WO2001004979A1 - Method of manufacturing battery core body - Google Patents

Method of manufacturing battery core body Download PDF

Info

Publication number
WO2001004979A1
WO2001004979A1 PCT/JP2000/004593 JP0004593W WO0104979A1 WO 2001004979 A1 WO2001004979 A1 WO 2001004979A1 JP 0004593 W JP0004593 W JP 0004593W WO 0104979 A1 WO0104979 A1 WO 0104979A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
plating layer
nickel plating
graphite
battery core
Prior art date
Application number
PCT/JP2000/004593
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Ohmura
Tatsuo Tomomori
Hiroshi Nakashima
Hiroyuki Okano
Original Assignee
Toyo Kohan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co., Ltd. filed Critical Toyo Kohan Co., Ltd.
Priority to AU57094/00A priority Critical patent/AU5709400A/en
Publication of WO2001004979A1 publication Critical patent/WO2001004979A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a perforated metal plate used for forming a core of a secondary battery electrode.
  • BACKGROUND ART In recent years, there has been an increasing demand for perforated metal plates having a large number of holes, which are used for electrode cores of secondary battery electrodes, particularly nickel-metal hydride batteries and nickel-cadmium batteries.
  • the perforated metal plate for the secondary electrode core is wound by attaching an active material to the surface thereof, and is filled in a battery container. At this time, the holes are formed in the metal plate for the purpose of providing an anchor effect for urging the active material to adhere to the metal plate and filling the holes with the active material.
  • a perforated metal plate for the electrode core is required to be as thin as possible.
  • the metal plate to be punched is supplied intermittently, and the metal plate must be stopped during the press working, and a huge force is applied to the press device. It was extremely difficult to improve the productivity of perforated metal sheets by increasing the perforation speed in conjunction with the operation.
  • the present invention has been made in view of such a situation, and has as its object to provide a method for manufacturing a battery core, which can increase the drilling speed and improve the productivity of the battery core. . Disclosure of the invention
  • a method for manufacturing a battery core according to the first invention comprises: a metal plate having a nickel plating layer or a graphite-dispersed nickel plating layer formed on a surface thereof; A plurality of recesses are formed by pressing a concave roll provided with a large number of processing projections against a metal plate while rotating the metal plate, and the metal plate is rolled with a rolling knurl to break the concave portions to form holes. It is characterized by forming a perforated metal plate and manufacturing a battery core.
  • the method for manufacturing a battery core according to the second invention is characterized in that a metal plate having a nickel plating layer or a graphite-dispersed nickel plating layer formed on a surface thereof is provided with a large number of processing projections on an outer peripheral surface in a circumferential direction and a longitudinal direction.
  • the punched roll is pressed while rotating to form a perforated metal plate having a large number of holes having a return portion, and the return portion is folded using a folding means. Rolling to produce a battery core.
  • the method for manufacturing a battery core according to the third invention is characterized in that a metal plate having a nickel-plated layer or a graphite-dispersed nickel-plated layer formed on its surface is provided with a large number of processed protrusions in the circumferential direction and the longitudinal direction on the outer peripheral surface.
  • the perforated roll is pressed against the metal plate while being rotated, cut and raised to form a perforated metal plate having a large number of holes, and the perforated metal plate is rolled together with the cut and raised portion with a rolling roll to produce a battery core. It is characterized by the following.
  • the method for manufacturing a battery core according to the fourth invention is characterized in that a concave roll having a large number of processing projections provided on an outer peripheral surface in a circumferential direction and a longitudinal direction is pressed while rotating a metal plate to form a large number of concave portions.
  • the perforated metal plate is formed by rolling the metal plate with rolling rolls to break the recesses to form holes, and to form a nickel plating layer or a graphite-dispersed nickel plating layer on the surface of the perforated metal plate. Is formed.
  • a method for manufacturing a battery core according to a fifth aspect of the present invention is directed to a method for manufacturing a battery core, comprising the steps of: rotating a perforation roll having a large number of processing projections on an outer peripheral surface in a circumferential direction and a longitudinal direction; A perforated metal plate having holes is formed, a return portion is turned back using a turning means, and the perforated metal plate is rolled together with the turned portion by a rolling roll, and then a nickel plating layer or a graphite dispersed nickel plating layer is formed on the surface. It is characterized by doing.
  • the method for manufacturing a battery core according to the sixth invention is characterized in that a punching roll provided with a large number of processing projections on the outer peripheral surface in the circumferential direction and in the longitudinal direction is pressed against a metal plate while being rotated and cut and raised to a large number. A perforated metal plate having holes is formed, and the perforated metal plate is rolled together with a cut-and-raised portion with a rolling roll, and then a nickel plating layer or a graphite-dispersed nickel plating layer is formed on the surface.
  • the nickel plating layer is not limited to a nickel plating layer made of only nickel, but may be a nickel alloy, for example, a nickel-cobalt alloy or a nickel-cobalt alloy. It shall include a nickel alloy plating layer made of a ferrous alloy, a nickel-manganese alloy, a nickel-phosphorus alloy, a nickel-bismuth alloy, or the like.
  • FIG. 1 is a schematic process explanatory view of a method for manufacturing a battery core according to a first embodiment of the present invention.
  • FIG. 2 is a schematic process explanatory view of a method for manufacturing a battery core according to a second embodiment of the present invention.
  • FIG. 3 is a schematic process explanatory view of a method for manufacturing a battery core according to a second embodiment of the present invention.
  • FIG. 4 is a schematic process explanatory view of a method for manufacturing a battery core according to the second embodiment of the present invention.
  • FIG. 5 is a schematic process explanatory view of a method for manufacturing a battery core according to the third embodiment of the present invention.
  • FIG. 1 is a schematic process explanatory view of a method for manufacturing a battery core according to a first embodiment of the present invention.
  • FIG. 2 is a schematic process explanatory view of a method for manufacturing a battery core according to a second embodiment of the present invention.
  • FIG. 3 is a schematic process explanatory
  • FIG. 6 is a schematic process explanatory view of a method for manufacturing a battery core according to a fourth embodiment of the present invention.
  • FIG. 7 shows schematic steps of a method for manufacturing a battery core according to a fifth embodiment of the present invention.
  • FIG. 8 is a schematic process explanatory view of a method for manufacturing a battery core according to a sixth embodiment of the present invention.
  • FIGS. 1 and 2 a method for manufacturing a battery core according to the first embodiment of the present invention will be described.
  • the mild steel sheet 10 is coated with a graphite-dispersed nickel plating layer 11 1 or 12 (a nickel plating layer or graphite).
  • a nickel plating layer or graphite a nickel plating layer or graphite.
  • a dispersed nickel alloy plating layer may be used).
  • the steel sheet 10 to be used a cold-rolled steel sheet of ordinary steel, particularly one based on low carbon aluminum-killed copper continuous steel is used.
  • ultra-low carbon steel having a carbon content of 0.003% by weight or less, non-aging promotion in which a metal such as niobium or titanium is added thereto, or a stainless copper plate containing a chromium content of 3 to 18% by weight Etc. can also be used.
  • nickel plating For the surface-treated copper plate, first, it is desirable to apply nickel plating on the copper plate.
  • This nickel plating is hereinafter referred to as “base nickel” plating.
  • the purpose of the base nickel plating is to ensure sufficient corrosion resistance even inside the battery.
  • the base nickel plating bath a bath used for ordinary nickel plating, such as a watt bath, a sulfamic acid bath, a borofluoride bath, and a chloride bath, can also be used in the present invention.
  • the current density is 3 to 80 AZ dni 2 and that the bath is air-stirred by blowing air into the bath in order to obtain a uniform plating layer.
  • the pH of the bath is preferably in the acidic range of 3.5 to 5.5, and the bath temperature is preferably 40 to 60 ° C.
  • the base nickel plating treatment either a non-glossy plating using no organic additive or a semi-glossy plating using an organic additive can be used.
  • the nickel adhesion amount of the nickel plating layer is preferably about 0.5 to 5 // m.
  • the nickel base plating is preferably formed on both sides of the steel sheet from the viewpoint of ensuring corrosion resistance, and the thickness of the plating layer is preferably 0.5 to 5 ⁇ .
  • the underlying nickel plating layer may be left attached, but heat treatment may be performed after plating to make all or part of the nickel plating layer a diffusion layer.
  • the heat treatment is preferably performed under a non-oxidizing or reducing protective gas in order to prevent formation of an oxide film on the surface of the diffusion layer.
  • a non-oxidizing gas nitrogen, argon, helium, etc., which are so-called inert gases, are suitably used.
  • the reducing gas hydrogen, ammonia cracking gas (75% hydrogen, 25% nitrogen), etc. Is preferably used.
  • the heat treatment method there are a box annealing method and a continuous annealing method, and either method may be used. In the case of box-type annealing, the heat treatment temperature is preferably 450 ° C.
  • the processing time is short in the continuous annealing method, and is relatively long in the box-type annealing method.
  • it is preferably about 30 seconds to 2 minutes, and for box annealing, about 6 hours to 15 hours.
  • This graphite-dispersed nickel plating bath may be based on a nickel plating bath (where a graphite-dispersed nickel plating layer is formed) or may be formed of a metal other than nickel, such as cobalt, manganese, iron, phosphorus, bismuth, and nickel. This is performed using an alloy bath as a base and a bath in which graphite is dispersed in the bath (a graphite-dispersed nickel alloy coating layer is formed). Use a plating bath in which graphite, an excellent conductive agent, is dispersed. As a result, the graphite is dispersed and eutectoidized in the plating layer together with the formation of the plating layer, and the retention of the active material in the battery is improved by the anchor effect of the convex prayer.
  • a nickel plating bath where a graphite-dispersed nickel plating layer is formed
  • a metal other than nickel such as cobalt, manganese, iron, phosphorus, bismuth,
  • the graphite used in the present invention may be either natural graphite or artificial graphite, but it is preferable to use finely ground graphite having a 50% cumulative diameter of 10 / m or less. Further, it is more preferable to use ultrafine graphite having a 50% cumulative diameter of 5 // m or less. This is because if graphite having a very large particle size is used as compared with the thickness of the plating layer, the attached graphite tends to fall off. Graphitized carbon black can also be used.
  • graphite dispersant any of cationic, anionic, nonionic and amphoteric types can be used, but the adhesion between the coated steel sheet and the coated layer is good and the plating is good. Considering that the layer is less embrittled, it is preferable to use an anionic surfactant as a graphite dispersing agent.
  • anionic surfactants benzenesulfonic acid or sulfate ester is preferable.
  • Aqueous activators for example, sodium alkyl sulfate, sodium dodecylbenzene sulfonate, sodium ⁇ -olefin sulfonate, sodium alkyl naphthalene sulfonate, dialkyl sodium 2-sulfosuccinate, and the like are more preferred as the graphite dispersant of the present embodiment.
  • the method of dispersing the fine graphite in the plating solution is to knead the graphite powder and a graphite dispersant diluted with a certain amount of water, and finally use a homogenizer or an emulsifying mixer such as an ultrasonic washing machine to disperse the dispersed state.
  • a method of moistening the graphite powder with a small amount of alcohol or the like is also effective for dispersion.
  • the graphite is added with stirring in the plating solution. It is desirable to adjust the blending amount of the dispersant so that the final amount of the dispersing agent is 1 to 100 g ZL.
  • the amount is less than 1 g ZL, the graphite content in the coating is too low and there is no anchor effect. On the other hand, if it exceeds 100 g / L, the fluidity of the plating solution will deteriorate, This is because various troubles are likely to occur by adhering to the periphery of the attached layer.
  • a dispersant is added in advance to the plating solution in an amount of about 2 to 1 OmlZL in order to suppress the aggregation of graphite particles.
  • the plating solution in the plating bath which has been dispersed in graphite, is used as a pump in the circulation tank to circulate the plating solution to the lower part of the electrolytic cell and to blow air from pores provided in the lower part of the electrolytic cell.
  • the graphite powder is always dispersed in the plating bath by both methods of stirring. If the dispersion state can be maintained well, graphite having a content of about 0.1 to 5% can be dispersed in the plating layer. Among them, it is preferable to disperse at about 0.5 to 2%. In forming the graphite-dispersed coating layer, it is preferable to lower the current density in order to increase the graphite content.
  • the steel sheet 10 is rolled by rolling rolls 19 and 20 forming an upper and lower pair, the recesses 17 and 18 are broken, a hole 21 is provided, and a perforated metal plate 22 is formed.
  • a nickel hydroxide slurry is applied on the battery core to form a positive electrode plate, or a slurry containing a hydrogen storage alloy is applied on the battery core to form a negative electrode plate.
  • the use of the concave rolls 15 and 16 and the rolls 19 and 20 can increase the perforation speed and improve the productivity of the battery core. Also, when a graphite-dispersed nickel plating layer or a graphite-dispersed nickel alloy plating layer is used as the plating layer, a concave-convex surface is formed due to the nickel-graphite dispersed layer, and the active material retention property is increased. Can be increased.
  • a graphite-dispersed nickel plating layer 31 is formed on the copper plate 30.
  • 32 (a nickel plating layer or black $ / hole, a dispersed nickel alloy plating layer may be formed).
  • a steel plate 30 is provided with a number of projections 33 on its outer peripheral surface in the circumferential direction and the longitudinal direction.
  • a perforated metal plate 37 having a number of holes 36 having holes is formed.
  • a return portion 35 is folded using a tapered rigid body 38 which is an example of a return means, and a perforated metal plate 40 having a return portion 39 is formed.
  • the perforated metal plate 40 is rolled by rolling rolls 41 and 42 forming an upper and lower pair to produce a battery core. Then, a nickel hydroxide slurry is applied on the battery core to form a positive electrode plate, or a slurry containing a hydrogen storage alloy is applied on the battery core to form a negative electrode plate.
  • the punching speed is increased and the productivity of the battery core body is increased.
  • the productivity of the battery core body is increased.
  • a graphite-dispersed nickel plating layer or a graphite-dispersed nickel alloy plating layer is used as the plating layer, an uneven surface is formed due to the nickel-graphite dispersed layer, and the active material retention property is increased. Can be increased.
  • a metal plate is formed by the method described in the first embodiment.
  • the graphite-dispersed nickel plating layers 51 and 52 are formed on the steel sheet 50.
  • a steel plate 50 is provided with a large number of 5 processing projections 53 on the outer peripheral surface in the circumferential and longitudinal directions.
  • a perforated metal plate 57 having a large number of holes 56 is formed by pressing and cutting and raising.
  • the drilling speed is increased, and the productivity of the battery core is increased.
  • the productivity of the battery core is increased.
  • a graphite-dispersed nickel-plated layer or a graphite-dispersed nickel-plated alloy layer is used as the plating layer, an uneven surface is formed due to the nickel-dispersed layer of graphite and nickel. The retention of the substance can be improved.
  • this embodiment is different from the first embodiment in that concave rolls 15 and 1 are provided with a large number of processing projections 13 and 14 in the circumferential and longitudinal directions on the outer peripheral surface. 6 is pressed while rotating against a metal plate to form a large number of recesses, and the metal plate is rolled by rolling rolls 19 and 20 to break the recesses to form holes 70 to form a perforated metal plate 71. And forming a graphite-dispersed nickel plating layer 72, 73 on the surface of the perforated metal plate 71.
  • the recesses 15 and 16 and the rolling rolls 19 and 20 are used. By doing so, the drilling speed can be increased and the productivity of the battery core can be improved. Also, when a graphite-dispersed nickel plating layer or a graphite-dispersed nickel alloy plating layer is used as the plating layer, there is a nickel-graphite dispersed layer, so that an uneven surface is formed to enhance the retention of the active material. be able to. Further, since the graphite-dispersed nickel plating layer 74 is also formed in the hole 70, the corrosion resistance of the battery core can be further improved.
  • the plate while rotating a punch roll 34 provided with a large number of processing projections 33 in the circumferential direction and the longitudinal direction on the outer peripheral surface used in the second embodiment, The plate is pressed to form a perforated metal plate 81 having a large number of holes 80 having a return portion, and the return portion is folded back using a tapered rigid body 38 which is an example of a return means.
  • the perforated metal plate 81 is rolled by rolling rolls 41 and 42, and then the graphite-dispersed nickel plating layers 82 and 83 are formed on the surface.
  • the use of the piercing roll 34, the tapered rigid body 38, and the rolling rolls 41, 42 increases the piercing speed to improve the productivity of the battery core. Can be done.
  • the graphite-dispersed nickel plating layers 82 and 83 are used as the plating layer, there is a dispersion layer of nickel and graphite, so that an uneven surface is formed and the retention of the active material can be improved. it can. Further, since the graphite-dispersed nickel plating layer 84 is also formed in the hole 80, the corrosion resistance of the battery core can be further improved.
  • a method for manufacturing a battery core according to the sixth embodiment of the present invention will be described.
  • a punching roll 54 provided with a large number of processing projections 53 in the circumferential and longitudinal directions on the outer peripheral surface used in the third embodiment is rotated on a metal plate.
  • a perforated metal plate 91 having a large number of holes 90 is formed by pressing and cutting and raising, and the perforated metal plate 91 is rolled by a rolling roll together with the cut and raised portion, and then a graphite-dispersed nickel plating layer 92 on the surface is formed. 93 is formed.
  • the use of the perforation roll 54, the cut-and-raise roll 55, and the rolling rolls 60 and 61 increases the perforation speed and improves the productivity of the battery core.
  • the graphite-dispersed nickel plating layers 92 and 93 are used as the plating layer, the nickel-graphite dispersed layer is provided, so that an uneven surface is formed and the retention of the active material can be improved.
  • the graphite-dispersed nickel plating layer 94 is also formed in the hole 90, the corrosion resistance of the battery core can be further improved.
  • the productivity of the battery core can be improved by increasing the perforation speed.
  • a graphite-dispersed nickel plating layer or a graphite-dispersed nickel alloy plating layer is used as the plating layer, so that an uneven surface is formed and the active material retainability is improved. Can be increased.
  • the plating layer is also formed in the holes, so that the corrosion resistance of the battery core can be further improved.

Abstract

A method of maufacturing a battery core body capable of increasing the productivity of the battery core body by raising a punching speed, comprising the steps of pressing a punching roll (54) having a plurality of working projections (53) on the outer peripheral surfaces in circumferential and longitudinal directions, while rotating, agains a steel sheet (50) having surfaces on which graphite dispersed nickel plated layers (51, 52) are formed so as to form a punched sheet metal (57) having a plurality of holes (56) by punching upper, and rolling the punched sheet metal (57) together with the punched up portions (58, 59) by rolling rolls (60, 61).

Description

明 細 書 電池用芯体の製造方法  Description Manufacturing method of battery core
技術分野 本発明は、 二次電池電極の芯体を形成するために用いる穿孔金属板を製造する ための方法に関する。 背景技術 近年、 二次電池電極、 特にニッケル水素電池、 ニカド電池の電極芯体に用いる ベく、 多数の孔を穿設した穿孔金属板の需要が高まっている。 この二次電極芯体 用の穿孔金属板は、 その表面に活物質を付着させて巻き取り、 電池容器に充填さ れる。 この際、 孔は、 活物質の金属板への接着を付勢するアンカー効果を付与す るとともに、 この孔部にも活物質を充填することを目的として、 金属板に形成さ れる。 電池容量を増加させるためにはできるだけ多くの活物質を電池容器内に充 填する必要があり、 そのために電極芯体用の穿孔金属板としてはできる限り薄い ものが求められている。 TECHNICAL FIELD The present invention relates to a method for manufacturing a perforated metal plate used for forming a core of a secondary battery electrode. BACKGROUND ART In recent years, there has been an increasing demand for perforated metal plates having a large number of holes, which are used for electrode cores of secondary battery electrodes, particularly nickel-metal hydride batteries and nickel-cadmium batteries. The perforated metal plate for the secondary electrode core is wound by attaching an active material to the surface thereof, and is filled in a battery container. At this time, the holes are formed in the metal plate for the purpose of providing an anchor effect for urging the active material to adhere to the metal plate and filling the holes with the active material. In order to increase the battery capacity, it is necessary to fill the battery container with as much active material as possible. Therefore, a perforated metal plate for the electrode core is required to be as thin as possible.
従来、 穿孔金属板を製造する方法としては、 打ち抜きプレスを用いて穿孔する 方法が一般的である。  Conventionally, as a method of manufacturing a perforated metal plate, a method of perforating using a punching press is generally used.
しかし、 上記した電池用芯体の製造方法は、 以下の解決すべき課題を有してい た。  However, the above-described method for manufacturing a battery core has the following problems to be solved.
即ち、 打ち抜きプレスを用いる穿孔方法は、 穿孔加工される金属板が断続的に 供給されることになり、 プレス加工時には金属板を停止せざるを得ず、 また、 プ レス装置に巨大な力を作用させることと相まって、 穿孔速度を上昇させて、 穿孔 金属板の生産性を向上させることが極めて困難であった。 本発明は、 このような現状に鑑みなされたものであり、 穿孔速度を上昇させて 電池用芯体の生産性を向上させることができる電池用芯体の製造方法を提供する ことを目的とする。 発明の開示 That is, in the punching method using a punching press, the metal plate to be punched is supplied intermittently, and the metal plate must be stopped during the press working, and a huge force is applied to the press device. It was extremely difficult to improve the productivity of perforated metal sheets by increasing the perforation speed in conjunction with the operation. The present invention has been made in view of such a situation, and has as its object to provide a method for manufacturing a battery core, which can increase the drilling speed and improve the productivity of the battery core. . Disclosure of the invention
上記目的を達成するため、 第 1の発明に係る電池用芯体の製造方法は、 表面に ニッケルめっき層又は黒鉛分散ニッケルめっき層を形成した金属板に、 外周面上 に周方向及び長手方向に多数の加工突起を設けた凹設ロールを金属板に回転しな がら押圧して多数の凹部を形成し、 金属板を圧延口ールで圧延して凹部を破断す ることによって孔を設けて穿孔金属板を形成し、 電池用芯体を製造することを特 徴とする。  In order to achieve the above object, a method for manufacturing a battery core according to the first invention comprises: a metal plate having a nickel plating layer or a graphite-dispersed nickel plating layer formed on a surface thereof; A plurality of recesses are formed by pressing a concave roll provided with a large number of processing projections against a metal plate while rotating the metal plate, and the metal plate is rolled with a rolling knurl to break the concave portions to form holes. It is characterized by forming a perforated metal plate and manufacturing a battery core.
第 2の発明に係る電池用芯体の製造方法は、 表面にニッケルめっき層又は黒鉛 分散ニッケルめっき層を形成した金属板に、 外周面上に周方向及び長手方向に多 数の加工突起を設けた穿孔ロールを回転しながら押圧して返り部分を具備する多 数の孔を有する穿孔金属板を形成し、 折り返し手段を用いて返り部分を折り返し 、 折り返し部分と共に穿孔金属板を圧延口ールで圧延して電池用芯体を製造する ことを特徴とする。  The method for manufacturing a battery core according to the second invention is characterized in that a metal plate having a nickel plating layer or a graphite-dispersed nickel plating layer formed on a surface thereof is provided with a large number of processing projections on an outer peripheral surface in a circumferential direction and a longitudinal direction. The punched roll is pressed while rotating to form a perforated metal plate having a large number of holes having a return portion, and the return portion is folded using a folding means. Rolling to produce a battery core.
第 3の発明に係る電池用芯体の製造方法は、 表面にニッケルめっき層又は黒鉛 分散ニッケルめっき層を形成した金属板に、 外周面上に周方向及び長手方向に多 数の加工突起を設けた穿孔ロールを金属板に回転しながら押圧して切り起こしに より多数の孔を有する穿孔金属板を形成し、 切り起こし部分と共に穿孔金属板を 圧延ロールで圧延して電池用芯体を製造することを特徴とする。  The method for manufacturing a battery core according to the third invention is characterized in that a metal plate having a nickel-plated layer or a graphite-dispersed nickel-plated layer formed on its surface is provided with a large number of processed protrusions in the circumferential direction and the longitudinal direction on the outer peripheral surface. The perforated roll is pressed against the metal plate while being rotated, cut and raised to form a perforated metal plate having a large number of holes, and the perforated metal plate is rolled together with the cut and raised portion with a rolling roll to produce a battery core. It is characterized by the following.
第 4の発明に係る電池用芯体の製造方法は、 外周面上に周方向及び長手方向に 多数の加工突起を設けた凹設ロールを金属板に回転しながら押圧して多数の凹部 を形成し、 金属板を圧延ロールで圧延して凹部を破断して孔を設けて穿孔金属板 を形成し、 穿孔金属板の表面にニッケルめっき層又は黒鉛分散ニッケルめっき層 を形成することを特徴とする。 The method for manufacturing a battery core according to the fourth invention is characterized in that a concave roll having a large number of processing projections provided on an outer peripheral surface in a circumferential direction and a longitudinal direction is pressed while rotating a metal plate to form a large number of concave portions. The perforated metal plate is formed by rolling the metal plate with rolling rolls to break the recesses to form holes, and to form a nickel plating layer or a graphite-dispersed nickel plating layer on the surface of the perforated metal plate. Is formed.
第 5の発明に係る電池用芯体の製造方法は、 外周面上に周方向及び長手方向に 多数の加工突起を設けた穿孔ロールを回転しながら金属板に押圧して返り部分を 具備する多数の孔を有する穿孔金属板を形成し、 折り返し手段を用いて返り部分 を折り返し、 折り返し部分と共に前記穿孔金属板を圧延ロールで圧延し、 その後 、 表面にニッケルめっき層又は黒鉛分散ニッケルめっき層を形成することを特徴 とする。  A method for manufacturing a battery core according to a fifth aspect of the present invention is directed to a method for manufacturing a battery core, comprising the steps of: rotating a perforation roll having a large number of processing projections on an outer peripheral surface in a circumferential direction and a longitudinal direction; A perforated metal plate having holes is formed, a return portion is turned back using a turning means, and the perforated metal plate is rolled together with the turned portion by a rolling roll, and then a nickel plating layer or a graphite dispersed nickel plating layer is formed on the surface. It is characterized by doing.
第 6の発明に係る電池用芯体の製造方法は、 外周面上に周方向及ぴ長手方向に 多数の加工突起を設けた穿孔ロールを金属板に回転しながら押圧して切り起こし により多数の孔を有する穿孔金属板を形成し、 切り起こし部分と共に穿孔金属板 を圧延ロールで圧延し、 その後、 表面にニッケルめっき層又は黒鉛分散ニッケル めっき層を形成することを特徴とする。 なお、 上記した第 1〜第 6の電池用芯体 の製造方法において、 ニッケルめっき層は、 ニッケルのみからなるニッケルめつ き層のみならず、 ニッケル合金、 例えば、 ニッケル一コバルト合金、 ニッケル一 コバルト一鉄合金、 ニッケル一マンガン合金、 ニッケル一リン合金、 ニッケル— ビスマス合金等からなるニッケル合金めつき層を含むものとする。  The method for manufacturing a battery core according to the sixth invention is characterized in that a punching roll provided with a large number of processing projections on the outer peripheral surface in the circumferential direction and in the longitudinal direction is pressed against a metal plate while being rotated and cut and raised to a large number. A perforated metal plate having holes is formed, and the perforated metal plate is rolled together with a cut-and-raised portion with a rolling roll, and then a nickel plating layer or a graphite-dispersed nickel plating layer is formed on the surface. In the above-described first to sixth methods for manufacturing a battery core, the nickel plating layer is not limited to a nickel plating layer made of only nickel, but may be a nickel alloy, for example, a nickel-cobalt alloy or a nickel-cobalt alloy. It shall include a nickel alloy plating layer made of a ferrous alloy, a nickel-manganese alloy, a nickel-phosphorus alloy, a nickel-bismuth alloy, or the like.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施の形態に係る電池用芯体の製造方法の模式的工程 説明図である。 図 2は、 本発明の第 2の実施の形態に係る電池用芯体の製造方法 の模式的工程説明図である。 図 3は、 本発明の第 2の実施の形態に係る電池用芯 体の製造方法の模式的工程説明図である。 図 4は、 本発明の第 2の実施の形態に 係る電池用芯体の製造方法の模式的工程説明図である。 図 5は、 本発明の第 3の 実施の形態に係る電池用芯体の製造方法の模式的工程説明図である。 図 6は、 本 発明の第 4の実施の形態に係る電池用芯体の製造方法の模式的工程説明図である 。 図 7は、 本発明の第 5の実施の形態に係る電池用芯体の製造方法の模式的工程 説明図である。 図 8は、 本発明の第 6の実施の形態に係る電池用芯体の製造方法 の模式的工程説明図である。 発明を実施するための最良の形態 FIG. 1 is a schematic process explanatory view of a method for manufacturing a battery core according to a first embodiment of the present invention. FIG. 2 is a schematic process explanatory view of a method for manufacturing a battery core according to a second embodiment of the present invention. FIG. 3 is a schematic process explanatory view of a method for manufacturing a battery core according to a second embodiment of the present invention. FIG. 4 is a schematic process explanatory view of a method for manufacturing a battery core according to the second embodiment of the present invention. FIG. 5 is a schematic process explanatory view of a method for manufacturing a battery core according to the third embodiment of the present invention. FIG. 6 is a schematic process explanatory view of a method for manufacturing a battery core according to a fourth embodiment of the present invention. FIG. 7 shows schematic steps of a method for manufacturing a battery core according to a fifth embodiment of the present invention. FIG. FIG. 8 is a schematic process explanatory view of a method for manufacturing a battery core according to a sixth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図に示す幾つかの実施の形態を参照して、 本発明を具体的に説明す る。  Hereinafter, the present invention will be specifically described with reference to some embodiments shown in the accompanying drawings.
(第 1の実施の形態)  (First Embodiment)
図 1及び図 2を参照して、 本発明の第 1の実施の形態に係る電池用芯体の製造 方法について説明する。  With reference to FIGS. 1 and 2, a method for manufacturing a battery core according to the first embodiment of the present invention will be described.
( 1 ) まず、 図 1に示すように、 金属板の一例である鋼板 1 0を準備した後、 そ の軟鋼板 1 0に黒鉛分散ニッケルめっき層 1 1、 1 2 (ニッケルめっき層又は黒 鉛分散ニッケル合金めつき層でもよい) を形成する。  (1) First, as shown in FIG. 1, after preparing a steel sheet 10 as an example of a metal sheet, the mild steel sheet 10 is coated with a graphite-dispersed nickel plating layer 11 1 or 12 (a nickel plating layer or graphite). (A dispersed nickel alloy plating layer may be used).
具体的には、 使用する鋼板 1 0としては、 普通鋼の冷延鋼板、 特に低炭素アル ミキルド銅連続铸材をベースとするものが用いられる。 また、 炭素分が 0 . 0 0 3重量%以下の極低炭素鋼やこれにニオブ、 チタン等の金属を添加した非時効性 銷、 あるいは 3〜1 8重量%のクロム分を含んだステンレス銅板等を使用するこ ともできる。  Specifically, as the steel sheet 10 to be used, a cold-rolled steel sheet of ordinary steel, particularly one based on low carbon aluminum-killed copper continuous steel is used. In addition, ultra-low carbon steel having a carbon content of 0.003% by weight or less, non-aging promotion in which a metal such as niobium or titanium is added thereto, or a stainless copper plate containing a chromium content of 3 to 18% by weight Etc. can also be used.
表面処理銅板は、 まず、 銅板上にニッケルめっきを施すことが望ましい。 この ニッケルめっきを、 以下、 「下地ニッケル」 めっきという。 下地ニッケルめっき の目的は、 電池の内部においても十分な耐食性を確保するためである。  For the surface-treated copper plate, first, it is desirable to apply nickel plating on the copper plate. This nickel plating is hereinafter referred to as “base nickel” plating. The purpose of the base nickel plating is to ensure sufficient corrosion resistance even inside the battery.
下地ニッケルめっき浴としては、 ワット浴、 スルファミン酸浴、 ホウフッ化物 浴、 塩化物浴等の通常のニッケルめっきに使用される浴を本発明でも使用するこ とができる。 電解法条件として、 電流密度は 3〜8 0 AZ d ni2 で、 均一なめつ き層を得るためには浴は空気を浴中に吹き込む空気攪拌等を行うことが好ましい 。 また、 浴の p Hは、 3 . 5〜5 . 5の酸性領域が好ましく、 浴温度は 4 0〜6 0 °Cであることが好ましい。 下地ニッケルめっき処理としては、 有機添加剤を使用しない無光沢めつき、 有 機添加剤を使用する半光沢めつきのいずれでも使用可能である。 ニッケルめっき 層のニッケル付着量は 0 . 5〜5 // m程度が好ましい。 As the base nickel plating bath, a bath used for ordinary nickel plating, such as a watt bath, a sulfamic acid bath, a borofluoride bath, and a chloride bath, can also be used in the present invention. As the electrolysis method conditions, it is preferable that the current density is 3 to 80 AZ dni 2 and that the bath is air-stirred by blowing air into the bath in order to obtain a uniform plating layer. The pH of the bath is preferably in the acidic range of 3.5 to 5.5, and the bath temperature is preferably 40 to 60 ° C. As the base nickel plating treatment, either a non-glossy plating using no organic additive or a semi-glossy plating using an organic additive can be used. The nickel adhesion amount of the nickel plating layer is preferably about 0.5 to 5 // m.
付着量が 0 . 5 μ πι未満では鋼板上への被覆が不十分なために、 下地ニッケル めっきの目的としての耐食性を十分確保できなくなるからである。 また、 を越える付着量は、 その効果が飽和し経済的に不利だからである。 下地ニッケル めっきは鋼板の両面に形成させることが耐食性確保の観点から好ましく、 めっき 層の厚さは 0 . 5〜5 μ πιであることが好ましい。  If the amount of adhesion is less than 0.5 μπι, the coating on the steel sheet is insufficient, so that the corrosion resistance for the purpose of base nickel plating cannot be sufficiently secured. On the other hand, if the amount exceeds the limit, the effect is saturated and it is economically disadvantageous. The nickel base plating is preferably formed on both sides of the steel sheet from the viewpoint of ensuring corrosion resistance, and the thickness of the plating layer is preferably 0.5 to 5 μπι.
下地ニッケルめっき層はめつきしたままでもよいが、 めっき後熱処理を施し、 ニッケルめっき層の全部又は一部を拡散層にすることもできる。  The underlying nickel plating layer may be left attached, but heat treatment may be performed after plating to make all or part of the nickel plating layer a diffusion layer.
熱処理は非酸化性又は還元性保護ガス下で行うことが拡散層表面に酸化膜形成 を防止する点で好ましい。 非酸化性のガスとしてはいわゆる不活性ガスである窒 素、 アルゴン、 ヘリウム等が好適に使用され、 一方、 還元性ガスとしては水素、 アンモニアクラッキングガス (水素 7 5 %、 窒素 2 5 %) などが好適に使用され る。 熱処理方法としては箱型焼鈍法と連続焼鈍法とがあるが、 いずれの方法によ つてもよい。 箱型焼鈍の場合、 熱処理温度は 4 5 0 °C以上が好ましく、 また処理 時間は、 連続焼鈍法では短時間処理でよく、 箱型焼鈍法では比較的長時間を要す る。 一般的には、 連続焼鈍では 3 0秒から 2分程度、 箱型焼鈍では 6時間から 1 5時間程度が好ましい。  The heat treatment is preferably performed under a non-oxidizing or reducing protective gas in order to prevent formation of an oxide film on the surface of the diffusion layer. As the non-oxidizing gas, nitrogen, argon, helium, etc., which are so-called inert gases, are suitably used. On the other hand, as the reducing gas, hydrogen, ammonia cracking gas (75% hydrogen, 25% nitrogen), etc. Is preferably used. As the heat treatment method, there are a box annealing method and a continuous annealing method, and either method may be used. In the case of box-type annealing, the heat treatment temperature is preferably 450 ° C. or higher, and the processing time is short in the continuous annealing method, and is relatively long in the box-type annealing method. Generally, for continuous annealing, it is preferably about 30 seconds to 2 minutes, and for box annealing, about 6 hours to 15 hours.
次に、 黒鉛分散ニッケルめっき層又は黒鉛分散ニッケル合金めつき層を形成す る。  Next, a graphite-dispersed nickel plating layer or a graphite-dispersed nickel alloy plating layer is formed.
この黒鉛分散ニッケルめっき浴は、 ニッケルめっき浴をベースとするか (黒鉛 分散ニッケルめっき層が形成される) 、 その他ニッケル以外の金属、 例えば、 コ バルト、 マンガン、 鉄、 リン、 ビスマス等とニッケルからなる合金浴をべ一スと して、 その浴中に黒鉛を分散させた浴を使用して行う (黒鉛分散ニッケル合金め つき層が形成される) 。 優れた導電剤である黒鉛を分散させためっき浴を使用す ることで、 黒鉛がめっき層の生成とともにめっき層中に分散共析され、 凸状の祈 出物のアンカ一効果により電池内の活物質の保持性が改善される。 This graphite-dispersed nickel plating bath may be based on a nickel plating bath (where a graphite-dispersed nickel plating layer is formed) or may be formed of a metal other than nickel, such as cobalt, manganese, iron, phosphorus, bismuth, and nickel. This is performed using an alloy bath as a base and a bath in which graphite is dispersed in the bath (a graphite-dispersed nickel alloy coating layer is formed). Use a plating bath in which graphite, an excellent conductive agent, is dispersed. As a result, the graphite is dispersed and eutectoidized in the plating layer together with the formation of the plating layer, and the retention of the active material in the battery is improved by the anchor effect of the convex prayer.
本発明で使用する黒鉛は天然黒鉛又は人造黒鉛のいずれでもよいが、 5 0 %累 積径が 1 0 / m以下の微粉碎黒鉛を使用するのが好ましい。 また、 5 0 %累積径 が 5 // m以下の超微細黒鉛を使用することがさらに好ましい。 めっき層の厚さに 比して、 あまり粒度の大きい黒鉛を用いた場合、 付着した黒鉛が脱落しやすくな るからである。 また、 黒鉛化カーボンブラックを使用することもできる。  The graphite used in the present invention may be either natural graphite or artificial graphite, but it is preferable to use finely ground graphite having a 50% cumulative diameter of 10 / m or less. Further, it is more preferable to use ultrafine graphite having a 50% cumulative diameter of 5 // m or less. This is because if graphite having a very large particle size is used as compared with the thickness of the plating layer, the attached graphite tends to fall off. Graphitized carbon black can also be used.
黒鉛は、 表面が疎水性であるために、 そのままめっき浴中で攪拌しても分散さ せるのは容易ではない。 そのため、 界面活性剤 (黒鉛分散剤) を使用して強制分 散させるのが望ましい。 使用する黒鉛分散剤は、 カチオン系、 ァニオン系、 ノニ オン系、 両性のいずれの種類も使用することができるが、 被めつき板である鋼板 とめつき層の密着性が良好で、 かつ、 めっき層の脆化現象が少ないという点を考 慮した場合には、 ァニオン系の界面活性剤を黒鉛分散剤として使用するのが好ま しく、 ァニオン系界面活性剤の中でも、 ベンゼンスルホン酸系又は硫酸エステル 系の活性剤、 例えば硫酸アルキルソーダ、 ドデシルベンゼンスルホン酸ソーダ、 αォレフインスルホン酸ソーダ、 アルキルナフタレンスルホン酸ソーダ、 2スル ホコハク酸ジアルキルソーダ等が、 本実施の形態の黒鉛分散剤としてさらに好ま しい。  Because graphite has a hydrophobic surface, it is not easy to disperse it even if it is stirred in a plating bath. Therefore, it is desirable to forcibly disperse using a surfactant (graphite dispersant). As the graphite dispersant used, any of cationic, anionic, nonionic and amphoteric types can be used, but the adhesion between the coated steel sheet and the coated layer is good and the plating is good. Considering that the layer is less embrittled, it is preferable to use an anionic surfactant as a graphite dispersing agent. Among the anionic surfactants, benzenesulfonic acid or sulfate ester is preferable. Aqueous activators, for example, sodium alkyl sulfate, sodium dodecylbenzene sulfonate, sodium α-olefin sulfonate, sodium alkyl naphthalene sulfonate, dialkyl sodium 2-sulfosuccinate, and the like are more preferred as the graphite dispersant of the present embodiment. New
微細黒鉛のめっき液中への分散方法は、 黒鉛粉末と一定量の水で希釈した黒鉛 分散剤とを混練し、 最後にホモジナイザー又は超音波洗浄機のような乳化混合機 を使用して分散状態にする。 この場合、 黒鉛粉を少量のアルコール等で湿潤させ ておく方法も分散のためには有効である。 このように、 十分に黒鉛が分散した後 に、 めっき液中で攪拌しつつ添加していく。 分散剤の配合量は最終的にはめつき 液に対し、 1〜 1 0 0 g Z Lの添加量となるように調節することが望ましい。 1 g Z L未満の配合量では被膜中の黒鉛含有率が少なすぎて、 アンカー効果がない 。 一方、 1 0 0 g / Lを超えると、 めっき液の流動性が悪化したり、 黒鉛粉がめ つき層の周辺に付着して種々のトラブルが生じやすくなるためである。 また、 め つき液中にも黒鉛粒子の凝集を抑制するため、 予め分散剤を 2〜1 Om lZL程 度添加しておく。 The method of dispersing the fine graphite in the plating solution is to knead the graphite powder and a graphite dispersant diluted with a certain amount of water, and finally use a homogenizer or an emulsifying mixer such as an ultrasonic washing machine to disperse the dispersed state. To In this case, a method of moistening the graphite powder with a small amount of alcohol or the like is also effective for dispersion. After the graphite is sufficiently dispersed in this way, the graphite is added with stirring in the plating solution. It is desirable to adjust the blending amount of the dispersant so that the final amount of the dispersing agent is 1 to 100 g ZL. If the amount is less than 1 g ZL, the graphite content in the coating is too low and there is no anchor effect. On the other hand, if it exceeds 100 g / L, the fluidity of the plating solution will deteriorate, This is because various troubles are likely to occur by adhering to the periphery of the attached layer. In addition, a dispersant is added in advance to the plating solution in an amount of about 2 to 1 OmlZL in order to suppress the aggregation of graphite particles.
黒鉛中に分散させた分散めつき浴中のめっき液は、 循環タンクのポンプに使用 してめつき液を電解槽の下部に循環させるとともに、 電解槽下部に設けた細孔か ら空気を吹き込んで攪拌する両方の方法で、 黒鉛粉をめつき浴中に常に分散状態 にしておくことが好ましい。 分散状態を良好に維持することができれば、 含有率 で 0. 1〜5%程度の黒鉛をめつき層中に分散させることができる。 中でも、 0 . 5〜 2%程度で分散させることが好ましい。 なお、 黒鉛分散めつき層の形成に おいて、 黒鉛の含有率を向上させようとすれば、 電流密度を低くした方が好まし レ、。  The plating solution in the plating bath, which has been dispersed in graphite, is used as a pump in the circulation tank to circulate the plating solution to the lower part of the electrolytic cell and to blow air from pores provided in the lower part of the electrolytic cell. It is preferable that the graphite powder is always dispersed in the plating bath by both methods of stirring. If the dispersion state can be maintained well, graphite having a content of about 0.1 to 5% can be dispersed in the plating layer. Among them, it is preferable to disperse at about 0.5 to 2%. In forming the graphite-dispersed coating layer, it is preferable to lower the current density in order to increase the graphite content.
(2) このようにして、 表面に黒鉛分散ニッケルめっき層 1 1、 12を形成した 銅板 10に、 図 1に示すように、 それぞれ外周面上に周方向及び長手方向に多数 の加工突起 13、 14を設けた上 ·下対をなす凹設ロール 15、 16を回転しな がら押圧して多数の凹部 17、 18を形成する。  (2) The copper plate 10 on which the graphite-dispersed nickel plating layers 11 and 12 are formed on the surface in this manner, as shown in FIG. The upper and lower pairs of concave rolls 15 and 16 provided with 14 are pressed while rotating to form a large number of concaves 17 and 18.
(3) 図 1に示すように、 鋼板 10を上、 下対をなす圧延ロール 19、 20で圧 延して凹部 17、 18を破断して孔 21を設けて穿孔金属板 22を形成し、 電池 用芯体として用いる。 そして、 電池用芯体上に水酸化ニッケルスラリーを塗布し て正極板を形成させ、 又は電池用芯体上に水素吸蔵合金を含有するスラリーを塗 布して負極板を形成させる。  (3) As shown in FIG. 1, the steel sheet 10 is rolled by rolling rolls 19 and 20 forming an upper and lower pair, the recesses 17 and 18 are broken, a hole 21 is provided, and a perforated metal plate 22 is formed. Used as a battery core. Then, a nickel hydroxide slurry is applied on the battery core to form a positive electrode plate, or a slurry containing a hydrogen storage alloy is applied on the battery core to form a negative electrode plate.
このように、 本実施の形態では、 凹設ロール 15、 16と圧延ロール 19、 2 0を用いることによって、 穿孔速度を上昇させて電池用芯体の生産性を向上させ ることができる。 また、 めっき層として黒鉛分散ニッケルめっき層や黒鉛分散二 ッケル合金めつき層を用いた場合には、 ニッケルと黒鉛の分散層があるので、 凹 凸状の表面が形成され、 活物質の保持性を高めることができる。  As described above, in the present embodiment, the use of the concave rolls 15 and 16 and the rolls 19 and 20 can increase the perforation speed and improve the productivity of the battery core. Also, when a graphite-dispersed nickel plating layer or a graphite-dispersed nickel alloy plating layer is used as the plating layer, a concave-convex surface is formed due to the nickel-graphite dispersed layer, and the active material retention property is increased. Can be increased.
(第 2の実施の形態) 図 2〜図 4を参照して、 本発明の第 2の実施の形態に係る電池用芯体の製造方 法について説明する。 (Second embodiment) With reference to FIGS. 2 to 4, a method for manufacturing the battery core according to the second embodiment of the present invention will be described.
( 1 ) まず、 図 2に示すように、 前記した第 1の実施の形態に示す方法で金属板 の一例である鋼板 3 0を準備した後、 その銅板 3 0に黒鉛分散ニッケルめっき層 3 1、 3 2 (ニッケルめっき層又は黒 $/口、分散ニッケル合金めつき層でもよい) を 形成する。 (1) First, as shown in FIG. 2, after preparing a steel plate 30 as an example of a metal plate by the method described in the first embodiment, a graphite-dispersed nickel plating layer 31 is formed on the copper plate 30. , 32 (a nickel plating layer or black $ / hole, a dispersed nickel alloy plating layer may be formed).
( 2 ) 図 2に示すように、 鋼板 3 0に外周面上に周方向及ぴ長手方向に多数の加 ェ突起 3 3を設けた穿孔ロール 3 4を回転しながら押圧して返り部分 3 5を具備 する多数の孔 3 6を有する穿孔金属板 3 7を形成する。  (2) As shown in Fig. 2, a steel plate 30 is provided with a number of projections 33 on its outer peripheral surface in the circumferential direction and the longitudinal direction. A perforated metal plate 37 having a number of holes 36 having holes is formed.
( 3 ) 図 3に示すように、 折り返し手段の一例であるテーパ状剛性体 3 8を用い て返り部分 3 5を折り返し、 折り返し部分 3 9を有する穿孔金属板 4 0を形成す る。  (3) As shown in FIG. 3, a return portion 35 is folded using a tapered rigid body 38 which is an example of a return means, and a perforated metal plate 40 having a return portion 39 is formed.
( 4 ) 図 4に示すように、 穿孔金属板 4 0を上、 下対をなす圧延ロール 4 1、 4 2で圧延して電池用芯体を製造する。 そして、 電池用芯体上に水酸化ニッケルス ラリーを塗布して正極板を形成させ、 又は電池用芯体上に水素吸蔵合金を含有す るスラリーを塗布して負極板を形成させる。  (4) As shown in FIG. 4, the perforated metal plate 40 is rolled by rolling rolls 41 and 42 forming an upper and lower pair to produce a battery core. Then, a nickel hydroxide slurry is applied on the battery core to form a positive electrode plate, or a slurry containing a hydrogen storage alloy is applied on the battery core to form a negative electrode plate.
このように、 本実施の形態においても、 穿孔ロール 3 4と、 テーパ状剛性体 3 8と、 圧延ロール 4 1、 4 2を用いることによって、 穿孔速度を上昇させて電池 用芯体の生産性を向上させることができる。 また、 めっき層として黒鉛分散ニッ ケルめっき層や黒鉛分散ニッケル合金めつき層を用いた場合には、 ニッケルと黒 鉛の分散層があるので、 凹凸状の表面が形成され、 活物質の保持性を高めること ができる。  As described above, also in the present embodiment, by using the punching roll 34, the tapered rigid body 38, and the rolling rolls 41 and 42, the punching speed is increased and the productivity of the battery core body is increased. Can be improved. In addition, when a graphite-dispersed nickel plating layer or a graphite-dispersed nickel alloy plating layer is used as the plating layer, an uneven surface is formed due to the nickel-graphite dispersed layer, and the active material retention property is increased. Can be increased.
(第 3の実施の形態)  (Third embodiment)
図 5を参照して、 本発明の第 2の実施の形態に係る電池用芯体の製造方法につ いて説明する。  With reference to FIG. 5, a method for manufacturing a battery core according to the second embodiment of the present invention will be described.
( 1 ) まず、 図 5に示すように、 前記した第 1の実施の形態に示す方法で金属板 の一例である鋼板 5 0を準備した後、 その鋼板 5 0に黒鉛分散ニッケルめっき層 5 1、 5 2 (ニッケルめっき層又は黒鉛分散ニッケル合金めつき層でもよい) を 形成する。 (1) First, as shown in FIG. 5, a metal plate is formed by the method described in the first embodiment. After preparing a steel sheet 50 as an example, the graphite-dispersed nickel plating layers 51 and 52 (a nickel plating layer or a graphite-dispersed nickel alloy plating layer may be formed) are formed on the steel sheet 50.
( 2 ) 図 5に示すように、 鋼板 5 0に、 外周面上に周方向及び長手方向に多数の 5 加工突起 5 3を設けた穿孔ロール 5 4と切り起こしロール 5 5を回転しながら押 圧して切り起こしにより多数の孔 5 6を有する穿孔金属板 5 7を形成する。  (2) As shown in Fig. 5, a steel plate 50 is provided with a large number of 5 processing projections 53 on the outer peripheral surface in the circumferential and longitudinal directions. A perforated metal plate 57 having a large number of holes 56 is formed by pressing and cutting and raising.
( 3 ) 切り起こし部分 5 8、 5 9と共に穿孔金属板 5 7を上、 下対をなす圧延口 ール 6 0、 6 1で圧延して電池用芯体を製造する。 そして、 電池用芯体上に水酸 化ニッケルスラリーを塗布して正極板を形成させ、 又は電池用芯体上に水素吸蔵 ί θ 合金を含有するスラリーを塗布して負極板を形成させる。  (3) The perforated metal plate 57 together with the cut-and-raised portions 58 and 59 is rolled up and down by rolling rollers 60 and 61 forming a lower pair to produce a battery core. Then, a nickel hydroxide slurry is applied to the battery core to form a positive electrode plate, or a slurry containing a hydrogen storage alloy is applied to the battery core to form a negative electrode plate.
このように、 本実施の形態においても、 穿孔ロール 5 4と、 切り起こしロール 5 5と、 圧延ロール 6 0、 6 1を用いることによって、 穿孔速度を上昇させて電 池用芯体の生産性を向上させることができる。 また、 めっき層として黒鉛分散二 ッケルめつき層や黒鉛分散二ッケル合金めつき層を用いた場合には、 二ッケルと ' 5 黒鉛の分散層があるので、 凹凸状の表面が形成され、 活物質の保持性を高めるこ とができる。  As described above, also in the present embodiment, by using the punching roll 54, the cut-and-raise roll 55, and the rolling rolls 60 and 61, the drilling speed is increased, and the productivity of the battery core is increased. Can be improved. In addition, when a graphite-dispersed nickel-plated layer or a graphite-dispersed nickel-plated alloy layer is used as the plating layer, an uneven surface is formed due to the nickel-dispersed layer of graphite and nickel. The retention of the substance can be improved.
(第 4の実施の形態)  (Fourth embodiment)
図 6 ( a ) ( b ) を参照して、 本発明の第 4の実施の形態に係る電池用芯体の 製造方法について説明する。  With reference to FIGS. 6 (a) and 6 (b), a method for manufacturing a battery core according to a fourth embodiment of the present invention will be described.
20 図示するように、 本実施の形態は、 第 1の実施の形態において用いた外周面上 に周方向及び長手方向に多数の加工突起 1 3、 1 4を設けた凹設ロール 1 5、 1 6を金属板に回転しながら押圧して多数の凹部を形成し、 金属板を圧延ロール 1 9、 2 0で圧延して凹部を破断して孔 7 0を設けて穿孔金属板 7 1を形成し、 穿 孔金属板 7 1の表面に黒鉛分散ニッケルめっき層 7 2、 7 3を形成することを特 As shown in FIG. 20, this embodiment is different from the first embodiment in that concave rolls 15 and 1 are provided with a large number of processing projections 13 and 14 in the circumferential and longitudinal directions on the outer peripheral surface. 6 is pressed while rotating against a metal plate to form a large number of recesses, and the metal plate is rolled by rolling rolls 19 and 20 to break the recesses to form holes 70 to form a perforated metal plate 71. And forming a graphite-dispersed nickel plating layer 72, 73 on the surface of the perforated metal plate 71.
2 5 徴とする。 2 5 signs.
本実施の形態においても、 凹設口一ル 1 5、 1 6と圧延ロール 1 9、 2 0を用 いることによって、 穿孔速度を上昇させて電池用芯体の生産性を向上させること ができる。 また、 めっき層として黒鉛分散ニッケルめっき層や黒鉛分散ニッケル 合金めつき層を用いた場合には、 ニッケルと黒鉛の分散層があるので、 凹凸状の 表面が形成され、 活物質の保持性を高めることができる。 さらに、 黒鉛分散ニッ ケルめっき層 7 4が孔 7 0内にも形成されるので、 電池用芯体の耐食性をさらに 向上することができる。 Also in this embodiment, the recesses 15 and 16 and the rolling rolls 19 and 20 are used. By doing so, the drilling speed can be increased and the productivity of the battery core can be improved. Also, when a graphite-dispersed nickel plating layer or a graphite-dispersed nickel alloy plating layer is used as the plating layer, there is a nickel-graphite dispersed layer, so that an uneven surface is formed to enhance the retention of the active material. be able to. Further, since the graphite-dispersed nickel plating layer 74 is also formed in the hole 70, the corrosion resistance of the battery core can be further improved.
(第 5の実施の形態)  (Fifth embodiment)
図 7 ( a ) ( b ) を参照して、 本発明の第 5の実施の形態に係る電池用芯体の 製造方法について説明する。  A method for manufacturing a battery core according to a fifth embodiment of the present invention will be described with reference to FIGS. 7 (a) and 7 (b).
図示するように、 本実施の形態は、 第 2の実施の形態において用いた外周面上 に周方向及ぴ長手方向に多数の加工突起 3 3を設けた穿孔ロール 3 4を回転しな がら金属板を押圧して返り部分を具備する多数の孔 8 0を有する穿孔金属板 8 1 を形成し、 折り返し手段の一例であるテーパ状剛性体 3 8を用いて返り部分を折 り返し、 折り返し部分と共に穿孔金属板 8 1を圧延ロール 4 1、 4 2で圧延し、 その後、 表面に黒鉛分散ニッケルめっき層 8 2、 8 3を形成することを特徴とす る。  As shown in the figure, in the present embodiment, while rotating a punch roll 34 provided with a large number of processing projections 33 in the circumferential direction and the longitudinal direction on the outer peripheral surface used in the second embodiment, The plate is pressed to form a perforated metal plate 81 having a large number of holes 80 having a return portion, and the return portion is folded back using a tapered rigid body 38 which is an example of a return means. At the same time, the perforated metal plate 81 is rolled by rolling rolls 41 and 42, and then the graphite-dispersed nickel plating layers 82 and 83 are formed on the surface.
本実施の形態においても、 穿孔ロール 3 4と、 テーパ状剛性体 3 8と、 圧延口 ール 4 1、 4 2を用いることによって、 穿孔速度を上昇させて電池用芯体の生産 性を向上させることができる。 また、 めっき層として黒鉛分散ニッケルめっき層 8 2、 8 3を用いた場合には、 ニッケルと黒鉛の分散層があるので、 凹凸状の表 面が形成され、 活物質の保持性を高めることができる。 さらに、 黒鉛分散ニッケ ルめっき層 8 4が孔 8 0内にも形成されるので、 電池用芯体の耐食性をさらに向 上することができる。  Also in the present embodiment, the use of the piercing roll 34, the tapered rigid body 38, and the rolling rolls 41, 42 increases the piercing speed to improve the productivity of the battery core. Can be done. In addition, when the graphite-dispersed nickel plating layers 82 and 83 are used as the plating layer, there is a dispersion layer of nickel and graphite, so that an uneven surface is formed and the retention of the active material can be improved. it can. Further, since the graphite-dispersed nickel plating layer 84 is also formed in the hole 80, the corrosion resistance of the battery core can be further improved.
(第 6の実施の形態)  (Sixth embodiment)
図 8 ( a ) ( b ) を参照して、 本発明の第 6の実施の形態に係る電池用芯体の 製造方法について説明する。 図示するように、 本実施の形態は、 第 3の実施の形態において用いた外周面上 に周方向及び長手方向に多数の加工突起 5 3を設けた穿孔ロール 5 4を金属板に 回転しながら押圧して切り起こしにより多数の孔 9 0を有する穿孔金属板 9 1を 形成し、 切り起こし部分と共に穿孔金属板 9 1を圧延ロールで圧延し、 その後、 表面に黒鉛分散ニッケルめっき層 9 2、 9 3を形成することを特徴とする。 本実施の形態においても、 穿孔ロール 5 4と、 切り起こしロール 5 5と、 圧延 ロール 6 0、 6 1を用いることによって、 穿孔速度を上昇させて電池用芯体の生 産性を向上させることができる。 また、 めっき層として黒鉛分散ニッケルめっき 層 9 2、 9 3を用いた場合には、 ニッケルと黒鉛の分散層があるので、 凹凸状の 表面が形成され、 活物質の保持性を高めることができる。 さらに、 黒鉛分散ニッ ケルめっき層 9 4が孔 9 0内にも形成されるので、 電池用芯体の耐食性をさらに 向上することができる。 産業上の利用可能性 With reference to FIGS. 8 (a) and 8 (b), a method for manufacturing a battery core according to the sixth embodiment of the present invention will be described. As shown in the figure, in the present embodiment, a punching roll 54 provided with a large number of processing projections 53 in the circumferential and longitudinal directions on the outer peripheral surface used in the third embodiment is rotated on a metal plate. A perforated metal plate 91 having a large number of holes 90 is formed by pressing and cutting and raising, and the perforated metal plate 91 is rolled by a rolling roll together with the cut and raised portion, and then a graphite-dispersed nickel plating layer 92 on the surface is formed. 93 is formed. Also in the present embodiment, the use of the perforation roll 54, the cut-and-raise roll 55, and the rolling rolls 60 and 61 increases the perforation speed and improves the productivity of the battery core. Can be. In addition, when the graphite-dispersed nickel plating layers 92 and 93 are used as the plating layer, the nickel-graphite dispersed layer is provided, so that an uneven surface is formed and the retention of the active material can be improved. . Furthermore, since the graphite-dispersed nickel plating layer 94 is also formed in the hole 90, the corrosion resistance of the battery core can be further improved. Industrial applicability
以上説明してきたように、 本発明では、 穿孔速度を上昇させて電池用芯体の生 産性を向上させることができる。 また、 めっき層として黒鉛分散ニッケルめっき 層や黒鉛分散二ッケル合金めつき層を用いた場合には、 二ッケルと黒鉛の分散層 があるので、 凹凸状の表面が形成され、 活物質の保持性を高めることができる。 さらに、 穿孔金属板を形成した後めつき層を形成する場合には、 めっき層が孔内 にも形成されるので、 電池用芯体の耐食性をさらに向上することができる。  As described above, in the present invention, the productivity of the battery core can be improved by increasing the perforation speed. Also, when a graphite-dispersed nickel plating layer or a graphite-dispersed nickel alloy plating layer is used as the plating layer, there is a nickel-graphite dispersed layer, so that an uneven surface is formed and the active material retainability is improved. Can be increased. Furthermore, in the case of forming the perforated layer after forming the perforated metal plate, the plating layer is also formed in the holes, so that the corrosion resistance of the battery core can be further improved.

Claims

請 求 の 範 囲 The scope of the claims
1 . 表面にニッケルめっき層又は黒鉛分散ニッケルめっき層を形成した金属板 に、 外周面上に周方向及び長手方向に多数の加工突起を設けた凹設ロールを金属 板に回転しながら押圧して多数の凹部を形成し、 前記金属板を圧延ロールで圧延 して凹部を破断することによって孔を設けて穿孔金属板を形成し、 電池用芯体を 製造することを特徴とする電池用芯体の製造方法。 1. On a metal plate with a nickel plating layer or graphite-dispersed nickel plating layer formed on the surface, a concave roll provided with a large number of processing projections in the circumferential and longitudinal directions on the outer peripheral surface is pressed while rotating on the metal plate. Forming a plurality of recesses, rolling the metal plate with a rolling roll and breaking the recesses to form holes and form a perforated metal plate, and manufacturing a battery core; Manufacturing method.
2 . 表面に二ッケルめっき層又は黒鉛分散二ッケルめっき層を形成した金属板 に、 外周面上に周方向及び長手方向に多数の加工突起を設けた穿孔ロールを回転 しながら押圧して返り部分を具備する多数の孔を有する穿孔金属板を形成し、 折 り返し手段を用いて前記返り部分を折り返し、 前記折り返し部分と共に前記穿孔 金属板を圧延ロールで圧延して電池用芯体を製造することを特徴とする電池用芯 体の製造方法。  2. A metal plate having a nickel plating layer or graphite dispersed nickel plating layer on its surface is pressed and rotated while rotating a punch roll provided with a large number of processing projections on the outer peripheral surface in the circumferential and longitudinal directions. Forming a perforated metal plate having a large number of holes having the following, folding the returned portion using a folding means, and rolling the perforated metal plate together with the folded portion with a rolling roll to produce a battery core body. A method for producing a battery core, comprising:
3 . 表面に二ッケルめっき層又は黒鉛分散二ッケルめっき層を形成した金属板 に、 外周面上に周方向及び長手方向に多数の加工突起を設けた穿孔ロールを金属 板に回転しながら押圧して切り起こしにより多数の孔を有する穿孔金属板を形成 し、 切り起こし部分と共に前記穿孔金属板を圧延口ールで圧延して電池用芯体を 製造することを特徴とする電池用芯体の製造方法。  3. On a metal plate on which a nickel plating layer or graphite dispersed nickel plating layer is formed on the surface, a punching roll provided with a large number of processing protrusions on the outer peripheral surface in the circumferential and longitudinal directions is pressed while rotating on the metal plate. Forming a perforated metal plate having a large number of holes by cutting and raising, and rolling the perforated metal plate together with the cut and raised portion with a rolling stirrer to produce a battery core. Production method.
4 . 外周面上に周方向及び長手方向に多数の加工突起を設けた凹設ロールを金 属板に回転しながら押圧して多数の凹部を形成し、 前記金属板を圧延ロールで圧 延して凹部を破断して孔を設けて穿孔金属板を形成し、 該穿孔金属板の表面に二 ッケルめっき層又は黒鉛分散ニッケルめっき層を形成することを特徴とする電池 用芯体の製造方法。  4. A number of concave portions are formed by pressing a concave roll provided with a large number of processing protrusions on the outer peripheral surface in a circumferential direction and a longitudinal direction while rotating the metal plate, and rolling the metal plate with a rolling roll. Forming a perforated metal plate by forming a hole by fracturing the concave portion to form a perforated metal plate, and forming a nickel plating layer or a graphite dispersed nickel plating layer on the surface of the perforated metal plate.
5 . 外周面上に周方向及び長手方向に多数の加工突起を設けた穿孔ロールを回 転しながら金属板に押圧して返り部分を具備する多数の孔を有する穿孔金属板を 形成し、 折り返し手段を用いて前記返り部分を折り返し、 前記折り返し部分と共 に前記穿孔金属板を圧延ロールで圧延し、 その後、 表面にニッケルめっき層又は 黒鉛分散二ッケルめっき層を形成することを特徴とする電池用芯体の製造方法。 5. A perforated metal plate having a large number of holes with a return portion is formed by pressing a metal plate while rotating a perforated roll having a large number of processing projections on the outer peripheral surface in the circumferential direction and the longitudinal direction, and turning the roll. Means for folding back the return portion, and Rolling the perforated metal plate with a rolling roll, and thereafter forming a nickel plating layer or a graphite dispersed nickel plating layer on the surface.
6 . 外周面上に周方向及び長手方向に多数の加工突起を設けた穿孔ロールを金 属板に回転しながら押圧して切り起こしにより多数の孔を有する穿孔金属板を形 成し、 切り起こし部分と共に前記穿孔金属板を圧延ロールで圧延し、 その後、 表 面にニッケルめつき層又は黒鉛分散二ッケルめっき層を形成することを特徴とす る電池用芯体の製造方法。 6. A punching roll provided with a large number of processing projections in the circumferential direction and longitudinal direction on the outer peripheral surface is pressed while rotating on a metal plate to form a punched metal plate having a large number of holes, and cut and raised. A method for producing a battery core, comprising: rolling the perforated metal plate together with the portion with a rolling roll; and thereafter forming a nickel plating layer or a graphite dispersed nickel plating layer on the surface.
PCT/JP2000/004593 1999-07-09 2000-07-10 Method of manufacturing battery core body WO2001004979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU57094/00A AU5709400A (en) 1999-07-09 2000-07-10 Method of manufacturing battery core body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/196729 1999-07-09
JP19672999 1999-07-09

Publications (1)

Publication Number Publication Date
WO2001004979A1 true WO2001004979A1 (en) 2001-01-18

Family

ID=16362631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004593 WO2001004979A1 (en) 1999-07-09 2000-07-10 Method of manufacturing battery core body

Country Status (3)

Country Link
AU (1) AU5709400A (en)
TW (1) TW477726B (en)
WO (1) WO2001004979A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102390114A (en) * 2011-10-17 2012-03-28 王奇伟 Manufacturing method of biaxial stretching thick node plastic geogrid
US8715439B2 (en) * 2008-03-07 2014-05-06 The Boeing Company Method for making hybrid metal-ceramic matrix composite structures and structures made thereby
WO2015022756A1 (en) * 2013-08-15 2015-02-19 松陽産業株式会社 Perforated plate material and production method therefor
KR101825427B1 (en) * 2016-06-30 2018-02-06 주식회사 엠에스 오토텍 Method for manufacturing vehicle body parts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319660C (en) * 2005-07-22 2007-06-06 濮德兴 High-precision very-thin special-wide cold-rolled steel band and its working process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679065U (en) * 1993-04-15 1994-11-04 株式会社ユアサコーポレーション Electrode
JPH07335208A (en) * 1994-06-10 1995-12-22 Matsushita Electric Ind Co Ltd Coated electrode for battery, and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679065U (en) * 1993-04-15 1994-11-04 株式会社ユアサコーポレーション Electrode
JPH07335208A (en) * 1994-06-10 1995-12-22 Matsushita Electric Ind Co Ltd Coated electrode for battery, and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8715439B2 (en) * 2008-03-07 2014-05-06 The Boeing Company Method for making hybrid metal-ceramic matrix composite structures and structures made thereby
CN102390114A (en) * 2011-10-17 2012-03-28 王奇伟 Manufacturing method of biaxial stretching thick node plastic geogrid
WO2015022756A1 (en) * 2013-08-15 2015-02-19 松陽産業株式会社 Perforated plate material and production method therefor
KR101825427B1 (en) * 2016-06-30 2018-02-06 주식회사 엠에스 오토텍 Method for manufacturing vehicle body parts

Also Published As

Publication number Publication date
AU5709400A (en) 2001-01-30
TW477726B (en) 2002-03-01

Similar Documents

Publication Publication Date Title
TW445663B (en) A method of surface treatment for a battery container, a surface treated steel sheet for a battery container, a battery container and a battery using thereof
JP2000173603A (en) Method for manufacturing electrode plate for battery, electrode plate manufactured by the method, and battery provided with the electrode plate
CN102263269A (en) Cathode active material, inclined pull-net cathode matrix and cathode of nickel-zinc batteries and preparation method of cathode
US8163334B2 (en) Method and apparatus for applying electrode mixture paste
JP4616584B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2004076118A (en) Surface treated steel sheet for battery case, manufacturing method therefor, battery case formed of the steel sheet, and battery using the battery case
JPH0752647B2 (en) Battery electrode and method for manufacturing the same
EP3367477A1 (en) Method for preparing negative electrode of lithium ion battery and lithium ion battery
WO2001004979A1 (en) Method of manufacturing battery core body
CN100539263C (en) The milling method of electrode band
WO2015087948A1 (en) Carbon material-coated metal porous body, collector, electrode, and power storage device
JP2017027654A (en) Carbon material-coated metal porous body, collector, electrode, and power storage device
JP3743744B2 (en) Surface-treated steel sheet for battery case, method for producing the same, battery case using the surface-treated steel sheet for battery case, and battery using the same
EP1475855A1 (en) Secondary battery-use pole plate material
JP2008034370A (en) Electrochemical element
JP4100786B2 (en) Alkaline battery core and battery using the same
WO1998053512A1 (en) Method for manufacturing perforated steel sheets, cores for electrode plates of secondary cells, and secondary cell comprising the core
JP2984742B2 (en) Electrode substrate for cylindrical battery
TW521453B (en) Core for alkaline battery and battery using the same
JP2001093520A (en) Hydrogen storage alloy electrode and preparation thereof
EP1901370A1 (en) Electrode mixture paste applying method and device
CN112349911B (en) Porous metal current collector, preparation method, negative electrode and battery
JP2005340028A (en) Activator particle for nonaqueous electrolyte secondary battery
TW550310B (en) Porous nickel foil for alkaline battery cathode, production method therefor and production device therefor
JP2000077064A (en) Hydrogen storage electrode and its manufacture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase