CN1203730C - 改变从加速器中引出的粒子束的能量的装置 - Google Patents

改变从加速器中引出的粒子束的能量的装置 Download PDF

Info

Publication number
CN1203730C
CN1203730C CNB998148547A CN99814854A CN1203730C CN 1203730 C CN1203730 C CN 1203730C CN B998148547 A CNB998148547 A CN B998148547A CN 99814854 A CN99814854 A CN 99814854A CN 1203730 C CN1203730 C CN 1203730C
Authority
CN
China
Prior art keywords
degrader
energy
described device
particle beams
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB998148547A
Other languages
English (en)
Other versions
CN1331903A (zh
Inventor
伊弗斯·约真
文森特·婆勒耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Applications SA
Original Assignee
Ion Beam Applications SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications SA filed Critical Ion Beam Applications SA
Publication of CN1331903A publication Critical patent/CN1331903A/zh
Application granted granted Critical
Publication of CN1203730C publication Critical patent/CN1203730C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本发明涉及一种改变从粒子加速器中引出的粒子束的能量的装置,其特征在于它包括一降能器,该降能器实质由物质块组成的,该物质块的厚度(E1+E2)以一定的梯级不连续地变化,梯级的能量的间隔是可变化的并且是确定的,以使粒子束的强度的变化在两个连续梯级之间的边界上达到在所考虑的两个相邻的梯级的每个梯级的出口处获得的最大强度的最大15%,优选最大10%。

Description

改变从加速器中引出的粒子束的能量的装置
技术领域
本发明涉及改变从粒子加速器中引出的粒子束的能量的装置。
本发明还涉及所说的装置的应用。
背景技术
涉及应用带电粒子的粒子束的某些应用系统也要求快速地改变这些粒子的能量。
为此,一种方案在于应用加速器,这种加速器能够固有地产生其能量可变化的引出粒子束。在这方面,可以计划应用加速器比如在这种加速器内本身能够产生粒子束的同步加速器,这种粒子束的能量可变化。但是,这种类型的加速器的制造起来相对较复杂,因此,与产生固定能量的粒子束的粒子加速器比如回旋加速器相比更昂贵且更不可靠。
结果,已经有人提出在这种固定能量的加速器上配备这样的装置,该装置的功能是在从加速器中引出的所说的粒子束的轨迹上改变粒子束的能量特性。这些装置都是基于大家十分熟悉的原理,依据这些原理穿过物质块的任何粒子的能量都要降低一定的量,对于一种给定类型的粒子所降低的能量的量是它所穿过的物质的固有的特性和它的厚度的函数。
然而,这种装置(如所公知的降能器)的主要缺陷在于物质块使能量降低的粒子束的能量分辨率降低。这是由于大家所公知的“散乱”现象的缘故,这种“散乱”现象产生大约1.5%的静态能量变化。如果使入口表面和出口表面在降能器内平行,则会减少这种现象。
此外,还注意到穿过降能器的粒子束的光学特性也被改变。具体地说,当离开降能器时由于在降能器内的多重散射平行入射束将变得发散。这些缺陷(散度增加和能量扩散增加)将导致这样的情况:粒子束的发射度太高以致不满足位于束传输线下游的粒子束的光学元件所设定的入口发射度的限制。
为了解决这些问题,人们还提出了应用放在降能器装置之后的分析磁体,这种装置借助于用于改善能量降低的粒子束的光学特性的狭缝和准直器仅接收预定分辨率所需的能量。然而,通过应用这种元件,可以看到,粒子束的强度进一步降低,还造成了更强地激活了各种元件。
Kanai等人的文章“Three-dimensional Beam Scanning for ProtonTherapy(用于质子治疗的三维束扫描)”发表在Nuclear Instrumentsand Methods in Physic Research(物理学研究中的核装置及方法)(1983年9月1日),荷兰(Vol.214,No.23,pp.491-496(第214卷,第23期,第491-496页))。该文公开了通过扫描磁体控制的并且然后集中到降能器的质子束的同步加速器的使用,该降能器具有改变质子束的能量特性的功能。这种降能器实质由厚度不连续变化的物质块组成。然而,这种应用并没有提出使从粒子加速器(尤其是能量固定的粒子加速器)中引出的粒子束的能量实施连续变化。
发明内容
本发明的目的是提供一种能够改变从粒子束加速器(尤其是从能量固定的粒子加速器)中引出的粒子束的能量的装置。
更具体地说,本发明的目的是提供一种能够几乎连续地改变从粒子加速器中引出的粒子束的能量的装置。
本发明涉及一种改变从能量固定的粒子加速器中引出的粒子束的能量的方法和装置。为了这一目的,将降能器插入在从加速器中引出的粒子束的路径中,这种降能器实质由其厚度以一定梯级不连续地变化的物质块组成。在物质块的入口表面和出口表面之间的距离定义为厚度。
在梯级之间的能量差值可变化并是这样地确定,使粒子束的强度的变化在两个连续梯级之间的边界上达到在所考虑的两个连续的梯级的每个梯级的出口处所获得的最大强度的最大15%,通常为10%。尽管厚度不连续变化这还是能够实现能量的连续变化。实际上,这是由于计算在梯级之间的能量差值与相关的分析元件的组合的缘故。
依据一个优选实施例,这种降能器设置在粒子束包络线的变窄(“腰部”)的点上。此外,这样设计由分离的层面或梯级所确定的降能器的入口和出口表面的曲率,以使对于每个梯级或层面相对于入口和出口表面“腰部”总是在理想的位置,而从一个梯级到下一个梯级时不要求修改粒子束的传输控制参数特别是“腰部”的位置参数。
这可使粒子束的能散和光学性能保持不变。
降能器优选具有宽度可变化的梯级或层面,该梯级的宽度定义为在两个连续梯级之间的距离。这个宽度可以调整以便它能够稍稍比进入降能器或从降能器中出来的粒子束的直径更大,这就意味着较大厚度的所说的层面或梯级的宽度将比较小厚度的所说的层面或梯级的宽度更大。
制造降能器的材料应该具有较高的密度和较低的原子量。该材料的实例可以是金刚石、集堆金刚石粉末或石墨。
降能器优选安装在自动转轮上,这种自动转轮也包括粒子束诊断元件比如束剖面监测器、束限制器等。
分析磁体也可以与这种降能器常规地结合。
附图说明
图1a和1b分别表示依据本发明在改变粒子束的能量的过程中所使用的降能器的透视图和顶视图,而附图1c所示为附图1b的局部放大图。
图2表示电流密度按质子束的能量函数的变化。
图3表示在质子疗法中所使用的依据本发明的装置的总图。
具体实施方式
下文参考附图更详细地描述本发明,附图示出了本发明的一种特定的优选实施例。
附图1a和1b表示在依据本发明的装置中所使用的降能器,该降能器实质上由材料块组成,该材料块的厚度以一定的梯级不连续地变化。这种降能器能够大致地确定所需的能量值。通常将分析磁体在所说的降能器的下游,加入到这种降能器中,以便更精确地调整所需的能量值。
如附图1c所示,依据本发明的降能器呈“阶梯”状,对于这种阶梯状每个层面或“梯级”具有对应于给定能量变化的不同的厚度,厚度E1+E2定义为在粒子束的入口表面和出口表面之间的距离。此外,连续的梯级的宽度L是可变化的,并按所说的梯级的厚度的函数增加。第三参数是从一个层面或梯级到另一个层面或梯级的高度H。
这种厚度可变化的块优选呈设置在转轮上的环形。这就使得它可以不需要降能器具有不连续的特性,而同时使所说的降能器的入口表面和出口表面保持平行,由此使粒子束的能量扩散最小。
这样就能够构造成对的“梯状”降能器,这种降能器的厚度不连续地变化,因此它能够保持入口和出口表面平行以使能量扩散最小。
当单能量的质子束经过固定厚度的物质时,在粒子束离开物质块时以高斯(Gaussian)分布的能量谱反映由此所造成的能量扩散,其特征在于电流密度(对于“梯级”n在附图2中表示为值In)以能量的函数变化。这种高斯分布以与初始能量减去在物质中损失的能量相对应的能量值(对于“梯级”n在附图2中表示为值En)为中心,如应用路径表(称为“距离表”)可以进行计算。
依据一个实施例,确定梯级能量的变化以使粒子束的强度的降低在每梯级的边沿达到最大的X%(通常为10%)。对于给定的梯级利用这种限制条件计算能量上限Es,这个能量上限也是下一梯级的能量下限(附图2)。因此进行迭代计算来定义获得在最大值(从加速器中引出的粒子束的最大值)和最小值(在所考虑的应用条件中所使用的最低的能量)之间的能量的连续变化所需的“梯级”数量。
有利的是,依据本发明的一个优选实施例,尽管降能器的厚度以不连续的梯级变化,通过将分析磁体放置在降能器的下游,依据本发明获得连续的能量变化。该原理是考虑与“离散(straggling)”相关的较大的能量扩散降能器仅大致地确定了能量,借助于分析磁体在下游进行精细的调整。
在粒子束的路径中降能器的位置在这方面还非常重要。为此目的,为使降能器对在出口处的粒子束的发射度所产生的散射作用最小,将厚度可变化的降能器精确地设置在束包络线变窄(即在该位置上束的空间延伸最小,称这种位置为“腰部”)的位置上。因此该束必需聚焦在降能器中,降能器的每个厚度可变化的部分(即对应于给定的能量降低的每个“梯级”)位于这样的一个位置,以使在梯级的入口表面和束聚焦的位置(或说腰部)之间的距离精确地对应于使如通过输运方程和散射理论所计算的粒子束的出口发射度最小的距离。
因此本发明的一个重要的方面在于作为一种希望产生的理想的能量变化函数不改变束的光学特性尤其是腰部的位置。通过入口和出口表面的适当的曲率(这就是说通过入口和出口“阶梯”),腰部仍然保持空间静止并对于每个梯级相对于梯级的入口和出口表面总是占着理想的位置。
因此,如附图1c所示,可以看到E1不必等于E2。
比较有利的是降能器由原子量很低但密度很高的材料组成以降低多重散射效应。
这种转轮可以做成自动的并且可以进行遥控,从而将降能器的部分(“梯级”)放在入射束的路径中,理想的是引入降能器对应于能量损失的厚度。
附图3表示在质子疗法中所使用的装置图。已经进行排序以使通过回旋加速器所产生的固定能量的质子束的能量(大约230兆电子伏特)在70兆电子伏特-230兆电子伏特的范围内连续地变化。
该装置包括安装在自动转轮上并由石墨制成的降能器1。降能器1由154个“梯级”组成。在这个转轮上还安装有控制束特性的元件比如束剖面检测器4和束阻挡器3。除了许多连接器以外该组件还包括支撑结构6、校正磁体(“调整”磁体,5)和供电电缆2。

Claims (13)

1.一种改变从粒子加速器中引出的粒子束的能量的装置,包括一降能器,该降能器由具有高密度和低原子量的材料组成,该材料块呈阶梯状,这种阶梯的每个梯级具有不同的厚度,并产生具有高斯能量分布的粒子束,每个所述高斯分布具有一个最大强度,其特征在于,在梯级之间的能量差是可变化的并且这样确定,以使在两个连续的梯级之间的边界处,粒子束的强度的变化达到在所考虑的两个相邻的梯级的每个梯级的出口处获得的最大强度的15%。
2.依据权利要求1所述的装置,其特征在于对于降能器的每个不连续的梯级入口和出口表面是平行的。
3.依据权利要求1或2所述的装置,其特征在于降能器设置在束的包络线出现腰部的点上。
4.依据权利要求3所述的装置,其特征在于对于降能器的出口和入口,构成降能器的不连续的梯级的高度(H)的表面的曲率这样来设计,以使对于每个梯级束包络线具有腰部的点相对于入口和出口表面处于理想的位置,使粒子束的发射度最小。
5.依据权利要求1所述的装置,其特征在于降能器具有可变化宽度(L)的梯级,确定每个梯级的宽度以使其比进入降能器或从降能器中出来的束的直径稍稍大点。
6.依据权利要求5所述的装置,其特征在于梯级的宽度(L)以所说的梯级的厚度的函数增加。
7.依据权利要求1所述的装置,其特征在于,降能器由金刚石、集堆金刚石粉末、石墨制成。
8.依据权利要求1所述的装置,其特征在于降能器安装在自动转轮上。
9.依据权利要求8所述的装置,其特征在于自动转轮具有用于诊断光束的束剖面检测器和束阻挡器。
10.依据权利要求1所述的装置,其特征在于一个分析磁体与降能器相结合。
11.依据权利要求1所述的装置,其特征在于,所述装置用于连续地改变在粒子加速器的出口处的能量。
12.依据权利要求11所述的装置,其特征在于所述的粒子加速器是能量固定的粒子加速器。
13.依据权利要求12所述的装置,其特征在于所述的粒子加速器是回旋加速器。
CNB998148547A 1998-12-21 1999-12-20 改变从加速器中引出的粒子束的能量的装置 Expired - Fee Related CN1203730C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE9800913A BE1012358A5 (fr) 1998-12-21 1998-12-21 Procede de variation de l'energie d'un faisceau de particules extraites d'un accelerateur et dispositif a cet effet.
BE9800913 1998-12-21

Publications (2)

Publication Number Publication Date
CN1331903A CN1331903A (zh) 2002-01-16
CN1203730C true CN1203730C (zh) 2005-05-25

Family

ID=3891579

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998148547A Expired - Fee Related CN1203730C (zh) 1998-12-21 1999-12-20 改变从加速器中引出的粒子束的能量的装置

Country Status (10)

Country Link
US (1) US6433336B1 (zh)
EP (1) EP1145605B1 (zh)
JP (1) JP2002533888A (zh)
CN (1) CN1203730C (zh)
AT (1) ATE295062T1 (zh)
AU (1) AU1850700A (zh)
BE (1) BE1012358A5 (zh)
CA (1) CA2354071C (zh)
DE (1) DE69925165T2 (zh)
WO (1) WO2000038486A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459405B (zh) * 2011-06-06 2014-11-01 Sumitomo Heavy Industries A calorimeter, and a charged particle beam irradiation system with the downfalling device

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3469213B2 (ja) * 2001-03-29 2003-11-25 株式会社日立製作所 磁場印加試料観察システム
US20040162457A1 (en) 2001-08-30 2004-08-19 Carl Maggiore Antiproton production and delivery for imaging and termination of undersirable cells
US7282721B2 (en) * 2001-08-30 2007-10-16 Varian Semiconductor Equipment Associates, Inc. Method and apparatus for tuning ion implanters
CN101006541B (zh) * 2003-06-02 2010-07-07 福克斯·彻斯癌症中心 高能多能离子选择系统、离子束治疗系统及离子束治疗中心
US6838676B1 (en) * 2003-07-21 2005-01-04 Hbar Technologies, Llc Particle beam processing system
US7183758B2 (en) * 2003-12-12 2007-02-27 International Business Machines Corporation Automatic exchange of degraders in accelerated testing of computer chips
EP3294045B1 (en) 2004-07-21 2019-03-27 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
US9077022B2 (en) * 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
CA2629333C (en) 2005-11-18 2013-01-22 Still River Systems Incorporated Charged particle radiation therapy
US7656258B1 (en) 2006-01-19 2010-02-02 Massachusetts Institute Of Technology Magnet structure for particle acceleration
WO2007084701A1 (en) * 2006-01-19 2007-07-26 Massachusetts Institute Of Technology Magnet structure for particle acceleration
DE102007032025A1 (de) 2007-07-10 2008-12-18 Siemens Ag Partikeltherapie-Anlage
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
EP2283709B1 (en) 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Charged particle cancer therapy patient positioning apparatus
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US8624528B2 (en) 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US8519365B2 (en) 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US8129694B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
US8598543B2 (en) 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
EP2283713B1 (en) 2008-05-22 2018-03-28 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy apparatus
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US8373145B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8378321B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US8288742B2 (en) 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US8144832B2 (en) 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
JP5450602B2 (ja) 2008-05-22 2014-03-26 エゴロヴィチ バラキン、ウラジミール シンクロトロンによって加速された荷電粒子を用いて腫瘍を治療する腫瘍治療装置
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US8569717B2 (en) 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
CN102172106B (zh) 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 带电粒子癌症疗法束路径控制方法和装置
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
WO2009142546A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy method and apparatus
US8373143B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
NZ589387A (en) 2008-05-22 2012-11-30 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US8198607B2 (en) 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US8487278B2 (en) 2008-05-22 2013-07-16 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US8373146B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8436327B2 (en) 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US8896239B2 (en) 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US8229072B2 (en) * 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8627822B2 (en) 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
KR100946270B1 (ko) * 2008-08-12 2010-03-09 주식회사 메가젠임플란트 연조직 절단 치과용 공구
CA2754345C (en) 2009-03-04 2015-06-23 Zakrytoe Aktsionernoe Obshchestvo Protom Multi-field charged particle cancer therapy method and apparatus
BR112012009315B1 (pt) * 2009-10-23 2018-02-06 Ion Beam Applications Gantry compreendendo um analisador de feixes, para o uso em terapias com partículas
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US9336916B2 (en) 2010-05-14 2016-05-10 Tcnet, Llc Tc-99m produced by proton irradiation of a fluid target system
EP2579265B1 (en) * 2010-05-27 2015-12-02 Mitsubishi Electric Corporation Particle beam irradiation system
JP5726541B2 (ja) * 2011-01-18 2015-06-03 住友重機械工業株式会社 エネルギーデグレーダ、及びそれを備えた荷電粒子照射システム
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US9269467B2 (en) 2011-06-02 2016-02-23 Nigel Raymond Stevenson General radioisotope production method employing PET-style target systems
JP5917322B2 (ja) * 2012-07-12 2016-05-11 住友重機械工業株式会社 荷電粒子線照射装置
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
EP3581243A1 (en) 2012-09-28 2019-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
CN104813747B (zh) 2012-09-28 2018-02-02 梅维昂医疗系统股份有限公司 使用磁场颤振聚焦粒子束
TW201433331A (zh) 2012-09-28 2014-09-01 Mevion Medical Systems Inc 線圈位置調整
TW201424466A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 磁場再生器
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
WO2014052721A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Control system for a particle accelerator
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
JP6121544B2 (ja) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビームの集束
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
EP2997799A4 (en) 2013-05-17 2016-11-02 Martin A Stuart DIELECTRIC WALL ACCELERATOR USING DIAMOND OR DIAMOND TYPE CARBON
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN110237447B (zh) 2013-09-27 2021-11-02 梅维昂医疗系统股份有限公司 粒子治疗系统
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) * 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
EP3035776B1 (en) 2014-12-16 2017-02-15 Ion Beam Applications S.A. Energy degrader
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
EP3178522B1 (en) 2015-12-11 2018-02-14 Ion Beam Applications S.A. Particle therapy system with parallel control of energy variation and beam position variation
EP3203815A1 (en) 2016-02-04 2017-08-09 Ion Beam Applications Rotating energy degrader
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
RU2617689C1 (ru) * 2016-04-19 2017-04-26 Иван Васильевич Трифанов Рекуператор энергии положительно заряженных ионов
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
WO2018009779A1 (en) 2016-07-08 2018-01-11 Mevion Medical Systems, Inc. Treatment planning
CN106267584B (zh) * 2016-07-29 2018-12-28 中国原子能科学研究院 一种双盘旋转式紧凑型降能器及其使用方法
CN106304606A (zh) * 2016-07-29 2017-01-04 中国原子能科学研究院 一种双直排插入式降能器及其使用方法
CN106406216B (zh) * 2016-10-24 2018-02-16 合肥中科离子医学技术装备有限公司 一种用于粒子束流降能器的控制装置及其控制方法
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
JP6940676B2 (ja) 2017-06-30 2021-09-29 メビオン・メディカル・システムズ・インコーポレーテッド リニアモーターを使用して制御される構成可能コリメータ
CN107737411B (zh) * 2017-10-13 2018-11-02 华中科技大学 一种变角度多楔形混合材料降能器
CN108449859B (zh) * 2018-03-08 2019-12-06 西北核技术研究所 用于真空中的轮轴式粒子加速器降能装置及其降能方法
TW202041245A (zh) 2019-03-08 2020-11-16 美商美威高能離子醫療系統公司 用於粒子治療系統之準直儀及降能器
CN112911783A (zh) * 2021-03-25 2021-06-04 四川大学 一种适用于高功率束流的薄膜降能器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3577201B2 (ja) * 1997-10-20 2004-10-13 三菱電機株式会社 荷電粒子線照射装置、荷電粒子線回転照射装置、および荷電粒子線照射方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459405B (zh) * 2011-06-06 2014-11-01 Sumitomo Heavy Industries A calorimeter, and a charged particle beam irradiation system with the downfalling device

Also Published As

Publication number Publication date
AU1850700A (en) 2000-07-12
WO2000038486A1 (fr) 2000-06-29
CA2354071C (en) 2008-02-19
EP1145605B1 (fr) 2005-05-04
DE69925165T2 (de) 2006-01-12
DE69925165D1 (de) 2005-06-09
JP2002533888A (ja) 2002-10-08
EP1145605A1 (fr) 2001-10-17
BE1012358A5 (fr) 2000-10-03
CA2354071A1 (en) 2000-06-29
ATE295062T1 (de) 2005-05-15
US6433336B1 (en) 2002-08-13
CN1331903A (zh) 2002-01-16

Similar Documents

Publication Publication Date Title
CN1203730C (zh) 改变从加速器中引出的粒子束的能量的装置
DE4219000A1 (de) Verfahren und vorrichtung zum gleichfoermigen konzentrieren von sonneneinstrahlung fuer photovoltaische anwendungen
Xiao et al. Particle-in-cell mode beam dynamics simulation of the low energy beam transport for the SSC-linac injector
Tiede et al. LORASR code development
Royle et al. Geometrical compaction in one dimension for channel routing
Biswas et al. Inclusive π 0 production in π− p and π+ p interactions at 18.5 GeV/c
DE3123418A1 (de) "doppeltfokussierendes massenspektrometer"
Klay et al. High pT inclusive charged hadron spectra from Au+ Au collisions at SNN= 200 GeV
Tommet et al. Analysis of a photographic–vidicon camera method of LEED intensity measurements
Engler et al. Study of the reactions K L 0 p→ K s 0 p, Λ π+, Σ 0 π+, and Λ π+ π 0 near 550 MeV/c
Maunoury et al. SPIRAL1 charge breeder: performances and status
Koga et al. The δf Algorithm for Beam Dynamics
Sheppard Positron Yield as a Function of Drive Beam Energy for a K= 1, Planar Undulator-Based Source (LCC-0090)
Harrison et al. Reactions π±p→ p X±(1100-1500 MeV) near threshold
Finch et al. The application of empirical calibration procedures for heavy ion surface barrier detectors to pulse height defect mass dependence data
Toapaxi Beam dynamics and assessment in fourth generation LINACs: SIRIUS and CLEAR first data
Vorobyov Beam dynamics simulation with the use of macroparticle «PROTON» code in different variants of input dynamical matchers in a heavy ion high current RFQ structure
Zupan et al. Pile-up system simulations
Tanjyo et al. Control of ion beam current density and profile for high current ion implantation systems
Tenenbaum Direct Measurement of Geometric Wakefields from Tapered Rectangular Collimators
Gu et al. Optimizing the RF cavity parameters at CSNS-II with Particle Swarm Optimization
Lombardi et al. IH LINAC SIMULATIONS AND MEASUREMENTS IN THE FRAMEWORK OF CERN LINAC 3 RESTUDY
Castagnoli et al. A case of double pair production by an electron
Papavassiliou Measurement of the cross-section ratio [sigma][sub n]/[sigma][sub p] in inelastic muon-nucleon scattering at very low x and Q [sup 2]
Ohmi et al. Review and Comparison of Simulation Codes Modeling Electron-Cloud Build Up and Instabilities E. Benedetto, F. Ruggiero, D. Schulte, F. Zimmermann, CERN; M. Blaskiewicz, L. Wang, BNL; G. Bellodi, RAL/ASTeC; G. Rumolo, GSI

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050525

Termination date: 20101220