WO2000037435A1 - Procede pour la regeneration d'acides organiques de masse molaire elevee - Google Patents

Procede pour la regeneration d'acides organiques de masse molaire elevee Download PDF

Info

Publication number
WO2000037435A1
WO2000037435A1 PCT/FR1999/003121 FR9903121W WO0037435A1 WO 2000037435 A1 WO2000037435 A1 WO 2000037435A1 FR 9903121 W FR9903121 W FR 9903121W WO 0037435 A1 WO0037435 A1 WO 0037435A1
Authority
WO
WIPO (PCT)
Prior art keywords
compartments
regenerated
solution
organic acid
membrane
Prior art date
Application number
PCT/FR1999/003121
Other languages
English (en)
Inventor
Armand Calvaire
Christian Gancet
Didier Lauranson
Original Assignee
Sanofi-Synthelabo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanofi-Synthelabo filed Critical Sanofi-Synthelabo
Priority to AU16640/00A priority Critical patent/AU1664000A/en
Publication of WO2000037435A1 publication Critical patent/WO2000037435A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting

Definitions

  • the present invention relates, in general, to a process for the regeneration of organic acids of high molar mass.
  • the invention relates to a process for the regeneration of organic acids of high molar mass, by electrodialysis of an aqueous solution of their salts.
  • Acids are important intermediaries for many chemical synthesis processes.
  • these acids are often found in the form of aqueous saline solutions which can be regenerated and recycled, in particular in the case of the most expensive acids.
  • Bipolar membrane electrodialysis enables such regeneration to be carried out.
  • electrical energy is used to dissociate the water from the saline solution and reconstitute the acid and the base separately according to the reaction:
  • ion-exchange membranes are used and, more particularly, bipolar membranes made up of two faces selective for anions and cations respectively. Under the effect of an electric field, these membranes allow the following reaction:
  • the acid anion is an organic anion of high molar mass
  • a permeability problem may arise. This can be the case, for example, of the anion of l-camphosulfonic acid or R (+) - camphosulfonic acid:
  • this acid cannot be regenerated from its salts in an electrodialysis process using conventional membranes, in particular anionic membranes usually used in this type of method.
  • the subject of the invention is a process for the regeneration of organic acids with a molar mass greater than or equal to 200 g. mole "1 from an aqueous solution of their salts, for example their alkali metal salts, proceeds according to which: a) an electrodialysis device is constituted comprising at least one elementary cell configured in three contiguous compartments, a defined median by an anion exchange dialysis membrane with high permeability and a cation exchange membrane and two lateral ones each bounded by a bipolar membrane, which is subjected to a continuous potential difference generated by an anode and a cathode situated at the ends so as to create an electric field, b) an aqueous solution of the organic acid salt to be regenerated is circulated in the median compartment of each cell, c) it is collected in the lateral compartment on the anode side a solution of regenerated organic acid and in the lateral compartment on the cathode side, a basic solution corresponding to the cation of the
  • the electrodialysis device in question consisting of a cell or more generally of a stack of cells each configured in 3 compartments, corresponds to the sequential formula:
  • BP + represents a bipolar membrane.
  • A represents the compartment intended for the acid
  • AN " represents an anionic membrane with high permeability
  • C + represents a cationic membrane
  • n the number of cells
  • the anion exchange dialysis membranes used in the process of the invention are capable of promoting the passage of anions of high molar mass in particular of anions originating from acids of molar mass greater than or equal to 200 g. mole "1 , generally anions comprising one or more sulfonate or phosphonate groups so as to contribute to the regeneration of acids comprising one or more sulfonic or phosphonic groups.
  • semi-permeable membranes with a thickness varying from 0.03 to 0.2 mm, generally composed of a polymer matrix, for example a polystyrene provided with crosslinking groups such as divinylbenzene groups carrying chemical functions. positively charged, in particular ammonium, alkylammonium or dialkylammonium groups.
  • anion exchange membranes used in the process of the invention being characterized by a low crosslinking rate allowing them to absorb from 30% to 70% of their weight of water, will therefore be of high permeability to size anions important since this permeability is directly linked to the amount of water capable of being absorbed by these membranes.
  • Anionic membranes of this type can be for example the membranes marketed under the brand ® AFX NEOSEPTA or NEOSEPTA ® AFN by Tokuyama Soda Company or under the brand Raipore ® ADM-4000 by the company Pall Rai or brand SELEMION ® by DSV Asahi Glass.
  • anion exchange membranes with high permeability have the properties indicated:
  • an anionic membrane of standard type analogous to those appearing in US Pat. No. 5,221,443, meets the following characteristics:
  • anionic membranes with high permeability of the invention being poorly crosslinked are endowed, for this reason, with low dimensional stability which poses sealing problems.
  • cationic membrane is usually chosen a semipermeable membrane exchange of conventional cations, for example a membrane sold under the trademark SELEMION CMV ® by Asahi Glass under the trademark or NEOSEPTA CMX ® by the company Tokuyama Soda.
  • These cation exchange membranes generally have a thickness of between 0.1 and 1 mm and a pore diameter of between 1 and 30 ⁇ m. They are in fact composed of a polymer matrix, for example a polystyrene / divinylbenzene resin containing anionic groups chemically linked, such as carboxylate or sulfonate groups.
  • the bipolar membrane for its part, has an asymmetric structure and comprises anionic groups on one of these faces and cationic groups on the opposite face.
  • bipolar membranes can be produced for example by intimately juxtaposing a cationic membrane and an anionic membrane as described in patent application EP-A-193 959.
  • membranes of this type can be obtained commercially for example BP1 membrane from Tokuyama Soda or AQUALYTICS ® brand membrane from The Graver Water Systems, Inc.
  • the method of the invention consists in releasing the organic acid with a molar mass greater than or equal to 200 g. mole "1 , for example a sulfonic or phosphonic acid, from an aqueous solution of its salts, generally alkali metal salts, preferably sodium or potassium salts, by passing this aqueous salt solution through the middle compartment (S) of the electrodialysis cell while a solution of the regenerated acid is released in the side compartment (A) and a solution of the base corresponding to the cation present in the salt is collected in the side compartment ( B).
  • aqueous solution of its salts generally alkali metal salts, preferably sodium or potassium salts
  • an aqueous solution of organic acid in question is introduced into compartment (A) of the cell of the device, generally a 0.4 to 0.8 N solution of this acid and in the compartment B an aqueous solution of the base corresponding to the cation present in the salt, usually a 0.4 to 0.8 N solution while the salt is placed, in the form of an aqueous solution, in compartment (S).
  • the cell is then subjected to a potential difference of up to 400 to 500 V / m 2 .
  • Electrodes are located at the ends of the electrodialysis cell and are themselves housed in compartments, namely an anode compartment and a cathode compartment, separated from this cell by additional ion exchange membranes, preferably cationic membranes. .
  • ion exchange membranes preferably cationic membranes.
  • These cationic membranes will be of sufficient strength to avoid deterioration of the other membranes of the device due to the corrosive effect of the electrodes. It may be, inter alia, a cationic membrane made of a fluoropolymer such as membrane commercially available under the trademark NAFION ® from El DUPONT DE NEMOURS & COMPANY.
  • the anode and cathode compartments are continuously traversed by a solution for rinsing the electrodes, for example an acid or basic solution such as a solution of the base to be formed or of the acid to be recovered.
  • a solution for rinsing the electrodes for example an acid or basic solution such as a solution of the base to be formed or of the acid to be recovered.
  • the electrically neutral impurities possibly present in the aqueous solution of the salt of the acid to be regenerated will be retained in the compartment (S) of the cell of the device.
  • the process of the invention can be carried out either discontinuously or semi-continuously, at a temperature between 5 ° C and 95 ° C, preferably at a temperature between room temperature and 60 ° C, for example at a temperature of the order of 40 ° C and under a pressure of 0.3 to 0.5 bar.
  • the aqueous solution of the organic acid salt to be regenerated is circulated in a closed circuit so as to gradually deplete it during its successive passages in the median compartments of the cells, that is to say the compartments (S ).
  • a regenerated acid solution and a base solution corresponding to the cation present in the salt can then be collected respectively, either by sampling from containers situated respectively at the outlet of the lateral compartments on the anode side and on the lateral compartments on the cathode side.
  • compartments (A) and compartments (B) either by causing them to circulate in a closed circuit with a view to recycling them respectively in the lateral compartments on the anode side and on the lateral compartments on the cathode side cells in question to enrich them to the desired concentration.
  • the aqueous solution of the organic acid salt to be regenerated is advantageously circulated in a closed circuit so as to gradually deplete it over time.
  • the compartments (S) we can then collect respectively a regenerated organic acid solution and a base solution corresponding to the cation present in the salt, either by overflow from containers located respectively at the outlet of the lateral compartments on the anode side and lateral compartments on the cathode side of the cells of the device.
  • compartments (A) and compartments (B) either by causing them to circulate in a closed circuit with a view to recycling them respectively in the lateral compartments on the anode side and on the lateral compartments on the cathode side of the cells in question to enrich them to the desired concentration.
  • FIG. 2 shows a diagram of an electrodialysis device formed by a stack of 4 cells each configured in 3 compartments
  • Figure 3 represents a diagram of the ionic dissociation of potassium I-camphosulfonate and the reassociation into acid and base in a cell configured in 3 compartments
  • FIG. 4 shows an installation diagram for the regeneration in semi-continuous phase of l-camphosulfonic acid from an aqueous solution of potassium I-camphosulfonate.
  • Regeneration of l-camphosulfonic acid (batch process) The regeneration of l-camphosulfonic acid from an aqueous solution of potassium l-camphosulfonate was carried out in an electrodialysis device such as shown schematically in Figure 2 comprising a stack of 4 elementary cells with a total area of 0.04m 2 .
  • This stack is located between two electrodes: an anode (1) and a cathode (2) connected to a regulated direct current generator (3).
  • the array of cells is provided at its ends with two compartments (ER) and (ER ') rinsing the electrodes, these compartments being bounded each by a strong cationic membrane (N) of NAFION ®.
  • compartments are supplied by a conduit (4) in which a 2.5N potassium hydroxide solution circulates, the conduit further comprising a reservoir (5) for the basic solution and a circulation pump (6).
  • Each cell comprises a series of three membranes: a bipolar membrane (7) BP1 type of the company Tokuyama Soda, generating protons and hydroxyl groups, a high permeability anion exchange membrane (8) brand NEOSEPTA ® AFX, previously treated by immersion in a 0.8 to 1 M solution of l-camphosulfonic acid and a cation exchange membrane (9) of the SELEMION ® CMV brand.
  • These membranes delimit 3 compartments: a lateral compartment (A) on the anode side for the l-camphosulfonic acid solution, a median compartment (S) for the potassium l-camphosulfonate solution and a compartment (B) on the cathode side for the solution. potassium hydroxide.
  • Each compartment is provided, at its outlet, with a conduit shown here for the group of compartments (S), namely the conduit (10).
  • This conduit connected along its route to a reservoir (11) which successively supplies a filter (12), a contrifugal pump (13) and a flow meter (14) is connected on the other hand to the inlet of the corresponding compartment.
  • the potassium l-camphosulfonate solution is firstly removed from the presence of its carbonate by acidification using l-camphosulfonic acid to 125g (0.54 mole) of acid per kg of saline.
  • the regeneration process is then carried out batchwise and at a temperature of 40 ° C. with at the start in compartment (B) a solution of potassium hydroxide 0.52N, in compartment (A) a solution of I-camphosulfonic acid 0.28N, in compartment (S) the potassium I-camphosulfonate solution prepared above and in the anode and cathode compartments a 2.5N potassium hydroxide solution.
  • the high electrical resistance of the electrodialysis device does not allow the maximum admissible electric current density by the membranes to be applied, which in this case is 9.6A, ie 1000 A / m 2 .
  • We therefore regulate at an intensity which corresponds to the maximum voltage tolerated for the device, ie 20V knowing that Vmax 3V per cell + 8V drop in potential difference at the electrodes.
  • the current density varies from 125 A / m 2 at the start to 865 A / m 2 at the end of the test.
  • protons (H + ) and hydroxyl anions (OH) via the bipolar membrane (BP), the proton generating face of which faces towards the cathode and the hydroxyl anion generating face of the anode, thus protons (H + ) migrate dan cathode direction s compartment (A) and hydroxyl anions (OH " ) move towards the anode in compartment (B) where they combine respectively with the camphosulfonate anions (CS " ) which have migrated there or with the cations ( K + ) to form free l-camphosulfonic acid (HCS) or free base (KOH).
  • HCS camphosulfonate anions
  • K + free l-camphosulfonic acid
  • KOH free base
  • the duration of this test is 15 h, which makes it possible to reach a potassium hydroxide concentration of 1.78M and an I-camphosulfonic acid concentration equal to 0.96M.
  • the faradic acid yield at the start is close to 36% then gradually decreases to 13% at the end of the test, which corresponds to an overall faradaic yield close to 19%.
  • the faradaic base yield, close to 57% at the start gradually decreases to 27% at the end of the test, which corresponds to an overall faradaic yield close to 35%.
  • the energy consumed is equal to 2395 kWh / ton of l-camphosulfonic acid and the productivity is equal to 0.91 kg / h. m 2 of cell or 3.9 mole / h. m 2 of cell.
  • the regeneration of l-camphosulfonic acid was carried out from an aqueous solution of potassium l-camphosulfonate by use in an electrodialysis device comprising a stack of 7 elementary cells of 2 dm 2 each of active surface as shown in Figure 4 in the appendix.
  • This stack is located between two electrodes: an anode (14) and a cathode (15) connected to a regulated direct current generator (16).
  • the array of cells is provided at its ends with two compartments (17) and (18) for rinsing the electrodes, these compartments being bounded each by a strong cationic membrane (19) of NAFION ®.
  • These compartments are supplied by a conduit (20) in which a 2.5N potassium hydroxide solution circulates from a reservoir (21).
  • a pump (22) circulates this basic rinsing solution.
  • Each cell has a series of 3 membranes: a bipolar membranes: a bipolar membrane
  • a lateral compartment (A) on the anode side for the l-camphosulfonic acid solution a median compartment (S) for the potassium l-camphosulfonate solution and a compartment (B) on the cathode side for the solution.
  • potassium hydroxide a lateral compartment on the anode side for the l-camphosulfonic acid solution
  • S median compartment
  • B the cathode side for the solution.
  • the device is also equipped with conduits (26) (27) (28) which respectively supply reservoirs (29) (30) (31) intended to receive a recycled solution respectively of potassium l-camphosulfonate, of I-camphosulfonic acid and potassium hydroxide while at the outlet of each of these reservoirs conduits (32) (33) (34) equipped with circulation pumps supply the stack of cells with saline, acid and basic solutions respectively.
  • This decarbonated solution coming from the reservoir (29) via the conduit (32), is then subjected in discontinuous phase and at the temperature of 40 ° C. to the electrodialysis treatment which progressively depletes the salt.
  • the I-camphosulfonic acid and the potassium hydroxide produced are fed into the reservoirs (30) and (31) respectively.
  • the acid in the tank (35) and the base in the tank (36) are then partially collected continuously by overflow, the acid in the tank (35) and the base in the tank (36) at concentrations of the order of 0.4 mol / l for the acid and of the order of 1 mole / l for the base, these concentrations being maintained in the reservoirs (30) and (31) by injection of demineralized water from the tank (37) respectively via conduits (38) and (39) which include metering pumps (40) regulated by the acid and base concentrations.
  • the faradic yield of l-camphosulfonic acid is established at a value of 13 to 15% at the start and then stabilizes over time at a level of 7%.

Abstract

La présente invention concerne un procédé pour la régénération d'acides organiques de masse molaire supérieure ou égale à 200g.mole-1 à partir d'une solution aqueuse de leurs sels, selon lequel: a) on constitue un dispositif d'électrodialyse comprenant une cellule élémentaire configurée en trois compartiments contigus, un médian (5) délimité par une membrane de dialyse échangeuse d'anions à haute perméabilité (8) et une membrane échangeuse de cations (9) et deux latéraux (A, B) bornés chacun par une membrane bipolaire (7), que l'on soumet à une différence de potentiel continue engendrée par une anode (1) et une cathode (2) situées aux extrémités de manière à créer un champ électrique; b) on fait circuler une solution aqueuse du sel d'acide organique à régénérer dans le compartiment médian (5) de chaque cellule; c) on recueille dans le compartiment latéral (A) côté anode une solution d'acide organique régénéré et dans le compartiment latéral (B) côté cathode, une solution basique correspondant au cation du sel d'acide organique régénéré.

Description

PROCEDE POUR LA REGENERATION D'ACIDES ORGANIQUES DE MASSE
MOLAIRE ELEVEE La présente invention se rapporte, d'une manière générale, à un procédé pour la régénération d'acides organiques de masse molaire élevée.
En particulier, l'invention concerne un procédé, pour la régénération d'acides organiques de masse molaire élevée, par électrodialyse d'une solution aqueuse de leurs sels.
Les acides constituent des intermédiaires importants pour de nombreux procédés de synthèse de produits chimiques.
Après utilisation, ces acides se retrouvent souvent sous forme de solutions salines aqueuses que l'on peut régénérer et recycler en particulier dans le cas des acides les plus onéreux.
L'électrodialyse à membranes bipolaires permet d'opérer une telle régénération. Selon cette méthode connue, on utilise l'énergie électrique pour dissocier l'eau de la solution saline et reconstituer séparément l'acide et la base selon la réaction :
MX + H2O - HX + MOH sel acide base
Afin de réaliser cette réaction et de maintenir séparés les différents composés qui y sont impliqués, on utilise des membranes échangeuses d'ions et, plus particulièrement, des membranes bipolaires constituées de deux faces sélectives respectivement aux anions et aux cations. Sous l'effet d'un champ électrique, ces membranes permettent la réaction suivante :
H2O -» H+ + OH" telle qu'illustrée à la Figure 1 sur laquelle (BP) représente une membrane bipolaire. Les ions H+ et OH" sont alors réassociés respectivement aux anions X" et cations M+ provenant du sel de la solution, et les produits obtenus sont maintenus séparés par des membranes échangeuses d'ions classiques (monopolaires).
Un tel procédé de régénération d'acides et de bases à partir de leurs sels a déjà reçu de nombreuses applications, par exemple :
• acide sulfurique à partir de sulfate de sodium (demande de brevet JP 4- 132605 et Chem. Ing. Tech. 61 (1989) N°5, pp 428-429)
• acide chlorhydrique à partir de chlorure de sodium [CA1 17 (16) : 153850m; 109 (2) : 11524u; 92 (6) : 43961f et 92 (4) : 25083s]
• acide butyrique à partir de son sel de sodium [ CA 1 16 (18) : 182 124n] • acide maléique à partir de son sel d'ammonium (Chem. Ing. Tech, cité précédemment)
• acide borique à partir de borates [CA107 (4) : 29755 p et CA 1 14 (4) : 30673m]
• acide tartrique à partir de son sel de potassium (demande de brevet FR 2646421 )
• acides sulfoniques organiques [CA 71 (12) : 564 51f et brevet US 5 221 443]. Si les membranes bipolaires disponibles à ce jour ne posent pas de problèmes particuliers d'utilisation, par contre, les membranes échangeuses d'anions ou anioniques et les membranes échangeuses de cations ou cationiques qui leur sont associées, doivent être perméables respectivement aux anions et aux cations.
Dans le cas des acides régénérés habituellement selon un procédé d'électrodialyse, c'est-à-dire des acides de masse molaire faible ou moyenne, la perméabilité de la membrane anionique aux anions des acides n'engendre pas de difficultés particulières.
Par contre, dans le cas où l'anion de l'acide est un anion organique de masse molaire élevée, un problème de perméabilité peut survenir. Tel peut être le cas, par exemple, de l'anion de l'acide l-camphosulfonique ou acide R (+) - camphosulfonique :
Figure imgf000004_0001
cet acide ne pouvant être régénéré à partir de ses sels dans un procédé d'électrodialyse faisant appel à des membranes classiques notamment des membranes anioniques habituellement utilisées dans ce type de méthode.
Par exemple, on a expérimenté, dans le cadre de l'élaboration de la présente invention, le procédé d'électrodialyse décrit dans le brevet US 5 221 443 appliqué à la régénération de l'acide l-camphosulfonique à partir d'une solution aqueuse de son sel de potassium en mettant en oeuvre une membrane bipolaire, une membrane cationique commercialisée sous la marque SELEMION® CMV par Asahi Glass et une membrane anionique commercialisée sous la marque NEOSEPTA® AMX par Tokuyama Soda. Dans cette application, aucun résultat n'a été fourni, la membrane échangeuse d'anions ne permettant pas le passage des ions I- camphosulfonate.
Le procédé de ce brevet apparaît donc convenir pour la régénération d'acides organiques de masse molaire inférieure à 150g. mole 1, comme en témoigne les exemples qui y sont décrits, mais pas pour les acides de masse molaire plus élevée notamment les acides de masse molaire supérieure ou égale à 200g. mole"1 comme l'acide l-camphosulfonique.
La recherche d'une méthode, pour la régénération d'acides organiques de masse molaire élevée, en particulier supérieure à 200, par un procédé d'électrodialyse reste par conséquent d'un intérêt incontestable.
Or, il a maintenant été découvert, de manière inattendue, que certaines membranes de dialyse dites à haute perméabilité permettent le passage d'anions organiques de grande taille et, par conséquent, peuvent être utilisées avantageusement en association avec des membranes cationiques standards et des membranes bipolaires conventionnelles dans des méthodes d'électodialyse pour la régénération des acides correspondants à ces anions notamment des acides organiques de masse molaire élevée, c'est-à-dire supérieure ou égale à 200g. mole'1 en particulier l'acide l-camphosulfonique.
Cette observation est d'autant plus surprenante que ces membranes à haute perméabilité, généralement utilisées dans des processus de dialyse d'acides indépendants de tout processus électrochimique, ne présentent dans cette application à la dialyse aucune sélectivité puisqu'aussi bien les protons hydratés que les anions diffusent au travers de celles-ci.
En conséquence, l'invention a pour objet un procédé pour la régénération d'acides organiques de masse molaire supérieure ou égale à 200g. mole"1 à partir d'une solution aqueuse de leurs sels, par exemple leurs sels de métal alcalin, procède selon lequel : a) on constitue un dispositif d'électrodialyse comprenant au moins une cellule élémentaire configurée en trois compartiments contigus, un médian délimité par une membrane de dialyse échangeuse d'anions à haute perméabilité et une membrane échangeuse de cations et deux latéraux bornés chacun par une membrane bipolaire, que l'on soumet à une différence de potentiel continue engendrée par une anode et une cathode situées aux extrémités de manière à créer un champ électrique, b) on fait circuler une solution aqueuse du sel d'acide organique à régénérer dans le compartiment médian de chaque cellule, c) on recueille dans le compartiment latéral côté anode une solution d'acide organique régénéré et dans le compartiment latéral côté cathode, une solution basique correspondant au cation du sel d'acide organique régénéré.
Schématiquement, le dispositif d'électrodialyse en question, constitué d'une cellule ou plus généralement d'un empilement de cellules chacune configurée en 3 compartiments, correspond à la formule séquentielle :
("BP+/ A / AN"/ S / C+/ B)n I dans laquelle :
"BP+ représente une membrane bipolaire. A représente le compartiment destiné à l'acide
AN" représente une membrane anionique à haute perméabilité
S représente le compartiment destiné au sel
C+ représente une membrane cationique
B représente le compartiment destiné à la base n représente le nombre de cellules
Les membranes de dialyse échangeuses d'anions utilisées dans le procédé de l'invention sont capables de favoriser le passage d'anions de masse molaire élevée en particulier d'anions provenant d'acides de masse molaire supérieure ou égale à 200g. mole"1, généralement des anions comportant un ou plusieurs groupements suifonate ou phosphonate de manière à contribuer à la régénération d'acides comportant un ou plusieurs groupements sulfonique ou phosphonique.
Il s'agit de membranes semi-perméables d'une épaisseur variant de 0,03 à 0,2 mm, généralement composées d'une matrice polymérique, par exemple un polystyrène doté de groupements de reticulation tels que des groupements divinylbenzène porteurs de fonctions chimiques chargées positivement notamment des groupements ammonium, alkylammonium ou dialkylammonium.
Selon son taux de reticulation, cette matrice polymérique est capable d'observer une certaine quantité d'eau : plus cette quantité est faible et plus la capacité de la membrane à se gonfler d'eau est importante et inversement. Les membranes échangeuses d'anions utilisées dans le procédé de l'invention, étant caractérisées par un faible taux de reticulation leur permettant d'absorber de 30% à 70% de leur poids d'eau, seront donc de haute perméabilité aux anions de taille importante puisque cette perméabilité est directement liée à la quantité d'eau capable d'être absorbée par ces membranes.
Des membranes anioniques de ce type peuvent être par exemple les membranes commercialisées sous la marque NEOSEPTA® AFX ou NEOSEPTA® AFN par la société Tokuyama Soda ou encore sous la marque RAIPORE® ADM- 4000 par la société Pall Rai ou la marque SELEMION® DSV par la société Asahi Glass.
A titre d'exemple, les membranes échangeuses d'anions à haute perméabilité ci- dessous possèdent les propriétés indiquées :
Figure imgf000007_0001
A titre comparatif, une membrane anionique de type standard, analogue à celles figurant dans le brevet US 5 221 443, répond aux caractéristiques suivantes :
Figure imgf000007_0002
Toutefois, les membranes anioniques à haute perméabilité de l'invention étant peu réticulées sont douées, pour cette raison, d'une faible stabilité dimensionnelle qui pose des problèmes d'étanchéité.
Or, on a trouvé, dans le cadre de l'invention, que la stabilité de ces membranes peut être fortement améliorée, de manière à éviter toute déformation ultérieure si elles sont préalablement traitées, par exemple par immersion, au moyen d'une solution aqueuse de l'acide à régénérer par exemple une solution d'acide à une concentration de 0,8 à 1 M. Comme membrane cationique, on choisit habituellement une membrane semi- perméable échangeuse de cations conventionnelle, par exemple une membrane commercialisée sous la marque SELEMION® CMV par la société Asahi Glass ou sous la marque NEOSEPTA® CMX par la société Tokuyama Soda.
Ces membranes échangeuses de cations ont en général une épaisseur comprise entre 0,1 et 1 mm et un diamètre de pore compris entre 1 et 30 μm. Elles sont composées en fait d'une matrice polymérique par exemple une résine polystyrène/divinylbenzène contenant des groupements anioniques chimiquement liés, tels que des groupements carboxylate ou suifonate.
La membrane bipolaire, quant à elle, est de structure asymétrique et comporte des groupements anioniques sur l'une de ces faces et des groupements cationiques sur la face opposée.
Ces membranes bipolaires peuvent être produites par exemple en juxtaposant de manière intime une membrane cationique et une membrane anionique tel que décrit dans la demande de brevet EP-A-193 959. Toutefois, des membranes de ce type peuvent être obtenues dans le commerce par exemple la membrane BP1 de la société Tokuyama Soda ou la membrane de marque AQUALYTICS® de la société The Graver Water Systems, Inc.
Le procédé de l'invention, faisant appel au dispositif d'électrodialyse schématisé dans sa partie élémentaire à la formule séquentielle I, consiste à libérer l'acide organique de masse molaire supérieure ou égale à 200 g. mole"1, par exemple un acide sulfonique ou phosphonique, à partir d'une solution aqueuse de ses sels généralement des sels de métaux alcalins de préférence des sels de sodium ou de potassium, en faisant transiter cette solution aqueuse de sel par le compartiment médian (S) de la cellule d'électrodialyse tandis qu'une solution de l'acide régénéré est libérée dans le compartiment latéral (A) et qu'une solution de la base correspondant au cation présent dans le sel est recueillie dans le compartiment latéral (B).
Pour la mise en oeuvre de ce procédé, on introduit dans le compartiment (A) de la cellule du dispositif, une solution aqueuse d'acide organique en question, généralement une solution 0,4 à 0,8 N en cet acide et dans le compartiment B une solution aqueuse de la base correspondant au cation présent dans le sel, habituellement une solution 0,4 à 0,8 N tandis que le sel est placé, sous forme de solution aqueuse, dans le compartiment (S). A l'aide de deux électrodes, une anode et une cathode, on soumet alors la cellule à une différence de potentiel pouvant atteindre 400 à 500 V/m2.
De cette manière, on crée un champ électrique nécessaire à l'électrodialyse, la densité de courant électrique requise pour la production de ce champ étant au maximum de 1000 A/m2 de cellule, généralement de 125 à 865 A/m2.
Ces électrodes sont situées aux extrémités de la cellule d'électrodialyse et sont elles-mêmes logées dans des compartiments, à savoir un compartiment anodique et un compartiment cathodique, séparés de cette cellule par des membranes échangeuses d'ions supplémentaires, de préférence des membranes cationiques. Ces membranes cationiques seront de résistance suffisante pour éviter la détérioration des autres membranes du dispositif due à l'effet corrosif des électrodes. Il peut s'agir, notamment, d'une membrane cationique formée d'un polymère fluoré par exemple la membrane commercialement disponible sous la marque NAFION® de la société E.l. DUPONT DE NEMOURS & COMPANY.
En outre, durant l'opération d'électrodialyse, les compartiments anodique et cathodique sont continuellement parcourus par une solution de rinçage des électrodes par exemple une solution acide ou basique telle qu'une solution de la base à former ou de l'acide à récupérer.
Dans ce procédé, les impuretés électriquement neutres éventuellement présentes dans la solution aqueuse du sel de l'acide à régénérer seront retenues dans le compartiment (S) de la cellule du dispositif.
Le procédé de l'invention peut être mis en oeuvre soit de manière discontinue soit de manière semi-continue, à une température comprise entre 5°C et 95°C, de préférence à une température comprise entre la température ambiante et 60°C, par exemple à une température de l'ordre de 40°C et sous une pression de 0,3 à 0,5 bar.
Dans le cas d'une mise en oeuvre en phase discontinue du procédé de
I invention, on fait circuler en circuit fermé la solution aqueuse du sel d'acide organique à régénérer de façon à l'appauvrir progressivement au cours de ses passages successifs dans les compartiments médians des cellules c'est-à-dire les compartiments (S). On peut alors recueillir respectivement une solution d'acide régénéré et une solution de base correspondant au cation présent dans le sel soit par prélèvement à partir de conteneurs situés respectivement en sortie des compartiments latéraux côté anode et compartiments latéraux côté cathode des cellules du dispositif, c'est-à-dire les compartiments (A) et compartiments (B) respectifs, soit en les amenant à circuler en circuit fermé en vue de les recycler respectivement dans les compartiments latéraux côté anode et compartiments latéraux côté cathode des cellules en question pour les enrichir jusqu'à la concentration désirée.
De même, dans le cas d'une mise en oeuvre en phase semi-continue du procédé de l'invention, on fait avantageusement circuler en circuit fermé la solution aqueuse du sel d'acide organique à régénérer de façon à l'appauvrir progressivement au cours de ses passages successifs dans les compartiments médians des cellules c'est-à-dire les compartiments (S). On peut alors recueillir respectivement une solution d'acide organique régénéré et une solution de base correspondant au cation présent dans le sel, soit par surverse à partir de conteneurs situés respectivement en sortie des compartiments latéraux côté anode et compartiments latéraux côté cathode des cellules du dispositif recevant ces solutions, c'est-à-dire les compartiments (A) et compartiments (B) respectifs, soit en les amenant à circuler en circuit fermé en vue de les recycler respectivement dans les compartiments latéraux côté anode et compartiments latéraux côté cathode des cellules en question pour les enrichir jusqu'à la concentration désirée.
Les Exemples non limitatifs suivants illustrent le procédé de l'invention en référence aux dessins annexés sur lesquels :
- la Figure 2 représente un schéma d'un dispositif d'électrodialyse formé d'un empilement de 4 cellules chacune configurée en 3 compartiments - la Figure 3 représente un schéma de la dissociation ionique du I- camphosulfonate de potassium et la réassociation en acide et base dans une cellule configurée en 3 compartiments
- la Figure 4 représente un schéma d'installation pour la régénération en phase semi-continue de l'acide l-camphosulfonique à partir d'une solution aqueuse du I- camphosulfonate de potassium.
EXEMPLE 1
Régénération de l'acide l-camphosulfonique (procédé discontinu) On a procédé à la régénération de l'acide l-camphosulfonique à partir d'une solution aqueuse de l-camphosulfonate de potassium par mise en oeuvre dans un dispositif d'électrodialyse tel que représenté schématiquement à la Figure 2 comprenant un empilement de 4 cellules élémentaires d'une surface totale de 0,04m2.
Cet empilement est siuté entre deux électrodes : une anode (1 ) et une cathode (2) reliées à un générateur de courant continu régulé (3). En outre, l'ensemble de cellules est doté à ses extrémités de deux compartiments (ER) et (ER') de rinçage des électrodes, ces compartiments étant bornés chacun par une membrane cationique résistante (N) de marque NAFION®.
Ces compartiments sont alimentés par un conduit (4) dans lequel circule une solution d'hydroxyde de potassium 2,5N, le conduit comprenant en outre un réservoir (5) pour la solution basique et une pompe de circulation (6).
Chaque cellule comporte une suite de 3 membranes : une membrane bipolaire (7) de type BP1 de la société Tokuyama Soda, génératrice de protons et de groupements hydroxyle, une membrane échangeuse d'anions à haute perméabilité (8) de marque NEOSEPTA® AFX, traitée au préalable par immersion dans une solution 0,8 à 1 M en acide l-camphosulfonique et une membrane échangeuse de cations (9) de marque SELEMION® CMV.
Ces membranes délimitent 3 compartiments: un compartiment latéral (A) côté anode pour la solution d'acide l-camphosulfonique, un compartiment médian (S) pour la solution de l-camphosulfonate de potassium et un compartiment (B) côté cathode pour la solution d'hydroxyde de potassium.
Chaque compartiment est doté, à sa sortie, d'un conduit ici représenté pour le groupe de compartiments (S) soit le conduit (10). Ce conduit, connecté sur son parcours à un réservoir (11 ) qui alimente successivement un filtre (12), une pompe contrifuge (13) et un débitmètre (14) est relié d'autre part à l'entrée du compartiment correspondant.
Les conditions générales de mise en oeuvre de ce dispositif sont les suivantes :
• tension maximale pour cet empilement de cellules 20 volts
• courant électrique maximum pour cet empilement 10 ampères
• débit de la solution de rinçage des électrodes 50l/h/électrode
• débit de chaque réactif 90l/h
• pression à l'entrée de l'empilement 0,4-0,5 bar On débarasse d'abord la solution de l-camphosulfonate de potassium de la présence de son carbonate par acidification à l'aide d'acide l-camphosulfonique à raison de 125g (0,54 mole) d'acide par kg de solution saline. On réalise alors le processus de régénération en discontinu et à la température de 40°C avec au départ dans le compartiment (B) une solution d'hydroxyde de potassium 0.52N, dans le compartiment (A) une solution d'acide I- camphosulfonique 0,28N, dans le compartiment (S) la solution de I- camphosulfonate de potassium préparée précédemment et dans les compartiments anodique et cathodique une solution d'hydroxyde de potassium 2,5N.
La forte résistance électrique du dispositif d'électrodialyse, dans ces conditions opératoires, ne permet pas d'appliquer la densité de courant électrique maximale admissible par les membranes qui est dans ce cas de 9,6A soit 1000 A/m2. On régule en conséquence à une intensité qui correspond à la tension maximale tolérée pour le dispositif soit 20V sachant que Vmax = 3V par cellule + 8V de chute de différence de potentiel aux électrodes.
Ainsi, la densité de courant varie de 125 A/m2 au départ à 865 A/m2 à la fin de l'essai.
Sous l'effet du champ électrique appliqué à ce dispositif, une dissociation ionique intervient suivie d'une réassociation telle que schématisée à la Figure 3 en annexe sur laquelle l'anion l-camphosulfonate (CS") et le contre-cation (K+) migrent à partir de la solution de l-camphosulfonate de potassium (KCS) située dans le compartiment (S) et se dirigent vers l'anode ou la cathode respectivement, l'anion pénétrant dans le compartiment (A) après avoir traversé la membrane anionique à haute perméabilité (AN), le cation pénétrant dans le compartiment (B) après passage par la membrane cationique (C). Sous l'effet de ce même champ électrique, l'eau présente est parallèlement dissociée en protons (H+) et anions hydroxyle (OH ) par l'intermédiaire de la membrane bipolaire (BP) dont la face génératrice de protons est tournée vers la cathode et la face génératrice d'anions hydroxyle vers l'anode. Ainsi les protons (H+) migrent en direction de la cathode dans le compartiment (A) et les anions hydroxyle (OH") se déplacent vers l'anode dans le compartiment (B) où ils se combinent respectivement avec les anions camphosulfonate (CS") qui ont migré à cet endroit ou avec les cations (K+) pour former l'acide l-camphosulfonique (HCS) libre ou la base (KOH) libre. La durée de cet essai est de 15h, ce qui permet d'atteindre une concentration en hydroxyde de potassium de 1 ,78M et une concentration en acide I- camphosulfonique égale à 0.96M. Le rendement faradique en acide au départ est voisin de 36% puis diminue progressivement jusqu'à 13% en fin d'essai, ce qui correspond à un rendement faradique global voisin de 19%. De même, le rendement faradique en base, voisin de 57% au départ, diminue progressivement jusqu'à 27% en fin d'essai, ce qui correspond à un rendement faradique global voisin de 35%.
L'énergie consommée est égale à 2395 kWh/tonne d'acide l-camphosulfonique et la productivité est égale à 0,91 kg/h. m2 de cellule soit 3,9 mole/h. m2 de cellule.
De cette manière, on obtient 2,5kg d'acide l-camphosulfonique qui, après cristallisation, présente les caractéristiques suivantes :
Aspect : poudre cristalline pratiquement blanche
[ ]D 20 : -23,0°
Titre acidimétrique : 99,4%
Pureté énantiomérique (en chromatographie phase gazeuse) : 99,3% Acide S(-) - camphosulfonique : trace («0,2%)
Un essai comparatif effectué exactement dans les mêmes conditions au départ d'un dispositif d'électrodialyse tel que décrit précédemment comportant des membranes échangeuses d'anions classiques de marque NEOSEPTA® AMX n'a pas permis de régénérer l'acide l-camphosulfonique à partir de son sel potassique, la membrane anionique utilisée ne permettant ni le passage des ions I- camphosulfonate ni par conséquent le courant électrique.
EXEMPLE 2
Régénération de l'acide l-camphosulfonique (procédé semi-continu)
On a procédé à la régénération de l'acide l-camphosulfonique à partir d'une solution aqueuse de l-camphosulfonate de potassium par mise en oeuvre dans un dispositif d'électrodialyse comprenant un empilement de 7 cellules élémentaires de 2dm2 chacune de surface active tel que représenté à la Figure 4 en annexe.
Cet empilement est situé entre deux électrodes : une anode (14) et une cathode (15) connectées à un générateur de courant continu régulé (16). En outre, l'ensemble de cellules est doté à ses extrémités de deux compartiments (17) et (18) pour le rinçage des électrodes, ces compartiments étant bornés chacun par une membrane cationique résistante (19) de marque NAFION®. Ces compartiments sont alimentés par un conduit (20) dans lequel circule une solution d'hydroxyde de potassium 2,5N provenant d'un réservoir (21 ). Une pompe (22) assure la circulation de cette solution basique de rinçage. Chaque cellule comporte une suite de 3 membranes : une membrane bipolaire
(23) de type BP1 de la société Tokuyama Soda, génératrice de protons et de groupements hydroxyle, une membrane échangeuse d'anions à haute perméabilité
(24) de marque NEOSEPTA® AFX, traitée au préalable par immersion dans une solution 0,8 à 1 M en acide l-camphosulfonique, et une membrane échangeuse de cations (25) de marque SELEMION® CMV.
Ces membranes délimitent trois compartiments : un compartiment latéral (A) côté anode pour la solution d'acide l-camphosulfonique, un compartiment médian (S) pour la solution de l-camphosulfonate de potassium et un compartiment (B) côté cathode pour la solution d'hydroxyde de potassium.
Le dispositif est également équipé de conduits (26) (27) (28) qui alimentent respectivement des réservoirs (29) (30) (31 ) destinés à recevoir une solution recyclée respectivement de l-camphosulfonate de potassium, d'acide I- camphosulfonique et d'hydroxyde de potassium tandis qu'en sortie de chacun de ces réservoirs des conduits (32) (33) (34) équipés de pompes de circulation alimentent l'empilement de cellules en solutions saline, acide et basique respectivement.
Les conditions générales de mise en oeuvre de ce dispositif sont les suivantes :
• débit de la solution de rinçage des électrodes 150 l/h par électrode
• débit de la solution acide 130 l/h
• débit de la solution de sel 130 l/h • débit de la solution de base 1501/h
• pression à l'entrée de l'empilement 0,3-0,5 bar
On débarasse au préalable la solution de l-camphosulfonate de potassium de son carbonate par acidification à pH = 3 à l'aide d'acide l-camphosulfonique. On soumet alors en phase discontinue et à la température de 40°C cette solution decarbonatée, provenant du réservoir (29) par le conduit (32), au traitement d'électrodialyse qui épuise progressivement le sel. Dans le même temps, l'acide I- camphosulfonique et l'hydroxyde de potassium produits sont amenés respectivement dans les réservoirs (30) et (31). Ils sont alors partiellement recueillis en continu par surverse, l'acide dans la cuve (35) et la base dans la cuve (36) à des concentrations de l'ordre de 0,4mole/l pour l'acide et de l'ordre de 1 mole/l pour la base, ces concentrations étant maintenues dans les réservoirs (30) et (31 ) par injection d'eau déminéralisée provenant de la cuve (37) moyennant respectivement des conduits (38) et (39) qui comportent des pompes doseuses (40) régulées par les concentrations en acide et en base.
Quant aux solutions acide du réservoir (30) et de solution basique du réservoir (31) celles-ci sont amenées par leurs conduits respectifs (33) et (34) dans les compartiments respectifs (A) et (B) des cellules du dispositif où elles sont recyclées.
En cours de fonctionnement, on régule à une intensité de courant de l'ordre de 10A qui correspond à une tension maximale tolérée pour chaque cellule inférieure ou égale à 3V x 7 = 21V + 7V de chute de différence de potentiel aux électrodes.
En conditions normales, le rendement faradique en acide l-camphosulfonique s'établit à une valeur de 13 à 15% au départ pour se stabiliser ensuite au cours du temps à un niveau de 7%.
De cette manière, on obtient l'acide l-camphosulfonique, qui après cristallisation, présente les caractéristiques suivantes :
Aspect : poudre blanc cassé
[ ]D 20 : -22,4°
Titre acidimétrique : 99,5 - 99,7%
Pureté énantiomérique (en chromatographie phase gazeuse) : 99,4%
Acide S(-) - camphosulfonique : < 0,02%

Claims

REVENDICATIONS
1. Procédé pour la régénération d'acides organiques de masse molaire supérieure ou égale à 200g. mole"1 à partir d'une solution aqueuse de leurs sels, caractérisé en ce que : a) l'on constitue un dispositif d'électrodialyse comprenant au moins une cellule élémentaire configurée en trois compartiments contigus, un médian délimité par une membrane de dialyse échangeuse d'anions à haute perméabilité et une membrane échangeuse de cations et deux latéraux bornés chacun par une membrane bipolaire, que l'on soumet à une différence de potentiel continue engendrée par une anode et une cathode situées aux extrémités de manière à créer un champ électrique, b) l'on fait circuler une solution aqueuse du sel d'acide organique à régénérer dans le compartiment médian de chaque cellule, c) l'on recueille dans le compartiment latéral côté anode une solution d'acide organique régénéré et dans le compartiment latéral côté cathode, une solution basique correspondant au cation du sel d'acide organique régénéré.
2. Procédé selon la Revendication 1 , caractérisé en ce que la membrane de dialyse échangeuse d'anions à haute perméabilité est capable d'absorber de 30% à 70% de son poids en eau.
3. Procédé selon la Revendication 1 ou 2, caractérisé en ce que l'on utilise une membrane de dialyse échangeuse d'anions à haute perméabilité traitée au préalable par une solution aqueuse de l'acide à régénérer.
4. Procédé selon la Revendication 3, caractérisé en ce que la solution aqueuse contient 0,8 à 1M d'acide à régénérer.
5. Procédé selon une des Revendications 1 à 4, caractérisé en ce que la membrane de dialyse échangeuse d'anions est une membrane de marque NEOSEPTA® AFX, NEOSEPTA® AFN, RAIPORE® ADM-4000 ou SELEMION®
DSV.
6. Procédé selon une des Revendications 1 à 5, caractérisé en ce que la différence de potentiel est de 400 à 500 V/m2 de cellule.
7. Procédé selon une des Revendications 1 à 6, caractérisé en ce que le champ électrique est produit à partir d'une densité de courant électrique ne dépassant pas 1000A/m2 de cellule.
8. Procédé selon la Revendication 7, caractérisé en ce que la densité de courant électrique est de 125 à 865A/m2 de cellule.
9. Procédé selon une des Revendications 1 à 8, caractérisé en ce qu'il est mis en oeuvre à une température comprise entre 5°C et 95°C.
10. Procédé selon la Revendication 9, caractérisé en ce que la température est comprise entre la température ambiante et 60°C.
11. Procédé selon une des Revendications 1 à 10, caractérisé en ce qu'il est mis en oeuvre à une pression de 0,3 à 0,5 bar.
12. Procédé selon une des Revendications 1 à 1 1 , caractérisé en ce qu'il est mis en oeuvre en phase discontinue ou semi-continue.
13. Procédé selon une des Revendications 1 à 12, caractérisé en ce qu'il est mis en oeuvre en phase semi-continue en faisant circuler en circuit fermé la solution aqueuse du sel d'acide organique à régénérer de façon à l'appauvrir progressivement au cours de ses passages successifs dans les compartiments médians des cellules puis en recueillant une solution d'acide organique régénéré et une solution de base correspondant au cation du sel d'acide organique régénéré, soit par surverse à partir de conteneurs situés respectivement en sortie des compartiments latéraux côté anode et compartiments latéraux côté cathode des cellules recevant ces solutions, soit en les amenant à circuler en circuit fermé en vue de les recycler respectivement dans les compartiments latéraux côté anode et compartiments latéraux côté cathode des cellules pour les enrichir jusqu'à la concentration désirée.
14. Procédé selon une des Revendications 1 à 12, caractérisé en ce qu'il est mis en oeuvre en phase discontinue en faisant circuler en circuit fermé la solution aqueuse du sel d'acide organique à régénérer de façon à l'appauvrir progressivement au cours de ses passages successifs dans les compartiments médians des cellules puis en recueillant une solution d'acide régénéré et une solution de base correspondant au cation du sel d'acide organique régénéré, soit par prélèvement à partir de conteneurs situés respectivement en sortie des cellules des compartiments latéraux côté anode et compartiments latéraux côté cathode des cellules, soit en les amenant à circuler en circuit fermé en vue de les recycler respectivement dans les compartiments latéraux côté anode et compartiments latéraux côté des cellules pour les enrichir jusqu'à la concentration désirée.
15. Procédé selon une des Revendications 1 à 14, caractérisé en ce qu'il est mis en oeuvre pour la régénération d'acides organiques de masse molaire supérieure ou égale à 200g. mole 1 comportant un ou plusieurs groupements sulfonique ou phosphonique.
16. Procédé selon la Revendication 15, caractérisé en ce qu'il est mis en oeuvre pour la régénération de l'acide l-camphosulfonique.
PCT/FR1999/003121 1998-12-21 1999-12-14 Procede pour la regeneration d'acides organiques de masse molaire elevee WO2000037435A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU16640/00A AU1664000A (en) 1998-12-21 1999-12-14 Method for regenerating high molar mass organic acids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/16139 1998-12-21
FR9816139A FR2787346A1 (fr) 1998-12-21 1998-12-21 Procede pour la regeneration d'acides organiques de masse molaire elevee

Publications (1)

Publication Number Publication Date
WO2000037435A1 true WO2000037435A1 (fr) 2000-06-29

Family

ID=9534242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/003121 WO2000037435A1 (fr) 1998-12-21 1999-12-14 Procede pour la regeneration d'acides organiques de masse molaire elevee

Country Status (3)

Country Link
AU (1) AU1664000A (fr)
FR (1) FR2787346A1 (fr)
WO (1) WO2000037435A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015024135A1 (fr) * 2013-08-23 2015-02-26 Saltworks Technologies Inc. Système et procédé pour la régénération électrodialytique d'acide
CN106278959A (zh) * 2016-07-28 2017-01-04 天津市富特斯科技发展有限公司 利用双极膜法制备环己基甲酸磺酸的方法
CN109134317A (zh) * 2018-09-10 2019-01-04 合肥科佳高分子材料科技有限公司 一种双极膜电渗析制备l-10-樟脑磺酸的方法
CN109954394A (zh) * 2017-12-26 2019-07-02 株式会社东芝 酸成分除去装置及酸成分除去方法以及酸性气体除去装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947351A (en) * 1971-12-22 1976-03-30 Asahi Glass Company, Ltd. Acid diffusion-dialysis process utilizing anion exchange membrane of 4-55 micron thickness
JPS63293188A (ja) * 1987-05-25 1988-11-30 Tokuyama Soda Co Ltd 高分子酸の製造方法
FR2646421A1 (fr) * 1989-04-26 1990-11-02 Centre Nat Rech Scient Procede de fabrication d'acide tartrique a partir d'un bitartrate et applications pour la valorisation de sous-produits vinicoles
US5221443A (en) * 1990-12-22 1993-06-22 Basf Aktiengesellschaft Liberation of organic sulfonic acids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947351A (en) * 1971-12-22 1976-03-30 Asahi Glass Company, Ltd. Acid diffusion-dialysis process utilizing anion exchange membrane of 4-55 micron thickness
JPS63293188A (ja) * 1987-05-25 1988-11-30 Tokuyama Soda Co Ltd 高分子酸の製造方法
FR2646421A1 (fr) * 1989-04-26 1990-11-02 Centre Nat Rech Scient Procede de fabrication d'acide tartrique a partir d'un bitartrate et applications pour la valorisation de sous-produits vinicoles
US5221443A (en) * 1990-12-22 1993-06-22 Basf Aktiengesellschaft Liberation of organic sulfonic acids

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 111, no. 4, 24 July 1989, Columbus, Ohio, US; abstract no. 24154, XP002134221 *
DATABASE WPI Section Ch Derwent World Patents Index; Class A18, AN 1989-018563, XP002134222 *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 119 (C - 579) 23 March 1989 (1989-03-23) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015024135A1 (fr) * 2013-08-23 2015-02-26 Saltworks Technologies Inc. Système et procédé pour la régénération électrodialytique d'acide
CN106278959A (zh) * 2016-07-28 2017-01-04 天津市富特斯科技发展有限公司 利用双极膜法制备环己基甲酸磺酸的方法
CN109954394A (zh) * 2017-12-26 2019-07-02 株式会社东芝 酸成分除去装置及酸成分除去方法以及酸性气体除去装置
CN109134317A (zh) * 2018-09-10 2019-01-04 合肥科佳高分子材料科技有限公司 一种双极膜电渗析制备l-10-樟脑磺酸的方法
CN109134317B (zh) * 2018-09-10 2021-11-12 合肥科佳高分子材料科技有限公司 一种双极膜电渗析制备l-10-樟脑磺酸的方法

Also Published As

Publication number Publication date
FR2787346A1 (fr) 2000-06-23
AU1664000A (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US6627061B2 (en) Apparatus and process for electrodialysis of salts
US6294066B1 (en) Apparatus and process for electrodialysis of salts
LU85100A1 (fr) Procede et cellule electrolytiques pour la preparation de composes organiques
US6551803B1 (en) Method for purification of amino acid containing solutions by electrodialysis
CN109097408A (zh) 一种尼龙56盐的制备方法
EP0938366B1 (fr) Procede d&#39;extraction de composes amines d&#39;un milieu liquide
FR2729305A1 (fr) Regeneration d&#39;acides organiques forts par des membranes bipolaires
TW200302128A (en) Purification of onium hydroxides by electrodialysis
WO2000037435A1 (fr) Procede pour la regeneration d&#39;acides organiques de masse molaire elevee
CN113582301A (zh) 从盐湖卤水中提取氢氧化锂和氢氧化钠的方法及装置
US4909916A (en) Method of working up the solution from the enzymatic resolution of a racemate of an N-acetyl-DL-amino-carboxylic acid
BE1000436A5 (fr) Procede de reduction electrochimique d&#39;acide nitrique en nitrate d&#39;hydroxylamine.
US3111472A (en) Process of carrying out electrochemically electrolysis
EP0914195B1 (fr) Procede de separation d&#39;un catalyseur par electrodialyse membranaire
JP2004244277A (ja) 高純度塩化ナトリウムの製造方法
US20020153261A1 (en) Method for producing basic amino acid solution
CA2138154C (fr) Production simultanee d&#39;acides dicarboxyliques et de diamines a partir de polyamides
JPS62158231A (ja) ジクロロヒドリンの製法
JPS61261488A (ja) アミノ酸アルカリ金属塩の電解法
RU2223946C1 (ru) Способ получения l-лизина
US7824538B2 (en) Process for improving the purity of quaternary ammonium hydroxides by electrolysis in a two-compartment cell
EP4335820A1 (fr) Procede de preparation d&#39;hydroxyde de lithium, et installation pour la mise en uvre du procede
JPS5855577A (ja) アミノ酸の製造法
JPS6318669B2 (fr)
EP0913391A1 (fr) Dessalement de solutions aqueuses de sulfonamides

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 16640

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase