coating layer may be left in the coated state, it is preferable to perform a heat treatment after the plating to make all or a part of the nickel plating layer a diffusion layer.
  • This diffusion layer type The formation is effective in preventing the nickel-plated layer from peeling from the steel sheet substrate.
  • the heat treatment is preferably performed under a non-oxidizing or reducing protective gas in order to prevent formation of an oxide film on the surface of the diffusion layer.
  • a non-oxidizing gas nitrogen, argon, helium, etc., which are so-called inert gases, are suitably used.
  • the reducing gas hydrogen, quaternary cracking gas (75% hydrogen, 25% nitrogen) Etc. are preferably used.
  • the heat treatment method there are a box type annealing method and a continuous annealing method, and any of these methods may be used.
  • the heat treatment temperature is preferably 450 ° C. or higher, and the treatment time is short in the continuous annealing method, and relatively long in the box annealing method. Generally, about 30 seconds to 2 minutes for continuous annealing, and 6 hours to 15:00 for box annealing
  • This graphite-dispersed nickel plating bath may be based on a nickel plating bath (where a graphite-dispersed nickel plating layer is formed) or may be formed from other metals other than nickel, such as cobalt, manganese, iron, phosphorus, bismuth, and nickel.
  • Base alloy bath may be based on a nickel plating bath (where a graphite-dispersed nickel plating layer is formed) or may be formed from other metals other than nickel, such as cobalt, manganese, iron, phosphorus, bismuth, and nickel.
  • the graphite used in the present invention may be either natural graphite or artificial graphite, but it is preferable to use finely ground graphite having a 50% cumulative volume diameter of 10 or less. Further, it is more preferable to use ultrafine graphite having a 50% cumulative diameter of 5 m or less. This is because if graphite having a very large particle size is used as compared with the thickness of the plating layer, the attached graphite tends to fall off.
  • graphitizing carbon black is a graphitized product of carbon black and has an average particle size of about 0.1 m or less. Because graphite has a hydrophobic surface, it is not easy to disperse it even if it is stirred in a plating bath. Therefore, it is desirable to forcibly disperse using a surfactant (graphite dispersant).
  • the graphite dispersant used can be any of cationic, anionic, nonionic, and amphoteric types, but it has good adhesion between the coated T-plate and the plating layer.
  • an anionic surfactant as a graphite dispersant.
  • anionic surfactants benzenesulfonic acid is preferred.
  • an ester-based activator such as alkyl sulfate, sodium dodecylbenzenesulfonate, sodium ⁇ -olefin sulfonate, sodium alkylnaphthalenesulfonate, dialkylsodium succinate, etc. are more preferable as the graphite dispersant of the present invention.
  • the method of dispersing the fine graphite in the plating solution is to knead the graphite powder and a graphite dispersant diluted with a certain amount of water, and finally use a homogenizer or an emulsifying mixer such as an ultrasonic washing machine to disperse the dispersed state.
  • a method of moistening the graphite powder with a small amount of alcohol or the like is also effective for dispersion. After the graphite is sufficiently dispersed in this manner, the graphite is added to the plating solution with stirring.
  • the compounding amount of the dispersant is 0.
  • the blending amount of graphite it is preferably about 5 to 10% by weight. It is preferable to adjust the blending amount of graphite so that the addition amount is 1 to 100 g ZL with respect to the plating solution. If the amount is less than 1 g / L, the graphite content in the coating is too low, and there is no anchor effect. On the other hand, if it exceeds 100 g ZL, the fluidity of the plating solution deteriorates, and graphite powder adheres to the periphery of the plating apparatus 6 to cause various troubles. Also, in order to suppress the aggregation of graphite particles in the plating solution, a dispersant of about 2 to 1 Oml ZL is added in advance.
  • the plating solution in the plating bath in which the graphite powder is dispersed, is circulated to the lower part of the electrolytic cell using a pump in a circulation tank, and air is released from pores provided in the lower part of the electrolytic cell. It is preferable that the graphite powder is always dispersed in the plating bath by both the methods of blowing and stirring. If the dispersion state can be maintained well, Thus, 0.1 to 25% of graphite can be dispersed in the plating layer. Above all, it is preferable to disperse about 1 to 10%. In forming the graphite-dispersed layer, it is preferable to lower the current density in order to increase the graphite content.
  • Example 1 In forming the graphite-dispersed layer, it is preferable to lower the current density in order to increase the graphite content.
  • An annealed, temper-rolled cold-rolled steel sheet with a thickness of 6 was used as an original plate for plating.
  • the plated original plate was subjected to anodizing (5 AZdn ⁇ x 10 seconds) and cathodic treatment (5AZdm 2 X 10 seconds) at 75 ° C using an Na ⁇ H aqueous solution (30 gZL), followed by alkali degreasing.
  • anodizing 5 AZdn ⁇ x 10 seconds
  • cathodic treatment (5AZdm 2 X 10 seconds) at 75 ° C using an Na ⁇ H aqueous solution (30 gZL), followed by alkali degreasing.
  • it was immersed in an aqueous solution of sulfuric acid (50 g / L) for about 15 seconds to perform pickling, and then nickel plating was performed on the underlayer while stirring with a pet bath under the following conditions.
  • the anode used was one in which nickel pellets were inserted into a titanium basket equipped with
  • the steel sheet after the base nickel plating was heat-diffused at 550 ° C for 8 hours in an atmosphere of nitrogen: 94% and hydrogen: 6%.
  • the thickness of the nickel-iron diffusion layer after the treatment was determined to be 2.6 / zm by glow discharge emission spectroscopy.
  • the steel sheet was subjected to temper rolling to prevent the occurrence of stretch yaw strain.
  • graphite-dispersed nickel plating was performed using a graphite-dispersed nickel plating bath under the following conditions.
  • the graphite-dispersed nickel plating bath is also agitated by air, and the anode and cathode treatment conditions are the same as those for the base nickel plating.
  • the plating time and the amount of graphite added to the plating bath are changed to change the plating thickness and the graphite content dispersed in the plating layer.
  • the method of dispersing graphite in the plating bath was as follows. First, a diluted solution was prepared by diluting 4 ml of commercially available sodium benzene sulfonate (a graphite dispersant) in 1 L of deionized water, and 1 kg of fine graphite was mixed into the diluted solution (mixed solution). And the mixture In order to improve the fluidity of the liquid, 1 L of demineralized water was further added, and a sufficiently diluted mixed liquid was prepared using an ultrasonic disperser. This diluted mixed solution was added to the above plating bath and stirred to prepare a graphite dispersion plating bath. As the fine graphite, graphite powder ASSP 50% cumulative diameter 6 / zm manufactured by Nippon Graphite Industry Co., Ltd. was used.
  • Example 1 Using this treated steel sheet, a core was made in the same manner as in Example 1, then the active material was applied, and the properties were measured. Table 1 summarizes the results.
  • Nickel sulfate 300gZL Nickel sulfate 300gZL
  • Example 1 Using this treated steel sheet, a core was made in the same manner as in Example 1, then the active material was applied, and the characteristics were measured. Table 1 summarizes the results.
  • Example 2 In the same manner as in Example 1, degreasing, pickling, and nickel plating were performed on a base plate having a thickness of 60 / _im. After the base nickel plating, diffusion heat treatment was performed under the same conditions as in Example 1. After the temper rolling, the nickel manganese alloy in which graphite was dispersed was applied under the following conditions. Air agitation is also applied to this bath. The anode and cathode treatment conditions are the same as in the case of base nickel plating. The method of dispersing graphite is the same as in Example 1.
  • Example 1 Using this treated steel sheet, a core was made in the same manner as in Example 1, then the active material was applied, and the characteristics were measured. Table 1 summarizes the results.
  • Example 1 In the same manner as in Example 1, degreasing, pickling, and nickel plating were performed on a plated original plate having a thickness of 60 / m. After the base nickel plating, diffusion heat treatment was performed under the same conditions as in Example 1, and after temper rolling, a nickel-phosphorus alloy in which graphite was dispersed was applied under the following conditions. The plating bath is also agitated with air, and the anode conditions are the same as in the case of nickel plating on the underlayer. The method of dispersing graphite is the same as in Example 1.
  • Example 1 Using this treated steel sheet, a core was made in the same manner as in Example 1, then the active material was applied, and the characteristics were measured. Table 1 summarizes the results.
  • Example 2 In the same manner as in Example 1, degreasing, pickling, and nickel plating were performed on an original plate having a thickness of 60 zm. After the base nickel plating, diffusion heat treatment was performed under the same conditions as in Example 1, and after temper rolling, nickel-bismuth alloy in which graphite was dispersed was plated under the following conditions. The plating bath is also agitated with air, and the anode and cathode treatment conditions are the same as in the case of the above-described nickel plating. The method of dispersing graphite is the same as in Example 1.
  • Example 2 Using this treated steel sheet, a core was made in the same manner as in Example 1, and then activated.
  • Example 2 In the same manner as in Example 1, degreasing, pickling, and base nickel plating were performed using a plated original plate having a thickness of 60 zzm. After the base nickel plating, diffusion heat treatment was performed under the same conditions as in Example 1. After temper rolling, the nickel plating was re-plated.
  • the graphite content (% by weight) in the plating film was measured using a laser diffraction type particle size distribution analyzer.
  • a hydrogen storage alloy LmNi 4 having a core plate of 50 parts by weight of a carboxymethyl cellulose aqueous solution and a particle size of 200 mesh or less is used.
  • C o 0. 4 Mn 0 .4A 1 0. 100 by weight of 5
  • N i powder (I nco Inc. 255) 10 parts by weight, the active material consisting of an acrylic-styrene copolymer resin 5 parts by weight, 80 ° C, was applied using an applicator such that the thickness after drying for 30 minutes was 30011 m on one side (600 m on both sides).
  • the positive electrode and the negative electrode were made to have a thickness of 400 by a mouth press.
  • the electrode plate coated with the active material in this manner was immersed in a 6.3 mol KOH aqueous solution at 60 ° C for 10 days, and the retention of the active material was visually evaluated.
  • the case where the falling off of the active material is less than 10% is indicated by ⁇
  • the case where the falling off of the active material is more than 10% and less than 20% is indicated by ⁇
  • the case where the falling off is more than 20% is indicated by X. Table 1 shows the results.
  • the present invention unlike the conventional nickel layer, since there is a dispersion layer of nickel and graphite, a concave-convex surface is formed and the retention of the active material is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

The invention provides an alkali storage battery core of thin steel superior in retaining active material, and a battery using the core. The core is made from thin steel plated with graphite-dispersed nickel or graphite-dispersed nickel alloy. The alloy plating preferably includes a nickel-cobalt alloy, nickel-cobalt iron alloy, nickel-manganese alloy, nickel-phosphorous-alloy or nickel-bismuth alloy. Since its surface layer contains nickel or nickel alloy and graphite, the core has irregularities in the surface, and it can retain active material adequately.

Description

明 細 アル力リ蓄電池用芯体及びそれを用いた電池 技術分野  TECHNICAL FIELD The present invention relates to a core for an alkaline storage battery and a battery using the same.
本発明はアルカリ蓄電池等の電池用芯体に関し、 特に電池の正極板又は負極板 に使用する極板用の芯体および電池に関する。 背景技術  The present invention relates to a core for a battery such as an alkaline storage battery, and more particularly to a core for an electrode plate and a battery used for a positive electrode plate or a negative electrode plate of the battery. Background art
各種電源としてなる二次電池としてアルカリ畜電池があるがこれは長期間経済 的に繰り返して使用でき、 かつ小型軽量のために広く使用されている。 このアル カリ畜電池は通常水酸化ニッケルを塗布した正極板と水素吸蔵合金を塗布した負 極板とをセパレ一タを介してケースに密閉した構造をしている。 アルカリ畜電池 の負極には鋼板に機械的穴加工を施したパンチングメタルにニッケルめっきをし て水素吸蔵合金を塗布したものが用いられてきた。 また正極には水酸化ニッケル を塗布した発泡ニッケルなどが用いられてきた。 発泡ニッケルの製造方法として はたとえば発泡状樹脂にニッケルめっきをした後に、 これを酸素含有ガス中で高 温熱処理をして樹脂分を揮発除去して高多孔質の支持体としたものである。  There is an alkaline storage battery as a secondary battery serving as various power sources, which is widely used because it can be repeatedly used economically for a long period of time, and is small and lightweight. The alkaline battery usually has a structure in which a positive electrode plate coated with nickel hydroxide and a negative electrode plate coated with a hydrogen storage alloy are sealed in a case via a separator. The negative electrode of an alkaline storage battery has been a nickel-plated perforated metal obtained by mechanically drilling a steel plate and applying a hydrogen storage alloy. For the positive electrode, foamed nickel coated with nickel hydroxide has been used. As a method for producing foamed nickel, for example, a foamed resin is nickel-plated, and then subjected to a high-temperature heat treatment in an oxygen-containing gas to volatilize and remove the resin component to obtain a highly porous support.
このようなパンチングメタルはアル力リ電解液中で経時変化により、 表面に高 抵抗を有するニッケルの酸化物あるいは水酸化物ができ、 表面抵抗が高くなると いう欠点を持っている。 また発泡ニッケル体を製造するためには上記問題に加え て、 原料の精選、 その後の製造工程が極めて複雑であり、 さらに電池用芯体に使 用するためには厳密な製造条件管理の下に製造することが必要なために、高価にな りやすいという問題がある。 かかる問題を解決し、 より低コストかつ高性能の電 池用芯体を提供するために、 本発明者等は鋭意検討した結果、 極板としての芯体 にはアルカリ電解液に強く、 高抵抗となる酸化物あるいは水酸化物を作らない黒 鉛を分散させたニッケルめっきをすると、 表面に凹凸が形成され、 アンカ一効果 により活物質の保持性が良好となるという効果を見い出した。 発明の開示 Such a punched metal has a disadvantage that nickel oxide or hydroxide having a high resistance is formed on the surface due to aging in an alkaline electrolyte and the surface resistance is increased. In addition to the above-mentioned problems, the production of a foamed nickel body requires the selection of raw materials and the subsequent production process to be extremely complicated, and in order to use it for a battery core, strict control of production conditions is required. There is a problem that it is likely to be expensive due to the necessity of manufacturing. The present inventors have conducted intensive studies to solve this problem and provide a lower cost and higher performance battery core. As a result, the core as an electrode plate is resistant to an alkaline electrolyte and has a high resistance. Black that does not produce oxides or hydroxides When nickel plating with lead dispersed was used, irregularities were formed on the surface, and it was found that the anchoring effect improved the retention of the active material. Disclosure of the invention
本発明の電池用芯体は、 板状集電体をなす芯体に活物質を付着せしめて正極板 と負極板とを形成し、 これら両極板をセパレ一夕を介してケース内に密閉するよ うにしたアルカリ畜電池において、 薄い鋼板に黒鉛分散ニッケルめつきあるいは 黒鉛分散ニッケル合金めつきを施して、 凸状の表面とし、 かつ活物質との保^ H4 に優れた芯体であることを特徴とする。  In the battery core of the present invention, a positive electrode plate and a negative electrode plate are formed by attaching an active material to a core forming a plate-shaped current collector, and these two electrode plates are sealed in a case via a separator. In such an alkaline storage battery, a thin steel plate is coated with graphite-dispersed nickel or a graphite-dispersed nickel alloy to have a convex surface, and that the core has excellent H4 retention with the active material. Features.
この場合において、 ニッケル合金めつき層は、 ニッケル一コバルト合金、 ニッ ケルーコバルト一鉄合金、 ニッケル一マンガン合金、 ニッケル一リン合金、 又は ニッケル一ビスマス合金のいずれかであることが望ましい。  In this case, the nickel alloy plating layer is desirably any one of a nickel-cobalt alloy, a nickel-cobalt-iron alloy, a nickel-manganese alloy, a nickel-phosphorus alloy, and a nickel-bismuth alloy.
この場合において、 黒鉛分散ニッケルめっき層あるいは黒鉛分散ニッケル合金 めっき層の下層に拡散層あるいはニッケル層が形成されていることが望ましい。 この場合において、 黒鉛分散二ッケルめっき層あるいは黒鉛分散二ッケル合金 めっき層は、 黒鉛含有率が 0 . 1〜2 5重量%であることが望ましい。 発明を実施するための最良の形態  In this case, it is desirable that a diffusion layer or a nickel layer be formed below the graphite-dispersed nickel plating layer or the graphite-dispersed nickel alloy plating layer. In this case, it is desirable that the graphite dispersed nickel plating layer or the graphite dispersed nickel plating layer has a graphite content of 0.1 to 25% by weight. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 軟鋼板を準備した後、 その軟鋼板に黒鉛分散ニッケルめつきあるいは黒 鉛分散ニッケル合金めつきをして、 アルカリ蓄電池用芯体とし、 また、 芯体上に 水酸化ニッケルスラリーを塗布して正極板を形成させ、 又は芯体上に水素吸蔵合 金を含有するスラリーを塗布して負極板を形成させる。 以下、 本発明について詳 しく説明する。  First, after preparing a mild steel sheet, the mild steel sheet is coated with graphite-dispersed nickel or a graphite-dispersed nickel alloy to form a core for an alkaline storage battery, and a nickel hydroxide slurry is applied on the core. To form a positive electrode plate, or a slurry containing a hydrogen storage alloy is applied on a core to form a negative electrode plate. Hereinafter, the present invention will be described in detail.
[使用する鋼板]  [Steel used]
本発明に使用する鋼板としては普通鋼の冷延鋼板、 特に低炭素アルミキルド鋼 連铸材をベースとするものが用いられる。 また、 炭素分が 0 . 0 0 3重量%以下 の極低炭素鋼やこれにニオブ、 チタン等の金属を添加した非時効性鋼、 あるいは 3〜 1 8重量%のクロム分を含んだステンレス鋼板等も使用することができる。 これらの鋼板は予め穴加工を行った鋼板でも良い。 As the steel sheet used in the present invention, a cold rolled steel sheet of ordinary steel, particularly one based on a low carbon aluminum killed steel interconnected material is used. The carbon content is 0.003% by weight or less. Ultra-low carbon steel, non-aging steel to which metals such as niobium and titanium are added, or stainless steel sheet containing 3 to 18% by weight of chromium can also be used. These steel plates may be steel plates that have been drilled in advance.
[下地ニッケルめっき]  [Underlying nickel plating]
表面処理鋼板は、 まず、 鋼板上にニッケルめっきを施すことが望ましい。 この二 ッケルめっきを、 以下、 「下地ニッケル」 めっきという。 下地ニッケルめっきの 目的は、 芯体に成形した後においても充分な耐食性を確保するためである。 下地 ニッケルめっき浴としては、 ワット浴、 スルファミン酸浴、 ホウフッ化物浴、 塩 化物浴等の通常のニッケルめっきに使用される浴を本発明でも使用することがで きる。 ニッケルめっきには電解めつきと無電解めつきがあり、 無電解めつきも使 用することができるが、 一般的に浴管理、 めっき厚さのコントロールが可能な電 解めつきの方が使用し易い。 電解法による場合の電流密度は 3〜 8 O AZ d m2で、 均一なめっき層を得るために浴は空気を浴槽中に吹き込む空気攪拌等を行うこと が好ましい。 また、 浴の p Hは 3 . 5〜5 . 5の酸性領域が好ましく、 浴温度は 4 0〜6 0 °Cであることが好ましい。 As for the surface-treated steel sheet, it is desirable to first apply nickel plating on the steel sheet. This nickel plating is hereinafter referred to as “base nickel” plating. The purpose of the base nickel plating is to ensure sufficient corrosion resistance even after being formed into a core. As the base nickel plating bath, a bath used for ordinary nickel plating, such as a watt bath, a sulfamic acid bath, a borofluoride bath, and a chloride bath, can be used in the present invention. Nickel plating includes electrolytic plating and electroless plating.Electroless plating can also be used, but in general, electrolytic plating, which can control bath thickness and control plating thickness, is used. easy. At a current density in the case by electrolytic method 3~ 8 O AZ dm 2, a bath in order to obtain a uniform plating layer is preferably subjected to air agitation or the like to blow air into the tub. The pH of the bath is preferably in the acidic range of 3.5 to 5.5, and the bath temperature is preferably 40 to 60 ° C.
下地ニッケルめっき処理としては、 有機添加剤を使用しない無光沢めつき、 有 機添加剤を使用する半光沢めつき又は光沢めつきのいずれでも使用可能である。 ニッケルめっき層のニッケル付着量は 0 . 5〜5 程度が好ましい。  As the base nickel plating treatment, it is possible to use either a matte finish using no organic additive, a semi-gloss finish or an organic finish using an organic additive. The nickel adhesion amount of the nickel plating layer is preferably about 0.5 to 5.
付着量が 0 . 5 z m未満では鋼板上への被覆が不充分なために、 下地ニッケル めっきの目的としての耐食性を充分確保できなくなるからである。 また 5 を 超える付着量はその効果が飽和し経済的に不利だからである。 この下地ニッケル めっきは鋼板の両面に形成させることが耐食性確保の観点から好ましく、 めっき 層の厚さは 0 . 5〜5 mであることが好ましい。  If the adhesion amount is less than 0.5 zm, the coating on the steel sheet is insufficient, so that the corrosion resistance for the purpose of base nickel plating cannot be sufficiently secured. On the other hand, if the amount exceeds 5, the effect is saturated and it is economically disadvantageous. This base nickel plating is preferably formed on both sides of the steel sheet from the viewpoint of ensuring corrosion resistance, and the thickness of the plating layer is preferably 0.5 to 5 m.
[拡散層の形成]  [Formation of diffusion layer]
下地二ッゲルめつき層はめつきをしたままでもよいが、 めつき後熱処理を施し、 ニッケルめっき層の全部又は一部を拡散層にすることが好ましい。 この拡散層形 成によってニッケルめつき層の鋼板素地からの剥離防止に効果がある。 Although the underlying Nigel coating layer may be left in the coated state, it is preferable to perform a heat treatment after the plating to make all or a part of the nickel plating layer a diffusion layer. This diffusion layer type The formation is effective in preventing the nickel-plated layer from peeling from the steel sheet substrate.
熱処理は非酸化性又は還元性保護ガス下で行うことが拡散層表面に酸化膜形成 を防止する点で好ましい。 非酸化性のガスとしてはいわゆる不活性ガスである窒 素、 アルゴン、 ヘリウムなどが好適に使用され、 一方、 還元性ガスとしては水素、 ケ アンモニアクラッキングガス (水素 7 5 %、 窒素 2 5 %) などが好適に使用され る。 熱処理方法としては箱型焼鈍法と連続焼鈍法があるがいずれの方法によって もよい。 箱型焼鈍の場合、 熱処理温度は 4 5 0 °C以上が好ましく、 また処理時間 は、 連続焼鈍法では短時間処理でよく、 箱型焼鈍法では比較的長時間を要する。 一般的には、 連続焼鈍では 3 0秒から 2分程度、 箱型焼鈍では 6時間から 1 5時 The heat treatment is preferably performed under a non-oxidizing or reducing protective gas in order to prevent formation of an oxide film on the surface of the diffusion layer. As the non-oxidizing gas, nitrogen, argon, helium, etc., which are so-called inert gases, are suitably used. On the other hand, as the reducing gas, hydrogen, quaternary cracking gas (75% hydrogen, 25% nitrogen) Etc. are preferably used. As the heat treatment method, there are a box type annealing method and a continuous annealing method, and any of these methods may be used. In the case of box annealing, the heat treatment temperature is preferably 450 ° C. or higher, and the treatment time is short in the continuous annealing method, and relatively long in the box annealing method. Generally, about 30 seconds to 2 minutes for continuous annealing, and 6 hours to 15:00 for box annealing
I C 間程度が好ましい。 It is preferably about I C.
[黒鉛分散ニッケル (合金) めっき層の形成]  [Formation of graphite-dispersed nickel (alloy) plating layer]
この黒鉛分散ニッケルめっき浴は、 ニッケルめっき浴をベースとするか (黒鉛 分散ニッケルめっき層が形成される) 、 その他ニッケル以外の他の金属、 例えば コバルト、 マンガン、 鉄、 リン、 ビスマス等とニッケルからなる合金浴をべ一ス This graphite-dispersed nickel plating bath may be based on a nickel plating bath (where a graphite-dispersed nickel plating layer is formed) or may be formed from other metals other than nickel, such as cobalt, manganese, iron, phosphorus, bismuth, and nickel. Base alloy bath
Ι(Γ として、 その浴中に黒鉛を分散させた浴を使用して行う (黒鉛分散ニッケル合金 めっき層が形成される) 。 優れた導電剤である黒鉛を分散させためっき浴を使用 することで、 黒鉛がめっき層の生成とともにめっき層中に分散共祈され、 凸状の 析出物のアンカ一効果により電池内の活物質の保持性が改善される。 Ι (As Γ, use a bath in which graphite is dispersed in the bath (a graphite-dispersed nickel alloy plating layer is formed). Use a plating bath in which graphite, an excellent conductive agent, is dispersed. As a result, the graphite is dispersed in the plating layer together with the formation of the plating layer, and the retention of the active material in the battery is improved by the anchoring effect of the convex precipitate.
本発明で使用する黒鉛は天然黒鉛又は人造黒鉛のいずれでもよいが、 5 0 %累 0 積径が 1 0 以下の微粉砕黒鉛を使用するのが好ましい。 また、 5 0 %累積径 が 5 m以下の超微細黒鉛を使用することがさらに好ましい。 めっき層の厚さに 比して、 あまり粒度の大きい黒鉛を用いた場合、 付着した黒鉛が脱落しやすくな るからである。  The graphite used in the present invention may be either natural graphite or artificial graphite, but it is preferable to use finely ground graphite having a 50% cumulative volume diameter of 10 or less. Further, it is more preferable to use ultrafine graphite having a 50% cumulative diameter of 5 m or less. This is because if graphite having a very large particle size is used as compared with the thickness of the plating layer, the attached graphite tends to fall off.
また、 黒鉛化力一ボンブラックを使用することも好ましい。 黒鉛化カーボンブ ^ ラックは力一ボンブラックの黒鉛化品で、 その平均粒度は 0 . l ^ m前後又はそ れ以下と大変微細だからである。 黒鉛は、 表面が疎水性であるために、 そのままめっき浴中で攪拌しても分散さ せるのは容易ではない。 そのため、 界面活性剤 (黒鉛分散剤) を使用して強制分 散させることが望ましい。 使用する黒鉛分散剤は、 カチオン系、 ァニオン系、 ノ 二オン系、 両性のいずれの種類も使用することができるが、 被めつき板である鋼 T 板とめっき層の密着性が良好で、 かつ、 めっき層の脆化現象が少ないという点を 考慮した場合には、 ァニオン系の界面活性剤を黒鉛分散剤として使用するのが好 ましく、 ァニオン系界面活性剤の中でも、 ベンゼンスルホン酸系又は硫酸エステ ル系の活性剤、 例えば硫酸アルキルソ一ダ、 ドデシルベンゼンスルホン酸ソ一ダ、 αォレフインスルホン酸ソ一ダ、 アルキルナフタレンスルホン酸ソ一ダ、 2スル i t ホコハク酸ジアルキルソ一ダ等が、 本発明の黒鉛分散剤としてさらに好ましい。 It is also preferable to use a graphitizing carbon black. This is because the graphitized carbon black is a graphitized product of carbon black and has an average particle size of about 0.1 m or less. Because graphite has a hydrophobic surface, it is not easy to disperse it even if it is stirred in a plating bath. Therefore, it is desirable to forcibly disperse using a surfactant (graphite dispersant). The graphite dispersant used can be any of cationic, anionic, nonionic, and amphoteric types, but it has good adhesion between the coated T-plate and the plating layer. In consideration of the fact that the plating layer is less embrittled, it is preferable to use an anionic surfactant as a graphite dispersant. Among the anionic surfactants, benzenesulfonic acid is preferred. Or an ester-based activator such as alkyl sulfate, sodium dodecylbenzenesulfonate, sodium α-olefin sulfonate, sodium alkylnaphthalenesulfonate, dialkylsodium succinate, etc. Are more preferable as the graphite dispersant of the present invention.
微細黒鉛のめっき液中への分散方法は、 黒鉛粉末と一定量の水で希釈した黒鉛 分散剤とを混練し、 最後にホモジナイザー又は超音波洗浄機のような乳化混合機 を使用して分散状態にする。 この場合、 黒鉛粉を少量のアルコール等で湿潤させ ておく方法も分散のためには有効である。 このように、 十分に黒鉛が分散した後 r に、 めっき液中に攪拌しつつ添加していく。 分散剤の配合量は黒鉛に対して、 0 .  The method of dispersing the fine graphite in the plating solution is to knead the graphite powder and a graphite dispersant diluted with a certain amount of water, and finally use a homogenizer or an emulsifying mixer such as an ultrasonic washing machine to disperse the dispersed state. To In this case, a method of moistening the graphite powder with a small amount of alcohol or the like is also effective for dispersion. After the graphite is sufficiently dispersed in this manner, the graphite is added to the plating solution with stirring. The compounding amount of the dispersant is 0.
5〜1 0重量%程度であることが好ましい。 黒鉛の配合量は最終的にめっき液に 対し、 1〜1 0 0 g ZLの添加量となるように調節することが好ましい。 l g / L未満の配合量では被膜中の黒鉛含有率が少なすぎて、 アンカー効果がない。 一 方 1 0 0 g ZLを超えるとめつき液の流動性が悪化したり、 黒鉛粉がめっき装置 6 の周辺に付着して種々のトラブルが生じ易くなるためである。 また、 めっき液中 にも黒鉛粒子の凝集を抑制するため、 予め分散剤を 2〜1 O m l ZL程度添加し ておく。  It is preferably about 5 to 10% by weight. It is preferable to adjust the blending amount of graphite so that the addition amount is 1 to 100 g ZL with respect to the plating solution. If the amount is less than 1 g / L, the graphite content in the coating is too low, and there is no anchor effect. On the other hand, if it exceeds 100 g ZL, the fluidity of the plating solution deteriorates, and graphite powder adheres to the periphery of the plating apparatus 6 to cause various troubles. Also, in order to suppress the aggregation of graphite particles in the plating solution, a dispersant of about 2 to 1 Oml ZL is added in advance.
黒鉛粉を分散させた分散めつき浴中のめっき液は、 循環タンクのポンプを使用 してめつき液を電解槽の下部に循環させるとともに、 電解槽下部に設けた細孔か ^ ら空気を吹き込んで攪拌する両方の方法で、 黒鉛粉をめつき浴中に常に分散状態 にしておくことが好ましい。 分散状態を良好に維持することができれば、 含有率 で 0. 1〜25%の黒鉛をめつき層中に分散させることができる。 中でも、 1〜 10 %程度の分散させることが好ましい。 なお、 黒鉛分散めつき層の形成におい て、 黒鉛の含有率を向上させようとすれば電流密度を低くした方が好ましい。 実施例 The plating solution in the plating bath, in which the graphite powder is dispersed, is circulated to the lower part of the electrolytic cell using a pump in a circulation tank, and air is released from pores provided in the lower part of the electrolytic cell. It is preferable that the graphite powder is always dispersed in the plating bath by both the methods of blowing and stirring. If the dispersion state can be maintained well, Thus, 0.1 to 25% of graphite can be dispersed in the plating layer. Above all, it is preferable to disperse about 1 to 10%. In forming the graphite-dispersed layer, it is preferable to lower the current density in order to increase the graphite content. Example
if 以下に、 本発明を実施例に基づいてさらに説明する。  The present invention will be further described below based on examples.
[実施例 1 ]  [Example 1]
厚さ 6 で焼鈍、 調質圧延した冷延鋼板を、 めっき原板として使用した。 そのめつき原板を N a〇H水溶液 (30 gZL) を用いて、 75°Cで陽極処理 (5 AZdn^x 10秒) 及び陰極処理 (5AZdm2X 10秒) し、 アルカリ脱 \ 脂した。 次いで、 硫酸水溶液 (50 g/L) に約 15秒間浸潰して酸洗し、 さら に下記の条件でヮット浴により空気攪拌しつつ、 下地ニッケルめっきを行った。 なお、 陽極にはポリプロピレン製バッグを装着したチタンバスケットにニッケル ペレットを挿入したものを使用した。 めっき時間は、 めっき厚さを 2. 0 mに なるように調節した。 An annealed, temper-rolled cold-rolled steel sheet with a thickness of 6 was used as an original plate for plating. The plated original plate was subjected to anodizing (5 AZdn ^ x 10 seconds) and cathodic treatment (5AZdm 2 X 10 seconds) at 75 ° C using an Na〇H aqueous solution (30 gZL), followed by alkali degreasing. Next, it was immersed in an aqueous solution of sulfuric acid (50 g / L) for about 15 seconds to perform pickling, and then nickel plating was performed on the underlayer while stirring with a pet bath under the following conditions. The anode used was one in which nickel pellets were inserted into a titanium basket equipped with a polypropylene bag. The plating time was adjusted so that the plating thickness was 2.0 m.
[下地二ッケルめつきの条件]  [Conditions for base nickel plating]
[浴組成]  [Bath composition]
硫酸ニッケル 300 g/L  Nickel sulfate 300 g / L
塩化ニッケル 45 g/L  Nickel chloride 45 g / L
ほう酸 45 g/L  Boric acid 45 g / L
[めっき条件]  [Plating conditions]
浴温度 55 ± 2 °C  Bath temperature 55 ± 2 ° C
PH 4. 2士 0. 2  PH 4.2 2 0.2
20 A/dm2 20 A / dm 2
下地ニッケルめっきの終了した鋼板は 550°Cで 8時間、 窒素: 94%、 水素 : 6%の雰囲気で熱拡散処理を行った。 処理後のニッケル—鉄拡散層の厚さはグ ロー放電発光分光分析法で確認した結果、 2. 6 /zmであった。 [調質圧延] The steel sheet after the base nickel plating was heat-diffused at 550 ° C for 8 hours in an atmosphere of nitrogen: 94% and hydrogen: 6%. The thickness of the nickel-iron diffusion layer after the treatment was determined to be 2.6 / zm by glow discharge emission spectroscopy. [Temper rolling]
熱拡散処理の終了した鋼板は、 ストレッチヤーストレイン発生防止のため、 そ の後調質圧延を行った。  After the heat diffusion treatment, the steel sheet was subjected to temper rolling to prevent the occurrence of stretch yaw strain.
[黒鉛分散ニッケルめっき]  [Graphite dispersed nickel plating]
ir さらにその後、 下記の条件で黒鉛分散ニッケルめっき浴を使用して、 黒鉛分散 ニッケルめっきを行った。 この黒鉛分散ニッケルめっき浴についても、 空気攪拌 を行い、 また陽極および陰極処理条件は前記、 下地ニッケルめっきの場合に同じ である。 この黒鉛分散ニッケルめっき処理において、 めっき時間、 めっき浴中の 黒鉛添加量を変えてめっき厚さ及びめつき層中に分散する黒鉛含有率を変化させ ir Then, graphite-dispersed nickel plating was performed using a graphite-dispersed nickel plating bath under the following conditions. The graphite-dispersed nickel plating bath is also agitated by air, and the anode and cathode treatment conditions are the same as those for the base nickel plating. In this graphite-dispersed nickel plating process, the plating time and the amount of graphite added to the plating bath are changed to change the plating thickness and the graphite content dispersed in the plating layer.
ID た ID
[黒鉛分散二ッケルめつき条件]  [Graphic dispersion nickel plating condition]
[浴組成]  [Bath composition]
硫酸ニッケル 300 g/L  Nickel sulfate 300 g / L
塩化ニッケル 45 g/L  Nickel chloride 45 g / L
IT ほう酸 45 g/L 分散剤 5 m 1 /L  IT boric acid 45 g / L dispersant 5 m 1 / L
ピットレス剤 (ラウリル硫酸ソ一ダ) 2. 0m l  Pitless agent (sodium lauryl sulfate) 2.0 ml
[めっき条件]  [Plating conditions]
浴温度 60 ± 2 °C  Bath temperature 60 ± 2 ° C
pH 4. 3 ± 0. 2  pH 4.3 ± 0.2
電流密度 15AZdm2 Current density 15AZdm 2
[黒鉛分散めつき浴の作製法]  [Preparation method of graphite dispersion plating bath]
めっき浴中に黒鉛を分散させる方法は以下のようにした。 まず、 市販のベンゼ ンスルホン酸ソーダ (黒鉛分散剤) 4m lを 1 Lの脱塩水に希釈した希釈液をつ くり、 その希釈液中に微粉黒鉛 1 Kgを混合した (混合液) 。 そして、 その混合 液の流動性を良くするため、 さらに脱塩水を 1 L追加添加し、 超音波分散機を使 用して、 十分攪拌混合した希釈混合液を作成した。 この希釈混合液を上記めつき 浴中に添加攪拌し、 黒鉛分散めつき浴を作製した。 微粉黒鉛としては、 日本黒鉛 工業株式会社製黒鉛粉末 A S S P 5 0 %累積径 6 /z mを使用した。 The method of dispersing graphite in the plating bath was as follows. First, a diluted solution was prepared by diluting 4 ml of commercially available sodium benzene sulfonate (a graphite dispersant) in 1 L of deionized water, and 1 kg of fine graphite was mixed into the diluted solution (mixed solution). And the mixture In order to improve the fluidity of the liquid, 1 L of demineralized water was further added, and a sufficiently diluted mixed liquid was prepared using an ultrasonic disperser. This diluted mixed solution was added to the above plating bath and stirred to prepare a graphite dispersion plating bath. As the fine graphite, graphite powder ASSP 50% cumulative diameter 6 / zm manufactured by Nippon Graphite Industry Co., Ltd. was used.
めっきした鋼板の断面を電子顕微鏡で拡大観察したところ、 黒鉛が点状に分散 付着していることを確認した。 さらに、 赤外線吸収法 (J I S G 1 2 1 1 ) によりめつき皮膜中の黒鉛含有率を測定した。  When the cross section of the plated steel sheet was observed under magnification using an electron microscope, it was confirmed that graphite was dispersed and attached in a dot-like manner. Further, the graphite content in the plating film was measured by an infrared absorption method (JSG1211).
めつき浴中への黒鉛添加量と、 黒鉛分散めつき層中の黒鉛含有率との関係につ いて調査した結果、 めっき液中への分散剤添加量を一定にした場合、 これらの間 にはほぼ正比例の関係が存在することを確認した。 すなわち、 めっき浴中の黒鉛 添加量 5〜 1 0 0 g Z Lに対し、 表面処理鋼板の黒鉛含有率は 0 . 1〜2 . 5 % となった。  As a result of investigating the relationship between the amount of graphite added to the plating bath and the graphite content in the graphite-dispersed coating layer, when the amount of the dispersant added to the plating solution was kept constant, Confirmed that an almost directly proportional relationship exists. That is, the graphite content of the surface-treated steel sheet was 0.1 to 2.5% with respect to the graphite addition amount of 5 to 100 g ZL in the plating bath.
なお、 分散剤添加量が 1 0 m l / Lまでは、 該添加量と黒鉛含有量とは比例関 係にある。 それ以上は飽和に達する。  Note that, up to a dispersant addition amount of 10 ml / L, there is a proportional relationship between the addition amount and the graphite content. After that, saturation is reached.
[実施例 2〜 6 ]  [Examples 2 to 6]
実施例 1と同一の条件で、 下地ニッケルめっき層の厚さ、 黒鉛分散ニッケルめ つき層の厚さ、 分散剤添加量及び黒鉛含有率を変えた表面処理鋼板を何種類か作 製した。  Under the same conditions as in Example 1, several types of surface-treated steel sheets were produced in which the thickness of the base nickel plating layer, the thickness of the graphite-dispersed nickel plating layer, the amount of the dispersant added, and the graphite content were varied.
また、 この処理鋼板を使用して、 実施例 1と同様に芯体を作り、 次いで活物質 を塗布し、 特性を測定した結果を表 1にまとめた。  Using this treated steel sheet, a core was made in the same manner as in Example 1, then the active material was applied, and the properties were measured. Table 1 summarizes the results.
[実施例 7 ]  [Example 7]
厚さ 1 0 0 i mの極低炭素アルミキルド冷延鋼板をめつき原板として用いて、 脱脂、 酸洗、 下地ニッケルめっきを行った。  Using an ultra low carbon aluminum killed cold rolled steel sheet having a thickness of 100 im as a plating original plate, degreasing, pickling, and nickel plating on a base were performed.
下地二ッケルめつき後、 連続焼鈍炉で鋼の再結晶焼鈍とニッケルめつき層の熱 拡散処理を同時に行った。 焼鈍条件は、 実施例 1と同様の雰囲気ガス条件で 7 8 0 °C、 1分間とした。 グロ一放電発光分光分析法で確認した、 鉄一ニッケル拡散 層の厚さは 2. 8 mであった。 焼鈍、 調質圧延を行った後、 下記条件で黒鉛を 分散させたニッケル—コバルト一鉄合金めつきを行った。 このめつき浴について も、 空気攪拌を行い、 また陽極および陰極処理条件は前記、 下地ニッケルめっき の場合に同じである。 また黒鉛の分散方法は実施例 1と同様である。 After nickel plating of the underlayer, recrystallization annealing of the steel and thermal diffusion treatment of the nickel plating layer were performed simultaneously in a continuous annealing furnace. The annealing conditions were set at 780 ° C. for 1 minute under the same atmosphere gas conditions as in Example 1. Iron-nickel diffusion confirmed by glow discharge emission spectroscopy The layer thickness was 2.8 m. After annealing and temper rolling, a nickel-cobalt-iron alloy with graphite dispersed was applied under the following conditions. This plating bath is also agitated with air, and the conditions for the anode and cathode treatment are the same as those for the above-mentioned nickel plating underlayer. The method of dispersing graphite is the same as in Example 1.
[浴組成]  [Bath composition]
硫酸ニッケル 300gZL  Nickel sulfate 300gZL
塩化ニッケル 45 g/L  Nickel chloride 45 g / L
ほう酸 45gZL  Boric acid 45gZL
硫酸コバルト 5 g/L  Cobalt sulfate 5 g / L
硫酸第二鉄 5gZL  Ferric sulfate 5gZL
黒鉛 30gZL  Graphite 30gZL
分散剤 5mlZL  Dispersant 5ml ZL
[めっき条件]  [Plating conditions]
浴温度 60土 2 °C  Bath temperature 60 soil 2 ° C
pH 4. 3 ± 0. 2  pH 4.3 ± 0.2
電流密度 15 A/dm2 Current density 15 A / dm 2
この黒鉛分散合金めつきにより、 コバルト含有率が 2. 3重量%、 鉄含有率が 重量 1%、 黒鉛含有率が 0. 7重量%の黒鉛分散ニッケル合金めつき層が得られ た。  As a result of the deposition of the graphite-dispersed alloy, a graphite-dispersed nickel alloy-coated layer having a cobalt content of 2.3% by weight, an iron content of 1% by weight, and a graphite content of 0.7% by weight was obtained.
また、 この処理鋼板を使用して、 実施例 1と同様にして芯体を作り、 次いで活 物質を塗布し、 特性を測定した結果を表 1にまとめた。  Using this treated steel sheet, a core was made in the same manner as in Example 1, then the active material was applied, and the characteristics were measured. Table 1 summarizes the results.
[実施例 8 ]  [Example 8]
実施例 1と同様に、 厚さ 60/_imのめつき原板を使用して、 脱脂、 酸洗、 下地 ニッケルめっきを行った。 下地ニッケルめっき後、 実施例 1と同じ条件で拡散加 熱処理を行った。 調質圧延処理を行った後、 下記条件で黒鉛を分散させたニッケ ルーマンガン合金めつきを行った。 このめつき浴についても、 空気攪拌を行い、 また陽極および陰極処理条件は前記、 下地ニッケルめっきの場合に同じである。 また黒鉛の分散方法は実施例 1と同様である。 In the same manner as in Example 1, degreasing, pickling, and nickel plating were performed on a base plate having a thickness of 60 / _im. After the base nickel plating, diffusion heat treatment was performed under the same conditions as in Example 1. After the temper rolling, the nickel manganese alloy in which graphite was dispersed was applied under the following conditions. Air agitation is also applied to this bath. The anode and cathode treatment conditions are the same as in the case of base nickel plating. The method of dispersing graphite is the same as in Example 1.
[浴組成]  [Bath composition]
スルファミン酸ニッケル 280 g/L  Nickel sulfamate 280 g / L
塩化ニッケル 5 g/L  Nickel chloride 5 g / L
ほう酸 33 g/L  Boric acid 33 g / L
硫酸' 1 5 g/L  Sulfuric acid '15 g / L
40 g/L  40 g / L
分散剤 10m 1 /L  Dispersant 10m1 / L
I ピットレス剤 2. Om 1 /L  I Pitless agent 2. Om 1 / L
[めっき条件]  [Plating conditions]
浴温度 60 ± 2 °C  Bath temperature 60 ± 2 ° C
PH 4. 0 ± 0. 2  PH 4.0 ± 0.2
1 OA/dm2 1 OA / dm 2
|1Γ この黒鉛分散めつきにより、 マンガン含有率が 0. 7重量%、 黒鉛含有率が 1 0重量%の黒鉛分散二ッケル合金めつき層が得られた。  | 1Γ By this graphite dispersion plating, a graphite-dispersed nickel alloy plating layer having a manganese content of 0.7% by weight and a graphite content of 10% by weight was obtained.
また、 この処理鋼板を使用して、 実施例 1と同様にして芯体を作り、 次いで活 物質を塗布し、 特性を測定した結果を表 1にまとめた。  Using this treated steel sheet, a core was made in the same manner as in Example 1, then the active material was applied, and the characteristics were measured. Table 1 summarizes the results.
[実施例 9 ]  [Example 9]
>0 実施例 1と同様に、 厚さ 60 /mのめつき原板を使用レて、 脱脂、 酸洗、 下地 ニッケルめっきを行った。 下地ニッケルめっき後、 実施例 1と同じ条件で拡散加 熱処理を行い、 調質圧延後、 下記条件で黒鉛を分散させたニッケル一リン合金め つきを行った。 このめつき浴についても、 空気攪拌を行い、 また陽極条件は前記、 下地ニッケルめっきの場合に同じである。 また黒鉛の分散方法は実施例 1と同様 である。  > 0 In the same manner as in Example 1, degreasing, pickling, and nickel plating were performed on a plated original plate having a thickness of 60 / m. After the base nickel plating, diffusion heat treatment was performed under the same conditions as in Example 1, and after temper rolling, a nickel-phosphorus alloy in which graphite was dispersed was applied under the following conditions. The plating bath is also agitated with air, and the anode conditions are the same as in the case of nickel plating on the underlayer. The method of dispersing graphite is the same as in Example 1.
[浴組成] 硫酸ニッケル 280 g/L [Bath composition] Nickel sulfate 280 g / L
塩化ニッケル 45 g/L  Nickel chloride 45 g / L
ほう酸 45 g/L  Boric acid 45 g / L
亜リン酸 5 g/L  Phosphorous acid 5 g / L
15 g/L  15 g / L
分散剤 4m l ZL  Dispersant 4ml ZL
[めっき条件]  [Plating conditions]
浴温度 65 ± 2 °C  Bath temperature 65 ± 2 ° C
pH 1. 2 ± 0. 2  pH 1.2 ± 0.2
電流密度 15 Aノ dm2 Current density 15 A dm 2
この黒鉛分散複合めつきにより、 リン含有率が 2重量%、 黒鉛含有率が 0. 3 重量%の黒鉛分散ニッケル合金めつき層が得られた。  By this graphite-dispersed composite plating, a graphite-dispersed nickel alloy-coated layer having a phosphorus content of 2% by weight and a graphite content of 0.3% by weight was obtained.
また、 この処理鋼板を使用して、 実施例 1と同様にして芯体を作り、 次いで活 物質を塗布し、 特性を測定した結果を表 1にまとめた。  Using this treated steel sheet, a core was made in the same manner as in Example 1, then the active material was applied, and the characteristics were measured. Table 1 summarizes the results.
[実施例 10 ]  [Example 10]
実施例 1と同様に、 厚さ 60 zmのめつき原板を使用して、 脱脂、 酸洗、 下地 ニッケルめっきを行った。 下地ニッケルめっき後、 実施例 1と同じ条件で拡散加 熱処理を行い、 調質圧延後、 下記条件で黒鉛を分散させたニッケル一ビスマス合 金めつきを行った。 このめつき浴についても、 空気攪拌を行い、 また陽極および 陰極処理条件は前記、 下地ニッケルめっきの場合に同じである。 また黒鉛の分散 方法は実施例 1と同様である。  In the same manner as in Example 1, degreasing, pickling, and nickel plating were performed on an original plate having a thickness of 60 zm. After the base nickel plating, diffusion heat treatment was performed under the same conditions as in Example 1, and after temper rolling, nickel-bismuth alloy in which graphite was dispersed was plated under the following conditions. The plating bath is also agitated with air, and the anode and cathode treatment conditions are the same as in the case of the above-described nickel plating. The method of dispersing graphite is the same as in Example 1.
[浴組成]  [Bath composition]
硫酸ニッケル 240 g/L  Nickel sulfate 240 g / L
硫酸ビスマス 1 g/L  Bismuth sulfate 1 g / L
EDTA-2N a 20 g/L  EDTA-2N a 20 g / L
分散剤 5m 1 /L 黒鉛 20 gZL Dispersant 5m1 / L Graphite 20 gZL
ピットレス剤 2. Oml L  Pitless agent 2. Oml L
[めっき条件] 浴温度 45 ± 2 °C  [Plating conditions] Bath temperature 45 ± 2 ° C
pH 1. 5  pH 1.5
電流密度 l OAZdm2 Current density l OAZdm 2
この黒鉛分散めつきにより、 ビスマス含有率が 4重量%、 黒鉛含有率が 0. 5 重量%の黒鉛分散二ッケル合金めつき層が得られた。  By this graphite dispersion plating, a graphite-dispersed nickel alloy plating layer having a bismuth content of 4% by weight and a graphite content of 0.5% by weight was obtained.
また、 この処理鋼板を使用して、 実施例 1と同様にして芯体を作り、 次いで活 Using this treated steel sheet, a core was made in the same manner as in Example 1, and then activated.
[0 物質を塗布し、 特性を測定した結果を表 1にまとめた。 [0 Substances were applied and the properties were measured. Table 1 summarizes the results.
比較例 1  Comparative Example 1
実施例 1と同様に、 厚さ 60 zzmのめつき原板を使用して、 脱脂、 酸洗、 下地 ニッケルめっきを行った。 下地ニッケルめっき後、 実施例 1と同じ条件で拡散加 熱処理を行い、 調質圧延後、 ニッケルめっきの再めつきを行った。  In the same manner as in Example 1, degreasing, pickling, and base nickel plating were performed using a plated original plate having a thickness of 60 zzm. After the base nickel plating, diffusion heat treatment was performed under the same conditions as in Example 1. After temper rolling, the nickel plating was re-plated.
実施例及び比較例における鋼板の特性及び電池特性は以下のようにして測定し た。  The characteristics of the steel sheet and the battery characteristics in Examples and Comparative Examples were measured as follows.
(1) めっき皮膜中の黒鉛含有率  (1) Graphite content in plating film
J I S-G- 121 1に記載の赤外線吸収法により測定した。 めっき鋼板 1 g 中の炭素量を測定し、 さらにめつきなしの同じ鋼板の炭素量を測定し、 その差を It was measured by the infrared absorption method described in JIS-G-1211. Measure the carbon content in 1 g of coated steel sheet, and then measure the carbon content of the same steel sheet without plating, and determine the difference.
> めっき皮膜中の黒鉛含有率 (重量%) とする。 なお、 黒鉛粒子の 50%累積径は、 レーザー回折式粒度分布測定機を使用して測定した。 > The graphite content (% by weight) in the plating film. The 50% cumulative diameter of the graphite particles was measured using a laser diffraction type particle size distribution analyzer.
(2) 表面凸部の割合 (2) Ratio of convex surface
黒鉛分散めつき後の表面をデジタルマイクロスコープ ( (株) キ一エンス製、 型式: VH— 6300) で観察し、 倍率 500倍の写真を撮り、 写真において凸  Observe the surface after graphite dispersion with a digital microscope (Keyence Corp., Model: VH-6300), take a photo with a magnification of 500 times,
> 部が占める割合を百分率で表した。 > The percentage of parts is expressed as a percentage.
( 3 )活物質の保持性の試験方法 正極の場合は、 4%カルボキシメチルセルロース水溶液 50重量部、 水酸化二 ッケル 100重量部、 アクリル,スチレン共重合樹脂 5重量部からなる活物質を アプリケ一夕一を使用して、 80°C、 30分の乾燥後の厚さが片面約 300 m (両面で 600 /m) になるように芯板表面に塗布した。 (3) Test method for retention of active material In the case of the positive electrode, an active material consisting of 50 parts by weight of a 4% carboxymethylcellulose aqueous solution, 100 parts by weight of nickel hydroxide, and 5 parts by weight of an acrylic / styrene copolymer resin is used at 80 ° C and 30 ° C for 30 minutes. Was applied to the surface of the core plate such that the thickness after drying for one minute was about 300 m on one side (600 / m on both sides).
負極の場合は、 芯板にカルボキシメチルセルロース水溶液 50重量部、 粒径 2 00メッシュ以下の水素吸蔵合金 LmN i 4.。C o 0. 4Mn0.4A 10.5の 100重 量部、 N i粉末 ( I n c o社製 255) 10重量部、 アクリル ·スチレン共重合 樹脂 5重量部からなる活物質を、 80°C、 30分の乾燥後の厚さが片面 30011 m (両面で 600 m) となるようにアプリケ一ターを使用して塗布した。 In the case of the negative electrode, a hydrogen storage alloy LmNi 4 having a core plate of 50 parts by weight of a carboxymethyl cellulose aqueous solution and a particle size of 200 mesh or less is used. C o 0. 4 Mn 0 .4A 1 0. 100 by weight of 5, N i powder (I nco Inc. 255) 10 parts by weight, the active material consisting of an acrylic-styrene copolymer resin 5 parts by weight, 80 ° C, was applied using an applicator such that the thickness after drying for 30 minutes was 30011 m on one side (600 m on both sides).
乾燥後口一ラ一プレスで正極及び負極を厚み 400 にした。 このようにし て活物質を塗布した極板を 6. 3モル KOH水溶液中に、 60°Cで 10日間、 浸 潰して活物質の保持性を目視評価した。 活物質の脱落が 10%未満の場合を〇で、 活物質の脱落が 10%を超ぇ20%未満の場合を厶で、 また脱落が 20%を超え る場合を Xで表示した。 その結果を表 1に示した。 After drying, the positive electrode and the negative electrode were made to have a thickness of 400 by a mouth press. The electrode plate coated with the active material in this manner was immersed in a 6.3 mol KOH aqueous solution at 60 ° C for 10 days, and the retention of the active material was visually evaluated. The case where the falling off of the active material is less than 10% is indicated by 〇, the case where the falling off of the active material is more than 10% and less than 20% is indicated by 厶, and the case where the falling off is more than 20% is indicated by X. Table 1 shows the results.
表 1 下地 N i 黒鉛分散めつき 特 性 宝 "hfe 1 Table 1 Base Ni Ni graphite dispersion characteristics Treasure "hfe 1
または 5 ( μ m ) めっき浴種類 黒 □ めっき厚み 表面凸部の 活物質の保持性  Or 5 (μm) Plating bath type Black □ Plating thickness Retention of active material on convex surface
(重量%) m ) (% ) 正 極 負 極 実施例 1 2. 0 N i めっき 0. 03 0. 5 0. 3 △ △ 実施例 2 2. 1 N i めっき 0. 5 1. 1 10 〇 〇 実施例 3 1. 1 N i めっき 1. 3 1. 6 37 〇 〇 実施例 4 1. 0 N i めっき 2. 4 2. 2 67 〇 〇 実施例 5 2. 5 N i めっき 0. 3 2. 1 11 〇 〇 実施例 6 2. 5 N i めっき 0. 4 2. 0 14 〇 〇 実施例 7 2. 9 Ni - Co- Fe合金めつき 0. 7 1. 5 19 〇 〇 実施例 8 2. 0 Ni - Mn合金めつき 1. 0 1. 6 29 〇 〇 実施例 9 1. 9 Ni - P合金めつき 0. 3 1. 5 8 〇 O 実施例 10 1. 9 Ni - Bi合金めつき 0. 5 3. 1 28 〇 〇 比較例 1 2. 0 Niめっき ( Sめっき) 1. 2 0 (Weight%) m) (%) Positive electrode Negative electrode Example 1 2.0 Ni plating 0.03 0.5 0.5 0.3 △ △ Example 22.1 Ni plating 0.5 1. 1 10 〇 〇 Example 3 1. 1 Ni plating 1. 3 1. 6 37 〇 実 施 Example 4 1.0 Ni plating 2. 4 2. 2 67 〇 実 施 Example 5 2.5 Ni plating 0.3 1 11 〇 実 施 Example 6 2.5 Ni plating 0.4 .2 2. 14 〇 〇 Example 7 2.9 Ni-Co-Fe alloy plating 0.7 1. 1.519 〇 例 Example 8 2 0 Ni-Mn alloy plating 1. 0 1. 6 29 〇 〇 Example 9 1.9 Ni-P alloy plating 0.3. 3. 5 〇 O Example 10 1.9 Ni-Bi alloy plating 0.5 3.1 2 28 〇 例 Comparative example 1 2.0 Ni plating (S plating) 1.20
この結果をみると、 黒鉛分散ニッケルめっき層を有する表面処理鋼板からなる 芯体は表面に凹凸が形成されるため、 活物質との保持性において優れていること がわかる。 産業上の利用可能性 The results show that the core made of a surface-treated steel sheet having a graphite-dispersed nickel plating layer has excellent holding properties with the active material because the surface has irregularities. Industrial applicability
本発明は従来のニッケル層と異なり、 ニッケルと黒鉛の分散層があるので、 凹 凸状の表面が形成され、 活物質との保持性に優れている。  In the present invention, unlike the conventional nickel layer, since there is a dispersion layer of nickel and graphite, a concave-convex surface is formed and the retention of the active material is excellent.

Claims

B冃 求 の 範 囲 B 冃 Range of request
1 . 板状集電体をなす芯体に活物質を付着せしめて正極板と負極板とを形成し、 これら両板をケース内に密閉するようにした電池における前記芯体において、 薄 *) い鋼板に黒鉛を分散した黒鉛分散ニッケルめっき層が形成されていることを特徴 とするアルカリ蓄電池用芯体。 1. A positive electrode plate and a negative electrode plate are formed by attaching an active material to a core forming a plate-like current collector, and the two plates are sealed in a case. A core for an alkaline storage battery, characterized in that a graphite-dispersed nickel plating layer in which graphite is dispersed is formed on a thin steel plate.
2 . 板状集電体をなす芯体に活物質を付着せしめて正極板と負極板とを形成し、 これら両板をケース内に密閉するようにした電池における前記芯体において、 薄 い鋼板に黒鉛を分散した黒鉛分散ニッケル合金めつき層が形成されていることを 2. A thin steel plate in the core of a battery in which a positive electrode plate and a negative electrode plate are formed by attaching an active material to a core forming a plate-shaped current collector, and these plates are sealed in a case. That a graphite-dispersed nickel alloy coating layer with graphite dispersed
I D 特徴とするアルカリ蓄電池用芯体。 I D A core for alkaline storage batteries.
3 . 前記合金めつき層が、 ニッケル—コバルト合金、 ニッケル—コバルト—鉄 合金、 ニッケル一マンガン合金、 ニッケル一リン合金、 又はニッケル—ビスマス 合金のいずれかである請求項 2記載のアル力リ蓄電池用芯体。  3. The alkaline rechargeable battery according to claim 2, wherein the alloy-coated layer is one of a nickel-cobalt alloy, a nickel-cobalt-iron alloy, a nickel-manganese alloy, a nickel-phosphorus alloy, and a nickel-bismuth alloy. Core.
4. 前記めつき層の下層に拡散層が形成されている請求項 1 〜 3のいずれかに i 記載のアルカリ蓄電池用芯体。  4. The core body for an alkaline storage battery according to any one of claims 1 to 3, wherein a diffusion layer is formed below the plating layer.
5 . 前記めつき層の下層にニッケル層が形成されている請求項 1 〜 3のいずれ かに記載のアルカリ蓄電池用芯体。  5. The alkaline storage battery core according to any one of claims 1 to 3, wherein a nickel layer is formed below the plating layer.
6 . 黒鉛含有率が 0 . 1 〜 2 5重量%である請求項 1 〜 5のいずれかに記載の アルカリ蓄電池用芯体。  6. The alkaline storage battery core according to any one of claims 1 to 5, wherein the graphite content is 0.1 to 25% by weight.
>0 7 . 請求項 1 〜 6のアル力リ蓄電池用芯体を使用した電池。 > 0 7. A battery using the core for an alkaline storage battery according to any one of claims 1 to 6.
PCT/JP1999/007268 1999-01-04 1999-12-24 Alkali storage battery and its core WO2000041259A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000592897A JP4386230B2 (en) 1999-01-04 1999-12-24 Alkaline battery core and battery using the same
AU17996/00A AU1799600A (en) 1999-01-04 1999-12-24 Alkali storage battery and its core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20499 1999-01-04
JP11/204 1999-01-04

Publications (1)

Publication Number Publication Date
WO2000041259A1 true WO2000041259A1 (en) 2000-07-13

Family

ID=11467458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007268 WO2000041259A1 (en) 1999-01-04 1999-12-24 Alkali storage battery and its core

Country Status (6)

Country Link
JP (1) JP4386230B2 (en)
CN (1) CN1163993C (en)
AU (1) AU1799600A (en)
MY (1) MY128343A (en)
TW (1) TW521453B (en)
WO (1) WO2000041259A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224571A1 (en) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 Battery
WO2022224572A1 (en) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 Battery, and method for manufacturing electrode
WO2022224570A1 (en) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 Battery, and method for manufacturing electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182670A (en) * 1991-12-27 1993-07-23 Sanyo Electric Co Ltd Electrode for battery
JPH08273672A (en) * 1995-04-04 1996-10-18 Matsushita Electric Ind Co Ltd Air electrode current collecting material for air cell and air cell having it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182670A (en) * 1991-12-27 1993-07-23 Sanyo Electric Co Ltd Electrode for battery
JPH08273672A (en) * 1995-04-04 1996-10-18 Matsushita Electric Ind Co Ltd Air electrode current collecting material for air cell and air cell having it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224571A1 (en) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 Battery
WO2022224572A1 (en) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 Battery, and method for manufacturing electrode
WO2022224570A1 (en) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 Battery, and method for manufacturing electrode

Also Published As

Publication number Publication date
AU1799600A (en) 2000-07-24
TW521453B (en) 2003-02-21
MY128343A (en) 2007-01-31
JP4386230B2 (en) 2009-12-16
CN1332890A (en) 2002-01-23
CN1163993C (en) 2004-08-25

Similar Documents

Publication Publication Date Title
TW445663B (en) A method of surface treatment for a battery container, a surface treated steel sheet for a battery container, a battery container and a battery using thereof
WO2004051768A1 (en) Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
CN103597626A (en) Surface-treated steel sheet for battery cases, battery case, and battery
CN101954763B (en) Nickeliferous nanowire laminated film plated steel belt and production method thereof
JP2004076118A (en) Surface treated steel sheet for battery case, manufacturing method therefor, battery case formed of the steel sheet, and battery using the battery case
AU2014252764A1 (en) Coated composite anodes
Yang et al. Electrodeposition, structure and corrosion resistance of nanocrystalline Ni‐W alloy
Kumar et al. Electrodeposition and characterization of Ni-ZrO2 nanocomposites by direct and pulse current methods
JP5102945B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and alkaline battery using the battery container
JP2002180296A (en) Surface-treated steel sheet for battery case, battery case using the steel sheet and battery
WO2000041259A1 (en) Alkali storage battery and its core
CN101958404B (en) Nanowire-containing multilayer composite thin film plated steel belt and preparation method thereof
CN112186187A (en) Preparation method and application of three-dimensional net-shaped coated ternary material
JP2006190648A (en) Plated sheet steel for battery case, battery case using the plated sheet steel for battery case, and battery using the battery case
JP4748665B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP3743744B2 (en) Surface-treated steel sheet for battery case, method for producing the same, battery case using the surface-treated steel sheet for battery case, and battery using the same
WO2000074155A1 (en) Surface-treated steel sheet for battery case, battery case comprising the same, methods for producing them, and battery
CN201626156U (en) Steel strip plated with multiple layers of composite films containing nanowires
JP2006348362A (en) Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle
CN201616462U (en) Steel belt used as battery casing and plated with multilayer laminated film containing cobalt nanowires
WO2001004979A1 (en) Method of manufacturing battery core body
JP2006294353A (en) Plated steel sheet for battery container, battery container using plated steel sheet for battery container, and battery using battery container
CN101958405B (en) Cobalt-containing nanowire-plated multi-layer composite thin film steel belt for battery shell and preparation method thereof
JPH11233117A (en) Core for alkaline storage battery and battery using the same
WO2005056885A1 (en) Metal-plated steel sheet for battery case, battery case using the plated steel sheet for battery case and battery using the battery case

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99815408.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2000 17996

Country of ref document: AU

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2000 592897

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase