WO2000039517A1 - Echangeur de chaleur a tubes souples - Google Patents

Echangeur de chaleur a tubes souples Download PDF

Info

Publication number
WO2000039517A1
WO2000039517A1 PCT/FR1999/003277 FR9903277W WO0039517A1 WO 2000039517 A1 WO2000039517 A1 WO 2000039517A1 FR 9903277 W FR9903277 W FR 9903277W WO 0039517 A1 WO0039517 A1 WO 0039517A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubes
rows
sinusoids
exchanger according
exchanger
Prior art date
Application number
PCT/FR1999/003277
Other languages
English (en)
Inventor
Carlos Manuel Martins
Laurence Marechal
Original Assignee
Valeo Thermique Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9816560A external-priority patent/FR2787872B1/fr
Application filed by Valeo Thermique Moteur filed Critical Valeo Thermique Moteur
Priority to DE69905862T priority Critical patent/DE69905862T2/de
Priority to US09/623,212 priority patent/US6390187B1/en
Priority to JP2000591374A priority patent/JP2002533655A/ja
Priority to EP99961164A priority patent/EP1058807B1/fr
Publication of WO2000039517A1 publication Critical patent/WO2000039517A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0137Auxiliary supports for elements for tubes or tube-assemblies formed by wires, e.g. helically coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • F28F2275/025Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives

Definitions

  • the present invention relates to the field of heat exchangers, in particular for cooling installations of motor vehicle engines. It relates more particularly to heat exchangers with flexible tubes, for example made of plastic.
  • Such heat exchangers include tubes made of a substantially flexible material and the ends of which communicate with at least one manifold of a fluid of heat exchange, cooperating for example with an air flow which passes through the exchanger.
  • the present invention then improves the situation.
  • a heat exchanger with flexible tubes of the aforementioned type which comprises, according to a general characteristic of the invention, means for holding the tubes in substantially parallel rows.
  • the tubes are shaped to have general shapes of substantially sinusoidal lines.
  • the sinusoids of two tubes in contact, of two respective consecutive rows are substantially offset from one another, one part relative to the other, so that the two tubes are held in two contact zones per period of sinusoids.
  • the sinusoids of the respective tubes of two consecutive rows are substantially in phase opposition, while the sinusoids of the same row are in phase.
  • the contact zones of the respective tubes of consecutive rows are substantially inscribed in a plane perpendicular to the rows.
  • the spacing between the rows is substantially constant.
  • At least part of the external surface of the tubes, comprising the abovementioned contact areas, is coated with a layer of adhesive to form means for holding the tubes.
  • the outer surfaces of the tubes carry a material made adhesive by vulcanization treatment, thus forming the above-mentioned adhesive layer.
  • the holding means further comprise a plurality of rods substantially perpendicular to the rows and each installed between the respective sinusoids of consecutive rows, to keep the tubes of the consecutive rows substantially spaced apart.
  • FIG. 1 schematically represents a partial view of a device for cooling the engine of a motor vehicle in the example described
  • FIG. 2 represents a schematic view of a heat exchanger, in particular of a cooling radiator 2 of a device shown in FIG. 1,
  • FIG. 3A represents the tubes of a heat exchanger according to the present invention, shaped according to lines of substantially sinusoidal shape,
  • FIG. 3B represents, in a front view, the tubes of FIG. 3A,
  • FIG. 3C is a view along section C-C of FIG. 3B, in the section plane of the tubes,
  • FIG. 3D is a view along the section D-D of FIG. 3B
  • FIG. 3E is a side view of the tubes of FIG. 3A.
  • FIG. 4A represents the tubes of a heat exchanger, provided with parallel rods
  • FIG. 4B is a top view of the tubes of FIG. 4A.
  • Figure 4C is a side view of the tubes of Figure 4A.
  • FIG. 1 to describe a device for cooling a motor vehicle engine.
  • Such a device comprises, in a manner known per se, a motor-fan unit 1 provided with a plurality of blades.
  • the fan motor unit 1 is usually placed behind the grille of the vehicle (not shown).
  • a heat exchanger heat according to the invention is interposed in an air flow (arrows F) produced by the rotation of the blades of the motor-fan unit 1, or even the movement of the vehicle itself.
  • the heat exchanger is supplied by the engine coolant, usually under the control of a thermostatic valve 3.
  • the arrangement of such a valve in the coolant circuit 4 generally makes it possible to obtain satisfactory performance of the engine M when it is started cold, by cutting off the power to the radiator.
  • This heat exchanger comprises flexible tubes 20 (represented by hatching in FIG. 2), generally made of a plastic material, which communicate by their ends with two manifolds 21 and 22.
  • the manifolds are provided with openings 215 and 225 closely accommodating the ends of the tubes 20.
  • the boxes comprise manifold plates provided with the openings 215 and 225, and which thus form means for holding the tubes, in particular their ends.
  • the manifolds 21 and 22 usually have compartments 210, 211, 212 and 221, 222, separated by partitions 213, 214 and 223, respectively, to define a path of the aforementioned heat exchange fluid (coolant in the example described), between an inlet C (arrow E) which communicates with an inlet duct 23 and an outlet (arrow S) which communicates with a discharge duct 24.
  • the boxes manifolds have a total of five compartments and the heat exchange fluid performs a total of three "outward" routes and two "return" routes from the manifold 21 to the manifold 22.
  • the fluid paths between the two manifolds 21 and 22 are then provided by the tubes 20, in which circulates the fluid.
  • the tubes cooperate thermally with the air flow F.
  • FIGS. 3A to 3E describe the set of tubes of a heat exchanger according to a first embodiment of the present invention.
  • the tubes 20 of the exchanger are arranged in rows 20A horizontal in the example described ( Figure 3E). These rows are substantially parallel to each other and spaced, in the example described, by a distance corresponding substantially to a thickness of tube 20, so that the different rows are substantially adjacent by pairs of respective tubes of two consecutive rows , substantially in contact with each other.
  • the tubes generally have generally substantially sinusoidal shapes.
  • the tubes 211, 212 of the same row 20A have their sinusoid substantially in phase.
  • FIG. 3B it appears that two tubes 211, 212 in contact, of two consecutive consecutive rows, are in phase opposition and are in contact on areas 210 corresponding to nodes of the two sinusoids.
  • Figure 3C shows a sectional view (section plane of the tubes) of the nodes of the aforementioned sinusoids.
  • the tubes of the same row 20A are substantially separated from each other, since the sinusoids of the same row are in phase, while the tubes of two consecutive rows are in contact at the level of the zones 210 (nodes of the sinusoids).
  • Figure 3D is a sectional view (section plane of the tubes) of the bellies formed by the sinusoids of the tubes of the rows consecutive. A difference then appears between two tubes of two consecutive rows, respective, since the sinusoids of the two tubes are in phase opposition from one row 20A to the other, consecutive.
  • the contact areas 210 between the tubes of consecutive rows are inscribed in substantially horizontal planes, while the rows 20A are arranged in substantially vertical planes.
  • the contact areas 210 of the respective tubes of consecutive rows are substantially inscribed in planes perpendicular to the rows 20A.
  • the tubes are made of a plastic material made adhesive by a heat treatment.
  • the tubes are mechanically connected to each other by gluing, in their contact zones 210.
  • glue dots arranged on the contact areas 210 are sufficient to maintain the tubes in rows 20A, and substantially fixed with respect to each other. It should be noted that the openings of the manifolds are themselves arranged in rows and columns to immediately maintain the ends of the tubes in rows.
  • FIGS. 4A to 4C describe the arrangement of the tubes of a heat exchanger according to a second embodiment of the present invention.
  • the tubes of the same row 20A form sinusoids substantially in phase, while tubes of two consecutive rows form sinusoids in phase opposition.
  • rods 213 substantially parallel to each other and perpendicular to the rows 20A. Each of these rods is inserted into the bellies formed by the sinusoids of the tubes of consecutive rows, as shown in Figure 4B. Such rods 213 thus make it possible to keep the tubes substantially apart in the consecutive rows. Consequently, it is not necessary to provide here an adhesive coating on the tubes, in particular on the contact areas 210.
  • the external surfaces of the tubes and, in particular, the external surfaces rods of a layer of glue or of a coating rendered adhesive by heat treatment, for example by vulcanization, to reinforce the maintenance of the tangled row tubes, as shown in FIGS. 3A and 4A.
  • the spacing between the tubes allow the air flow F to enter the exchanger, while advantageously disturbing the flow F.
  • the flexible tubes of the exchanger are generally of small diameter, typically about 1 to 4 mm and with a wall thickness close to 0.2 mm. It is then desired to maintain the tubes in a substantially rigid structure by their arrangement in sinusoids described above, with a view to protecting them with respect to the constraints of use (vibrations, aging of the material, pressure of the heat exchange fluid, etc.) which tend to weaken them.
  • Another advantage provided by the present invention then consists in that the tubes are held fixedly with respect to each other.
  • the period of the sinusoids is in a range of 40 to 80 mm and their amplitude, relative to a general axis of the tube, is between half a tube diameter and two tube diameters.
  • the ends of the tubes are contiguous and flat over a length of approximately 5 to 25 mm, so that they can be connected to the manifold, while the total length of the tubes is, for example, of around 500 mm.
  • the present invention is not limited to the embodiment described above by way of example. It extends to other variants.
  • the sinusoids of the tubes of the same row are not necessarily in phase.
  • the adjacent tubes of two consecutive rows are not necessarily in phase opposition. Indeed, it suffices to offset the two sinusoids in phase to allow an air flow to enter between the tubes. However, the arrangement of the two sinusoids in phase opposition allows maximum penetration of the air flow by the bellies which they form.
  • the rows are substantially horizontal, while the contact areas 210 are arranged substantially in vertical planes. More generally, these planes are not necessarily perpendicular to the rows, in particular if the adjacent tubes between consecutive rows are offset laterally from one row to the other.
  • the exchanger 2 comprises two manifolds. As a variant, it may be provided only for a manifold provided with openings into which the ends of the tubes are introduced, while each tube has a "U" shape, the two branches of which are wavy and inscribed in a same row, or interlaced, while each branch of "U" is registered in a separate row.
  • the heat exchanger described above by way of example is intended to operate as a radiator for cooling a motor vehicle.
  • this heat exchanger can be provided as a heating radiator housed in a hot air branch of a ventilation, heating and / or air conditioning installation of the passenger compartment of the vehicle, or even as an evaporator. an air conditioning loop of this installation, or other.
  • the fluid passing through the heat exchanger air flow F in the example described above

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

La présente invention concerne un échangeur de chaleur (2) à tubes (20) souples, en particulier pour une installation de refroidissement de moteur de véhicule automobile. Les tubes (20), par exemple réalisés en matière plastique, sont destinés à acheminer un fluide d'échange thermique propre à coopérer avec un flux d'air traversant l'échangeur (2). L'échangeur (2) selon l'invention comporte des moyens de maintien des tubes (20) en rangées parallèles. Les tubes (20) sont conformés pour présenter des formes générales de lignes sensiblement sinusoïdales. Les sinusoïdes de deux tubes (211, 212) en contact, de deux rangées consécutives, sont décalées en phase l'une par rapport à l'autre de sorte que les deux tubes (211, 212) sont maintenus en deux zones de contact (210) par période de sinusoïde, ce qui permet de laisser des interstices entre les tubes (20) pour favoriser la pénétration du flux.

Description

ECHANGEUR DE CHALEUR A TUBES SOUPLES
La présente invention concerne le domaine des échangeurs de chaleur, notamment pour des installations de refroidissement de moteurs de véhicules automobiles. Elle concerne plus particulièrement des échangeurs de chaleur à tubes souples, par exemple réalisés en matière plastique.
De tels échangeurs de chaleur, décrits notamment dans la Demande de Brevet français non publié n° 98 04966 de la Demanderesse, comportent des tubes réalisés dans une matière sensiblement souple et dont les extrémités communiquent avec au moins une boîte collectrice d'un fluide d'échange thermique, coopérant par exemple avec un flux d'air qui traverse 1 'échangeur.
De manière à augmenter la coopération thermique du flux avec les tubes de l'échangeur, il est actuellement souhaité de maintenir des interstices entre les tubes, par lesquels pénètre le flux d'air. De tels interstices permettraient en outre de perturber le flux à la manière des ailettes perturbatrices que comportent habituellement des échangeurs de chaleur à tubes rigides.
La présente invention vient alors améliorer la situation.
Elle porte sur un échangeur de chaleur à tubes souples, du type précité qui comporte, selon une caractéristique générale de l'invention, des moyens de maintien des tubes en rangées sensiblement parallèles. Les tubes sont conformés pour présenter des formes générales de lignes sensiblement sinusoïdales. Les sinusoïdes de deux tubes en contact, de deux rangées consécutives respectives, sont sensiblement décalées entre elles, l'une part rapport à l'autre, de sorte que les deux tubes sont maintenus en deux zones de contact par période de sinusoïdes. Préférentiellement, les sinusoïdes des tubes respectifs de deux rangées consécutives sont sensiblement en opposition de phase, tandis que les sinusoïdes d'une même rangée sont en phase.
Selon une autre caractéristique optionnelle de la présente invention, les zones de contact des tubes respectifs de rangées consécutives sont sensiblement inscrites dans un plan perpendiculaire aux rangées.
Avantageusement, l'espacement entre les rangées est sensiblement constant.
Selon une autre caractéristique avantageuse de l'invention, une partie au moins de la surface externe des tubes, comprenant les zones de contact précitées, est revêtue d'une couche de colle pour former des moyens de maintien des tubes.
Dans un mode de réalisation préféré de la présente invention, les surfaces externes des tubes portent un matériau rendu adhésif par un traitement par vulcanisation, formant ainsi la couche de colle précitée.
Dans une forme de réalisation plus élaborée de l'invention, les moyens de maintien comportent en outre une pluralité de tiges sensiblement perpendiculaires aux rangées et implantées chacune entre les sinusoïdes respectives de rangées consécutives, pour maintenir les tubes des rangées consécutives sensiblement écartés.
D ' autres avantages et caractéristiques de la présente invention apparaîtront à la lecture de la description détaillée ci-après et des dessins annexés, sur lesquels :
- la figure 1 représente schématiquement une vue partielle d'un dispositif de refroidissement du moteur d'un véhicule automobile dans l'exemple décrit, - la figure 2 représente une vue schématique d'un échangeur de chaleur, en particulier d'un radiateur de refroidissement 2 d'un dispositif représenté sur la figure 1,
- la figure 3A représente les tubes d'un échangeur de chaleur selon la présente invention, conformés selon des lignes de forme sensiblement sinusoïdale,
- la figure 3B représente, selon une vue de face, les tubes de la figure 3A,
- la figure 3C est une vue selon la coupe C-C de la figure 3B, dans le plan de section des tubes,
- la figure 3D est une vue selon la coupe D-D de la figure 3B,
- la figure 3E est une vue de côté des tubes de la figure 3A,
- la figure 4A représente les tubes d'un échangeur de chaleur, munis de tiges parallèles,
- la figure 4B est une vue de dessus des tubes de la figure 4A, et
- la figure 4C est une vue de côté des tubes de la figure 4A.
Les dessins annexés contiennent pour l'essentiel des éléments de caractère certain. Ils pourront non seulement servir à mieux faire comprendre la présente invention mais aussi contribuer à sa définition, le cas échéant.
On se réfère tout d'abord à la figure 1 pour décrire un dispositif de refroidissement d'un moteur de véhicule automobile .
Un tel dispositif comporte de manière connue en soi un groupe moto-ventilateur 1 muni d'une pluralité de pales. Le groupe moto-ventilateur 1 est habituellement placé derrière la calandre du véhicule (non représentée). Un échangeur de chaleur selon l'invention est interposé dans un flux d'air (flèches F) que produit la rotation des pales du groupe moto- ventilateur 1, ou encore le déplacement même du véhicule. En pratique, l'échangeur de chaleur est alimenté par le liquide de refroidissement du moteur, habituellement sous le contrôle d'une vanne thermostatique 3. L'agencement d'une telle vanne dans le circuit du liquide de refroidissement 4 permet généralement d'obtenir un rendement satisfaisant du moteur M lors de son démarrage à froid, en coupant l'alimentation du radiateur.
On se réfère maintenant à la figure 2 pour décrire la structure de l'échangeur de chaleur 2 (radiateur de refroidissement, dans l'exemple). Cet échangeur de chaleur comporte des tubes souples 20 (représentés par des hachures sur la figure 2), réalisés généralement dans une matière plastique, qui communiquent par leurs extrémités avec deux boîtes collectrices 21 et 22. En effet, les boîtes collectrices sont munies d'ouvertures 215 et 225 logeant étroitement les extrémités des tubes 20. En pratique, les boîtes comportent des plaques collectrices munies des ouvertures 215 et 225, et qui forment ainsi des moyens de maintien des tubes, en particulier de leurs extrémités .
Les boîtes collectrices 21 et 22 présentent habituellement des compartiments 210, 211, 212 et 221, 222, séparés par des cloisons 213, 214 et 223, respectivement, pour définir un trajet du fluide d'échange thermique précité (liquide de refroidissement dans l'exemple décrit), entre une entrée C (flèche E) qui communique avec un conduit 23 d'arrivée et une sortie (flèche S) qui communique avec un conduit d'évacuation 24. Dans l'exemple représenté sur la figure 2, les boîtes collectrices comportent en tout cinq compartiments et le fluide d'échange thermique effectue en tout trois parcours "aller" et deux parcours "retour" de la boîte collectrice 21 à la boîte collectrice 22.
Les trajets du fluide entre les deux boîtes collectrices 21 et 22 sont alors assurés par les tubes 20, dans lesquels circule le fluide. Ainsi, les tubes coopèrent thermiquement avec le flux d'air F. Cependant, pour optimiser l'échange thermique entre les tubes 20, d'une part, et le flux d'air F, d'autre part, il est nécessaire de maintenir les tubes sensiblement écartés les uns des autres pour créer des interstices entre eux.
On se réfère alors aux figures 3A à 3E pour décrire 1 ' ensemble des tubes d'un échangeur de chaleur selon un premier mode de réalisation de la présente invention.
Selon une caractéristique générale de l'invention, les tubes 20 de l'échangeur sont agencés en rangées 20A horizontales dans l'exemple décrit (figure 3E). Ces rangées sont sensible- ment parallèles entre elles et espacées, dans l'exemple décrit, d'une distance correspondant sensiblement à une épaisseur de tube 20, de sorte que les différentes rangées sont sensiblement adjacentes par des paires de tubes respectifs de deux rangées consécutives, sensiblement en contact l'un avec l'autre.
En se référant à la figure 3A, il apparaît que les tubes présentent globalement des formes générales sensiblement sinusoïdales. Les tubes 211, 212 d'une même rangée 20A ont leur sinusoïde sensiblement en phase. En se référant à la figure 3B, il apparaît que deux tubes 211, 212 en contact, de deux rangées consécutives, respectives, sont en opposition de phase et sont en contact sur des zones 210 correspondant à des noeuds des deux sinusoïdes.
La figure 3C représente une vue en coupe (plan de section des tubes) des noeuds des sinusoïdes précités. Les tubes d'une même rangée 20A sont sensiblement écartés entre eux, puisque les sinusoïdes d'une même rangée sont en phase, tandis que les tubes de deux rangées consécutives sont en contact au niveau des zones 210 (noeuds des sinusoïdes).
La figure 3D est une vue en coupe (plan de section des tubes) des ventres que forment les sinusoïdes des tubes des rangées consécutives. Il apparaît alors un écart entre deux tubes de deux rangées consécutives, respectives, puisque les sinusoïdes des deux tubes sont en opposition de phase d'une rangée 20A à l'autre, consécutives.
Comme le montre la figure 3C, les zones de contact 210 entre les tubes de rangées consécutives sont inscrites dans des plans sensiblement horizontaux, tandis que les rangées 20A sont agencées en plans sensiblement verticaux. Ainsi, les zones de contact 210 des tubes respectifs de rangées consécutives sont sensiblement inscrites dans des plans perpendiculaires aux rangées 20A.
Préférentiellement, les tubes sont réalisés dans une matière plastique rendue adhésive par un traitement thermique. Ainsi, après traitement à chaud, les tubes sont reliés mécaniquement les uns aux autres par collage, en leurs zones de contact 210.
En variante, il peut être prévu de revêtir les surfaces externes des tubes d'un matériau présentant une telle propriété, ou encore d'une couche de colle pour former les moyens de maintien précités. En particulier, des points de colle disposés sur les zones de contact 210 suffisent pour maintenir les tubes en rangées 20A, et sensiblement fixes les uns par rapport aux autres. Il est à noter que les ouvertures des boîtes collectrices sont agencées elles-mêmes en rangées et colonnes pour maintenir d'emblée les extrémités des tubes en rangées .
On se réfère maintenant aux figures 4A à 4C pour décrire l'agencement des tubes d'un échangeur de chaleur selon un second mode de réalisation de la présente invention.
Comme dans le premier mode de réalisation décrit ci-avant, les tubes d'une même rangée 20A forment des sinusoïdes sensible- ment en phase, tandis que des tubes de deux rangées consécutives forment des sinusoïdes en opposition de phase. Dans ce mode de réalisation, il est prévu en outre des tiges 213 sensiblement parallèles entre elles et perpendiculaires aux rangées 20A. Chacune de ces tiges vient s'insérer dans les ventres que forment les sinusoïdes des tubes de rangées consécutives, comme le montre la figure 4B. De telles tiges 213 permettent ainsi de maintenir les tubes sensiblement écartés dans les rangées consécutives. Par conséquent, il n'est pas nécessaire de prévoir ici un revêtement adhésif sur les tubes, en particulier sur les zones de contact 210. Cependant, il peut être prévu encore de munir les surfaces externes des tubes et, en particulier, les surfaces externes des tiges d'une couche de colle ou d'un revêtement rendu adhésif par traitement thermique, par exemple par vulcanisation, pour renforcer le maintien des tubes en rangée enchevêtrées, telles que représentées sur les figures 3A et 4A.
Ainsi, l'espacement entre les tubes, en particulier dans les ventres de sinusoïdes, laissent pénétrer le flux d'air F dans l'échangeur, tout en perturbant le flux F, avantageusement. Par ailleurs, les tubes souples de l'échangeur sont de façon générale de petit diamètre, typiquement d'environ 1 à 4 mm et d'épaisseur de paroi voisine de 0,2 mm. Il est alors souhaité de maintenir les tubes en structure sensiblement rigide par leur agencement en sinusoïdes décrit ci-avant, en vue de les protéger par rapport aux contraintes d'utilisation (vibrations, vieillissement de la matière, pression du fluide d'échange thermique, etc..) qui tendent à les fragiliser. Un autre avantage que procure la présente invention consiste alors en ce que les tubes sont maintenus fixement les uns par rapport aux autres.
Préférentiellement, la période des sinusoïdes se situe dans une plage de 40 à 80 mm et leur amplitude, par rapport à un axe général de tube, est comprise entre un demi-diamètre de tube et deux diamètres de tube. En se référant notamment à la figure 3A, les extrémités des tubes sont jointives et plates sur une longueur d'environ 5 à 25 mm, pour pouvoir être reliées à la boîte collectrice, tandis que la longueur totale des tubes est, par exemple, de l'ordre de 500 mm. Bien entendu, la présente invention ne se limite pas à la forme de réalisation décrite ci-avant à titre d'exemple. Elle s'étend à d'autres variantes.
On comprendra ainsi que les sinusoïdes des tubes d'une même rangée ne sont pas nécessairement en phase. En variante, il peut être envisagé en effet de disposer les tubes d'une même rangée suffisamment écartés, tandis que les phases entre leur sinusoïde sont sensiblement aléatoires.
Par ailleurs, les tubes adjacents de deux rangées consécutives ne sont pas nécessairement en opposition de phase. En effet, il suffit de décaler en phase les deux sinusoïdes pour laisser pénétrer un flux d'air entre les tubes. Cependant, 1 ' agence- ment des deux sinusoïdes en opposition de phase permet une pénétration maximale du flux d'air par les ventres qu'elles forment.
Dans l'exemple décrit ci-avant, les rangées sont sensiblement horizontales, tandis que les zones de contact 210 sont agencées sensiblement dans des plans verticaux. De façon plus générale, ces plans ne sont pas nécessairement perpendiculaires aux rangées, en particulier si les tubes adjacents entre rangées consécutives sont décalés latéralement d'une rangée à 1 ' autre.
Les moyens de maintien précités des tubes (film de colle, revêtement rendu adhésif par traitement thermique, tiges entretoises 213) sont décrits ci-avant à titre d'exemple. D'autres moyens de maintien peuvent être envisagés.
Par ailleurs, dans l'exemple représenté sur la figure 2, l'échangeur 2 comporte deux boîtes collectrices. En variante, il peut n'être prévu qu'une boîte collectrice munie d'ouver- tures dans lesquelles sont introduites les extrémités des tubes, tandis que chaque tube présente une forme de "U" dont les deux branches sont ondulées et inscrites dans une même rangée, ou encore entrelacées, tandis que chaque branche de "U" est inscrite dans une rangée distincte. Enfin, l'échangeur de chaleur décrit ci-avant à titre d'exemple est destiné à opérer en tant que radiateur de refroidissement d'un véhicule automobile. En variante, cet échangeur de chaleur peut être prévu en tant que radiateur de chauffage logé dans une branche d'air chaud d'une installation de ventilation, chauffage et/ou climatisation de l'habitacle du véhicule, ou encore en tant qu 'evaporateur d'une boucle de climatisation de cette installation, ou autre. Par ailleurs, le fluide traversant l'échangeur de chaleur (flux d'air F dans l'exemple décrit ci-avant) peut être de nature différente, par exemple de l'huile, notamment pour une application de l'échangeur en tant que radiateur de refroidissement d'huile du moteur.

Claims

Revendications
1. Echangeur de chaleur, notamment d'une installation de refroidissement d'un moteur de véhicule automobile, du type comprenant une pluralité de tubes (20) réalisés dans un matériau sensiblement souple, et destinés à acheminer un fluide d'échange thermique propre à coopérer avec un flux de fluide (F) traversant l'échangeur, caractérisé en ce qu'il comporte des moyens de maintien des tubes en rangées sensiblement parallèles (20A), et en ce que les tubes (20) sont conformés pour présenter des formes générales de lignes sensiblement sinusoïdales, tandis que les sinusoïdes de deux tubes (211,212) en contact, de deux rangées consécutives respectives, sont sensiblement décalées en phase l'une par rapport l'autre de sorte que les deux tubes sont maintenus en deux zones de contact (210) par période de sinusoïde.
2. Echangeur selon la revendication 1 , caractérisé en ce que les sinusoïdes des tubes respectifs (211,212) de deux rangées consécutives, sont sensiblement en opposition de phase, tandis que les sinusoïdes d'une même rangée (20A) sont en phase.
3. Echangeur selon la revendication 2 , caractérisé en ce que les zones de contact (210) des tubes respectifs de rangées consécutives, sont sensiblement inscrites dans un plan perpendiculaire aux rangées.
4. Echangeur selon l'une des revendications précédentes, caractérisé en ce que l'espacement entre les rangées (20A) est sensiblement constant.
5. Echangeur selon l'une des revendications précédentes, caractérisé en ce qu'une partie au moins des surfaces externes des tubes, comprenant lesdites zones de contact (210), est revêtue d'une couche de colle pour former des moyens de maintien des tubes.
6. Echangeur selon la revendication 5, caractérisé en ce que les surfaces externes des tubes (20) portent un matériau rendu adhésif par un traitement thermique.
7. Echangeur selon l'une des revendications précédentes, caractérisé en ce que les moyens de maintien comportent une pluralité de tiges (213) sensiblement perpendiculaires aux rangées (20A) et implantées chacune entre les sinusoïdes respectives de rangées consécutives , pour maintenir les tubes (211,212) des rangées consécutives sensiblement écartés.
8. Echangeur selon l'une des revendications précédentes, caractérisé en ce qu'il comporte au moins une boîte collectrice (21,22) munie d'ouvertures (215,225) communiquant chacune avec une extrémité d'un tube, et agencées pour loger étroitement les extrémités des tubes en formant des moyens de maintien d'extrémités des tubes.
9. Echangeur selon 1 ' une des revendications précédentes, caractérisé en ce que la période des sinusoïdes est comprise entre 40 et 80 mm.
10. Echangeur selon l'une des revendications précédentes, caractérisé en ce que l'amplitude des sinusoïdes, par rapport à un axe général de tube (20), est comprise entre un demi- diamètre de tube et deux diamètres de tube.
11. Echangeur selon l'une des revendications précédentes, caractérisé en ce que les extrémités des tubes (20) sont jointives et plates sur une longueur d'environ 5 à 25 mm.
PCT/FR1999/003277 1998-12-29 1999-12-23 Echangeur de chaleur a tubes souples WO2000039517A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69905862T DE69905862T2 (de) 1998-12-29 1999-12-23 Wärmetauscher mit biegsamen rohren
US09/623,212 US6390187B1 (en) 1998-12-29 1999-12-23 Heat exchanger with flexible tubes
JP2000591374A JP2002533655A (ja) 1998-12-29 1999-12-23 可撓性チューブを有する熱交換器
EP99961164A EP1058807B1 (fr) 1998-12-29 1999-12-23 Echangeur de chaleur a tubes souples

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9816560A FR2787872B1 (fr) 1998-12-29 1998-12-29 Echangeur de chaleur a tubes souples, en particulier pour une installation de refroidissement d'un moteur de vehicule automobile
FR98/16560 1998-12-29
FR99/06223 1999-05-17
FR9906223A FR2787873B1 (fr) 1998-12-29 1999-05-17 Echangeur de chaleur a tubes souples, en particulier pour une installation de refroidissement d'un moteur de vehicule automobile

Publications (1)

Publication Number Publication Date
WO2000039517A1 true WO2000039517A1 (fr) 2000-07-06

Family

ID=26234743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/003277 WO2000039517A1 (fr) 1998-12-29 1999-12-23 Echangeur de chaleur a tubes souples

Country Status (6)

Country Link
US (1) US6390187B1 (fr)
EP (1) EP1058807B1 (fr)
JP (1) JP2002533655A (fr)
DE (1) DE69905862T2 (fr)
FR (1) FR2787873B1 (fr)
WO (1) WO2000039517A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156127A (ja) * 2000-11-17 2002-05-31 Toyox Co Ltd 熱交換器
WO2004020928A1 (fr) * 2002-08-28 2004-03-11 Toyo Radiator Co., Ltd. Refroidisseur de recirculation des gaz d'echappement

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042981B2 (en) * 2002-10-11 2006-05-09 General Electric Co. X-ray tube window and surrounding enclosure cooling apparatuses
US6796453B2 (en) 2002-11-13 2004-09-28 Stan A. Sanders Cellular reservoir flexible pressure vessel, apparatus and method for making same
US6804976B1 (en) * 2003-12-12 2004-10-19 John F. Dain High reliability multi-tube thermal exchange structure
US20100243220A1 (en) * 2006-11-15 2010-09-30 Behr Gmbh & Co. Kg Heat exchanger
US8534346B1 (en) 2006-11-16 2013-09-17 Climatecraft Technologies, Inc. Flexible heat exchanger
US7621148B1 (en) 2007-08-07 2009-11-24 Dain John F Ultra-low temperature bio-sample storage system
US7823394B2 (en) * 2007-11-02 2010-11-02 Reflect Scientific, Inc. Thermal insulation technique for ultra low temperature cryogenic processor
JP2013145066A (ja) * 2012-01-13 2013-07-25 Panasonic Corp 熱交換器
CN105744805A (zh) * 2016-04-15 2016-07-06 周哲明 一种多通道组合水冷板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR406177A (fr) * 1909-08-17 1910-01-24 Eugene Heffner Radiateur démontable
FR529761A (fr) * 1921-01-12 1921-12-06 Radiateur pour automobiles
US2161019A (en) * 1937-06-28 1939-06-06 Joseph A Coy Heat exchanger

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US824493A (en) * 1905-11-25 1906-06-26 D Mcra Livingston Cooler.
US1302111A (en) * 1917-05-31 1919-04-29 Thomas M Wilder Automobile-radiator and method of construction.
US1399146A (en) * 1919-04-17 1921-12-06 Naujoks Rudolph Radiator
US3419069A (en) * 1967-04-28 1968-12-31 Du Pont Heat transfer apparatus having flexible plastic tubular elements arranged in a braided configuration
US3835920A (en) * 1972-02-22 1974-09-17 Gen Motors Corp Compact fluid heat exchanger
US4271900A (en) * 1978-06-28 1981-06-09 E. I. Du Pont De Nemours And Company Apparatus with expandable tube bundle
WO1984000207A1 (fr) * 1982-06-29 1984-01-19 Zander & Ingestroem Echangeur de chaleur a tubes
US4846977A (en) * 1986-10-21 1989-07-11 The Dow Chemical Company Method and device for separating polar from non-polar liquids using membranes
US5538079A (en) * 1994-02-16 1996-07-23 Pawlick; Daniel R. Heat exchanger with oblong grommetted tubes and locating plates
US6119769A (en) * 1998-08-05 2000-09-19 Visteon Global Technologies, Inc. Heat transfer device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR406177A (fr) * 1909-08-17 1910-01-24 Eugene Heffner Radiateur démontable
FR529761A (fr) * 1921-01-12 1921-12-06 Radiateur pour automobiles
US2161019A (en) * 1937-06-28 1939-06-06 Joseph A Coy Heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156127A (ja) * 2000-11-17 2002-05-31 Toyox Co Ltd 熱交換器
WO2004020928A1 (fr) * 2002-08-28 2004-03-11 Toyo Radiator Co., Ltd. Refroidisseur de recirculation des gaz d'echappement
US7171956B2 (en) 2002-08-28 2007-02-06 T. Rad Co., Ltd. EGR cooler

Also Published As

Publication number Publication date
DE69905862D1 (de) 2003-04-17
JP2002533655A (ja) 2002-10-08
EP1058807A1 (fr) 2000-12-13
FR2787873A1 (fr) 2000-06-30
US6390187B1 (en) 2002-05-21
EP1058807B1 (fr) 2003-03-12
DE69905862T2 (de) 2003-12-11
FR2787873B1 (fr) 2001-07-06

Similar Documents

Publication Publication Date Title
EP1424531B1 (fr) Echangeur de chaleur à inertie thermique pour circuit de fluide caloporteur, notamment de véhicule automobile
EP1192402B1 (fr) Echangeur de chaleur a tubes a plusieurs canaux
EP2726808B1 (fr) Echangeur de chaleur, boitier et circuit de climatisation comprenant un tel echangeur
EP1058807B1 (fr) Echangeur de chaleur a tubes souples
FR2846733A1 (fr) Condenseur, notamment pour un circuit de cimatisation de vehicule automobile, et circuit comprenant ce condenseur
EP1120620A1 (fr) Module d'échange de chaleur, en particulier pour véhicule automobile
EP1680292A2 (fr) Echangeur de chaleur utilisant un fluide d accumulation
FR2711236A1 (fr) Echangeur de chaleur à deux rangées de tubes, en particulier pour véhicule automobile.
FR2967246A1 (fr) Echangeur de chaleur pour dispositif de stockage d'energie electrique
FR2793009A1 (fr) Echangeur de chaleur a tubes souples, notamment pour vehicule automobile
FR2787875A1 (fr) Echangeur de chaleur a tubes souples, notamment pour une installation de refroidissement d'un moteur de vehicule automobile
FR2787872A1 (fr) Echangeur de chaleur a tubes souples, en particulier pour une installation de refroidissement d'un moteur de vehicule automobile
FR3059410A1 (fr) Organe de mixage constitutif d'un dispositif d'homogeneisation de la distribution d'un fluide refrigerant a l'interieur de tubes d'un echangeur de chaleur
FR2929561A1 (fr) Dispositif de refroidissement pour vehicules automobiles
FR3111970A1 (fr) Échangeur thermique comprenant un organe hélicoïdal de distribution du liquide caloporteur.
FR3111977A1 (fr) Échangeur thermique comprenant un organe de réduction de section d’un collecteur.
FR2924491A1 (fr) Intercalaire ondule muni de persiennes pour echangeur de chaleur
EP0984237A1 (fr) Echangeur de chaleur multi-circuits, en particulier pour véhicule automobile
EP3794299A1 (fr) Echangeur de chaleur de véhicule automobile
EP1546627B1 (fr) Echangeur de chaleur a plaques, en particulier pour vehicles automobiles
FR2790075A1 (fr) Echangeur de chaleur muni de boites collectrices perfectionnees, en particulier a tubes plastiques
EP1265045B1 (fr) Evaporateur de puissance frigorifique élevée pour boucle de climatisation de véhicule
FR2799824A1 (fr) Tube plat multi-canaux pour echangeur de chaleur, notamment de vehicule automobile
FR3062198A1 (fr) Circuit de circulation d'un fluide refrigerant pour un evaporateur a deux nappes
FR2721698A1 (fr) Echangeur de chaleur à circulation de fluide régulée.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999961164

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999961164

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09623212

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1999961164

Country of ref document: EP