WO2000038486A1 - Dispositif de variation de l'energie d'un faisceau de particules extraites d'un accelerateur - Google Patents
Dispositif de variation de l'energie d'un faisceau de particules extraites d'un accelerateur Download PDFInfo
- Publication number
- WO2000038486A1 WO2000038486A1 PCT/BE1999/000166 BE9900166W WO0038486A1 WO 2000038486 A1 WO2000038486 A1 WO 2000038486A1 BE 9900166 W BE9900166 W BE 9900166W WO 0038486 A1 WO0038486 A1 WO 0038486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy
- degrader
- steps
- variable
- maximum
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/10—Scattering devices; Absorbing devices; Ionising radiation filters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
Definitions
- the present invention relates to a device intended to allow the variation of the energy of a beam of particles extracted from a particle accelerator.
- the present invention also relates to the use of such a device.
- a solution consists in using an accelerator capable of producing, intrinsically, an extracted beam of particles whose energy is variable.
- an accelerator such as a synchrotron capable of producing within this accelerator a beam of particles whose energy is variable.
- this type of accelerator is relatively complex to produce, and therefore more expensive and less reliable than accelerators. of particles producing fixed energy beams like cyclotrons.
- the present invention aims to propose a device which would make it possible to vary the energy of the beam extracted from a particle accelerator, in particular from a fixed energy particle accelerator, while maintaining the energy dispersion characteristics and the qualities beam optics.
- the present invention aims more particularly to propose a device which would allow to vary the energy of a beam extracted from a particle accelerator almost continuously.
- the present invention relates to a method and a device intended to allow the variation of the energy of a beam of particles extracted from a particle accelerator with fixed energy.
- an energy degrader essentially consisting of a block of material whose thickness is variable in discrete steps.
- the thickness is defined as the distance between the entry face and the exit face on the block of material.
- the spacing in energy of the steps is variable and is determined so that the variation of the intensity of the beam reaches at the border between two consecutive steps a maximum of 15%, typically 10%, of the maximum intensity obtained at the exit. of each of the two successive steps considered. This makes it possible to obtain a continuous variation of the energy despite the fact that the thickness varies in a discrete manner. Indeed, this is due to the combination of the way of calculating the energy spacing between the steps with the association of an element of analysis.
- this degrader is positioned at the place where the bundle envelope has a constriction ("waist'M
- the curvature of the inlet and outlet faces of the degrader defined by the height steps or not discrete, is drawn so that the "waist" always occupies for each step or not the ideal position relative to the entry and exit faces without the need to change from one step to the other the adjustment parameters of beam transport and in particular the position of the waist.
- the energy degrader has steps or not of variable width, the width of a step being defined as the distance between two successive steps.
- This width must be adjusted so as to be slightly larger than the diameter of the beam at the entrance or at the exit of the degrader, which means that the width of said steps or not of great thickness will be greater than the width of said steps or no thin.
- the material constituting the energy degrader must have a high density and a low atomic mass.
- Examples may be diamond, agglomerated diamond powder or graphite.
- the degrader is mounted on an automated wheel which also includes beam diagnostic elements such as beam profile monitors, beam stops, etc. Conventionally, it is also possible to associate this energy degrader with an analysis magnet.
- Figures la and lb represent respectively a perspective view and a top view of an energy degrader used in the energy variation method of a particle beam according to the present invention, while the figure represents an enlargement of part of figure lb.
- FIG. 2 represents the variation of the current density as a function of the energy for a beam of protons.
- FIG. 3 represents an overall view of the device according to the present invention used in proton therapy.
- Figures la and lb show a degrader used in the device according to the present invention, consisting essentially of a block of material whose thickness is variable in steps discreetly.
- This energy degrader will make it possible to roughly determine the value of the desired energy.
- an energy magnet located downstream of the latter will be added to this energy degrader in order to allow a finer adjustment of the value of the desired energy.
- the energy degrader according to the invention has a "staircase" shape, for which each step or "step” has a different thickness corresponding to a determined energy variation, the thickness El + E2 being defined as the distance between the entry face and the exit face of the particle beam.
- the width L of the successive steps is also variable, and is increasing as a function of the thickness of said steps.
- the third parameter is the height H from one step or step to another.
- This block of variable thickness is preferably presented in the form of a ring placed on a wheel. This makes it possible to get rid of the discrete character of the degrader while maintaining a parallelism of the faces input and output of said degrader, which minimizes the energy dispersion of the beam.
- the energy dispersion which results from it is expressed, at the exit of the block of material, by an energy spectrum of Gaussian form, characterizing the variation of the density of the current ( In value represented in FIG. 2, for the "walk” n) as a function of the energy.
- This Gaussian is centered in an energy value (value En represented in Figure 2, for the "walk” n) which corresponds to the initial energy minus the amount of energy lost in the material, such as the it can be calculated using the route tables (called “range table”).
- the pitch of the variation in energy is determined in such a way that the decrease in intensity of the beam reaches a maximum of x% (typically 10%) at the edges of each step.
- x% typically 10%
- the imposition of this constraint makes it possible to calculate the upper limit in energy Es for a given step, which is also at the lower limit in energy for the following step ( Figure 2).
- An iterative calculation thus defines the number of "steps" necessary to obtain a continuous variation of the energy between the maximum values (that of the beam extracted from the accelerator) and minimum (the lowest energy that will be used in the framework of the application in question)
- a variation in energy is obtained continuously in having, according to a preferred embodiment of the invention, an analysis magnet downstream of the degrader, this despite the fact that the thickness of the degrader varies in discrete steps.
- the principle is that, because of the large energy dispersion associated with the "straggling", the degrader will only define the energy in a rough way, the fine adjustment being done downstream, using the magnet analysis.
- the degrader of variable thickness will be located exactly at the place where the envelope of the beam shows a constriction (c ' that is to say the place where the beam has the smallest spatial extension, place called the "waist").
- the beam must therefore be focused in the degrader, and each part of variable thickness of the degrader, that is to say each "step" corresponding to a given energy decrease, is located in a place such that the distance between the entry face of the step and the place of focus of the beam (i.e. the waist) corresponds exactly to the distance which minimizes the emittance of exit of the beam as calculated by the transport equations and diffusion theory.
- An important aspect of the present invention is therefore that the beam optics, and in particular the position of the waist, are not modified as a function of the variation in energy which it is desired to produce. Thanks to the appropriate curvature of the entry and exit faces (ie thanks to the shape of the entry and exit "stairs"), the waist remains static in space and occupies always, for each step, the ideal position relative to the entry and exit faces of the step.
- the degrader is composed of a material of very low atomic mass and of high density to reduce the effects of multiple scattering.
- This wheel is automated and remotely controlled so as to place, on the path of the incident beam, the part of the degrader (the "step") whose thickness corresponds to the loss of energy that one wishes to cause.
- FIG. 3 represents a diagram of the device for its use in proton therapy. It has been dimensioned so as to allow the continuous variation, in the range 70 MeV - 230 MeV, of the energy of a beam of protons of fixed energy (approximately 230 MeV) produced by a cyclotron.
- the device comprises the degrader 1 mounted on an automated wheel and made of graphite. It consists of 154 "steps". Also found on this wheel are elements for controlling the characteristics of the beam such as beam profile monitors 4 as well as beam stops 3.
- the assembly also includes the frame 6, correction magnets (5, "steering ”) and power cables 2 in addition to a few connectors.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Particle Accelerators (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000590440A JP2002533888A (ja) | 1998-12-21 | 1999-12-20 | 加速器から抽出される粒子ビームのエネルギーを変化させるための装置 |
AU18507/00A AU1850700A (en) | 1998-12-21 | 1999-12-20 | Device for varying the energy of a particle beam extracted from an accelerator |
CA002354071A CA2354071C (fr) | 1998-12-21 | 1999-12-20 | Dispositif de variation de l'energie d'un faisceau de particules extraites d'un accelerateur |
DE69925165T DE69925165T2 (de) | 1998-12-21 | 1999-12-20 | Einrichtung zur veränderung der energie eines strahles von aus einem beschleuniger extrahierten teilchen |
AT99961998T ATE295062T1 (de) | 1998-12-21 | 1999-12-20 | Einrichtung zur veränderung der energie eines strahles von aus einem beschleuniger extrahierten teilchen |
EP99961998A EP1145605B1 (fr) | 1998-12-21 | 1999-12-20 | Dispositif de variation de l'energie d'un faisceau de particules extraites d'un accelerateur |
US09/868,461 US6433336B1 (en) | 1998-12-21 | 1999-12-20 | Device for varying the energy of a particle beam extracted from an accelerator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE9800913A BE1012358A5 (fr) | 1998-12-21 | 1998-12-21 | Procede de variation de l'energie d'un faisceau de particules extraites d'un accelerateur et dispositif a cet effet. |
BE9800913 | 1998-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000038486A1 true WO2000038486A1 (fr) | 2000-06-29 |
Family
ID=3891579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BE1999/000166 WO2000038486A1 (fr) | 1998-12-21 | 1999-12-20 | Dispositif de variation de l'energie d'un faisceau de particules extraites d'un accelerateur |
Country Status (10)
Country | Link |
---|---|
US (1) | US6433336B1 (fr) |
EP (1) | EP1145605B1 (fr) |
JP (1) | JP2002533888A (fr) |
CN (1) | CN1203730C (fr) |
AT (1) | ATE295062T1 (fr) |
AU (1) | AU1850700A (fr) |
BE (1) | BE1012358A5 (fr) |
CA (1) | CA2354071C (fr) |
DE (1) | DE69925165T2 (fr) |
WO (1) | WO2000038486A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100456416C (zh) * | 2001-08-30 | 2009-01-28 | 瓦里安半导体设备联合公司 | 用来统调离子注入机的方法和装置 |
US9006693B2 (en) | 2011-01-18 | 2015-04-14 | Sumitomo Heavy Industries, Ltd. | Energy degrader and charged particle irradiation system including the same |
RU2617689C1 (ru) * | 2016-04-19 | 2017-04-26 | Иван Васильевич Трифанов | Рекуператор энергии положительно заряженных ионов |
EP3203815A1 (fr) | 2016-02-04 | 2017-08-09 | Ion Beam Applications | Dispositif rotatif de dégradation d'énergie |
Families Citing this family (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3469213B2 (ja) * | 2001-03-29 | 2003-11-25 | 株式会社日立製作所 | 磁場印加試料観察システム |
AU2002332776A1 (en) | 2001-08-30 | 2003-03-18 | Tolemac, Llc | Antiprotons for imaging and termination of undesirable cells |
US7317192B2 (en) * | 2003-06-02 | 2008-01-08 | Fox Chase Cancer Center | High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers |
US6838676B1 (en) * | 2003-07-21 | 2005-01-04 | Hbar Technologies, Llc | Particle beam processing system |
US7183758B2 (en) * | 2003-12-12 | 2007-02-27 | International Business Machines Corporation | Automatic exchange of degraders in accelerated testing of computer chips |
CN101061759B (zh) | 2004-07-21 | 2011-05-25 | 斯蒂尔瑞弗系统有限公司 | 用于同步回旋加速器的可编程的射频波形发生器 |
US9077022B2 (en) * | 2004-10-29 | 2015-07-07 | Medtronic, Inc. | Lithium-ion battery |
EP2389983B1 (fr) | 2005-11-18 | 2016-05-25 | Mevion Medical Systems, Inc. | Radiothérapie à particules chargées |
WO2007084701A1 (fr) * | 2006-01-19 | 2007-07-26 | Massachusetts Institute Of Technology | Structure magnetique pour acceleration de particules |
US7656258B1 (en) | 2006-01-19 | 2010-02-02 | Massachusetts Institute Of Technology | Magnet structure for particle acceleration |
DE102007032025A1 (de) | 2007-07-10 | 2008-12-18 | Siemens Ag | Partikeltherapie-Anlage |
US8003964B2 (en) | 2007-10-11 | 2011-08-23 | Still River Systems Incorporated | Applying a particle beam to a patient |
US8581523B2 (en) | 2007-11-30 | 2013-11-12 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8933650B2 (en) | 2007-11-30 | 2015-01-13 | Mevion Medical Systems, Inc. | Matching a resonant frequency of a resonant cavity to a frequency of an input voltage |
US9044600B2 (en) | 2008-05-22 | 2015-06-02 | Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
US8373145B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Charged particle cancer therapy system magnet control method and apparatus |
US9737272B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle cancer therapy beam state determination apparatus and method of use thereof |
US8374314B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US8969834B2 (en) | 2008-05-22 | 2015-03-03 | Vladimir Balakin | Charged particle therapy patient constraint apparatus and method of use thereof |
US8093564B2 (en) | 2008-05-22 | 2012-01-10 | Vladimir Balakin | Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system |
US9682254B2 (en) | 2008-05-22 | 2017-06-20 | Vladimir Balakin | Cancer surface searing apparatus and method of use thereof |
US9616252B2 (en) | 2008-05-22 | 2017-04-11 | Vladimir Balakin | Multi-field cancer therapy apparatus and method of use thereof |
US8975600B2 (en) | 2008-05-22 | 2015-03-10 | Vladimir Balakin | Treatment delivery control system and method of operation thereof |
US9177751B2 (en) | 2008-05-22 | 2015-11-03 | Vladimir Balakin | Carbon ion beam injector apparatus and method of use thereof |
US8378311B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Synchrotron power cycling apparatus and method of use thereof |
US8288742B2 (en) | 2008-05-22 | 2012-10-16 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US9974978B2 (en) | 2008-05-22 | 2018-05-22 | W. Davis Lee | Scintillation array apparatus and method of use thereof |
US9155911B1 (en) | 2008-05-22 | 2015-10-13 | Vladimir Balakin | Ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US7939809B2 (en) | 2008-05-22 | 2011-05-10 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8368038B2 (en) | 2008-05-22 | 2013-02-05 | Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US10070831B2 (en) | 2008-05-22 | 2018-09-11 | James P. Bennett | Integrated cancer therapy—imaging apparatus and method of use thereof |
US8569717B2 (en) | 2008-05-22 | 2013-10-29 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
WO2009142544A2 (fr) | 2008-05-22 | 2009-11-26 | Vladimir Yegorovich Balakin | Procédé et appareil de réglage du trajet d'un faisceau de traitement du cancer par particules chargées |
US9744380B2 (en) | 2008-05-22 | 2017-08-29 | Susan L. Michaud | Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof |
US9910166B2 (en) | 2008-05-22 | 2018-03-06 | Stephen L. Spotts | Redundant charged particle state determination apparatus and method of use thereof |
US8624528B2 (en) | 2008-05-22 | 2014-01-07 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US8718231B2 (en) | 2008-05-22 | 2014-05-06 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8144832B2 (en) | 2008-05-22 | 2012-03-27 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US9498649B2 (en) | 2008-05-22 | 2016-11-22 | Vladimir Balakin | Charged particle cancer therapy patient constraint apparatus and method of use thereof |
US9095040B2 (en) | 2008-05-22 | 2015-07-28 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US10092776B2 (en) | 2008-05-22 | 2018-10-09 | Susan L. Michaud | Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof |
US9782140B2 (en) | 2008-05-22 | 2017-10-10 | Susan L. Michaud | Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof |
US8178859B2 (en) * | 2008-05-22 | 2012-05-15 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
US9855444B2 (en) | 2008-05-22 | 2018-01-02 | Scott Penfold | X-ray detector for proton transit detection apparatus and method of use thereof |
US8598543B2 (en) | 2008-05-22 | 2013-12-03 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
US10548551B2 (en) | 2008-05-22 | 2020-02-04 | W. Davis Lee | Depth resolved scintillation detector array imaging apparatus and method of use thereof |
US9937362B2 (en) | 2008-05-22 | 2018-04-10 | W. Davis Lee | Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof |
US8399866B2 (en) | 2008-05-22 | 2013-03-19 | Vladimir Balakin | Charged particle extraction apparatus and method of use thereof |
US9168392B1 (en) | 2008-05-22 | 2015-10-27 | Vladimir Balakin | Charged particle cancer therapy system X-ray apparatus and method of use thereof |
JP2011523169A (ja) | 2008-05-22 | 2011-08-04 | エゴロヴィチ バラキン、ウラジミール | 荷電粒子癌治療システムと併用する荷電粒子ビーム抽出方法及び装置 |
US8373143B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US10029122B2 (en) | 2008-05-22 | 2018-07-24 | Susan L. Michaud | Charged particle—patient motion control system apparatus and method of use thereof |
US8188688B2 (en) | 2008-05-22 | 2012-05-29 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US8487278B2 (en) | 2008-05-22 | 2013-07-16 | Vladimir Yegorovich Balakin | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8089054B2 (en) | 2008-05-22 | 2012-01-03 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US9058910B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Yegorovich Balakin | Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system |
US9056199B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Balakin | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
US8198607B2 (en) | 2008-05-22 | 2012-06-12 | Vladimir Balakin | Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US8710462B2 (en) | 2008-05-22 | 2014-04-29 | Vladimir Balakin | Charged particle cancer therapy beam path control method and apparatus |
EP2283710B1 (fr) | 2008-05-22 | 2018-07-11 | Vladimir Yegorovich Balakin | Dispositif de traitement anticancéreux par particules chargées à champs multiples |
US8309941B2 (en) | 2008-05-22 | 2012-11-13 | Vladimir Balakin | Charged particle cancer therapy and patient breath monitoring method and apparatus |
CN102119585B (zh) | 2008-05-22 | 2016-02-03 | 弗拉迪米尔·叶戈罗维奇·巴拉金 | 带电粒子癌症疗法患者定位的方法和装置 |
US8519365B2 (en) | 2008-05-22 | 2013-08-27 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US8637833B2 (en) | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
US9579525B2 (en) | 2008-05-22 | 2017-02-28 | Vladimir Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US9737734B2 (en) | 2008-05-22 | 2017-08-22 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US8129699B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US8129694B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system |
US8373146B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US8436327B2 (en) | 2008-05-22 | 2013-05-07 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus |
US9981147B2 (en) | 2008-05-22 | 2018-05-29 | W. Davis Lee | Ion beam extraction apparatus and method of use thereof |
US8378321B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Charged particle cancer therapy and patient positioning method and apparatus |
US8907309B2 (en) | 2009-04-17 | 2014-12-09 | Stephen L. Spotts | Treatment delivery control system and method of operation thereof |
CN102113419B (zh) | 2008-05-22 | 2015-09-02 | 弗拉迪米尔·叶戈罗维奇·巴拉金 | 多轴带电粒子癌症治疗方法和装置 |
US10684380B2 (en) | 2008-05-22 | 2020-06-16 | W. Davis Lee | Multiple scintillation detector array imaging apparatus and method of use thereof |
US8642978B2 (en) | 2008-05-22 | 2014-02-04 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US8896239B2 (en) | 2008-05-22 | 2014-11-25 | Vladimir Yegorovich Balakin | Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system |
US10143854B2 (en) | 2008-05-22 | 2018-12-04 | Susan L. Michaud | Dual rotation charged particle imaging / treatment apparatus and method of use thereof |
US9737733B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle state determination apparatus and method of use thereof |
US8625739B2 (en) | 2008-07-14 | 2014-01-07 | Vladimir Balakin | Charged particle cancer therapy x-ray method and apparatus |
US8627822B2 (en) | 2008-07-14 | 2014-01-14 | Vladimir Balakin | Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
US8229072B2 (en) * | 2008-07-14 | 2012-07-24 | Vladimir Balakin | Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
KR100946270B1 (ko) * | 2008-08-12 | 2010-03-09 | 주식회사 메가젠임플란트 | 연조직 절단 치과용 공구 |
CN102387836B (zh) | 2009-03-04 | 2016-03-16 | 普罗汤姆封闭式股份公司 | 多场带电粒子癌症治疗设备 |
WO2011048088A1 (fr) | 2009-10-23 | 2011-04-28 | Ion Beam Applications | Portique comprenant un analyseur de faisceau utilisé en thérapie par particules |
US10556126B2 (en) | 2010-04-16 | 2020-02-11 | Mark R. Amato | Automated radiation treatment plan development apparatus and method of use thereof |
US10086214B2 (en) | 2010-04-16 | 2018-10-02 | Vladimir Balakin | Integrated tomography—cancer treatment apparatus and method of use thereof |
US10518109B2 (en) | 2010-04-16 | 2019-12-31 | Jillian Reno | Transformable charged particle beam path cancer therapy apparatus and method of use thereof |
US10179250B2 (en) | 2010-04-16 | 2019-01-15 | Nick Ruebel | Auto-updated and implemented radiation treatment plan apparatus and method of use thereof |
US10751551B2 (en) | 2010-04-16 | 2020-08-25 | James P. Bennett | Integrated imaging-cancer treatment apparatus and method of use thereof |
US10349906B2 (en) | 2010-04-16 | 2019-07-16 | James P. Bennett | Multiplexed proton tomography imaging apparatus and method of use thereof |
US10188877B2 (en) | 2010-04-16 | 2019-01-29 | W. Davis Lee | Fiducial marker/cancer imaging and treatment apparatus and method of use thereof |
US9737731B2 (en) | 2010-04-16 | 2017-08-22 | Vladimir Balakin | Synchrotron energy control apparatus and method of use thereof |
US10625097B2 (en) | 2010-04-16 | 2020-04-21 | Jillian Reno | Semi-automated cancer therapy treatment apparatus and method of use thereof |
US10555710B2 (en) | 2010-04-16 | 2020-02-11 | James P. Bennett | Simultaneous multi-axes imaging apparatus and method of use thereof |
US10376717B2 (en) | 2010-04-16 | 2019-08-13 | James P. Bennett | Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof |
US10638988B2 (en) | 2010-04-16 | 2020-05-05 | Scott Penfold | Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof |
US11648420B2 (en) | 2010-04-16 | 2023-05-16 | Vladimir Balakin | Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof |
US10589128B2 (en) | 2010-04-16 | 2020-03-17 | Susan L. Michaud | Treatment beam path verification in a cancer therapy apparatus and method of use thereof |
US9336916B2 (en) | 2010-05-14 | 2016-05-10 | Tcnet, Llc | Tc-99m produced by proton irradiation of a fluid target system |
CN102844820B (zh) * | 2010-05-27 | 2015-04-01 | 三菱电机株式会社 | 粒子射线照射系统及粒子射线照射系统的控制方法 |
US8963112B1 (en) | 2011-05-25 | 2015-02-24 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US9269467B2 (en) | 2011-06-02 | 2016-02-23 | Nigel Raymond Stevenson | General radioisotope production method employing PET-style target systems |
JP5726644B2 (ja) * | 2011-06-06 | 2015-06-03 | 住友重機械工業株式会社 | エネルギーデグレーダ、及びそれを備えた荷電粒子線照射システム |
JP5917322B2 (ja) * | 2012-07-12 | 2016-05-11 | 住友重機械工業株式会社 | 荷電粒子線照射装置 |
WO2014052709A2 (fr) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Contrôle de l'intensité d'un faisceau de particules |
WO2014052708A2 (fr) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Éléments d'homogénéisation de champ magnétique permettant de modifier des champs magnétiques |
US9622335B2 (en) | 2012-09-28 | 2017-04-11 | Mevion Medical Systems, Inc. | Magnetic field regenerator |
WO2014052721A1 (fr) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Système de commande pour un accélérateur de particules |
US10254739B2 (en) | 2012-09-28 | 2019-04-09 | Mevion Medical Systems, Inc. | Coil positioning system |
US9301384B2 (en) | 2012-09-28 | 2016-03-29 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
EP2901820B1 (fr) | 2012-09-28 | 2021-02-17 | Mevion Medical Systems, Inc. | Focalisation d'un faisceau de particules à l'aide d'une variation de champ magnétique |
US8927950B2 (en) | 2012-09-28 | 2015-01-06 | Mevion Medical Systems, Inc. | Focusing a particle beam |
EP3581243A1 (fr) | 2012-09-28 | 2019-12-18 | Mevion Medical Systems, Inc. | Commande de thérapie par particules |
US8933651B2 (en) | 2012-11-16 | 2015-01-13 | Vladimir Balakin | Charged particle accelerator magnet apparatus and method of use thereof |
EP2997799A4 (fr) | 2013-05-17 | 2016-11-02 | Martin A Stuart | Accélérateur de paroi diélectrique utilisant du diamant ou du carbone de type diamant |
US8791656B1 (en) | 2013-05-31 | 2014-07-29 | Mevion Medical Systems, Inc. | Active return system |
US9730308B2 (en) * | 2013-06-12 | 2017-08-08 | Mevion Medical Systems, Inc. | Particle accelerator that produces charged particles having variable energies |
EP3049151B1 (fr) | 2013-09-27 | 2019-12-25 | Mevion Medical Systems, Inc. | Balayage par un faisceau de particules |
US10675487B2 (en) | 2013-12-20 | 2020-06-09 | Mevion Medical Systems, Inc. | Energy degrader enabling high-speed energy switching |
US9962560B2 (en) * | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
US9661736B2 (en) | 2014-02-20 | 2017-05-23 | Mevion Medical Systems, Inc. | Scanning system for a particle therapy system |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
ES2620670T3 (es) | 2014-12-16 | 2017-06-29 | Ion Beam Applications S.A. | Degradador de energía |
US10786689B2 (en) | 2015-11-10 | 2020-09-29 | Mevion Medical Systems, Inc. | Adaptive aperture |
EP3178522B1 (fr) | 2015-12-11 | 2018-02-14 | Ion Beam Applications S.A. | Système de traitement de particules avec commande parallèle de variation d'énergie et variation de position de faisceau |
US9907981B2 (en) | 2016-03-07 | 2018-03-06 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US10037863B2 (en) | 2016-05-27 | 2018-07-31 | Mark R. Amato | Continuous ion beam kinetic energy dissipater apparatus and method of use thereof |
WO2018009779A1 (fr) | 2016-07-08 | 2018-01-11 | Mevion Medical Systems, Inc. | Planification de traitement |
CN106267584B (zh) * | 2016-07-29 | 2018-12-28 | 中国原子能科学研究院 | 一种双盘旋转式紧凑型降能器及其使用方法 |
CN106304606A (zh) * | 2016-07-29 | 2017-01-04 | 中国原子能科学研究院 | 一种双直排插入式降能器及其使用方法 |
CN106406216B (zh) * | 2016-10-24 | 2018-02-16 | 合肥中科离子医学技术装备有限公司 | 一种用于粒子束流降能器的控制装置及其控制方法 |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
WO2019006253A1 (fr) | 2017-06-30 | 2019-01-03 | Mevion Medical Systems, Inc. | Collimateur configurable commandé au moyen de moteurs linéaires |
CN107737411B (zh) * | 2017-10-13 | 2018-11-02 | 华中科技大学 | 一种变角度多楔形混合材料降能器 |
CN108449859B (zh) * | 2018-03-08 | 2019-12-06 | 西北核技术研究所 | 用于真空中的轮轴式粒子加速器降能装置及其降能方法 |
WO2020185543A1 (fr) | 2019-03-08 | 2020-09-17 | Mevion Medical Systems, Inc. | Collimateur et dégradeur d'énergie pour système de thérapie par particules |
CN112911783A (zh) * | 2021-03-25 | 2021-06-04 | 四川大学 | 一种适用于高功率束流的薄膜降能器 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3577201B2 (ja) * | 1997-10-20 | 2004-10-13 | 三菱電機株式会社 | 荷電粒子線照射装置、荷電粒子線回転照射装置、および荷電粒子線照射方法 |
-
1998
- 1998-12-21 BE BE9800913A patent/BE1012358A5/fr not_active IP Right Cessation
-
1999
- 1999-12-20 JP JP2000590440A patent/JP2002533888A/ja active Pending
- 1999-12-20 CA CA002354071A patent/CA2354071C/fr not_active Expired - Fee Related
- 1999-12-20 EP EP99961998A patent/EP1145605B1/fr not_active Expired - Lifetime
- 1999-12-20 AT AT99961998T patent/ATE295062T1/de not_active IP Right Cessation
- 1999-12-20 DE DE69925165T patent/DE69925165T2/de not_active Expired - Lifetime
- 1999-12-20 WO PCT/BE1999/000166 patent/WO2000038486A1/fr active IP Right Grant
- 1999-12-20 AU AU18507/00A patent/AU1850700A/en not_active Abandoned
- 1999-12-20 CN CNB998148547A patent/CN1203730C/zh not_active Expired - Fee Related
- 1999-12-20 US US09/868,461 patent/US6433336B1/en not_active Expired - Fee Related
Non-Patent Citations (5)
Title |
---|
BERG R E: "Rotating wedge cyclotron beam degrader", 7TH INTERNATIONAL CONFERENCE ON CYCLOTRONS AND THEIR APPLICATIONS, ZURICH, SWITZERLAND, 19-22 AUG. 1975, 1975, Basel, Switzerland, Birkhauser Verlag, Switzerland, pages 315 - 316, XP002114348, ISBN: 3-7643-0823-0 * |
CONSTANTINESCU B ET AL: "Radiation damage and surface deformation effects on stainless steel produced by helium-ion bombardment", JOURNAL OF NUCLEAR MATERIALS, JUNE 1985, NETHERLANDS, vol. 132, no. 2, pages 105 - 109, XP002114349, ISSN: 0022-3115 * |
KANAI T ET AL: "Three-dimensional beam scanning for proton therapy", NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH, 1 SEPT. 1983, NETHERLANDS, vol. 214, no. 2-3, pages 491 - 496, XP002114346, ISSN: 0167-5087 * |
SHIMODA T ET AL: "Design study of the secondary-beam line at RCNP", TWELFTH INTERNATIONAL CONFERENCE ON ELECTROMAGNETIC ISOTOPE SEPARATORS AND TECHNIQUES RELATED TO THEIR APPLICATIONS, SENDAI, JAPAN, 2-6 SEPT. 1991, vol. B70, no. 1-4, Nuclear Instruments & Methods in Physics Research, Section B (Beam Interactions with Materials and Atoms), Aug. 1992, Netherlands, pages 320 - 330, XP002114350, ISSN: 0168-583X * |
WERBECK R D ET AL: "Performance of the high-energy pion beam at LAMPF", 1975 PARTICLE ACCELERATOR CONFERENCE, WASHINGTON, DC, USA, 12-14 MARCH 1975, vol. ns-22, no. 3, IEEE Transactions on Nuclear Science, June 1975, USA, pages 1598 - 1600, XP002114347, ISSN: 0018-9499 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100456416C (zh) * | 2001-08-30 | 2009-01-28 | 瓦里安半导体设备联合公司 | 用来统调离子注入机的方法和装置 |
US9006693B2 (en) | 2011-01-18 | 2015-04-14 | Sumitomo Heavy Industries, Ltd. | Energy degrader and charged particle irradiation system including the same |
EP3203815A1 (fr) | 2016-02-04 | 2017-08-09 | Ion Beam Applications | Dispositif rotatif de dégradation d'énergie |
RU2617689C1 (ru) * | 2016-04-19 | 2017-04-26 | Иван Васильевич Трифанов | Рекуператор энергии положительно заряженных ионов |
Also Published As
Publication number | Publication date |
---|---|
CN1331903A (zh) | 2002-01-16 |
CA2354071C (fr) | 2008-02-19 |
EP1145605A1 (fr) | 2001-10-17 |
US6433336B1 (en) | 2002-08-13 |
DE69925165T2 (de) | 2006-01-12 |
EP1145605B1 (fr) | 2005-05-04 |
JP2002533888A (ja) | 2002-10-08 |
CA2354071A1 (fr) | 2000-06-29 |
BE1012358A5 (fr) | 2000-10-03 |
ATE295062T1 (de) | 2005-05-15 |
AU1850700A (en) | 2000-07-12 |
CN1203730C (zh) | 2005-05-25 |
DE69925165D1 (de) | 2005-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BE1012358A5 (fr) | Procede de variation de l'energie d'un faisceau de particules extraites d'un accelerateur et dispositif a cet effet. | |
WO2006000718A1 (fr) | Dispositif de generation de lumiere dans l' extreme ultraviolet et application a une source de lithographie par rayonnement dans l'extreme ultraviolet | |
EP1240551A2 (fr) | Dispositif de lithographie utilisant une source de rayonnement dans le domaine extreme ultraviolet et des miroirs multicouches a large bande spectrale dans ce domaine | |
EP0526306B1 (fr) | Accélérateur de protons à l'aide d'une onde progressive à couplage magnétique | |
EP0995145B1 (fr) | Optique diffractive a synthese d'ouverture et a focale variable et dispositif de decoupe laser incorporant une telle optique | |
EP3216324B1 (fr) | Lentille laser plasma | |
FR2716573A1 (fr) | Système d'optique ionique à trois grilles. | |
FR2504308A1 (fr) | Instrument et procede pour focaliser des rayons x, des rayons gamma et des neutrons | |
EP2356890B1 (fr) | Procede et systeme pour augmenter la duree de vie d'un plasma | |
EP0557186B1 (fr) | Détecteur photoélectrique à puits quantiques à détectivité améliorée | |
EP0298817A1 (fr) | Procédé et dispositif de production d'électrons utilisant un couplage de champ et l'effet photoélectrique | |
EP3427285B1 (fr) | Dispositif de modulation de l'intensité d'un faisceau de particules chargées, procédé de déviation de son axe d'émission d'un faisceau de particules chargées utilisant ce dispositif et ensemble d'émission d'un faisceau de particules chargées d'intensité modulable, comprenant ce dispositif | |
EP1517727B1 (fr) | Dispositif d'irradiation d'une cible par un faisceau de hadrons charges, application a la hadrontherapie | |
FR3027740A1 (fr) | Procede et systeme pour la generation d'une puissance laser elevee | |
EP0155890B1 (fr) | Tube convertisseur d'image à balayage de fente | |
WO2020243374A1 (fr) | Procédés d'appariement d'étendue optique pour la métrologie des ultraviolets extrêmes | |
EP0514255B1 (fr) | Source d'ions à résonance cyclotronique électronique | |
EP1077019A1 (fr) | Source de rayons x et application a la radiographie | |
WO2023198653A1 (fr) | Procede et systeme d'acceleration d'electrons par interaction laser-plasma | |
CA2888713C (fr) | Procede et dispositif de generation d'un faisceau de particules chargees focalise de fort courant | |
EP4003635A1 (fr) | Systeme et procede de traitement par laser | |
He | Design of Long-Wavelength Detectors for High Efficiency and High Speed Operation | |
FR3042641A1 (fr) | Generation d'un faisceau d'ions ultracourt | |
FR2527892A1 (fr) | Dispositif egalisateur des doses d'irradiation d'un champ d'irradiation en electrons | |
FR2775415A1 (fr) | Procede et dispositif de production de rayonnement synchrotron infrarouge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 99814854.7 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2354071 Country of ref document: CA Ref document number: 2354071 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09868461 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2000 590440 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999961998 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWP | Wipo information: published in national office |
Ref document number: 1999961998 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 1999961998 Country of ref document: EP |