WO2000040946A1 - Verfahren und vorrichtung zur gleichzeitigen bestimmung der adhäsion, der reibung und weiterer materialeigenschaften einer probenoberfläche - Google Patents

Verfahren und vorrichtung zur gleichzeitigen bestimmung der adhäsion, der reibung und weiterer materialeigenschaften einer probenoberfläche Download PDF

Info

Publication number
WO2000040946A1
WO2000040946A1 PCT/DE2000/000003 DE0000003W WO0040946A1 WO 2000040946 A1 WO2000040946 A1 WO 2000040946A1 DE 0000003 W DE0000003 W DE 0000003W WO 0040946 A1 WO0040946 A1 WO 0040946A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning probe
sample
scanning
microscope
amplitude
Prior art date
Application number
PCT/DE2000/000003
Other languages
English (en)
French (fr)
Inventor
Hans-Ulrich Krotil
Thomas Stifter
Othmar Marti
Original Assignee
Krotil Hans Ulrich
Thomas Stifter
Othmar Marti
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krotil Hans Ulrich, Thomas Stifter, Othmar Marti filed Critical Krotil Hans Ulrich
Priority to DE50008412T priority Critical patent/DE50008412D1/de
Priority to AT00904803T priority patent/ATE280945T1/de
Priority to US09/869,789 priority patent/US6880386B1/en
Priority to AU26573/00A priority patent/AU2657300A/en
Priority to EP00904803A priority patent/EP1141673B1/de
Publication of WO2000040946A1 publication Critical patent/WO2000040946A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/26Friction force microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/02Monitoring the movement or position of the probe by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/28Adhesion force microscopy

Definitions

  • the present invention relates to a method for the simultaneous determination of at least two material properties, comprising the surface topography, the adhesion, the static and dynamic friction and the elasticity and rigidity, by means of a scanning probe microscope comprising a scanning probe.
  • the invention also relates to an improved scanning probe microscope for carrying out the method according to the invention.
  • Scanning probe microscopy enables the non-destructive characterization of sample surfaces on a molecular or atomic scale.
  • a number of other surface properties such as friction, adhesion, compliance and other elastic properties can also be determined.
  • the class of scanning probe microscopes includes, for example, the scanning tunneling microscope (STM: Scanning lunneling Microscope), near-field microscopes (SNOM: Scanning Near-Field Optical Microscope) and force or atomic force microscopes (SFM: Scanning Force Microscope or RKM: atomic force microscope).
  • STM scanning tunneling microscope
  • SNOM Scanning Near-Field Optical Microscope
  • Binnig et ai the disclosure of which is fully disclosed in the present application recorded: Binnig, G., Quate, CF and Gerber, C: Atomic Force Microscope, Phys. Rev. Lett., 330-933, 56 (1986).
  • Adhesive forces are usually determined by measuring force-distance curves using an atomic force microscope. With such a measurement, the scanning probe, i.e. the measuring tip of the atomic force microscope, moved from a greater distance onto the sample surface to be examined and then moved away from it again, the distance-dependent forces being detected via the deflection of a bar or cantilever to which the scanning probe is attached.
  • a disadvantage of this procedure is the very low measuring speed, which is also associated with an extraordinarily memory-intensive image recording and a quite time-consuming quantitative evaluation. In addition, such measurements are very error-prone. Since the force-distance curves are recorded line by line, topography information is only accessible with great effort.
  • adhesive forces can also be determined by measurement in the so-called pulsed force mode (PFM).
  • PFM pulsed force mode
  • the surface of a sample to be examined is periodically scanned in a type of contact mode with frequencies in the kilo-heart range, preferably 0.1-3 kHz.
  • This procedure also allows certain sample properties to be determined in addition to the topography.
  • the adhesion values are measured online.
  • the measurement of the adhesion by means of the pulsed force mode technique has the disadvantage, however, that the measuring speed has to be adapted to the vertical modulation frequency and is subject to a limitation. For example, a modulation frequency of 1 kHz and an image resolution of 256 pixels result a minimum measuring speed of 0.256 s per line, to get a new measurement value for each image pixel by contact between the scanning probe and the sample.
  • force microscopy can also be used to carry out friction measurements.
  • the friction measurements are usually carried out in contact mode (SFFM: Scanning Friction Force Microscopy), the lateral twisting of the cantilever or cantilever being recorded and used as a measure of the local friction.
  • SFFM Scanning Friction Force Microscopy
  • This conventional type of friction measurement suffers from a low reproducibility of the measurement results. Since topography effects are also included in the recorded friction signals, no qualitative on-line results are obtained. In order to average out the undesired topography effects, a time-consuming image processing is necessary, in particular in the case of non-linearized scan piezo elements, in order to bring the outgoing and return scanning images into register. Furthermore, the results obtained cannot be directly incorporated into the subsequent measurements. Furthermore, there are no uniform calibration standards for quantitative - ⁇
  • the sample to be examined is, in addition to a conventional friction measurement in contact mode (SFFM), periodically modulated laterally in the 10 kHz range perpendicular to the slow scanning direction, with the torsion of the cantilever in contact mode recorded using the lock-in technique and the static and sliding friction determined from the measurement results.
  • SFFM friction measurement in contact mode
  • other mechanical properties such as the elastic behavior, the (shear) stiffness and certain relaxation times can also be determined.
  • ⁇ function of the normal force however, a series of measurements with varying normal forces is necessary.
  • Carrying sample contaminants can lead to incorrect friction constants.
  • sticky sample systems are also difficult or impossible to measure with this.
  • the sizes mentioned should, if possible, be it alone or together, also with other material properties of interest, such as. B. certain ⁇
  • elastic constants including the adhesion and the stiffness, and / or the topography
  • the expression material properties within the scope of the present description also including optical signals of a sample to be examined, as well as magnetic or electrical forces, information about the temperature distribution and, if appropriate, also can include further measured variables.
  • the task also consists in creating a suitable scanning probe microscope for carrying out such a measuring method.
  • This object is achieved by a method in which the scanning probe of a scanning probe microscope and / or the sample with the sample surface to be examined is moved in a vertical and / or horizontal direction so that the scanning probe at a predetermined location on the sample surface to be examined in a certain way and how it interacts with the sample surface.
  • the scanning probe is preferably brought into contact with the sample surface with a certain normal force.
  • the scanning probe and / or the sample are subjected to a vertical vibration and a first measurement signal characterizing the vertical and / or lateral deformation of the scanning probe is recorded.
  • a second measurement signal characterizing the deformation of the scanning probe is recorded, the scanning probe and / or the sample being subjected to a horizontal and / or vertical vibration.
  • the two measurement signals are then evaluated to determine the desired sample properties.
  • the first measurement signal is used to determine the adhesion, while the friction is determined from the second measurement signal in the manner described below.
  • the scanning probe and / or the sample is moved again to the scanning probe at the next to be examined point in the above described manner to bring into contact with the sample surface on which the previously described measurement process is repeated. In this way, the entire surface area to be examined is scanned line by line, as is known to those skilled in the art.
  • sample systems such as, for example, highly adhesive or sticky polymer systems, which cannot be scanned in contact mode and are therefore difficult or impossible to access in a normal or dynamic friction measurement, can be sensed by the sensitive scanning of the pulsed force mode for friction to be examined. Due to the selective scanning, the sweep is also c largely avoided by dirt, so that incorrect friction contrasts are minimized by an interaction between the scanning probe and the dirt.
  • the scanning probe and / or the sample is preferably subjected to at least one periodic oscillation, the oscillation or modulation direction being selected in particular perpendicularly or parallel to the scanning or scanning direction.
  • the oscillation or modulation direction being selected in particular perpendicularly or parallel to the scanning or scanning direction.
  • any direction of vibration is also conceivable.
  • modulation is usually carried out laterally parallel to the fast scanning direction, which leads to bending and torsion of the cantilever.
  • the modulation can also take place parallel to the slow scan direction, which causes the cantilever to vibrate.
  • vertical sample modulation ie parallel to pulsed force mode modulation, can also be carried out analogously to the determination of the dynamic friction, the vertical deformation of the scanning probe (amplitude and phase shift) being evaluated, for example, using a lock-in amplifier. This makes it possible to make statements about the mechanical behavior of the sample, in particular about its elasticity and rigidity.
  • the scanning probe and / or the sample is advantageously excited in the vertical direction with a frequency of at least 10 Hz and an amplitude of at least 1 nm, the preferred frequency and amplitude range being 500 Hz - 2 kHz or 10 - 500 nm.
  • the vertical vibration of the sample and / or the probe is preferably at least a second vibration with a frequency of at least 1 kHz * and an amplitude of at least 0.1 nm, but in particular with a frequency of 5 kHz - MHz and an amplitude of 1- 10 nm superimposed.
  • the second measurement signal is evaluated in the manner described in detail below by means of a lock-in amplifier, from which the friction amplitude and the phase is determined via a Fourier transformation of the measurement signal.
  • a lock-in amplifier from which the friction amplitude and the phase is determined via a Fourier transformation of the measurement signal.
  • a scanning probe microscope suitable for carrying out this method according to the invention with the features specified in the preamble of claim 1 additionally comprises, according to the invention, a device for vertical and / or horizontal movement of the sample, a device for detecting the movement of the sample and a device for detecting the vertical and / or lateral Deformation of the grid probe.
  • the devices for moving the scanning probe or the sample are designed in such a way that the scanning probe and the sample surface can be brought into contact or brought into contact with them in such a way that they interact with one another in a certain way, which in particular makes contact with a certain normal force.
  • the devices for moving the scanning probe or the sample comprise at least one piezo element, wherein at least one piezo element is preferably provided for each of these devices. solve
  • the devices for moving the scanning probe or the sample are preferably periodically excited or modulated, the type of excitation or modulation already being apparent from the above description of the method according to the invention.
  • the device for detecting the vertical and / or lateral deformation of the scanning probe can comprise a mirror, for example a corresponding coating on the scanning probe, which is intended to deflect an incident laser beam, the resulting deflection being a measure of the existing deformation of the scanning probe is used.
  • Corresponding information can, however, also be obtained, for example, capacitively, interferometrically or piezoelectrically,
  • the scanning probe microscope according to the invention preferably comprises an evaluation device for the simultaneous determination of at least two material properties, including the adhesion, the static and dynamic friction, the surface topography and the elasticity and rigidity, by evaluating the detected deformation of the scanning probe.
  • This evaluation device can in particular comprise a lock-in amplifier and a microcomputer for evaluating the lock-in signals.
  • the scanning probe of the scanning probe microscope according to the invention is preferably the tip of a force microscope and / or an optical near-field microscope, wherein the tip of the force microscope and the tip of the optical near-field microscope can also be integrated in a common scanning probe.
  • Fig. 1 shows the basic structure of an inventive
  • 3A shows the beam deflection when approaching a sample surface to be examined vertically
  • 3B shows the beam bending in the case of a method of the sample surface to be examined relative to the force field peak
  • 4A shows the principle of a combination of pulsed force mode / dynamic - 4H friction
  • Fig. 5 shows a schematic representation of the time dependence of a
  • Measurement signal f (t) to illustrate a dynamic friction measurement
  • FIG. 6 shows a flow chart for a measurement according to the invention for
  • FIG. 13A shows an illustration of the topography, the adhesion, the friction on a sample surface, examined with a scanning probe microscope according to the invention for a combination of pulsed force mode / force modulation.
  • the scanning probe microscope shown in Fig. 1 comprises a scanning probe 1 with a bar or cantilever 3 and a measuring tip 5.
  • the measuring tip 5 can be made, for example, of silicon or silicon nitride, for example Si3N.
  • the vertical displacement of the scanning probe 1 is carried out with the aid of a piezo element 7 made.
  • the measurement of the deformation of the beam 3, which is a measure of the adhesive forces in the vertical method, is determined by means of a laser structure, not shown in detail.
  • the light 9 of a laser light source is projected onto the bar 3, from which it is reflected such that the reflected beam 11 strikes a measuring device 13, which can comprise, for example, the light-sensitive layer of a segmented photodiode.
  • the light beam 11 is deflected upwards or downwards or left or right from the zero position shown and converted into an electrical signal by the light-sensitive layer of the measuring device 13.
  • the electrical measurement signal resulting from a relative movement in the horizontal direction between the bar 3 or the measuring tip 5 and the sample surface 30, which, as shown in FIG. 3B, is generated by an essentially lateral deflection of the reflected light beam 11 and is referred to below as the second measurement signal is transmitted via a line 15 to a lock-in amplifier 17, in which a Fourier transformation is carried out and the real part and the imaginary part of the signal are determined, from which the desired friction can be determined in the manner described below .
  • the electrical measuring signal resulting from a vertical relative movement between the measuring tip 5 and the sample surface 30 (the so-called first measuring signal, in which the reflected light beam is essentially still deflected up or down according to FIG. 3A) is not used to determine the adhesion line shown transmitted directly to an evaluation device 112, also not shown (see FIG. 6).
  • a piezo element (not shown) is arranged on the sample table 23, which carries the sample 25, with which the sample table 23 and thus also the sample 25, as already mentioned above, are also used to determine the static and dynamic friction can be moved or excited laterally.
  • the measuring beam 3 of the force peak 5 is twisted and / or bent in such a measurement, as shown in a crossed-out manner, the torsion and / or bending occurring being a measure of the existing frictional forces.
  • the coordinate system is illustrated again in FIG. 2.
  • the measuring tip 5 is shown, which is moved with respect to the surface 30.
  • a lifting and lifting of the measuring tip 5 and / or the sample 25 in the Z direction, as indicated by the arrow 32, enables the adhesion measurement at the point 34, a method or excitation in the plane of the sample surface 30 along the arrow 36 the measurement the static and dynamic friction at the point 34 shown,
  • the measurement signals resulting 3A are shown "closer again.
  • the light coming from a laser 36 light beam is reflected from the beam 3 and deflected essentially upwards or downwards on the measuring device or measuring probe 13, the resulting deflection being a measure of the adhesive force.
  • the measurement signal for a friction measurement is shown, in which the scanning probe 1 and the sample 25 are subjected to a vertical relative movement. Again, the light beam 9 of the laser 38 is directed onto the bar 3 and from this on the measuring surface 13 essentially distracted to the left or right. Since the beam 3 is twisted and / or bent by the friction of the measuring tip on the surface 30, the resulting deflection is a measure of the frictional force,
  • FIGS. 4A-4H show the principle of a combination of pulsed force mode / dynamic friction on the basis of a representation of the various beam or cantilever deformations during a period for recording the local material properties at a particular sample location, reference numerals only in FIG. 4A for better clarity are specified.
  • the diagrams shown in the individual figures show the temporal dependency of the measured signals detected, curves 1 and 2 corresponding to the real part x and the imaginary part y of the second measurement signal already mentioned above on the basis of the lateral cantilever deformation, while the curve 3 a shows typical pulsed force mode force signal (first measurement signal),
  • the scanning probe 1 is still so far away from the sample 25 to be examined that there is still no interaction between the scanning probe 1 and the sample 25.
  • the measured signals recorded are therefore zero at this point in time.
  • the scanning probe 1 or the measuring tip 5 comes into contact due to the negative (attractive) force between the scanning probe 1 and the sample 25 Contact with the sample surface 30. This leads to a snap-on peak in the pulsed force measurement signal shown in curve 3 (first measurement signal).
  • the scanning probe 1 is pressed further on the sample 25, which leads to an increase in the first measurement signal (curve 3) according to FIG. 4C.
  • the raster probe 1 is deformed horizontally due to the horizontal modulation. This leads to the detection of a second measurement signal, which is shown broken down into the real part and imaginary part (curve 1 or 2).
  • FIG. 4D illustrates how the raster probe 1 is pressed onto the sample 25 until a certain normal force, to which the control is based, is reached.
  • the positive repulsive force reaches a maximum value, so that both the first measurement signal (curve 3) and the second measurement signal (curves 1 and 2) assume a maximum value.
  • FIG. 4G illustrates how the measuring tip 5 still sticks to the sample 25 and how the negative force required to separate the measuring tip 5 from the sample 25, which is referred to here as the adhesive force, becomes maximum.
  • the measuring tip 5 of the force microscope can follow the excitation modulation, one is in the static friction area. With a further increase in the modulation amplitude, the measuring tip 5 of the force microscope can no longer follow the deflection and sliding friction sets in, the detected amplitude becomes smaller.
  • FIG. 6 shows a process diagram for the combination of pulsed force mode and dynamic friction already shown in FIG. 4, which enables simultaneous measurement of the adhesion and friction or elasticity.
  • the raster probe 1 is moved to a predetermined sample point X, Y with the aid of a control device 100.
  • a periodic modulation voltage is then generated with the aid of a function generator 102, which periodic vertical movement of the scanning probe 1 with a frequency of at least 10 Hz, but in particular 500 Hz - 2 kHz, and an amplitude of at least 1 nm, but in particular 10 - 500 nm , has the consequence.
  • the sample 25 is periodically moved laterally with the aid of a function generator 104, the frequency being at least 500 Hz, in particular 10-100 kHz, and the amplitude being at least 0.1 nm, but in particular 1-30 nm.
  • a modulation piezo element 106 is used for this.
  • the grid sensor 1 is first also moved to a predetermined sample location x, y with the aid of the control device 100. Then, with the help of the function generator 102, a periodic modulation voltage is generated, which causes a periodic vertical movement of the scanning probe 1 with a frequency of at least 10 Hz, in particular, however, 500 Hz - 2 kHz, and an amplitude of at least 1 nm, in particular, however, 10 - 500 nm.
  • This oscillation is modulated with a second frequency of at least 1 kHz, in particular 5 kHz - 1 MHz and a second amplitude of at least 0.1 nm, in particular 1 - 10 nm.
  • the above-mentioned detector device 108 which detects the vertical deformation of the scanning probe 1 In contrast to the above method variant, detects, delivers via line 109 the second measurement signal characterizing the vertical deformation of the raster probe 1 for determining the real and imaginary part of the measurement signal by means of a Fourier transformation.
  • FIG. 7 An illustration of the principle of such a measurement analogous to FIG. 4 can be seen in FIG. 7, but, in contrast to FIG. 4, the sample 25 is not modulated laterally but vertically. It should be noted that the process variants mentioned, i. H. the combination of pulsed force mode / dynamic friction and pulsed force mode / force modulation can also be combined with one another.
  • FIGS. 9A and 9B Corresponding dependencies are shown in FIGS. 9A and 9B.
  • FIG. 9A shows a resultant amplitude-amplitude spectrum (AAS) based on the dependence of the detected amplitude on the modulation amplitude AM
  • FIG. 9B shows a resultant amplitude-phase spectrum (APS) with the dependence of the detected phase on the Modulation amplitude AM shows.
  • AAS resultant amplitude-amplitude spectrum
  • APS resultant amplitude-phase spectrum
  • phase spectrum APS is in the sliding friction range depending on the q factor
  • the qualitative friction and phase contrasts can be assigned to AAS or APS using quantitative friction values and phase shifts.
  • the recorded first measurement signals are transmitted directly to the evaluation device 112 via a line 11. From the force signals recorded, the evaluation device 112 also uses a microcomputer with a suitable computer program to determine the adhesion 114 and the elasticity 116.
  • the raster probe 1 is experienced at another location X, Y of the sample surface 30 with the aid of the control device 100. At this point the measurement described above is repeated. As already described above, the complete sample 25 is scanned in this way, and in addition to the topography, a complete picture of the adhesion, the friction and the elasticity on the sample surface 30 is obtained.
  • the vertical and / or horizontal modulation can be generated not only by a shear piezo element attached under the sample 25, but also, for example, by a scan piezo element.
  • FIG. 10 shows the measurement signals detected at a predetermined sample location due to the lateral and vertical bending and / or twisting of the bar or cantilever 3, which were obtained with the method according to the invention by a combination of pulsed force mode / dynamic friction. After electronic processing and the reading out of certain characteristic measurement values, the desired sample-specific properties can be determined from these measurement signals in the manner described.
  • Curve 200 shows the real part x of a recorded second measurement signal output by lock-in amplifier 110 due to the lateral deformation of the cantilever, while curve 202 represents the imaginary part of this measurement signal.
  • Curve 204 shows the detected pulsed force measurement signal (measurement signal 1) due to the vertical bending of the cantilever 3.
  • 11 shows a corresponding illustration for a combination of pulsed force mode / force modulation.
  • FIG. 12 shows images of a sample surface 30 taken with the method according to the invention, the horizontal excitation frequency of the sample being 93 kHz and the vertical excitation frequency of the " probe being 1 kHz.
  • FIG. 12A shows the sample topography obtained from a force control
  • FIG. 12B the adhesion on the sample surface 30
  • FIG. 12C the friction amplitude on the sample surface 30.
  • FIG. 12D the phase of the measurement signal is shown.
  • FIG. 13 shows a corresponding illustration for a combination of pulsed force mode / force modulation, the vertical excitation frequency of the sample being 230 kHz and the vertical excitation frequency of the probe being 1 kHz,
  • a measurement method for the simultaneous determination of the adhesion, the friction and other material properties, in particular the elasticity and rigidity, and a device for carrying out this method are presented for the first time, with the aid of which it is possible to image entire sample surfaces on an atomic scale.
  • a combination of pulsed force mode / dynamic friction enables, in particular, simultaneous measurement of the adhesion, the friction and other material properties, while a combination of pulsed force mode / force modulation, in addition to the adhesion, also simultaneously provides elastic material properties and possibly also other material properties can be determined.
  • a combination of these two process variants even enables the simultaneous measurement of all material properties mentioned,

Abstract

Es wird ein Verfahren zur ortsaufgelösten simultanen Erfassung der Adhäsion und Reibung sowie gegebenenfalls auch weiterer Materialeigenschaften einer zu untersuchenden Probenoberfläche (30) mittels eines eine Rastersonde (1) umfassenden Rastersondenmikroskops beschrieben. Die Rastersonde (1) und/oder die Probe (25) mit der zu untersuchenden Probenoberfläche (30) werden hierbei so verfahren, bis die Rastersonde (1) an einer zu untersuchenden Stelle (34) der Probenoberfläche (30) auf bestimmte Art und Weise mit dieser wechselwirkt. Die Rastersonde (1) und/oder die Probe (25) werden hierbei einer vertikalen Schwingung unterworfen und es wird ein die Deformation der Rastersonde (1) charakterisierendes erstes Meßsignal aufgenommen. Zudem wird ein die Deformation der Rastersonde (1) charakterisierendes zweites Meßsignal aufgenommen, wobei die Rastersonde (1) und/oder die Probe (25) einer horizontalen und/oder vertikalen Schwingung unterworfen werden. Aus diesen beiden Me?signalen werden nun mittels einer geeigneten Auswerteeinrichtung die gewünschten Materialeigenschaften bestimmt. Zur Erfassung des gesamten zu untersuchenden Oberflächenbereiches wird die Rastersonde (1) und/oder die Probe (25) erneut verfahren und zur Wiederholung des beschriebenen Meßvorgangs an der nächsten zu untersuchenden Stelle auf die oben beschriebene Art und Weise mit der Probenoberfläche (30) in Kontakt gebracht. Es wird auch ein geeignetes Rastersondenmikroskop zur Durchführung dieses Verfahrens beschrieben.

Description

Verfahren und Vorrichtung zur gleichzeitigen Bestimmung der Adhäsion, der Reibung und weiterer Materialeigenschaften einer Probenoberfläche
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur gleichzeitigen Bestimmung zumindest zweier Materialeigenschaften, umfassend die Oberflächentopographie, die Adhäsion, die statische und dynamische Reibung sowie die Elastizität und Steifigkeit, mittels eines eine Rastersonde umfassenden Rastersondenmikroskops. Die Erfindung betrifft auch ein verbessertes Rastersondenmikroskop zur Durchführung des erfindungsgemäßen Verfahrens.
Die Rastersondenmikroskopie ermöglicht die zerstörungsfreie Charakterisierung von Probenoberflächen auf molekularer bzw. atomarer Skala. Neben der Topographie einer zu untersuchenden Oberfläche können auch noch eine Reihe weiterer Oberflächeneigenschaften, wie zum Beispiel die Reibung, die Adhäsion, die Nachgiebigkeit und andere elastische Eigenschaften bestimmt werden.
Zur Klasse der Rastersondenmikroskope gehören beispielsweise das Rastertunnelmikroskop (STM: Scanning lunneling Microscope), Nahfeldmikroskope (SNOM: Scanning Near-Field Optical Microscope) und Kraft- oder Rasterkraftmikroskope (SFM: Scanning Force Microscope bzw. RKM: Rasterkraftmikroskop).
Bezüglich näherer Informationen zur Rastersondenmikroskopie sei an dieser Stelle auf folgende Veröffentlichung von Binnig et ai verwiesen, deren Offenbarungsgehal voll umfänglich in die vorliegende Anmeldung mit aufgenommen wird: Binnig, G., Quate, C.F. und Gerber, C: Atomic Force Microscope, Phys. Rev. Lett., 330 - 933, 56 (1986).
Die Bestimmung von adhäsiven Kräften erfolgt üblicherweise über eine Messung von Kraft-Distanzkurven mittels eines Rasterkraftmikroskops. Bei einer derartigen Messung wird die Rastersonde, d.h. die Meßspitze des Rasterkraftmikroskops, von einem größeren Abstand aus auf die zu untersuchende Probenoberfläche gefahren und anschließend wieder von ihr wegbewegt, wobei die abstandsabhängigen Kräfte über die Auslenkung eines Balkens oder Cantilevers erfaßt werden, an dem die Rastersonde angebracht ist. Nachteilig an dieser Vorgehensweise ist die recht geringe Meßgeschwindigkeit, die zudem mit einer außerordentlich speicherintensiven Bildaufnahme und einer recht zeitintensiven quantitativen Auswertung verbunden ist. Außerdem sind solche Messungen stark fehlerbehaftet. Da die Kraft-Distanzkurven zeilenweise aufgenommen werden, sind zudem Topographieinformationen nur recht aufwendig zugänglich.
Alternativ hierzu können adhäsive Kräfte auch durch eine Messung im sogenannten Pulsed Force Mode (PFM) bestimmt werden. Bei diesem Meßverfahren wird die Oberfläche einer zu untersuchenden Probe in einer Art Kontaktmodus periodisch mit Frequenzen im Kiloherzbereich, vorzugsweise 0,1 - 3 kHz, abgetastet Durch diese Vorgehensweise lassen sich neben der Topographie gleichzeitig auch noch bestimmte Probeneigenschaften ermitteln, wie z. B. die lokale elastische Steifigkeit und die Adhäsion. Die Adhäsionswerte werden on-line gemessen. Die Messung der Adhäsion mittels der Pulsed-Force-Mode-Technik besitztjedoch den Nachteil, daß die Meßgeschwindigkeit an die vertikale Modulationsfrequenz angepaßt werden-" muß und insoweit einer Einschränkung unterliegt. Bei einer Modulationsfrequenz von 1 kHz und einer Bildauflösung von 256 Pixel ergibt sich beispielsweise eine minimale Meßgeschwindigkeit pro Zeile von 0.256 s, um für jedes Bildpixel durch einen Kontakt zwischen der Rastersonde und der Probe einen neuen Meßwert zu bekommen.
Bezüglich näherer Informationen zum Pulsed-Force-Mode sei an dieser Steile auf folgende Veröffentlichungen verwiesen, deren Offenbarungsgehalt voll umfänglich in die vorliegende Anmeldung mit aufgenommen wird: S. Hild, A. Rosa, G. Volswinkler und 0. Marti, "Pulsed Force Mode - a new method for the simultaneous imaging of mechanical and chemical surface properties", Bull. Mic. Soc. Can, 26, 24 (1998) und A. Rosa. E. Weilandt, O. Marti und S. Hild: „The simultanous measurements of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode Operation", Meas. Sei. Technol., 8, 1 (1997).
Neben der Messung von Adhäsionskräften können mit Hilfe der Kraftmikroskopie auch Reibungsmessungen durchgeführt werden. Die Reibungsmessungen erfolgen üblicherweise im Kontaktmodus (SFFM: Scanning Friction Force Microscopy), wobei die laterale Tordierung des Federbalkens oder Cantilevers erfaßt und als Maß für die lokale Reibung verwendet wird. Diese konventionelle Art der Reibungsmessung leidet unter einer geringen Reproduzierbarkeit der Meßergebnisεe. Da in den erfaßten Reibungssignalen auch Topographieeffekte enthalten sind, erhält man zudem keine qualitativen on-line-Ergebnisse. Zum Ausmitteln der unen/vünschten Topographieeffekte ist vor allem bei nichtlinearisierten Scanpiezoelementen eine zeitaufwendige Bildbearbeitung erforderlich, um Hin- und Rückscanbilder zur Deckung zu bringen. Die erhaltenen Ergebnisse können zudem nicht unmittelbar in die darauffolgenden Messungen einfließen. Femer gibt es bisher keine einheitlichen Kalibrierungsstandards zur quantitativen -^
Bestimmung der Reibungskσntraste. Mit dem SFFM-Verfahren ist außerdem nur die Gleitreibung meßbar, so daß es keine Aussage über die Haftreibung ermöglicht. Zur exakten Bestimmung der Gleitreibung in Abhängigkeit von der
ER Z Normalkraft ist eine Meßreihe mit variierenden Normalkräften notwendig. Zudem ist auch eine eventuelle Veränderung oder Beschädigung von weichen scherkraftempfindlichen Proben möglich. Eine Mitschleppen von Probenverunreinigungen kann zu falschen Reibungskontrasten führen, Ferner sind auch klebrige Probensysteme nicht meßbar.
Weitere Informationen zur konventionellen Reibungskraftmikroskopie können beispielsweise den folgenden Veröffentlichungen entnommen werden, deren Offenbarungsgehalt voll umfänglich in die vorliegende Anmeldung mit aufgenommen wird: Mate, CM; McCelland, G.M; Erlandson R.; Chiang S.: Atomic-Scale Friction of a Tungsten tip on a Graphite surface, Phys. Rev. Lett., 59, (1987), 1942; Marti, O.; Coichero, J.; Mylnek, J.: Combined scanning force and friction microscopy σf mica, Nanotechnology, 1, (1990), 141-144; Meyer, G.; Amer, N.M: Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope, Appl. Phys. Lett., (1990), 2098,
Bei einem relativ neuen Verfahren zur Bestimmung der Reibung mittels eines Rastersondenmikroskops wird die zu untersuchende Probe zusätzlich zu einer konventionellen Reibungsmessung im Kontaktmodus (SFFM) mittels eines Scherpiezoelements lateral im 10 kHz-Bereich periodisch senkrecht zur langsamen Scanrichtung moduliert, wobei die Tordierung des Federbalkens im Kontaktmodus mittels der Lock-In-Technik aufgenommen und aus den Meßergebnissen die Haft- und Gleitreibung bestimmt wird. Neben der Topographie können auch noch weitere mechanische Eigenschaften, wie das elastische Verhalten, die (Scher-)Steifιgkeit und bestimmte Relaxationszeiteπ bestimmt werden. Zur exakten Bestimmung der Haft- und Gleitreibung in "^ Abhängigkeit von der Normalkraft ist jedoch eine Meßreihe mit variierenden Normalkräften notwendig. Zudem ist eine eventuelle Veränderung oder Beschädigung von weichen scherkraftempfindlichen Proben möglich. Ferner kann ein Mitschleppen von Probenverunreinigungen zu falschen Reibungskonstanten führen. Außerdem sind auch hiermit klebrige Probensysteme nicht oder nur sehr schwer meßbar.
Nähere Informationen zu dieser dynamischen Reibungskraftmikroskopie können beispielsweise den folgenden beiden Literaturstellen entnommen werden, deren Offenbarungsgehalt voll umfänglich in die vorliegende Anmeldung mit aufgenommen wird: Yamanaka, K. und Tomita, E.: Lateral force modulation atomic force microscope for selective imaging of friction forces, Japanese Journal of Applied Physics, Part 1 (Regulär Papers & Short Notes), Band 34, Nr. 5B, Seiten 2879 - 2882, (Mai 1995); Yamanaka, K.; Takano, H.; Tomita, E. und Fujihira, M.: Lateral force modulation atomic force microscopy of Langmuir-Blodgett film in water, Japanese Journal of Applied Physics, Part 1 (Regulär Papers, Short Notes & Review Papers), Band 35, Nr. 10, Seiten 5421 -5425, (Oktober 1996).
Eine ortsaufgelöste simultane Messung der Adhäsionskräfte und der Reibungskräfte und (weiterer mechanischer Probeneigenschaften) an der Oberfläche einer zu untersuchenden Probe ermöglicht jedoch keines der aus dem Stand der Technik bekannten Meßverfahren. Mit einer einzelnen herkömmlichen Rasterkraftmikroskopie-Messung kann entweder die Adhäsion oder die Reibung der zu untersuchenden Probe ermittelt werden. Die Bestimmung dieser beiden Größen durch eine einzige Messung mit einem Rasterkraftmikroskop ist bisher technisch noch nicht möglich.
Die Aufgabe der vorliegenden Erfindung besteht daher in der Schaffung eines verbesserten Rastersonden-Meßverfahrens, mit dem sich zumindest die -=. Adhäsion und die Reibung gleichzeitig messen lassen. Die genannten Größen sollen hierbei nach Möglichkeit, sei es allein oder gemeinsam, auch noch mit anderen interessierenden Materialeigenschaften, wie z. B. bestimmte ό
elastische Konstanten, umfassend die Adhäsion und die Steifigkeit, und/oder der Topographie, gleichzeitig meßbar sein, wobei der Ausdruck Materialeigenschaften im Rahmen der vorliegenden Beschreibung auch optische Signale einer zu untersuchenden Probe, sowie magnetische oder elektrische Kräfte, Informationen über die Temperaturverteilung und gegebenenfalls auch weitere Meßgrößen umfassen kann. Die Aufgabe besteht zudem in der Schaffung eines geeigneten Rastersondenmikroskops zur Durchführung eines solchen Meßverfahrens.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, bei dem die Rastersonde eines Rastersondenmikroskops und/oder die Probe mit der zu untersuchenden Probenoberfläche in vertikaler und/oder horizontaler Richtung so verfahren wird, daß die Rastersonde an einer zu untersuchenden vorbestimmten Stelle der Probenoberfläche auf bestimmte Art und Weise mit der Probenoberfläche wechselwirkt. Die Rastersonde wird hierbei vorzugsweise mit einer bestimmten Normalkraft mit der Probenoberfläche in Kontakt gebracht. Die Rastersonde und/oder die Probe werden einer vertikalen Schwingung unterworfen und es wird ein die vertikale und/oder laterale Deformation der Rastersonde charakterisierendes erstes Meßsignal aufgenommen. Zudem wird ein die Deformation der Rastersonde charaktersierendes zweites Meßsignal aufgenommen, wobei die Rastersonde und/oder die Probe einer horizontalen und/oder vertikalen Schwingung unterworfen wird. Die beiden Meßsignale werden anschließend zur Bestimmung der gewünschten Probeneigenschaften ausgewertet. Das erste Meßsignal dient hierbei zur Bestimmung der Adhäsion, während aus dem zweiten Meßsignal auf die nachstehend noch beschriebene Art und Weise die Reibung ermittelt wird. Um eine vollständige Information über den zu -*- untersuchenden Bereich der Probenoberfläche zu erhalten, wird die Rastersonde und/oder die Probe erneut verfahren, um die Rastersonde an der nächsten zu untersuchenden Stelle auf die oben beschriebene Art und Weise mit der Probenoberfläche in Kontakt zu bringen, an der der zuvor beschriebene Meßvorgang wiederholt wird. Auf diese Art und Weise wird der gesamte zu untersuchende Oberflächenbereich zeilenweise abgetastet, so wie dies bei Fachleuten auf diesem Gebiet bekannt ist.
Hierdurch erhält man nicht nur ein topographisches Abbild der Probe, sondern es ist erstmals auch möglich, mit ein und derselben Messung lokal die Reibung, die Adhäsion und bestimmte elastische Eigenschaften einer Probe auf molekularer Ebene bis hinunter auf die atomare Ebene zu bestimmen. Die Reibung kann hierbei in Abhängigkeit von verschiedenen Normalkräften gleichzeitig bestimmt werden, so daß Meßreihen mit variierenden Normalkräften auf eine einzige Messung reduziert werden. Dies ist nicht nur mit einer deutlich geringeren Probenbelastung durch das Abrastern verbunden, sondern ermöglicht auf Grund der zeitlich gleichen Umgebungsbedingungen (Temperatur, Luftfeuchtigkeit, usw., Probenaltern) auch eine bessere Vergleichbarkeit der ermittelten Reibungswerte, Durch ein Variieren der Normalkraft ist die Kontrolle bzw. Bestimmung der kritischen Normalkraft, ab der die Probe bei der Reibungsmessung verändert oder zerstört wird, möglich. Zudem ist auch die eventuell unterschiedliche Abhängigkeit der Reibung von der Adhäsion beim Annähern oder Wegziehen des Federbalkens oder Cantilevers experimentell zugänglich. Durch das erfindungsgemäße Verfahren können auch Probensysteme, wie z.B. stark adhäsive oder klebrige Polymersysteme, die im Kontaktmodus nicht abgerastet werden können und somit einer herkömmlichen normalen oder dynamischen Reibungsmessung nicht oder nur schwer zugänglich sind, durch die sensible Abtastung des Pulsed-Force-Mode auf Reibung untersucht werden. Durch die punktuelle Abrasterung wird zudem auch das Mitschleifec . von Schmutz weitgehend vermieden, so daß falsche Reibungskontraste durch eine Wechselwirkung zwischen der Rastersonde und dem Schmutz minimiert werden. Bei dem erfindungsgemäßen Meßverfahren wird die Rastersonde und/oder die Probe vorzugsweise zumindest einer periodischen Schwingung unterworfen, wobei die Schwingungs- oder Modulationsrichtuπg insbesondere senkrecht oder parallel zur Abtast- oder Scanrichtung gewählt wird. Es sei jedoch darauf hingewiesen, daß auch beliebige Schwingungsrichtungen denkbar sind. Zur Bestimmung der dynamischen Reibung wird hierbei üblicherweise lateral parallel zur schnellen Scanrichtung moduliert, was zu einer Verbiegung und Torsion des Cantilevers führt. Die Modulation kann jedoch auch parallel zur langsamen Scanrichtung erfolgen, was eine Biegeschwingung des Cantilevers bewirkt. Zudem kann analog zur Bestimmung der dynamischen Reibung auch eine vertikale Probenmodulation, d.h. parallel zur Pulsed-Force-Mode-Modulation, durchgeführt werden, wobei beispielsweise über einen Lock-In-Verstärker die vertikale Deformation der Rastersonde ausgewertet wird (Amplitude und Phasenverschiebung). Hierdurch sind Aussagen über das mechanische Verhalten der Probe, insbesondere über deren Elastizität und Steifigkeit möglich.
Die Rastersonde und/oder der Probe wird in vertikaler Richtung vorteiihafterweise mit einer Frequenz von zumindest 10 Hz und einer Amplitude von zumindest 1 nm angeregt, wobei der bevorzugte Frequenz- und Amplitudenbereich 500 Hz - 2 kHz bzw. 10 - 500 nm beträgt.
Der vertikalen Schwingung der Probe und/oder der Sonde wird vorzugsweise zumindest eine zweite Schwingung mit einer Frequenz von zumindest 1 kHz* und einer Amplitude von zumindest 0,1 nm, insbesondere jedoch mit einer Frequenz von 5 kHz - Mhz und einer Amplitude von 1 - 10 nm überlagert. Es wird vorteilhafterweise eine horizontale Schwingung mit einer Frequenz von zumindest 500 Hz, insbesondere jedoch 10 - 100 kHz, und einer Amplitude von zumindest 0,1 nm, insbesondere jedoch 1 - 30 nm, verwendet.
Bei einem bevorzugten Ausführungsbeispiel wird das zweite Meßsignal auf die nachstehend noch ausführlich beschriebene Art und Weise mittels eines Lock-In-Verstärkers ausgewertet, von dem über eine Fourier-Transformation des Meßsignals die Reibungsamplitude und die Phase bestimmt wird, Als Rastersonde wird insbesondere die Spitze eines Kraftmikroskops und/oder eines optischen Nahfeldmikroskops mit dem auch optische Signale einer zu untersuchenden Probe erfaßt werden können verwendet, wobei die Spitze des Kraftmikroskops und die Spitze des optischen Nahfeldmikroskops auch in einer gemeinsamen Rastersonde integriert sein können.
Ein zur Durchführung dieses erfindungsgemäßen Verfahrens geeignetes Rastersondenmikroskop mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen umfaßt erfindungsgemäß zusätzlich noch eine Einrichtung zum vertikalen und/oder horizontalen Verfahren der Probe, eine Einrichtung zur Erfassung der Probenbewegung und eine Einrichtung zur Erfassung der vertikalen und/oder lateralen Deformation der Rastersonde. Die Einrichtungen zum Verfahren der Rastersonde bzw. der Probe sind hierbei so gestaltet, daß die Rastersonde und die Probenoberfläche durch sie so in Kontakt bringbar sind oder in Kontakt gebracht werden, daß sie auf bestimmte Art und Weise miteinander wechselwirken, was insbesondere einen Kontakt mit einer bestimmten Normalkraft umfaßt.
In einer bevorzugten Ausführungsform umfassen die Einrichtungen zum Verfahren der Rastersonde bzw. der Probe zumindest ein Piezoelement, wobei vorzugsweise für jede dieser Einrichtungen zumindest ein Piezoelement vorgesehen ist. lö
Die Einrichtungen zum Verfahren der Rastersonde bzw. der Probe, insbesondere die genannten Piezoelemente, werden vorzugsweise periodisch angeregt bzw. moduliert, wobei die Art der Anregung oder Modulation bereits der obigen Beschreibung des erfindungsgemäßen Verfahrens zu entnehmen ist.
Die Einrichtung zur Erfassung der vertikalen und/oder lateralen Deformation der Rastersonde kann in einer bevorzugten konstruktiven Ausgestaltung einen beispielsweise durch eine entsprechende Beschichtung auf die Rastersonde angebrachten Spiegel umfassen, der zur Ablenkung eines einfallenden Laserstrahls bestimmt ist, wobei die sich ergebende Ablenkung als Maß für die vorhandene Deformation der Rastersonde dient. Entsprechende Informationen können jedoch beispielsweise auch kapazitiv, interferometrisch oder piezoelektrisch gewonnnen werden,
Das erfindungsgemäße Rastersondenmikroskop umfaßt vorzugsweise eine Auswerteeinrichtung zur gleichzeitigen Bestimmung zumindest zweier Materialeigenschaften, umfassend die Adhäsion, die statische und dynamische Reibung, die Oberflächentopographie sowie die Elastizität und Steifigkeit, durch Auswertung der erfaßten Deformation der Rastersonde. Diese Auswerteeinrichtung kann insbesondere einen Lock-In-Verstärker und einen Mikrocomputer zur Auswertung der Lock-In-Signale umfassen.
Die Rastersonde des erfindungsgemäßen Rastersondenmikroskops ist vorzugsweise die Spitze eines Kraftmikroskops und/oder eines optischen Nahfeldmikroskops, wobei die Spitze des Kraftmikroskops und die Spitze de - optischen Nahfeldmikroskops auch in einer gemeinsamen Rastersonde integriert sein können. Weitere Merkmale und Vorteile des erfindungsgemäßen Verfahrens und des erfindungsgemäßen Rastersondenmikroskops zur Durchführung dieses Verfahrens ergeben sich nicht nur aus den zugehörigen Ansprüchen - für sich und/oder in Kombination - sondern auch aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele in Verbindung mit den zugehörigen Zeichnungen. In den Zeichnungen zeigen:
Fig. 1 den prinzipiellen Aufbau eines erfindungsgemäßen
Rastersondenmikroskops;
Fig, 2 das für die Ableitung der Kräfte zugrundegelegte
Koordinatensystem;
Fig. 3A die Balkenverbiegung bei vertikaler Annäherung an eine zu untersuchende Probenoberfläche;
Fig. 3B die Balkenverbiegung bei Verfahren der zu untersuchenden Probenoberfläche relativ zu Kraftfeldspitze;
Fig. 4A das Prinzip einer Kombination Pulsed-Force-Mode/Dynamische - 4H Reibung;
Fig. 5 in schematischer Darstellung die zeitliche Abhängigkeit eines
Meßsignals f (t) zur Veranschauiichung einer dynamischen Reibungsmessung;
Fig. 6 ein Ablaufdiagramm für eine erfindungsgemäße Messung für die-
Kombination Pulsed-Force-Mode/Dynamische Reibung gemäß Fig. 4; Fig. 7A das Prinzip einer Kombination Pulsed-Force-Mode/Force - 7H Modulation;
Fig. 8 ein Ablaufdiagramm für eine erfindungsgemäße Messung für die
Kombination Pulsed-Force-Mode/Force Modulation gemäß Fig. 7;
Fig. 9A theoretisch berechnete Reibungsamplituden- und
- 9B Phasenabhängigkeiten des Cantilevers von den
Modulationsamplituden AM eines Anregungsscherpiezoelements;
Fig, 10 Meßsignale des neuartigen Rastersondenmikroskops aufgrund einer lateralen und vertikalen Verbiegung des Cantilevers (Kombination Pulsed Force Mode/Dynamische Reibung);
Fig. 11 Meßsignale des neuartigen Rastersondenmikroskops aufgrund einer vertikalen Verbiegung des Cantilevers (Kombination Pulsed Force Mode/Force Modulation);
Fig. 12A eine Abbildung der Topographie, der Adhäsion und der Reibung
- 12D auf einer Probenoberfläche, untersucht mit einem erfindungsgemäßen Rastersondenmikroskop für eine Kombination Pulsed Force Mode/Dynamische Reibung; und
Fig. 13A eine Abbildung der Topographie, der Adhäsion, der Reibung auf - 13D einer Probenoberfläche, untersucht mit einem erfindungsgemäßen Rastersondenmikroskop für eine Kombination Pulsed Force Mode/Force Modulation. Das in Fig. 1 dargestellte Rastersondenmikroskop umfaßt eine Rastersonde 1 mit einem Balken oder Cantilever 3 und einer Meßspitze 5. Die Meßspit∑e 5 kann beispielsweise aus Silizum oder Siliziumnitrid, beispielsweise Si3N hergestellt sein, Die vertikale Verschiebung der Rastersonde 1 wird mit Hilfe eines Piezoelements 7 vorgenommen. Die Messung der Deformation des Balkens 3, die beim vertikalen Verfahren ein Maß für die Adhäsionskräfte ist, wird mittels eines nicht näher dargestellten Laseraufbaus ermittelt. Hierfür wird das Licht 9 einer nicht dargestellten Laserlichtquelle auf den Balken 3 projiziert, von dem es so reflektiert wird, daß der reflektierte Strahl 11 auf eine Meßeinrichtung 13 trifft, die beispielsweise die lichtempfindliche Schicht einer segmentierten Photodiode umfassen kann.
Je nach Stellung des Balkens 3 wird der Lichtstrahl 11 aus der eingezeichneten Null-Position nach oben oder unten bzw. links oder rechts abgelenkt und durch die lichtempfindliche Schicht der Meßeinrichtung 13 in ein elektrisches Signal umgewandelt. Das sich bei einer in horizontalen Richtung erfolgenden Relativbewegung zwischen dem Balken 3 bzw. der Meßspitze 5 und der Probenoberfläche 30 ergebende elektrische Meßsignal, das gemäß Fig. 3B durch eine im wesentlichen seitlich erfolgende Ablenkung des reflektierten Lichtstrahls 11 erzeugt und nachstehend als zweites Meßsignal bezeichnet wird, wird über eine Leitung 15 an einen Lock-In- Verstärker 17 übermittelt, in dem eine Fourier-Transformation durchgeführt und der Realteil und der Imaginärteil des Signals bestimmt wird, aus denen auf die nachstehend noch beschriebene Art und Weise die gewünschte Reibung ermittelt werden kann. Das sich bei einer vertikalen Relativbewegung zwischen der Meßspitze 5 und der Probβnoberflächβ 30 ergebende elektrische Meßsignal (das sogenannte erste Meßsignal, bei dem der reflektierte Lichtstrahl gemäß Fig. 3A im wesentlichen noch oben oder unten abgelenkt wird), wird zur Bestimmung der Adhäsion über eine nicht dargestellte Leitung direkt an eine ebenfalls nicht dargestellte Auswerteeinrichtung 112 (siehe Fig, 6) übermittelt.
Es sei bemerkt, daß die Erfassung der Deformation des Balkens 3 durch ein Lichtzeigeprinzip der dargestellten Art nur eine mögliche Detektionsart ist, und daß für Fachleute auf diesem Gebiet prinzipiell auch andere Detektionsmöglichkeiten, wie z.B. kapazitive, interferometrische oder piezoelektrische Dektektionsmöglichkeiten, denkbar sind,
Neben der vertikalen Verfahrbarkeit ist am Probentisch 23, der die Probe 25 trägt, erfindungsgemäß ein (nicht dargestelltes) Piezoelement angeordnet, mit dem der Probentisch 23 und damit auch die Probe 25, wie oben bereits erwähnt wurde, zur Ermittlung der statischen und dynamischen Reibung auch lateral verfahren oder angeregt werden kann. Der Meßbalken 3 der Kraftspitze 5 wird bei einer derartigen Messung, wie gestrichen dargestellt, tordiert und/oder verbogen, wobei die auftretende Torsion und/oder Verbiegung ein Maß für die vorhandenen Reibungskräfte ist.
In Fig. 2 ist nochmals das Koordinatensystem verdeutlicht. Dargestellt ist die Meßspitze 5, die bezüglich der Oberfläche 30 verfahren wird. Ein An- und Abheben der Meßspitze 5 und/oder der Probe 25 in Z-Richtung, wie mit dem Pfeil 32 angedeutet, ermöglicht die Adhäsionsmessung an der Stelle 34, ein Verfahren oder Anregen in der Ebene der Probenoberfläche 30 entlang des Pfeils 36 die Messung der statischen und dynamischen Reibung an der eingezeichneten Stelle 34,
In den Figuren 3A und 3B sind die sich ergebenden Meßsignale noch einmal" näher dargestellt. Beim vertikalen Verfahren in Z-Richtung zur Messung der Adhäsion wird der Balken 3 gemäß Fig. 3A in Z-Richtung verbogen. Der von einem Laser 36 kommende Lichtstrahl wird von dem Balken 3 reflektiert und auf der Meßeinrichtung oder Meßsonde 13 im wesentlichen nach oben oder unten abgelenkt, wobei die sich ergebende Ablenkung ein Maß für die Adhäsionskraft ist. In Fig. 3B ist das Meßsignal für eine Reibungsmessung dargestellt, bei der die Rastersonde 1 und die Probe 25 bei einer vertikalen Relativbewegung unterworfen werden, Wiederum wird der Lichtstrahl 9 des Lasers 38 auf den Balken 3 gelenkt und von diesem auf der Meßfläche 13 im wesentlichen nach links oder rechts abgelenkt. Da der Balken 3 durch die Reibung der Meßspitze auf der Oberfläche 30 tordiert und/oder verbogen wird, ist die sich ergebende Ablenkung ein Maß für die Reibungskraft,
Die Figuren 4A - 4H zeigen anhand einer Darstellung der verschiedenen Balken- oder Cantiieverdeformationen während einer Periode zur Erfassung der lokalen Materialeigenschaften an einer bestimmten Probenstelle das Prinzip einer Kombination Pulsed-Force-Mode/dynamische Reibung, wobei zur besseren Übersichtlichkeit nur in Fig. 4A Bezugszeichen angegeben sind. Die in den einzelnen Figuren dargestellten Diagramme zeigen hierbei die zeitliche Abhängigkeit der erfaßten Meßsignale, wobei die Kurven 1 und 2 dem Realteil x bzw. dem Imaginärteil y des oben bereits en/vähnten zweiten Meßsignals auf Grund der lateralen Cantileverdeformation entsprechen, während die Kurve 3 ein typisches Pulsed-Force-Mode-Kraftsignal (erstes Meßsignal) zeigt,
In Fig, 4A ist die Rastersonde 1 noch so weit von der zu untersuchenden Probe 25 entfernt, daß noch keine Wechselwirkung zwischen der Rastersonde 1 und der Probe 25 vorhanden ist. Die erfaßten Meßsignale sind zu diesem Zeitpunkt daher gleich Null.
Bei der in Fig. 4B dargestellten weiteren Annäherung der Rastersonde 1 an die Probe 25 gerät die Rastersonde 1 bzw. die Meßspitze 5 auf Grund der negativen (attraktiven) Kraft zwischen der Rastersonde 1 und der Probe 25 in Kontakt mit der Probenoberfläche 30. Dies führt zu einem Anschnappeak in dem in Kurve 3 dargestellten Pulsed-Force-Meßsignal (erstes Meßsignal).
Die Rastersonde 1 wird weiter auf die Probe 25 gedrückt, was gemäß Fig, 4C zu einem Anstieg des ersten Meßsignals (Kurve 3) führt. Gleichzeitig wird die Rastersonde 1 auf Grund der horizontalen Modulation horizontal deformiert. Dies führt zur Detektion eines zweiten Meßsignals, das in Realteil und Imaginärteil aufgegliedert dargestellt ist (Kurve 1 bzw. 2).
Die Fig, 4D veranschaulicht, wie die Rastersonde 1 auf die Probe 25 gedrückt wird, bis eine bestimmte Normalkraft, auf die geregelt wird, erreicht ist. Die positive repulsive Kraft erreicht einen maximalen Wert, so daß sowohl das erste Meßsignal (Kurve 3) als auch das zweite Meßsignal (Kurven 1 und 2) einen maximalen Wert annehmen.
In Fig, 4E wird die Rastersonde 1 wieder von der Probe 25 zurückgezogen, so daß die detektierten Meßsignale kleiner werden,
Bei einem weiteren Zurückziehen der Rastersonde 1 von der Probenoberfläche 30 werden die Meß- bzw. Kraftsignale noch kleiner (siehe Fig. 4F) und man gerät wieder in den attraktiven Bereich auf Grund der adhäsiven Wechselwirkung zwischen der Meßspitze 5 und der Probe 25.
Figur 4G veranschaulicht, wie die Meßspitze 5 noch an der Probe 25 kleben bleibt und wie die zur Trennung der Meßspitze 5 von der Probe 25 benötigte negative Kraft, die hier als Adhäsionskraft bezeichnet wird, maximal wird.
Bei einem weiteren Wegziehen der Meßspitze 5 von der Probenoberfläche 30 gerät die Meßspitze 5 schließlich außer Kontakt mit der Probenoberfläche 30 und schwingt aus, was sich durch ein Ausschwingen im Pulsed-Force-Mode- Meßsignal 3 bemerkbar macht (siehe Fig, 4H). Eine neue Periode beginnt
Fig. 5 veranschaulicht das Prinzip einer dynamischen Reibungsmessung. In jeder Modulationsperiode wird eine komplette Reibungsschleife ausgeführt. Bei einer gewissen Auslenkung kann die Meßspitze 5 des Kraftmikroskops der Anregungsmodulation folgen, man befindet sich im Haftreibungsbereich. Bei einer weiteren Erhöhung der Modulationsamplitude kann die Meßspitze 5 des Kraftmikroskops der Auslenkung nicht mehr folgen und es setzt Gleitreibung ein, die detektierte Amplitude wird kleiner.
Die Figur 6 zeigt ein Verfahrensdiagramm für die in Fig. 4 bereits dargestellte Kombination aus Pulsed-Force-Mode und dynamische Reibung, die eine gleichzeitige Messung der Adhäsion und Reibung bzw. Elastizität ermöglicht. Zunächst wird die Rastersonde 1 mit Hilfe einer Steuerungseinrichtung 100 an eine vorbestimmte Probenstelle X, Y verfahren. Sodann wird mit Hilfe eines Funktionsgenerators 102 eine periodische Modulationsspannung generiert, die eine periodische vertikale Bewegung der Rastersonde 1 mit einer Frequenz von zumindest 10 Hz, insbesondere jedoch 500 Hz - 2 kHz, und einer Amplitude von zumindest 1 nm, insbesondere jedoch 10 - 500 nm, zur Folge hat. Zusätzlich zur vertikal-periodischen Bewegung wird mit Hilfe eines Funktionsgenerators 104 die Probe 25 periodisch lateral verfahren, wobei die Frequenz zumindest 500 Hz, insbesondere 10 - 100 kHz, und die Amplitude zumindest 0, 1 nm, insbesondere jedoch 1 - 30 nm beträgt. Hierfür wird ein Modulationspiezoelement 106 verwendet. Die oben bereits dargestellte Detektoreinrichtung 108, die sowohl die vertikale Deformation wie die Tordierung und/oder Verbiegung der Rastersonde 1 erfaßt, liefert über eine .. Leitung 109 an einen Lock-In-Verstärker 110 das oben beschriebene zweite Meßsignal, das einer Fourier-Transformation unterworfen und in Realteil x und Imaginärteil y der Deformation der Rastersonde aufgespalten wird. I S
Bei einer ebenfalls möglichen Kombination Pulsed-Force-Mode/Force- Modulation, für die in Fig. 8 ein entsprechendes Ablaufdiagramm dargestellt ist, wird die Rasterso de 1 zunächst ebenfalls mit Hilfe der Steuerungseinrichtung 100 an eine vorbestimmte Probenstelle x, y verfahren. Sodann wird mit Hilfe des Funktionsgenerators 102 wiederum eine periodische Moduiationsspannung generiert, die eine periodisch vertikale Bewegung der Rastersonde 1 mit einer Frequenz von zumindest 10 Hz, insbesondere jedoch 500 Hz - 2 kHz, und einer Amplitude von zumindest 1 nm, insbesondere jedoch 10 - 500 nm, zur Folge hat. Diese Schwingung wird mit einer zweiten Frequenz von zumindest 1 kHz, insbesondere 5 kHz - 1 Mhz und einer zweiten Amplitude von zumindest 0,1 nm, insbesondere 1 - 10 nm moduliert, Die oben bereits erwähnte Detektoreinrichtung 108, die die vertikale Deformation der Rastersonde 1 erfaßt, liefert über die Leitung 109 im Unterschied zur obigen Verfahrensvariante das die vertikale Deformation der Rastersonde 1 charakterisierende zweite Meßsignal zur Bestimmung des Real- und Imaginärteils des Meßsignals mittels einer Fourier-Transformation.
Eine zu Fig. 4 analoge Darstellung des Prinzips einer solchen Messung ist Fig. 7 zu entnehmen, wobei jedoch im Unterschied zu Fig, 4 die Probe 25 nicht lateral sondern vertikal moduliert wird. Es sei darauf hingewiesen, daß die erwähnten Verfahrensvarianten, d. h. die Kombination Pulsed-Force- Mode/Dynamische Reibung und Pulsed Force Mode/Force Modulation, auch miteinander kombinierbar sind.
Bei der oben beschriebenen Kombination Pulsed-Force-Mode/Dynamische Reibung wird aus dem Real- und Imaginärteil x bzw. y des erfaßten lateralen Kraftsignals wird mittels einer Bildbearbeitungseinrichtung 118 die Reibungsamplitude r = (x2 + y2) % und die Phasenverschiebung φ = arctan (x/y) des Cantilevers 3 bezüglich der Modulationsamplitude des Scherpiezoelementes berechnet.
Entsprechende Abhängigkeiten sind in den Figuren 9A und 9B dargestellt. Fig. 9A zeigt anhand der Abhängigkeit der detektierten Amplitude von der Modulationsamplitude AM ein sich ergebendes Amplituden - Amplituden - Spektrum (AAS), während die Fig. 9B ein sich ergebendes Amplituden - Phasen -Spektrum (APS) mit der Abhängigkeit der detektierten Phase von der Modulationsamplitude AM zeigt. Für sehr hohe Modulations- oder Anregungsamplituden A gilt
lim r - 4 . pG / π.
AM → ∞
Im Phasenspektrum APS ist im Gleitreibungsbereich je nach q-Faktor
(q = FG / FH ) eine deutliche Phasenverschiebung zu erwarten, wobei FG die
Gleitreibung und FH dle Haftreibung Ist.
Die Reibungskoeffizienten μ werden über μ = Fσ / FN ermittelt, wobei man die Normalkraft F aus dem kalibrierten Pulsed-Force-Mode-Meßsignal erhält, auf das geregelt wird. Analoges gilt für das APS.
Führt man dynamische Reibungsmessungen mit konstanten Modulationsamplituden A durch, so können den qualitativen Reibungs- und Phasenkontrasten mittels AAS bzw. APS quantitative Reibungswerte und Phasenverschiebungen zugeordnet werden.
Die aufgenommenen ersten Meßsignale werden über eine Leitung 1 11 direkt an die Auswerteeinrichtung 112 übermittelt. Aus den aufgenommenen Kraftsignalen werden durch die Auswerteinrichtung 112 mittels eines Mikrocomputers mit einem geeigneten Rechnerprogramm auch die Adhäsion 1 14 und die Elastizität 116 bestimmt.
Wurde dies für eine bestimmte XY-Stelle der Probe durchgeführt, so wird mit Hilfe der Steuerungseinrichtung 100 die Rastersonde 1 an eine andere Stelle X, Y der Probenoberfläche 30 erfahren. An dieser Stelle wird die zuvor beschriebene Messung wiederholt. Wie oben bereits beschrieben wurde, wird auf diese Art und Weise die komplette Probe 25 abgerastert, wobei man neben der Topographie ein vollständiges Bild der Adhäsion, der Reibung und der Elastizität auf der Probenoberfläche 30 erhält.
Die vertikale und/oder horizontale Modulation kann nicht nur durch ein unter der Probe 25 angebrachtes Scherpiezoelement, sondern beispielsweise auch durch ein Scanpiezoelement erzeugt werden.
In Fig, 10 sind die an einer vorbestimmten Probenstelle detektierten Meßsignale auf Grund der lateralen und vertikalen Verbiegung und/oder Tordierung des Balkens oder Cantilevers 3 dargestellt, die mit dem erfindungsgemäßen Verfahren durch eine Kombination Pulsed Force Mode/Dynamische Reibung erhalten wurden. Nach einer elektronischen Bearbeitung und der Auslesung bestimmter charakteristischer Meßwerte lassen sich aus diesen Meßsignalen auf die beschriebene Art und Weise die gewünschten probenspezifischen Eigenschaften bestimmen. Die Kurve 200 zeigt den von dem Lock-In-Verstärker 110 ausgegebenen Realteil x eines aufgenommenen zweiten Meßsignals auf Grund der lateralen Deformation des Cantilevers, während die Kurve 202 den Imaginärteil dieses Meßsignals darstellt. Die Kurve 204 zeigt das detektierte Pulsed-Force-Meßsignal (das Meßsignal 1 ) auf Grund der vertikalen Verbiegung des Cantilevers 3. Fig. 11 zeigt eine entsprechende Darstellung für eine Kombination Pulsed Force Mode/Force Modulation.
In Fig. 12 sind mit dem erfindungsgemäßen Verfahren aufgenommene Bilder einer Probenoberfläche 30 dargestellt, wobei die horizontale Anregungsfrequenz der Probe 93 kHz und die vertikale Anregungsfrequenz der "Sonde 1 kHz beträgt Fig. 12A zeigt die Probentopographie, die aus einer Kraftregelung erhalten wird, Fig. 12B die Adhäsion auf der Probenoberfläche 30 und Fig. 12C die Reibungsamplitude auf der Probenoberfläche 30. In Fig. 12D schließlich ist die Phase des Meßsignaies dargestellt.
Fig. 13 zeigt eine entsprechende Darstellung für eine Kombination Pulsed Force Mode/Force Modulation, wöbe die vertikale Anregungsfrequenz der Probe 230 kHz und die vertikale Anregungsfrequenz der Sonde 1 kHz beträgt,
Mit der vorliegenden Erfindung wird erstmals ein Meßverfahren zur gleichzeitigen Bestimmung der Adhäsion, der Reibung und weiterer Materialeigenschaften, insbesondere die Elastizität und Steifigkeit, und eine Vorrichtung zur Durchführung dieses Verfahrens vorgestellt, mit deren Hilfe die Abbildung gesamter Probenoberflächen im atomaren Maßstab möglich ist.
Eine Kombination Pulsed-Force-Mode/Dynamische Reibung ermöglicht hierbei insbesondere eine gleichzeitige Messung der Adhäsion, der Reibung und weiterer Materialeigenschaften, während durch eine Kombination Pulsed- Force-Mode/Force-Modulation neben der Adhäsion gleichzeitig auch noch elastische Materialeigenschaften und gegebenenfalls auch noch andere Materialeigenschaften bestimmbar sind. Eine Kombination dieser beiden Verfahrensvarianten ermöglicht sogar die gleichzeitige Messung aller genannten Materiaieigenschaften,

Claims

Patentansprüche
1. Rastersondenmikroskop zur Untersuchung von Probenoberflächen mit: einer Rastersonde (1 ); einer Halteeinrichtung (23) für eine Probe (25) mit der zu untersuchenden Probenoberfläche (30); einer Einrichtung zum Verfahren der Rastersonde (1 ) bezüglich der Probenoberfläche (30); und einer Einrichtung zur Erfassung der Bewegung der Rastersonde
(i ); dadurch gekennzeichnet, daß das Rastersondenmikroskop des weiteren eine Einrichtung zum Verfahren der Probe (25), eine Einrichtung zur Erfassung der Probenbewegung und eine Einrichtung zur Erfassung der vertikalen und/oder lateralen Deformation der Rastersonde (1 ) umfaßt, wobei die Rastersσnde (1 ) und die Probenoberfläche (30) durch die Einrichtungen zum Verfahren der Rastersonde (1 ) und/oder der Probe (25) so in Kontakt bringbar sind oder in Kontakt gebracht werden, daß sie auf bestimmte Art und Weise miteinander wechselwirken.
2. Rastersondenmikroskop nach Anspruch 1 , dadurch gekennzeichnet, daß die Einrichtungen zum Verfahren der Rastersonde (1 ) und/oder der Probe (25) zumindest ein erstes Piezoelement umfassen.
3. Rastersondenmikroskop nach Anspruch 2, dadurch gekennzeichnet, daß jede der genannten Einrichtungen zumindest ein Piezoelement umfaßt,
4. Rastersondenmikroskop nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Einrichtungen zum Verfahren 6er Rastersonde (1 ) und/oder der Probe (25) periodisch angeregt bzw. moduliert werden.
5. Rastersondenmikroskop nach Anspruch 4, dadurch gekennzeichnet, daß die Anregung parallel oder senkrecht zur Abtast- oder Scanrichtung erfolgt.
6. Rastersendenmikroskop nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß eine Vertikalbewegung der Rastersonde (1 ) und/oder der Probe (25) mit einer ersten Frequenz von zumindest 10 Hz und einer ersten Amplitude von zumindest 1 nm angeregt wird.
7. Rastersondenmikroskop nach Anspruch 6, dadurch gekennzeichnet, daß die Frequenz 500 Hz - 2 kHz und die Amplitude 10 - 500 nm beträgt,
8. Rastersondenmikroskop nach Anspruch 6 oder 7, dadurch gekennzeichnet daß die Vertikalbewegung der Rastersonde (1 ) und/oder der Probe (25) zusätzlich zumindest mit einer zweiten Frequenz von zumindest 1 kHz und einer zweiten Amplitude von zumindest 0,1 nm angeregt oder moduliert wird.
9. Rastersondenmikroskop nach Anspruch 8, dadurch gekennzeichnet, daß die Frequenz 5 kHz - 1 Mhz und die Amplitude 1 - 10 nm beträgt,
10. Rastersondenmikroskop nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, daß eine Horizontalbewegung der Rastersonde (1 ) und/oder der Probe (25) mit einer Frequenz von zumindest 500 Hz und einer Amplitude von zumindest 0,1 nm angeregt wird.
11. Rastersondenmikroskop nach Anspruch 10, dadurch gekennzeichnet, daß die Frequenz 10 - 100 kHz und die Amplitude 1 - 30 nm beträgt.
12. Rastersondenmikroskop nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Auswerteeinrichtung (17) zur gleichzeitigen Bestimmung zumindest zweier Materialeigenschafteπ, umfassend die Adhäsion, die statische und dynamische Reibung, die Oberflächentopographie sowie die Elastizität und Steifigkeit, durch Auswertung der erfaßten Deformation der Rastersonde (1 ).
13. Rastersondenmikroskop nach Anspruch 12, dadurch gekennzeichnet, daß die Auswerteeinrichtung einen Lock-In-Verstärker (17) und/oder einen Mikrocomputer (112) umfaßt.
14. Rastersondenmikroskop nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Rastersonde (1 ) eine Spitze (5) eines Kraftmikroskops und/oder eines optischen Nahfeldmikroskops ist. , Verfahren zur gleichzeitigen Bestimmung zumindest zweier Materialeigenschaften, umfassend die Adhäsion, die statische und dynamische Reibung, die Oberflächentopographie sowie die Elastizität und Steifigkeit einer zu untersuchenden Probenoberfläche (25), mittels eines eine Rastersonde (1 ) umfassenden Rastersondeπmikroskops mit folgenden Verfahrensschritten;
15.1 Verfahren der Rastersonde (1 ) und/oder der Probe (25) mit der zu untersuchenden Probenoberfläche (30) bis die Rastersonde (1 ) an einer zu untersuchenden vorbestimmten Stelle (34) der Probenoberfläche (30) auf bestimmte Art und Weise mit der Probenoberfläche (30) wechselwirkt, wobei die Rastersonde (1 ) und/oder die Probe (25) einer vertikalen Schwingung unterworfen wird;
15.2 Aufnehmen eines die Deformation der Rastersonde (1 ) charakterisierenden ersten Meßsignals;
15.3 Aufnehmen eines die Deformation der Rastersonde (1 ) charakterisierenden zweiten Meßsignals, wobei die Rastersonde (1 ) und/oder die Probe (25) einer horizontalen und/oder vertikalen Schwingung unterworfen wird;
15.4 Bestimmung der gewünschten Materialeigenschaften aus den beiden Meßsignalen; und
15.5 Abtasten des zu untersuchenden Bereichs der Probenoberfläche (30) durch Rückkehr zu dem Verfahrensschritt 15.1 ,
, Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die Rastersonde (1 ) und/oder die Probe (25) einer periodischen Schwingung unterworfen wird.
17, Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß die Schwingungsrichtung senkrecht oder parallel zur Abtast- oder Scanrichtung gewählt wird.
18. Verfahren nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, daß die vertikale Schwingung oder die vertikalen Schwingungen eine Frequenz von zumindest 10 Hz und eine Amplitude von zumindest 1 nm besitzen.
19, Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die Frequenz 500 Hz - 2 kHz und die Amplitude 0 - 500 nm beträgt.
20. Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß der oder den vertikalen Schwingungen zumindest eine zweite Schwingung mit einer Frequenz von zumindest 1 kHz und einer Amplitude von zumindest 0,1 nm überlagert wird.
21 , Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß die Frequenz 5 kHz - 1 Mhz und die Amplitude 1 - 10 nm beträgt.
22. Verfahren nach einem der Ansprüche 15 bis 21 , dadurch gekennzeichnet, daß die horizontale Schwingung eine Frequenz von zumindest 500 Hz und eine Amplitude von zumindest 0, 1 nm besitzt. ?7
23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die Frequenz 10 - 100 kHz und die Amplitude 1 - 30 nm beträgt.
24. Verfahren nach einem der Ansprüche 15 bis 23, dadurch gekennzeichnet, daß die Rastersonde (1 ) mit einer bestimmten Normalkraft mit der Probenoberfläche (30) in Kontakt gebracht wird.
25. Verfahren nach einem der Ansprüche 15 bis 24, dadurch gekennzeichnet, daß zur Auswertung der Meßsignale ein Lock-In-Verstärker (17, 110) und/oder ein Mikrocomputer (112) verwendet wird.
26. Verfahren nach einem der Ansprüche 15 bis 25, dadurch gekennzeichnet, daß als Rastersonde (1 ) die Spitze eines Kraftmikroskops und/oder eines optischen Nahfeldmikroskops verwendet wird.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß die Spitze des Kraftmikroskops und die Spitze des optischen Nahfeldmikroskops in einer gemeinsamen Rastersonde (1 ) integriert sind.
28. Verfahren nach einem der Ansprüche 15 bis 27, dadurch gekennzeichnet, daß die Rastersonde (1 ) und/oder die Probe (25) gleichzeitig zumindest einer vertikalen und zumindest einer horizontalen Schwingung unterworfen werden,
PCT/DE2000/000003 1999-01-05 2000-01-04 Verfahren und vorrichtung zur gleichzeitigen bestimmung der adhäsion, der reibung und weiterer materialeigenschaften einer probenoberfläche WO2000040946A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50008412T DE50008412D1 (de) 1999-01-05 2000-01-04 Verfahren und vorrichtung zur gleichzeitigen bestimmung der adhäsion, der reibung und weiterer materialeigenschaften einer probenoberfläche
AT00904803T ATE280945T1 (de) 1999-01-05 2000-01-04 Verfahren und vorrichtung zur gleichzeitigen bestimmung der adhäsion, der reibung und weiterer materialeigenschaften einer probenoberfläche
US09/869,789 US6880386B1 (en) 1999-01-05 2000-01-04 Method and device for simultaneously determining the adhesion, friction, and other material properties of a sample surface
AU26573/00A AU2657300A (en) 1999-01-05 2000-01-04 Method and device for simultaneously determining the adhesion, friction, and other material properties of sample surface
EP00904803A EP1141673B1 (de) 1999-01-05 2000-01-04 Verfahren und vorrichtung zur gleichzeitigen bestimmung der adhäsion, der reibung und weiterer materialeigenschaften einer probenoberfläche

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19900114A DE19900114B4 (de) 1999-01-05 1999-01-05 Verfahren und Vorrichtung zur gleichzeitigen Bestimmung zumindest zweier Materialeigenschaften einer Probenoberfläche, umfassend die Adhäsion, die Reibung, die Oberflächentopographie sowie die Elastizität und Steifigkeit
DE19900114.6 1999-01-05

Publications (1)

Publication Number Publication Date
WO2000040946A1 true WO2000040946A1 (de) 2000-07-13

Family

ID=7893596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/000003 WO2000040946A1 (de) 1999-01-05 2000-01-04 Verfahren und vorrichtung zur gleichzeitigen bestimmung der adhäsion, der reibung und weiterer materialeigenschaften einer probenoberfläche

Country Status (6)

Country Link
US (1) US6880386B1 (de)
EP (1) EP1141673B1 (de)
AT (1) ATE280945T1 (de)
AU (1) AU2657300A (de)
DE (2) DE19900114B4 (de)
WO (1) WO2000040946A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6880386B1 (en) 1999-01-05 2005-04-19 Witec Wissenschaftliche Instrumente Und Technologie Gmbh Method and device for simultaneously determining the adhesion, friction, and other material properties of a sample surface

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10062049A1 (de) 2000-12-13 2002-06-27 Witec Wissenschaftliche Instr Verfahren zur Abbildung einer Probenoberfläche mit Hilfe einer Rastersonde sowie Rastersondenmikroskop
US7877816B2 (en) 2000-12-13 2011-01-25 Witec Wissenschaftliche Instrumente Und Technologie Gmbh Scanning probe in pulsed-force mode, digital and in real time
DE10208800A1 (de) * 2002-03-01 2003-09-18 Harald Fuchs Haftsensor zur berührungsfreien Messung der Haftungseigenschaften von Oberflächen
DE10237627A1 (de) * 2002-08-16 2004-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Bestimmung tribologischer Eigenschaften einer Probenoberfläche mittels eines Rasterkraftmikroskops (RKM) sowie ein diesbezügliches RKM
DE102004063980A1 (de) * 2004-10-07 2006-08-10 Nambition Gmbh Vorrichtung und Verfahren zur Rastersondenmikroskopie
JP2006260527A (ja) * 2005-02-16 2006-09-28 Toshiba Corp 画像マッチング方法およびこれを用いた画像補間方法
JP4398919B2 (ja) * 2005-08-22 2010-01-13 株式会社東芝 画像マッチング装置、画像マッチング方法および画像マッチングプログラム
EP1938040B1 (de) * 2005-09-29 2018-11-21 Bruker Nano, Inc. Verfahren und vorrichtung zur schnellen eigenschaftsabbildung
WO2007059833A1 (de) * 2005-11-22 2007-05-31 Witec Wissenschaftliche Instrumente Und Technologie Gmbh Mikroskop, insbesondere rastersonden-mikroskop mit einer programmierbaren logik
JP2007163144A (ja) * 2005-12-09 2007-06-28 Sii Nanotechnology Inc 走査プローブ型顕微鏡の探針洗浄方法
US7603891B2 (en) * 2006-04-25 2009-10-20 Asylum Research Corporation Multiple frequency atomic force microscopy
US7555940B2 (en) * 2006-07-25 2009-07-07 Veeco Instruments, Inc. Cantilever free-decay measurement system with coherent averaging
DE102006045643A1 (de) * 2006-09-27 2008-04-03 Westfälische Wilhelms-Universität Münster Verfahren und Vorrichtung zur ortsaufgelösten Untersuchung der elastischen Eigenschaften einer Probe mit einem Rasterkraftmikroskop
US8024963B2 (en) 2006-10-05 2011-09-27 Asylum Research Corporation Material property measurements using multiple frequency atomic force microscopy
DE102006055528A1 (de) * 2006-11-24 2008-05-29 Forschungszentrum Jülich GmbH Rasterkraftmikroskop mit Artefaktkontrolle
KR100941980B1 (ko) * 2007-11-14 2010-02-11 한국표준과학연구원 고속 대면적 정밀측정 장치 및 방법
US8719960B2 (en) * 2008-01-31 2014-05-06 The Board Of Trustees Of The University Of Illinois Temperature-dependent nanoscale contact potential measurement technique and device
US8677809B2 (en) 2008-06-16 2014-03-25 Oxford Instruments Plc Thermal measurements using multiple frequency atomic force microscopy
WO2010022285A1 (en) 2008-08-20 2010-02-25 The Board Of Trustees Of The University Of Illinois Device for calorimetric measurement
US8955161B2 (en) 2008-11-13 2015-02-10 Bruker Nano, Inc. Peakforce photothermal-based detection of IR nanoabsorption
US8650660B2 (en) 2008-11-13 2014-02-11 Bruker Nano, Inc. Method and apparatus of using peak force tapping mode to measure physical properties of a sample
KR101920606B1 (ko) 2008-11-13 2019-02-13 브루커 나노, 인코퍼레이션. 탐침형 원자 현미경 작동 방법 및 장치
US8387443B2 (en) * 2009-09-11 2013-03-05 The Board Of Trustees Of The University Of Illinois Microcantilever with reduced second harmonic while in contact with a surface and nano scale infrared spectrometer
US8342867B2 (en) * 2009-12-01 2013-01-01 Raytheon Company Free floating connector engagement and retention system and method for establishing a temporary electrical connection
JP6203494B2 (ja) 2009-12-01 2017-09-27 ブルカー ナノ インコーポレイテッドBruker Nano,Inc. 走査型プローブ顕微鏡を動作させる方法
US8726410B2 (en) 2010-07-30 2014-05-13 The United States Of America As Represented By The Secretary Of The Air Force Atomic force microscopy system and method for nanoscale measurement
JP5714941B2 (ja) * 2011-03-04 2015-05-07 株式会社日立ハイテクサイエンス 摩擦力顕微鏡
US8553350B2 (en) 2011-05-27 2013-10-08 Seagate Technology Llc Tribological monitoring of a data storage device
US8533861B2 (en) 2011-08-15 2013-09-10 The Board Of Trustees Of The University Of Illinois Magnetic actuation and thermal cantilevers for temperature and frequency dependent atomic force microscopy
US8914911B2 (en) 2011-08-15 2014-12-16 The Board Of Trustees Of The University Of Illinois Magnetic actuation and thermal cantilevers for temperature and frequency dependent atomic force microscopy
US9383388B2 (en) 2014-04-21 2016-07-05 Oxford Instruments Asylum Research, Inc Automated atomic force microscope and the operation thereof
WO2016085989A1 (en) * 2014-11-25 2016-06-02 The Trustees Of The University Of Pennsylvania In situ tribometer and methods of use
US10648952B2 (en) * 2016-01-18 2020-05-12 Sound QA Solutions Inc. Method and apparatus for non-destructive measurement of modulus of elasticity and/or the compressive strength of masonry samples
JP2017181135A (ja) * 2016-03-29 2017-10-05 株式会社日立ハイテクサイエンス 走査型プローブ顕微鏡及びそのプローブ接触検出方法
TWI621843B (zh) * 2016-04-15 2018-04-21 財團法人工業技術研究院 檢測材料表面抗污能力的方法以及檢測材料表面抗污能力的檢測裝置
KR20190060769A (ko) 2016-08-22 2019-06-03 브루커 나노, 아이엔씨. 피크 포스 탭핑을 이용한 샘플의 적외선 특성
DE102019108970A1 (de) 2019-04-05 2020-10-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Reibwertermittlung und Reibwertermittlungsvorrichtung an elastisch angebundenen Teilsystemen
CN111879450B (zh) * 2020-07-30 2021-11-09 合肥工业大学 微米尺度下的界面微观相互作用力测量系统及其测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763768A (en) * 1997-03-17 1998-06-09 Iowa State University Research Foundation, Inc. Analytical method using modified scanning probes
EP0896201A1 (de) * 1997-08-04 1999-02-10 Seiko Instruments Inc. Rastersondenmikroskop

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519212A (en) * 1992-08-07 1996-05-21 Digital Instruments, Incorporated Tapping atomic force microscope with phase or frequency detection
DE59307710D1 (de) * 1993-02-15 1998-01-02 Ibm Kraftmikroskop und Verfahren zur Messung von atomaren Kräften in mehreren Richtungen
US5444244A (en) * 1993-06-03 1995-08-22 Park Scientific Instruments Corporation Piezoresistive cantilever with integral tip for scanning probe microscope
JPH07113741A (ja) 1993-10-18 1995-05-02 Ryoden Semiconductor Syst Eng Kk 付着力測定装置、付着力測定方法及び半導体装置の製造方法
JP2500373B2 (ja) * 1993-11-09 1996-05-29 工業技術院長 原子間力顕微鏡及び原子間力顕微鏡における試料観察方法
US5646339A (en) 1994-02-14 1997-07-08 International Business Machines Corporation Force microscope and method for measuring atomic forces in multiple directions
JP2852397B2 (ja) * 1994-11-15 1999-02-03 工業技術院長 原子間力顕微鏡および原子間力顕微鏡における摩擦の解析方法
DE9421715U1 (de) * 1994-11-15 1996-07-25 Klocke Volker Elektromechanische Positioniereinheit
DE19502822A1 (de) * 1995-01-30 1996-08-01 Alexander Draebenstedt Verfahren zur Gewinnung eines abstandsabhängigen Signales bei der Rastersondenmikroskopie
DE19700747A1 (de) * 1997-01-11 1998-07-16 Zeiss Carl Jena Gmbh Rastersondenmikroskopische Einrichtung
JP3468655B2 (ja) * 1997-01-31 2003-11-17 セイコーインスツルメンツ株式会社 プローブ走査装置
DE19728357C2 (de) * 1997-07-03 2001-09-27 Martin Munz Vorrichtung und Verfahren in der kontaktierenden Rasterkraftmikroskopie mit periodischer Modulation der Auflagekraft zur Messung der lokalen elastischen und anelastischen Eigenschaften von Oberflächen unter Konstanthaltung der Deformation im Kontaktbereich von Meßsonde und Probenoberfläche
DE19900114B4 (de) 1999-01-05 2005-07-28 Witec Wissenschaftliche Instrumente Und Technologie Gmbh Verfahren und Vorrichtung zur gleichzeitigen Bestimmung zumindest zweier Materialeigenschaften einer Probenoberfläche, umfassend die Adhäsion, die Reibung, die Oberflächentopographie sowie die Elastizität und Steifigkeit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763768A (en) * 1997-03-17 1998-06-09 Iowa State University Research Foundation, Inc. Analytical method using modified scanning probes
EP0896201A1 (de) * 1997-08-04 1999-02-10 Seiko Instruments Inc. Rastersondenmikroskop

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOLESKE D D ET AL: "DESING AND CALIBRATION OF A SCANNING FORCE MICROSCOPE FOR FRICTION,ADHESION, AND CONTACT POTENTIAL STUDIES", REVIEW OF SCIENTIFIC INSTRUMENTS,US,AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 66, no. 9, 1 September 1995 (1995-09-01), pages 4566 - 4574, XP000528719, ISSN: 0034-6748 *
YAMANAKA K ET AL: "LATERAL FORCE MODULATION ATOMIC FORCE MICROSCOPE FOR SELECTIVE IMAGING OF FRICTION FORCES", JAPANESE JOURNAL OF APPLIED PHYSICS,JP,PUBLICATION OFFICE JAPANESE JOURNAL OF APPLIED PHYSICS. TOKYO, vol. 34, no. 5B, PART 01, 1 May 1995 (1995-05-01), pages 2879 - 2882, XP000721036, ISSN: 0021-4922 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6880386B1 (en) 1999-01-05 2005-04-19 Witec Wissenschaftliche Instrumente Und Technologie Gmbh Method and device for simultaneously determining the adhesion, friction, and other material properties of a sample surface

Also Published As

Publication number Publication date
AU2657300A (en) 2000-07-24
DE19900114A1 (de) 2000-08-03
DE50008412D1 (de) 2004-12-02
EP1141673A1 (de) 2001-10-10
ATE280945T1 (de) 2004-11-15
EP1141673B1 (de) 2004-10-27
DE19900114B4 (de) 2005-07-28
US6880386B1 (en) 2005-04-19

Similar Documents

Publication Publication Date Title
DE19900114B4 (de) Verfahren und Vorrichtung zur gleichzeitigen Bestimmung zumindest zweier Materialeigenschaften einer Probenoberfläche, umfassend die Adhäsion, die Reibung, die Oberflächentopographie sowie die Elastizität und Steifigkeit
DE10084431B4 (de) Aktive Sonde für ein Rasterkraftmikroskop mit atomarer Auflösung sowie Verfahren zur Verwendung derselben
DE69629475T2 (de) Tapping-modus-atomkraftmikroskop mit phasen- oder frequenzdetektion
EP1342049B1 (de) Rastersonde in pulsed force mode, digital und in echtzeit
DE69822562T2 (de) Rastersondenmikroskop
DE69734413T2 (de) Instrument mit Doppeltisch zum Abtasten eines Probenkörpers
DE60037884T2 (de) Mehrfachsonden-Messgerät und zugehöriges Anwendungsverfahren
DE10393612B4 (de) Rasterkraftmikroskop und Betriebsverfahren zur Topographie- und Erkennungsbildgebung
DE69828758T2 (de) Verfahren zur Herstellung eines Magnetkraftbildes und Rastersondenmikroskop
EP1994395B1 (de) Verfahren zur ermittlung einer dotierungsdichte in einer halbleiterprobe
DE69819008T2 (de) Mikroskop zur nachgiebigkeitsmessung
DE102014212311A1 (de) Rastersondenmikroskop und Verfahren zum Untersuchen einer Oberfläche mit großem Aspektverhältnis
EP1535020A2 (de) Verfahren zur bestimmung tribologischer eigenschaften einer probenoberfl che mittels eines rasterkraftmikroskops (rkm) sowie ein diesbez gliches rkm
DE102016214658B4 (de) Rastersondenmikroskop und Verfahren zum Untersuchen einer Probenoberfläche
DE69730670T2 (de) Rastersondenmikroskop und Signalverarbeitungsgerät
DE112007001684T5 (de) Rastersondenmikroskop und Verfahren zum Messen der Relativposition zwischen Sonden
DE10311706A1 (de) Atomkraftmikroskop
DE10007617B4 (de) Charakterisierung von Magnetfeldern
DE112010004305T5 (de) Verschleissfreie Behandlung einer Materialoberfläche mit einem Rastersondenmikroskop
DE19852833A1 (de) Verfahren zur Bestimmung des Abstandes einer Nahfeldsonde von einer zu untersuchenden Probenoberfläche und Nahfeldmikroskop
DE19728357C2 (de) Vorrichtung und Verfahren in der kontaktierenden Rasterkraftmikroskopie mit periodischer Modulation der Auflagekraft zur Messung der lokalen elastischen und anelastischen Eigenschaften von Oberflächen unter Konstanthaltung der Deformation im Kontaktbereich von Meßsonde und Probenoberfläche
DE102019116471B4 (de) Messvorrichtung für ein Rastersondenmikroskop und Verfahren zum rastersondenmikroskopischen Untersuchen einer Messprobe mit einem Rastersondenmikroskop
EP0611945A1 (de) Kraftmikroskop und Verfahren zur Messung von atomaren Kräften in mehreren Richtungen
WO2008037427A1 (de) Verfahren und vorrichtung zur ortsaufgelösten untersuchung der elastischen eigenschaften einer probe mit einem rasterkraftmikroskop
DE10242749A1 (de) Dreidimensionales interferometrisches Positions-Messsystem

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000904803

Country of ref document: EP

WD Withdrawal of designations after international publication

Free format text: DE

WWP Wipo information: published in national office

Ref document number: 2000904803

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09869789

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2000904803

Country of ref document: EP