WO2000034146A1 - Food container utilizing titanium oxide particles and method for preparing the same - Google Patents

Food container utilizing titanium oxide particles and method for preparing the same Download PDF

Info

Publication number
WO2000034146A1
WO2000034146A1 PCT/JP1999/006878 JP9906878W WO0034146A1 WO 2000034146 A1 WO2000034146 A1 WO 2000034146A1 JP 9906878 W JP9906878 W JP 9906878W WO 0034146 A1 WO0034146 A1 WO 0034146A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide particles
food container
binder
container
Prior art date
Application number
PCT/JP1999/006878
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Ohmori
Takashi Ohkubo
Masayuki Sanbayashi
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP28611499A external-priority patent/JP2000229618A/en
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Publication of WO2000034146A1 publication Critical patent/WO2000034146A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/02Linings or internal coatings

Definitions

  • the present invention relates to a food container using titanium oxide particles and a method for producing the same.
  • the present invention relates to a food container using titanium oxide particles, and more particularly to a food container that is hardly soiled and can be easily washed even when soiled. Furthermore, when the food container is a glass container, the mechanical strength of the container can be improved, and a food container that can maintain these effects for a long period of time is provided.
  • food includes beverages such as beer.
  • glass containers may be used for food containers such as barrels and evening tanks that transport or store beverages such as beer, juice, milk, and milk, and liquid foods, and large tanks used in tank trucks.
  • Plastic and metal containers are used.
  • metal containers are widely used because of their excellent durability
  • stainless steel containers are widely used because they are more resistant to rust.
  • glass containers are useful because of their flexibility and low cost.
  • Food containers intended for transportation and storage are used repeatedly and are often used outdoors, so the outside of the container and the spout are less likely to become dirty, and even if they become dirty, What can be washed is desired.
  • glass containers are weaker in strength than stainless steel containers, so they have a thicker structure and are heavier. Therefore, weight reduction is required.
  • a surface treatment method such as a method of increasing a contact angle with water by performing a fluorine treatment such as pitting, that is, a method of improving water repellency.
  • the color of the coating agent used affects the color of the food container, so the surface of the food container that requires cleanliness is required. There is a problem that it is not preferable as a processing method. In addition, the coating was worn or peeled off during use, and there was a problem with long-term use.
  • the material of the food container is glass, if the thickness is reduced to reduce the weight of the container, there is a problem that the mechanical strength is reduced.
  • An object of the present invention is to provide a food container which is hardly soiled, can be easily washed even when soiled, and maintains such an effect for a long period of time.
  • the objective is to maintain the mechanical strength even when the thickness of the glass is reduced. Disclosure of the invention
  • the food container of the present invention has titanium oxide particles present on the surface. Therefore, it is difficult to be soiled, and even when soiled, it can be easily washed.
  • the titanium oxide film is excellent in transparency, so that the original appearance of the container can be maintained. It can be a container with the. If the material of the food container is made of glass, its mechanical strength can also be improved, so that the glass thickness can be reduced, resulting in a lightweight bottle. is there. BEST MODE FOR CARRYING OUT THE INVENTION
  • the food container used in the present invention is not particularly limited as long as it is used for transporting and storing foods and beverages, such as bottles, barrels, and the like for transporting beverages such as beer, juice, milk, and liquid foods.
  • Containers such as tanks, or large evening tanks used for tank trucks And the like.
  • glass, plastic, metal, etc. are usually used.
  • metal or glass having excellent durability is used because the metal or glass is used repeatedly.
  • rust-resistant stainless steel is preferable.
  • Such food containers are often used outdoors, and especially because the spout has a complicated uneven shape, stainless steel beer barrels that are difficult to clean and are difficult to wash, soda-lime glass, borosilicate glass, etc. There is a glass bottle that can be made from lee.
  • the titanium oxide particles used in the present invention have a photocatalytic function capable of decomposing organic substances and the like using ultraviolet rays, and are used for decomposing organic substances such as food-derived stains, disinfecting, and preventing mold generation. It works. Furthermore, since titanium oxide particles have high hydrophilicity, it is possible to prevent adhesion of organic substances such as oil components derived from foods, inorganic dust, sand and mud. In addition, when titanium oxide particles are used in a glass container, the mechanical strength is improved, so that the thickness of the glass can be reduced, and as a result, the weight of the entire glass container can be reduced. .
  • the crystal structure of such titanium oxide particles is not limited, and is usually a tetragonal low-temperature ananode-type, a high-temperature rutile-type, or an orthorhombic-type blue oxidite-type oxidation.
  • Titanium particles are used, and preferably titanium oxide particles containing blue kite type titanium oxide particles.
  • the titanium oxide particles containing the brookite-type crystal may include brookite-type titanium oxide particles alone, or may include rutile-type or ananases-type titanium oxide particles.
  • the ratio of brookite-type titanium oxide particles in the titanium oxide particles is not particularly limited, but is usually 1 to 100% by weight, preferably 10 to 100% by weight.
  • the method for producing titanium oxide particles containing brookite-type crystals includes a method for producing titanium oxide particles containing brookite-type crystals by heat-treating anatase-type titanium oxide particles, titanium tetrachloride, Titanium chloride, titanium alkoxide, titanium sulfate There is a liquid phase production method of obtaining a titanium oxide sol in which titanium oxide particles are dispersed by neutralizing or hydrolyzing a solution of a titanium compound such as titanium oxide.
  • titanium tetrachloride is added to hot water at 75 to 100 ° C, and titanium tetrachloride is hydrolyzed at a temperature of 75 ° C or more and below the boiling point of the solution while controlling the chloride ion concentration.
  • titanium oxide particles containing bullite-type crystals as a titanium oxide sol or to add titanium tetrachloride to hot water of 75 to 10 Ots, to obtain either nitrate ions or phosphate ions.
  • Titanium tetrachloride is hydrolyzed and oxidized in the presence of one or both at a temperature of 75 ° C or higher and lower than the boiling point of the solution while controlling the total concentration of chloride, nitrate and phosphate ions.
  • a method for obtaining titanium oxide particles containing brookite type crystals as a titanium sol is preferable.
  • the size of the titanium oxide particles is not particularly limited, but usually has an average particle size of 0.05 to 0.00. This is because if it is larger than 0.1 zm, the photocatalytic activity is reduced, so that it is difficult to contaminate, and even if it is contaminated, it is difficult to obtain the effect of easily decomposing organic substances and washing it. Further, the transparency of the titanium oxide particles is reduced, and in a food container having such titanium oxide particles present on the surface, the color of the titanium oxide particles affects the color of the food container, which is not preferable. If it is less than 0.05 wm, it is difficult to handle titanium oxide particles in the manufacturing process.
  • the specific surface area of the titanium oxide particles is usually 20 m 2 or more.
  • the titanium oxide particles thus obtained can be present on the surface of the food container by applying a sol of the titanium oxide particles to the food container and then drying, heat-treating, or sintering the food container surface.
  • a sol of the titanium oxide particles to the food container and then drying, heat-treating, or sintering the food container surface.
  • There is a method of adhering a method of mixing titanium oxide particles with a paint or the like, applying the mixture to a food container, followed by drying and heat treatment.
  • the titanium oxide particles may be directly fixed to a food container with a binder or the like.
  • the pH of the sol of titanium oxide particles is less than 1, it may corrode metal food containers such as stainless steel, so filtration filtration, electrodialysis, ion exchange, and electrolysis
  • the method of applying the sol of the titanium oxide particles to the food container is not particularly limited, but a spin coating method, a flow coating method, a dip coating method, a spray coating method, a vacuum coating method, a roller coating method, a brush coating method, and a dipping method Any known method such as the method may be used.
  • the coating amount is usually 0.01 to L0 m, in terms of the thickness of the applied film.
  • a sintering aid or a binder or binder precursor is added to the titanium oxide sol. It is also possible. Further, a binder may be applied to a food container in advance, and a base treatment for forming an undercoat layer may be performed. Sintering aids and binders enhance the adhesive strength between the titanium oxide particles and the food container and improve the film hardness. The addition of such a sintering aid or the use of a binder makes it difficult for the titanium oxide particles to be peeled off from the food container.
  • the type of sintering aid or binder and binder precursor differs depending on the material of the food container used, but the sintering aid is not particularly limited as long as it is brenstead acid, and is, for example, phosphoric acid, hydrochloric acid, or acetic acid. Organic carboxylic acids and the like are used.
  • the binder for example, metal oxides such as silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, calcium oxide, and magnesium oxide are used.
  • an alkoxide having the metal is used. This is preferable because the film strength can be increased.
  • phosphoric acid as a sintering aid
  • alkoxides of silicon such as tetramethoxysilane and tetraethoxysilane as binder precursors
  • alkoxides of titanium acetates of titanium
  • titanium oxides as binders Body.
  • Alkoxides of silicon such as tetramethoxysilane and tetraethoxysilane are condensed to form polysiloxane and organopolysiloxane, and serve as a binder.
  • the surface of the titanium oxide particles is covered with oxygen or a hydroxyl group in the atmosphere, and the sintering aid or the titanium oxide or a precursor thereof, which forms a phosphoric acid or silanol bond, or a titanium oxide or a precursor thereof is used.
  • Binder is used for food containers and acids Since it condenses with the surface of titanium oxide particles and bonds strongly, it exhibits excellent adhesive strength with a small amount. Even if the food container is made of metal, the adhesion to the binder is strong due to the presence of the metal oxide layer on the surface.
  • sintering aid phosphoric acid is preferably used.
  • an alkoxide of silicon such as tetramethoxysilane or tetraethoxysilane, which is a binder precursor, is preferably used.
  • the hardness of the titanium oxide thin film formed using such a sintering aid, binder, or binder precursor also affects the material of the container, but when phosphoric acid is used, the hardness of the lead brush is generally 4H or more.
  • silicon oxide, zirconium oxide, titanium oxide and their precursors are used, they generally have a pencil hardness of 6 H or more, have excellent film strength, and are difficult to peel.
  • these sintering aids and binders may be used alone or in combination of two or more. When these are mixed and used, the mixing ratio can be arbitrarily selected.
  • the amount of the sintering additive is usually from 10 ppm to 100 ppm with respect to titanium oxide. If it is more than 100 ppm, the sintering temperature needs to be set high, and the sintering time is undesirably long. On the other hand, if it is less than lOppm, the sintering effect is small, which is not preferable.
  • the binder or the binder precursor is added, the amount thereof is usually 5 to 50% by weight with respect to titanium oxide when converted as oxide.
  • the content is more than 50% by weight, the proportion of titanium oxide particles buried in the binder becomes large, so that the photocatalytic activity of the coating film is reduced. If the content is less than 5% by weight, the effect of the binder cannot be obtained, so that it is preferable. Absent.
  • the method of adding the sintering aid or binder / binder precursor is not particularly limited.However, a method of adding these to the titanium oxide sol and then applying it to a food container, or a method of applying the titanium oxide sol by a spray coating method In addition, there is a method of applying a sintering aid or a binder, or a binder precursor from another spray.
  • an appropriate solvent may be added to increase the drying speed.
  • an organic solvent such as ethyl alcohol is used.
  • the surface of the food container Before applying the sol of titanium oxide particles to a food container, the surface of the food container may be covered with a solution containing silica, fluororesin or the like, and dried to form a protective film.
  • drying, heat treatment, and the like are performed to fix the titanium oxide particles on the surface of the food container.
  • the atmosphere for drying and heat treatment is not particularly limited, and is performed in the air, in a vacuum, in an inert gas, or the like, but is usually performed in the air.
  • the temperature varies depending on the material of the food container and the type of sintering aid, binder, and binder-precursor when used, but is usually 20 to 800 ° C. When using an agent, a binder, or a binder precursor, the temperature is 20 to 450 ° C.
  • the drying and heat treatment time is usually 5 minutes to 24 hours, preferably 15 minutes to 12 hours.
  • the material of the food container is stainless steel or glass
  • it is treated at 100 to 450 ° C using phosphoric acid as a sintering aid, or silicon oxide or its binder is used as a binder or binder precursor.
  • the precursor is treated at 20 to 450 ° C using a precursor such as tetramethoxysilane or tetraethoxysilane, or an alkoxide, chelate, or acetate of titanium, the film hardness formed by the titanium oxide particles is reduced. It is preferable because it can be further improved.
  • the heat treatment time is usually 5 minutes to 24 hours, preferably 15 minutes to 12 hours.
  • titanium oxide particles can be fixed to the container surface at a low temperature of 20 to 450 ° C, so that the energy cost for heat treatment is kept low. be able to. Further, when the material of the food container is glass, the titanium oxide particles can be fixed to the surface of the container at a temperature lower than the softening temperature of the glass without heating the glass to the softening temperature and fusing the titanium oxide particles. Therefore, deformation of the glass can be prevented.
  • the softening temperature of glass is usually above 500 ° C.
  • the thickness of the thin film is usually 0.05 to 10 m, and more preferably 0.03 to 0. 5 m. If the thickness is less than 0.05 m, photocatalytic activity and hydrophilicity are not sufficient. If the thickness is more than 10 im, the photocatalytic reaction is performed only near the surface of the titanium oxide thin film, and the amount of titanium oxide not involved in the photocatalytic reaction increases, which is economically advantageous. However, the thin film is easily peeled from the food container. Further, the transparency of the titanium oxide thin film is lowered, which is not preferable.
  • the food container having the titanium oxide particles on the surface in this way can decompose the dirt attached by the photocatalytic function of the titanium oxide particles, kill the microorganisms in contact, and suppress the growth thereof.
  • titanium oxide particles have excellent hydrophilicity and the contact angle with water is less than 20 degrees, so that the dirt adsorbed on the food container, for example, the dirt on the outside of the container when used outdoors or the spout It is difficult for dirt, etc. to adhere, and even if dirty, it can be easily washed.
  • the film formed by the titanium oxide particles has excellent transparency and does not affect the color of the food container. When the food container is a glass container, the mechanical strength of the titanium oxide thin film is also improved.
  • the presence of titanium oxide particles on the surface using a binder and / or a sintering aid allows the titanium oxide particles to be strongly adhered to the food container surface, has excellent film hardness, and is difficult to peel off.
  • the above effects will be sustained for a long time.
  • the temperature at which the titanium oxide particles are fixed to the surface of the food container is as low as 20 to 450 ° C, the energy cost for heat treatment can be kept low and the food container can be kept low.
  • the material is glass, deformation due to heat can be prevented.
  • Such food containers are used not only indoors but also outdoors.
  • the spout since the spout has a complicated uneven shape or a shape having a large and small complicated curvature, it is easily soiled. It is preferably applied to stainless steel beer barrels and glass beer bottles that are difficult to wash.
  • the ingredients of the beer are 91-93% by weight of water, 3.3-3.9% by weight of ethanol, and 3.1 :!
  • the amount of carbon dioxide is 0.42 to 0.55%
  • the extract which is a non-volatile organic substance, contains 75 to 80% by weight of carbohydrates composed of total sugars such as dextrin. Contains. Therefore, among the beer components, extracts are the main cause of soiling.
  • reaction vessel was stirred at about 200 rpm, and while maintaining the liquid temperature in the vessel at 95, 46 mL of an aqueous solution of titanium tetrachloride was dropped into the reaction vessel at a rate of about 2 mL Zmin.
  • a solution having a titanium tetrachloride concentration of 0.25 mol ZL (2% by weight in terms of titanium oxide) was obtained.
  • the mixture was heated to near the boiling point (104 ° C.) and maintained at that temperature for 60 minutes to hydrolyze titanium tetrachloride.
  • the resulting sol was cooled and concentrated, and the chlorine generated by the hydrolysis was removed by electrodialysis using an electrodialyzer G3 manufactured by Asahi Kasei Kogyo Co., Ltd. to obtain a pH of 4.0 (chlorine ion of about 400 ppm).
  • a water-dispersed titanium oxide sol was obtained.
  • the particle size was 0.01 to 0.03 m.
  • the particles were dried in a vacuum dryer at 60 ° C., and the obtained titanium oxide particles were analyzed by X-ray diffraction.
  • X-ray diffraction was performed with an X-ray diffractometer (RAD-B rotorflex) manufactured by Rigaku Denki Co., Ltd. Cu was used for the tube.
  • RAD-B rotorflex X-ray diffractometer manufactured by Rigaku Denki Co., Ltd. Cu was used for the tube.
  • the resulting paint is applied to a stainless steel beer barrel (volume of 10 L) by the brush method, dried at 50 ° C for 1 hour in the air, and heat-treated at 200 ° C for 2 hours in the air.
  • a beer barrel having a titanium oxide thin film of 4 zm on the surface was obtained.
  • phosphoric acid P0 4 3 - except for adding to the reaction vessel in so that such a 200 p pm as in the same manner as in Example 1 was solution hydrolyzed fraction of titanium tetrachloride.
  • a water-dispersed titanium oxide sol was obtained in the same manner as in Example 1 except that the pH of the obtained sol was set to 1.9 (chlorine ion: about 600 ppm, phosphate ion: about 200 ppm). Further, when the particles in the sol were observed in the same manner as in Example 1, the particle size of the particles was 0.01 to 0.03 m.
  • the crystal structure of the titanium oxide particles contained in this sol was examined in the same manner as in Example 1. As a result, a peak showing diffraction on the (121) plane of the brookite type crystal and a peak showing diffraction on the (110) plane, which is the main rutile type peak, were detected. In addition, although the main peak of the anazygase type could not be determined because it overlapped with the main peak of the brookite type, a peak indicating diffraction of the (004) plane of the anazygous type crystal was detected. Therefore, the obtained sol was a mixture of brookite-type crystals, ananases-type crystals, and rutile-type crystals. The content of these crystals was calculated as follows.
  • Titanium oxide of brookite-type crystal, ananode-type crystal, and rutile-type crystal each have the X-ray diffraction peaks shown in Table 3 (excerpted from J CPDS card). There are many overlapping parts. In particular, the d values of the main peaks of the blue kite type and the analog type are 3.51 and 3.52, respectively, and the blue kite type has a peak at 3.47, respectively. Peaks are virtually bulky Become.
  • the blue kite type (1 2 1) plane that does not overlap with the anazygous type peak is used.
  • the intensity ratio of the peak where the above three peaks overlap with each other is calculated.
  • the content of anatase-type titanium oxide was determined.
  • the main peak which indicates the diffraction of the (1 10) plane, and the intensity ratio of the above three peaks (rutile type main peak intensity) Z (peak intensity of the three peaks) The content was determined.
  • Ethyl alcohol for improving the drying rate was added to the water-dispersed titanium oxide sol containing the phosphoric acid-containing brookite-type titanium oxide obtained as described above to prepare a paint having the composition shown in Table 1.
  • Water-dispersed titanium oxide sol composed of ananases type crystals not containing brookite type
  • Example 4 A beer barrel having titanium oxide particles on the surface was obtained in the same manner as in Example 1 except that the thus obtained coating material was used, and evaluated similarly. The results are shown in Table 2.
  • Example 4 A beer barrel having titanium oxide particles on the surface was obtained in the same manner as in Example 1 except that the thus obtained coating material was used, and evaluated similarly. The results are shown in Table 2.
  • a water-dispersed titanium oxide sol (specific surface area: 50 m 2 / g) consisting of rutile-type crystals that do not contain brookite-type crystals, tetra-methoxysilane, a silicon-based adhesive as a binder precursor, and ethyl for improving the drying rate
  • a paint having the composition shown in Table 1 was prepared by adding alcohol.
  • Example 5 A beer barrel having titanium oxide particles on the surface was obtained in the same manner as in Example 1 except that the thus obtained coating material was used, and evaluated similarly. The results are shown in Table 2.
  • Example 5 A beer barrel having titanium oxide particles on the surface was obtained in the same manner as in Example 1 except that the thus obtained coating material was used, and evaluated similarly. The results are shown in Table 2.
  • a glass vial having titanium oxide particles on the surface was obtained in the same manner as in Example 1 except that a glass beer bottle (large bottle: 5355 ml) was used instead of the stainless steel beer barrel. evaluated. The results are shown in Table 2.
  • a strength test was performed on the glass beer bottle.
  • a 5 cm x 5 cm x 1.2 mm glass plate of the same composition as the glass constituting the beer bottle was used as an alternative.
  • the glass plate was placed on a smooth table, and a stainless steel ball having a diameter of 10 mm was freely dropped from above. At this time, the height at which the stainless steel balls were allowed to fall freely was gradually increased, and the height at which cracks (cracks) entered the glass plate was measured to determine the height at which breakage occurred.
  • the results are shown in Table 4. The higher the height, the better the mechanical strength. The measurement was performed five times, and the highest value was shown. Table 4
  • a glass vial having titanium oxide particles on the surface was obtained in the same manner as in Example 2 except that a glass beer bottle (large bottle: 53.5 ml) was used instead of the stainless steel beer barrel. evaluated. The results are shown in Table 2.
  • Example 2 An untreated glass beer bottle (large bottle: 5355 ml) having no titanium oxide particles on the surface was evaluated in the same manner as in Example 1. The results are shown in Table 2. Further, a strength test was performed on this glass beer bottle in the same manner as in Example 5. The results are shown in Table 4.
  • beer barrels and beer bottles having titanium oxide particles present on the surface were resistant to soiling and easy to clean even if soiled.
  • a beer barrel in which titanium oxide particles containing a large amount of brookite-type crystals were present on the surface was more excellent in such an effect.
  • the mechanical strength is also improved as shown in Table 4. Was. Industrial applicability
  • the food container of the present invention since the food container of the present invention has titanium oxide particles on the surface, it is difficult to be soiled, and even when soiled, it can be easily washed. Further, the above effects can be further improved by making the titanium oxide particles contain brookite type crystals. .
  • the titanium oxide film is excellent in transparency, so that the original appearance of the container can be maintained. It can be a container with the. If the material of the food container is made of glass, its mechanical strength can also be improved, so that the glass thickness can be reduced, resulting in a lightweight bottle. is there.
  • the titanium oxide particles are less likely to be peeled off, and are less likely to become dirty over a long period of time. It can also be easily cleaned. Further, when a sintering aid or binder is used, the titanium oxide particles can be fixed to the surface of the food container without heat treatment at a high temperature of 500 ° C. or more.

Abstract

A food container having titanium oxide particles on the surface thereof, which is less susceptible to staining and easy to clean, even when stained, with long-term durability. Extremely high transparency of titanium oxide film, which can not be expected from a resin coating, allows the appearance inherent to the material of a container to be kept as it is, for example, a metallic gloss and a feeling of cleanness of a container made of a metal such as stainless steel. In the case of a glass food container, titanium oxide film leads to the increase of strength of the container, which in turn leads to permitting the decrease of thickness of the container, resulting in lowering the weight thereof.

Description

明細書  Specification
酸化チタン粒子を用いた食品容器およびその製造方法 技術分野  TECHNICAL FIELD The present invention relates to a food container using titanium oxide particles and a method for producing the same.
本発明は、 酸化チタン粒子を用いた食品容器に関し、 詳しくは、 汚れにくく、 また、 汚れた場合でも容易に洗浄することができるようにしたものである。 さら に、 食品容器がガラス製容器である場合には、 その機械的強度の向上も可能とす ることができ、 これらの効果が長期にわたり持続する食品容器を提供するもので ある。 ここで食品とは、 ビール等の飲料も含む。  The present invention relates to a food container using titanium oxide particles, and more particularly to a food container that is hardly soiled and can be easily washed even when soiled. Furthermore, when the food container is a glass container, the mechanical strength of the container can be improved, and a food container that can maintain these effects for a long period of time is provided. Here, food includes beverages such as beer.
本出願は日本国への特許出願 (特願平 1 0— 3 5 0 4 0 6号および特願平 1 1 — 2 8 6 1 1 4号) に基づくものであり、 当該日本出願の記載内容は本明細書の 一部として取り込まれるものとする。  This application is based on a patent application filed in Japan (Japanese Patent Application No. 10-350046 and Japanese Patent Application No. 11-2861114), and the content of the Japanese application Shall be incorporated as a part of this specification.
また、 この出願は米国出願番号 6 0ノ1 3 6, 2 3 1 (出願日 : 1 9 9 9年 5 月 2 6日) および米国出願 (出願日 : 1 9 9 9年 1 1月 2 2日、 出願番号未定) に基づく出願の利益を主張する。 背景技術  This application was filed in the United States application no. 60, 136, 231, (filing date: May 26, 1999) and in the U.S. Claim the benefit of the application based on the date, application number undecided). Background art
ビール、 ジュース、 牛乳等の飲料や液状の食物等を運搬または貯蔵する樽、 夕 ンク等の食品容器や、 タンクローリ一車に使用される大型タンク等の食品容器に は、 用途に応じてガラス、 プラスチック、 金属等の容器が使用されている。 この なかで、 特に耐久性が優れていることから、 金属製の容器が広く用いられ、 さら にさびにくいことから、 ステンレス製の容器が汎用されている。 一方、 ガラス製 の容器は形状の自由度、 低コスト等の面から重宝されている。  Depending on the application, glass containers may be used for food containers such as barrels and evening tanks that transport or store beverages such as beer, juice, milk, and milk, and liquid foods, and large tanks used in tank trucks. Plastic and metal containers are used. Among these, metal containers are widely used because of their excellent durability, and stainless steel containers are widely used because they are more resistant to rust. On the other hand, glass containers are useful because of their flexibility and low cost.
運搬や貯蔵を目的とした食品容器は、 繰り返し使用されることから、 また、 屋 外で使用されることが多いことから、 容器の外側や注ぎ口等が汚れにくく、 また は汚れた場合でも容易に洗浄できるものが望まれている。 さらにガラス製容器は ステンレス製に比べ強度が弱いので肉厚構造となっており、 その分重量が重い。 そのため、 軽量化が求められている。  Food containers intended for transportation and storage are used repeatedly and are often used outdoors, so the outside of the container and the spout are less likely to become dirty, and even if they become dirty, What can be washed is desired. In addition, glass containers are weaker in strength than stainless steel containers, so they have a thicker structure and are heavier. Therefore, weight reduction is required.
食品容器を汚れにくいものとするためには、 容器の表面をフッ素系樹脂でコー ティングする等のフッ素処理をして、 水との接触角を大きぐする、 すなわち撥水 性を向上させる方法等の表面処理方法がある。 In order to make food containers less susceptible to contamination, coat the surfaces of the containers with fluororesin. There is a surface treatment method such as a method of increasing a contact angle with water by performing a fluorine treatment such as pitting, that is, a method of improving water repellency.
しかしながら、 食品容器の表面をフッ素系樹脂でコーティングする等の表面処 理をする方法においては、 使用したコーティング剤の色が食品容器の色に影響を 与えるため、 清潔感が求められる食品容器の表面処理方法としては好ましくない という問題があった。 また、 使用する間に、 コ一ティングが摩耗したりあるいは 剥離したりして、 長期間の使用には問題があった。  However, in the case of surface treatment such as coating the surface of a food container with a fluororesin, the color of the coating agent used affects the color of the food container, so the surface of the food container that requires cleanliness is required. There is a problem that it is not preferable as a processing method. In addition, the coating was worn or peeled off during use, and there was a problem with long-term use.
さらに食品容器の材質がガラスの場合、 容器を軽量化するために肉厚を薄くす ると、 機械的強度が低下するという問題があった。  Further, when the material of the food container is glass, if the thickness is reduced to reduce the weight of the container, there is a problem that the mechanical strength is reduced.
本発明の目的は、 汚れにくく、 また、 汚れた場合でも容易に洗浄することがで き、 そのような効果が長期にわたり持続する食品容器を提供することである。 特 に食品容器がガラス製の場合には、 ガラスの肉厚を薄くした場合にも、 機械的強 度も維持できるようにすることも目的とする。 発明の開示  An object of the present invention is to provide a food container which is hardly soiled, can be easily washed even when soiled, and maintains such an effect for a long period of time. In particular, if the food container is made of glass, the objective is to maintain the mechanical strength even when the thickness of the glass is reduced. Disclosure of the invention
本発明の食品容器は、 酸化チタン粒子を表面に存在させたものである。 よって、 汚れにくく、 また、 汚れた場合も容易に洗浄することができるものとなる。  The food container of the present invention has titanium oxide particles present on the surface. Therefore, it is difficult to be soiled, and even when soiled, it can be easily washed.
また、 樹脂コ一ティング剤と異なり、 酸化チタン膜は透明性に優れているため、 容器本来の外観を保つことができ、 例えば、 ステンレス等の金属性容器であれば、 金属光沢のある清潔感のある容器とすることができる。 食品容器の材質がガラス 製の場合であれば、 その機械的強度も合わせて向上させることができるので、 ガ ラス肉厚を薄くすることが可能となり、 結果として軽量な瓶とすることが可能で ある。 発明を実施するための最良の形態  Also, unlike the resin coating agent, the titanium oxide film is excellent in transparency, so that the original appearance of the container can be maintained. It can be a container with the. If the material of the food container is made of glass, its mechanical strength can also be improved, so that the glass thickness can be reduced, resulting in a lightweight bottle. is there. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳しく説明する。  Hereinafter, the present invention will be described in detail.
本発明で用いられる食品容器は、 食品や飲料の運搬、 貯蔵等に用いられるもの であれば特に制限はなく、 ビール、 ジュース、 牛乳等の飲料や液状の食物等を運 搬する瓶、 樽、 タンク等の容器、 または、 タンクローリ一車に使用される大型夕 ンク等が挙げられる。 これらの容器の材質は、 食品等を運搬、 貯蔵するために安 全面、 衛生面で適しているものであれば特に制限はなく、 通常、 ガラス、 プラス チック、 金属等が用いられるが、 運搬したり、 繰り返し使用したりすることから、 好ましくは、 耐久性に優れた金属やガラスが用いられる。 金属としては、 さびに くいステンレスが好ましい。 The food container used in the present invention is not particularly limited as long as it is used for transporting and storing foods and beverages, such as bottles, barrels, and the like for transporting beverages such as beer, juice, milk, and liquid foods. Containers such as tanks, or large evening tanks used for tank trucks And the like. There is no particular limitation on the material of these containers as long as they are suitable for safe and sanitary conditions for transporting and storing foods and the like, and glass, plastic, metal, etc. are usually used. Preferably, metal or glass having excellent durability is used because the metal or glass is used repeatedly. As the metal, rust-resistant stainless steel is preferable.
このような食品容器としては、 屋外で使用する場合が多く、 また、 特に注ぎ口 が複雑な凸凹形状であるために、 汚れやすく洗浄しにくいステンレス製ビール樽 や、 ソーダ石灰ガラスやホウケィ酸ガラス等からなるリー夕一ナブルガラス瓶等 がある。  Such food containers are often used outdoors, and especially because the spout has a complicated uneven shape, stainless steel beer barrels that are difficult to clean and are difficult to wash, soda-lime glass, borosilicate glass, etc. There is a glass bottle that can be made from lee.
本発明で用いられる酸化チタン粒子は、 紫外線を利用して、 有機物等を分解す ることのできる光触媒機能を有し、 食品由来の汚れ等の有機物の分解、 殺菌、 か びの発生防止などの効果を奏す。 さらに酸化チタン粒子は親水性が高いために、 食品由来の油成分等の有機物や無機系の粉塵、 砂泥等の付着を防止できる。 また、 酸化チタン粒子をガラス製容器に用いた場合にはその機械的強度が向上するため、 ガラス肉厚を薄くすることができ、 その結果、 該ガラス製容器全体の軽量化につ ながる。  The titanium oxide particles used in the present invention have a photocatalytic function capable of decomposing organic substances and the like using ultraviolet rays, and are used for decomposing organic substances such as food-derived stains, disinfecting, and preventing mold generation. It works. Furthermore, since titanium oxide particles have high hydrophilicity, it is possible to prevent adhesion of organic substances such as oil components derived from foods, inorganic dust, sand and mud. In addition, when titanium oxide particles are used in a glass container, the mechanical strength is improved, so that the thickness of the glass can be reduced, and as a result, the weight of the entire glass container can be reduced. .
このような酸化チタン粒子であればその結晶構造に制限はなく、 通常、 正方晶 系で低温型のアナ夕ーゼ型、 高温型のルチル型、 斜方晶系のブル一カイト型の酸 化チタン粒子が使用されるが、 好ましくはブル一カイト型の酸化チタン粒子を含 有する酸化チタン粒子が使用される。 ブルーカイト型結晶を含む酸化チタン粒子 は、 ブル一カイト型の酸化チタン粒子単独、 またはルチル型やアナ夕ーゼ型の酸 化チタン粒子を含んでもよい。 ルチル型やアナターゼ型の酸化チタン粒子を含む 場合、 酸化チタン粒子中のブルーカイト型酸化チタン粒子の割合は特に制限はな いが、 通常 1〜 1 0 0重量%であり、 好ましくは 1 0〜 1 0 0重量%、 より好ま しくは 5 0〜 1 0 0重量%である。 これは、 ブル一カイト型の酸化チタンはルチ ル型ゃアナ夕一ゼ型の酸化チタンよりも光触媒性能に優れているためである。 ブル一カイト型結晶を含有する酸化チタン粒子の製造方法は、 アナターゼ型酸 化チタン粒子を熱処理してブルーカイト型結晶を含む酸化チタン粒子を得る気相 での製造方法や、 四塩化チタン、 三塩化チタン、 チタンアルコキシド、 硫酸チタ ン等のチタン化合物の溶液を中和したり、 加水分解したりすることによって、 酸 化チタン粒子が分散した酸化チタンゾルとして得る液相での製造方法等がある。 これらの方法は、 ブルーカイト型結晶を含有する酸化チタン粒子を含むものが 得られる製造方法であれば特に制限はないが、 得られた物質の光触媒性能、 扱い やすさ、 酸化チタンの薄膜を形成した場合の透明性、 密着性、 膜硬度から、 本発 明の実施例で示す方法が好ましい。 すなわち、 7 5〜 1 0 0 °Cの熱水に四塩化チ タンを加え、 7 5 °C以上であり溶液の沸点以下の温度で、 塩素イオン濃度をコン トロールしながら四塩化チタンを加水分解して、 酸化チ夕ンゾルとしてブル一力 ィト型結晶を含有する酸化チタン粒子を得る方法や、 7 5〜 1 0 O tの熱水に四 塩化チタンを加え、 硝酸イオン、 燐酸イオンのいずれか一方または双方の存在下 に、 7 5 °C以上であり溶液の沸点以下の温度で、 塩素イオン、 硝酸イオンおよび 燐酸イオンの合計の濃度をコントロールしながら四塩化チタンを加水分解して、 酸化チタンゾルとしてブル一カイト型結晶を含有する酸化チタン粒子を得る方法 が好ましい。 The crystal structure of such titanium oxide particles is not limited, and is usually a tetragonal low-temperature ananode-type, a high-temperature rutile-type, or an orthorhombic-type blue oxidite-type oxidation. Titanium particles are used, and preferably titanium oxide particles containing blue kite type titanium oxide particles. The titanium oxide particles containing the brookite-type crystal may include brookite-type titanium oxide particles alone, or may include rutile-type or ananases-type titanium oxide particles. When rutile-type or anatase-type titanium oxide particles are contained, the ratio of brookite-type titanium oxide particles in the titanium oxide particles is not particularly limited, but is usually 1 to 100% by weight, preferably 10 to 100% by weight. It is 100% by weight, more preferably 50 to 100% by weight. This is because the brookite-type titanium oxide has better photocatalytic performance than the rutile-to-analyze-type titanium oxide. The method for producing titanium oxide particles containing brookite-type crystals includes a method for producing titanium oxide particles containing brookite-type crystals by heat-treating anatase-type titanium oxide particles, titanium tetrachloride, Titanium chloride, titanium alkoxide, titanium sulfate There is a liquid phase production method of obtaining a titanium oxide sol in which titanium oxide particles are dispersed by neutralizing or hydrolyzing a solution of a titanium compound such as titanium oxide. These methods are not particularly limited as long as they can produce titanium oxide particles containing brookite-type crystals, but the photocatalytic performance, easiness of handling, and formation of a titanium oxide thin film of the obtained substance From the viewpoint of transparency, adhesion, and film hardness, the method described in Examples of the present invention is preferable. That is, titanium tetrachloride is added to hot water at 75 to 100 ° C, and titanium tetrachloride is hydrolyzed at a temperature of 75 ° C or more and below the boiling point of the solution while controlling the chloride ion concentration. To obtain titanium oxide particles containing bullite-type crystals as a titanium oxide sol, or to add titanium tetrachloride to hot water of 75 to 10 Ots, to obtain either nitrate ions or phosphate ions. Titanium tetrachloride is hydrolyzed and oxidized in the presence of one or both at a temperature of 75 ° C or higher and lower than the boiling point of the solution while controlling the total concentration of chloride, nitrate and phosphate ions. A method for obtaining titanium oxide particles containing brookite type crystals as a titanium sol is preferable.
酸化チタン粒子の大きさは特に制限はないが、 通常、 平均粒径が 0 . 0 0 5〜 0 . である。 これは、 0 . 1 z mより大きいと光触媒活性が低下して、 汚 れにくく、 また、 汚れた場合でも容易に有機物を分解し、 洗浄することができる という効果が得られにくいためである。 また、 酸化チタン粒子の透明性が低下し、 このような酸化チタン粒子を表面に存在させた食品容器では、 酸化チタン粒子の 色が食品容器の色に影響を与えてしまい、 好ましくない。 0 . 0 0 5 w mより小 さいと酸化チタン粒子を製造する工程での取り扱いが困難である。 また、 酸化チ タン粒子の比表面積は、 通常、 2 0 m2 以上である。 The size of the titanium oxide particles is not particularly limited, but usually has an average particle size of 0.05 to 0.00. This is because if it is larger than 0.1 zm, the photocatalytic activity is reduced, so that it is difficult to contaminate, and even if it is contaminated, it is difficult to obtain the effect of easily decomposing organic substances and washing it. Further, the transparency of the titanium oxide particles is reduced, and in a food container having such titanium oxide particles present on the surface, the color of the titanium oxide particles affects the color of the food container, which is not preferable. If it is less than 0.05 wm, it is difficult to handle titanium oxide particles in the manufacturing process. The specific surface area of the titanium oxide particles is usually 20 m 2 or more.
このようにして得られた酸化チタン粒子を、 食品容器の表面に存在させる方法 としては、 酸化チタン粒子のゾルを食品容器に塗布し、 その後乾燥、 熱処理、 焼 結等によって、 食品容器の表面に付着させる方法や、 酸化チタン粒子を塗料等と 混合して食品容器に塗布し、 その後乾燥、 熱処理する方法等がある。 酸化チタン 粒子をそのままバインダー等で食品容器に固定しても良い。  The titanium oxide particles thus obtained can be present on the surface of the food container by applying a sol of the titanium oxide particles to the food container and then drying, heat-treating, or sintering the food container surface. There is a method of adhering, a method of mixing titanium oxide particles with a paint or the like, applying the mixture to a food container, followed by drying and heat treatment. The titanium oxide particles may be directly fixed to a food container with a binder or the like.
酸化チタン粒子のゾルの p Hが 1未満であれば、 ステンレス等の金属製の食品 容器を腐食させる場合があるので、 濾過洗浄、 電気透析、 イオン交換、 電気分解 等によって、 p Hを 1以上にコントロールすることが好ましい。 If the pH of the sol of titanium oxide particles is less than 1, it may corrode metal food containers such as stainless steel, so filtration filtration, electrodialysis, ion exchange, and electrolysis For example, it is preferable to control the pH to 1 or more.
酸化チタン粒子のゾルを食品容器に塗布する方法は特に制限はないが、 スピン コート法、 フロ一コート法、 ディップコート法、 スプレーコート法、 バ一コート 法、 ローラーコート法、 刷毛塗り法、 浸漬法等公知の方法のいずれを用いてもよ い。 酸化チタンゾルを塗布する場合の塗布量は、 塗布した膜の厚さにして、 通常、 0 . 0 1〜; L 0 0 mである。  The method of applying the sol of the titanium oxide particles to the food container is not particularly limited, but a spin coating method, a flow coating method, a dip coating method, a spray coating method, a vacuum coating method, a roller coating method, a brush coating method, and a dipping method Any known method such as the method may be used. When the titanium oxide sol is applied, the coating amount is usually 0.01 to L0 m, in terms of the thickness of the applied film.
酸化チタン粒子のゾルを食品容器に塗布し、 その後乾燥、 熱処理、 焼結等によ つて、 表面に付着させる場合には、 酸化チタンゾルに焼結助剤またはバインダー、 バインダー前駆体を添加しておくことも可能である。 また、 食品容器にあらかじ めバインダ一を塗布し、 アンダーコート層を形成する下地処理を行ってもよい。 焼結助剤やバインダーは、 酸化チタン粒子と食品容器の接着強度を高め、 膜硬度 を向上させるものである。 このような焼結助剤の添加、 またはバインダーを使用 することで、 酸化チタン粒子が食品容器から剥がれにくくなり、 長期にわたり、 汚れにくく、 または、 汚れても容易に洗浄できる効果が持続する。  When a sol of titanium oxide particles is applied to a food container and then adhered to the surface by drying, heat treatment, sintering, etc., a sintering aid or a binder or binder precursor is added to the titanium oxide sol. It is also possible. Further, a binder may be applied to a food container in advance, and a base treatment for forming an undercoat layer may be performed. Sintering aids and binders enhance the adhesive strength between the titanium oxide particles and the food container and improve the film hardness. The addition of such a sintering aid or the use of a binder makes it difficult for the titanium oxide particles to be peeled off from the food container.
焼結助剤またはバインダ一、 バインダ一前駆体の種類は使用する食品容器の材 質によって異なるが、 焼結助剤にはブレンステツド酸であれば特に制限はなく、 例えば、 燐酸、 塩酸、 または酢酸等の有機カルボン酸等が使用される。 バインダ —には、 例えば、 酸化珪素、 酸化チタン、 酸化アルミニウム、 酸化ジルコニウム、 酸化カルシウム、 酸化マグネシウム等の金属酸化物が使用され、 バインダー前駆 体には該金属を有するアルコキシド体等が、 付着性および膜強度を高められるの で好ましい。 特に好ましくは、 焼結助剤である燐酸や、 バインダー前駆体である テトラメトキシシラン、 テトラエトキシシラン等の珪素のアルコキシド体、 チタ ンのアルコキシド体、 チタンのアセテート、 バインダーであるチタンのキレ一卜 体である。 テトラメトキシシラン、 テトラエトキシシラン等の珪素のアルコキシ ド体は縮合してポリシロキサン、 オルガノポリシロキサンを形成し、 バインダー となる。  The type of sintering aid or binder and binder precursor differs depending on the material of the food container used, but the sintering aid is not particularly limited as long as it is brenstead acid, and is, for example, phosphoric acid, hydrochloric acid, or acetic acid. Organic carboxylic acids and the like are used. As the binder, for example, metal oxides such as silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, calcium oxide, and magnesium oxide are used. As the binder precursor, an alkoxide having the metal is used. This is preferable because the film strength can be increased. Particularly preferably, phosphoric acid as a sintering aid, alkoxides of silicon such as tetramethoxysilane and tetraethoxysilane as binder precursors, alkoxides of titanium, acetates of titanium, and titanium oxides as binders Body. Alkoxides of silicon such as tetramethoxysilane and tetraethoxysilane are condensed to form polysiloxane and organopolysiloxane, and serve as a binder.
酸化チタン粒子の表面は、 大気中において酸素または水酸基で覆われており、 燐酸、 シラノール結合をつくる酸化珪素やその前駆体、 あるいは酸化チタンやそ の前駆体を用いることによって、 焼結助剤またはバインダーが食品容器および酸 化チタン粒子の表面とそれぞれ縮合し、 強力に結合するため、 少量で優れた接着 力を発現する。 食品容器が金属製であっても、 実質、 表面には金属の酸化物層が 存在するためにバインダーとの接着性が強い。 また、 容器の材質がステンレスの 場合は、 焼結助剤の燐酸が好適に使用される。 容器の材質がガラスの場合は、 バ ィンダ一前駆体であるテトラメトキシシラン、 テトラエトキシシラン等の珪素の アルコキシド体が好適に使用される。 The surface of the titanium oxide particles is covered with oxygen or a hydroxyl group in the atmosphere, and the sintering aid or the titanium oxide or a precursor thereof, which forms a phosphoric acid or silanol bond, or a titanium oxide or a precursor thereof is used. Binder is used for food containers and acids Since it condenses with the surface of titanium oxide particles and bonds strongly, it exhibits excellent adhesive strength with a small amount. Even if the food container is made of metal, the adhesion to the binder is strong due to the presence of the metal oxide layer on the surface. When the container is made of stainless steel, sintering aid phosphoric acid is preferably used. When the material of the container is glass, an alkoxide of silicon such as tetramethoxysilane or tetraethoxysilane, which is a binder precursor, is preferably used.
このような焼結助剤や、 バインダー、 バインダー前駆体を用いて形成された酸 化チタン薄膜の硬度は、 容器の素材にも影響するが、 燐酸を用いた場合は概ね鉛 筆硬度 4 H以上であり、 酸化珪素、 酸化ジルコニウム、 酸化チタンおよびそれら の前駆体を用いた場合は概ね鉛筆硬度 6 H以上となり、 膜強度に優れ、 剥がれに くいものとなる。  The hardness of the titanium oxide thin film formed using such a sintering aid, binder, or binder precursor also affects the material of the container, but when phosphoric acid is used, the hardness of the lead brush is generally 4H or more. When silicon oxide, zirconium oxide, titanium oxide and their precursors are used, they generally have a pencil hardness of 6 H or more, have excellent film strength, and are difficult to peel.
これらの焼結助剤やバインダ一は、 1種単独、 あるいは 2種以上を用いてもよ い。 これらを混合して用いる場合、 その混合割合は任意に選択することができる。 焼結助剤を添加する場合の添加量は、 通常、 酸化チタンに対して、 1 0 p p m〜 1 0 0 0 0 p p mである。 1 0 0 0 0 p p mより多いと、 焼結温度を高く設定す る必要があり、 焼結時間がかかり好ましくない。 また、 l O p p mより少ないと 焼結効果が小さく、 好ましくない。 バインダーやバインダー前駆体を添加する場 合の添加量は、 それらを酸化物として換算した場合、 通常、 酸化チタンに対して 5〜5 0重量%でぁる。 5 0重量%より多いと、 バインダー中に埋没する酸化チ タン粒子の割合が大きくなるため、 塗膜の光触媒活性が低下し、 5重量%より少 ないとバインダ一の効果が得られず、 好ましくない。  These sintering aids and binders may be used alone or in combination of two or more. When these are mixed and used, the mixing ratio can be arbitrarily selected. When the sintering aid is added, the amount of the sintering additive is usually from 10 ppm to 100 ppm with respect to titanium oxide. If it is more than 100 ppm, the sintering temperature needs to be set high, and the sintering time is undesirably long. On the other hand, if it is less than lOppm, the sintering effect is small, which is not preferable. When the binder or the binder precursor is added, the amount thereof is usually 5 to 50% by weight with respect to titanium oxide when converted as oxide. If the content is more than 50% by weight, the proportion of titanium oxide particles buried in the binder becomes large, so that the photocatalytic activity of the coating film is reduced. If the content is less than 5% by weight, the effect of the binder cannot be obtained, so that it is preferable. Absent.
焼結助剤またはバインダ一、 バインダ一前駆体の添加方法は特に制限はないが、 酸化チタンゾルにこれらを添加してから食品容器に塗布する方法や、 酸化チタン ゾルをスプレーコート法で塗布する際に、 焼結助剤またはバインダー、 バインダ 一前駆体を別のスプレーから塗布する方法等がある。  The method of adding the sintering aid or binder / binder precursor is not particularly limited.However, a method of adding these to the titanium oxide sol and then applying it to a food container, or a method of applying the titanium oxide sol by a spray coating method In addition, there is a method of applying a sintering aid or a binder, or a binder precursor from another spray.
酸化チタン粒子のゾルを食品容器に塗布し、 その後乾燥する場合には、 乾燥速 度を速くするために適当な溶媒を加えてもよい。 通常、 酸化チタンゾルが水に分 散されている場合には、 エチルアルコール等の有機溶媒が用いられる。  When the sol of the titanium oxide particles is applied to a food container and then dried, an appropriate solvent may be added to increase the drying speed. Usually, when the titanium oxide sol is dispersed in water, an organic solvent such as ethyl alcohol is used.
また、 酸化チタン粒子のゾルを食品容器に塗布する前に、 酸化チタンによって 食品容器が劣化することを防ぐために、 シリカ、 フッ素樹脂等を含む溶液で食品 容器の表面を覆い、 乾燥させ、 保護膜を形成してもよい。 Before applying the sol of titanium oxide particles to a food container, In order to prevent the food container from deteriorating, the surface of the food container may be covered with a solution containing silica, fluororesin or the like, and dried to form a protective film.
このようにして酸化チタン粒子のゾルを塗布した後、 食品容器に酸化チタン粒 子を表面に固定させるために、 乾燥、 熱処理等が行われる。 乾燥、 熱処理の雰囲 気は特に制限はなく、 大気中、 真空中、 不活性ガス中等で行われるが、 通常、 大 気中で行われる。 その温度は、 食品容器の材質や、 焼結助剤、 バインダー、 バイ ンダ一前駆体を使用した場合はその種類によっても異なるが、 通常、 2 0〜8 0 0 °Cであり、 焼結助剤、 バインダー、 バインダー前駆体を使用する場合は、 2 0 〜4 5 0 °Cである。 乾燥、 熱処理の時間は、 通常 5分間〜 2 4時間、 好ましくは 1 5分間〜 1 2時間である。  After the sol of the titanium oxide particles is applied in this manner, drying, heat treatment, and the like are performed to fix the titanium oxide particles on the surface of the food container. The atmosphere for drying and heat treatment is not particularly limited, and is performed in the air, in a vacuum, in an inert gas, or the like, but is usually performed in the air. The temperature varies depending on the material of the food container and the type of sintering aid, binder, and binder-precursor when used, but is usually 20 to 800 ° C. When using an agent, a binder, or a binder precursor, the temperature is 20 to 450 ° C. The drying and heat treatment time is usually 5 minutes to 24 hours, preferably 15 minutes to 12 hours.
例えば、 食品容器の材質がステンレスまたはガラスの場合は、 焼結助剤として 燐酸を用いて 1 0 0〜4 5 0 °Cで処理したり、 バインダ一、 バインダー前駆体と して酸化珪素やその前駆体のテトラメトキシシラン、 テトラエトキシシラン等、 チタンのアルコキシド、 キレー卜、 アセテート等を用いて、 2 0〜4 5 0 °Cで処 理したりすると、 酸化チタン粒子で形成された膜硬度をより向上させることがで き好ましい。 この場合も、 熱処理の時間は、 通常 5分間〜 2 4時間、 好ましくは 1 5分間〜 1 2時間である。  For example, when the material of the food container is stainless steel or glass, it is treated at 100 to 450 ° C using phosphoric acid as a sintering aid, or silicon oxide or its binder is used as a binder or binder precursor. When the precursor is treated at 20 to 450 ° C using a precursor such as tetramethoxysilane or tetraethoxysilane, or an alkoxide, chelate, or acetate of titanium, the film hardness formed by the titanium oxide particles is reduced. It is preferable because it can be further improved. Also in this case, the heat treatment time is usually 5 minutes to 24 hours, preferably 15 minutes to 12 hours.
このように焼結助剤や、 バインダー、 バインダー前駆体を使用すると、 2 0〜 4 5 0 °Cという低温で、 容器表面に酸化チタン粒子を固定できるため、 熱処理の ためのエネルギーコストを低く抑えることができる。 また、 食品容器の材質がガ ラスの場合、 ガラスを軟化温度まで加熱して酸化チタン粒子を融着させることな く、 ガラスの軟化温度よりも低い温度で容器表面に酸化チダン粒子を固定できる。 よって、 ガラスの変形を防ぐことができる。 ガラスの軟化温度は通常 5 0 0 °C以 上である。  When sintering aids, binders, and binder precursors are used, titanium oxide particles can be fixed to the container surface at a low temperature of 20 to 450 ° C, so that the energy cost for heat treatment is kept low. be able to. Further, when the material of the food container is glass, the titanium oxide particles can be fixed to the surface of the container at a temperature lower than the softening temperature of the glass without heating the glass to the softening temperature and fusing the titanium oxide particles. Therefore, deformation of the glass can be prevented. The softening temperature of glass is usually above 500 ° C.
このようにして得られた酸化チタン粒子を表面に存在させた食品容器において、 その薄膜の厚さは通常、 0 . 0 0 5〜 1 0 mであり、 より好ましくは 0 . 0 3 〜0 . 5 mである。 0 . 0 0 5 mより薄いと光触媒活性や親水性が充分では ない。 1 0 i mより厚いと、 光触媒反応は酸化チタン薄膜の表面付近でのみ行わ れるので、 光触媒反応に関与しない酸化チタンが増えることになり経済的に有利 ではないし、 薄膜が食品容器から剥離しやすくなる。 また、 酸化チタン薄膜の透 明性が低下し、 好ましくない。 In the food container in which the titanium oxide particles thus obtained are present on the surface, the thickness of the thin film is usually 0.05 to 10 m, and more preferably 0.03 to 0. 5 m. If the thickness is less than 0.05 m, photocatalytic activity and hydrophilicity are not sufficient. If the thickness is more than 10 im, the photocatalytic reaction is performed only near the surface of the titanium oxide thin film, and the amount of titanium oxide not involved in the photocatalytic reaction increases, which is economically advantageous. However, the thin film is easily peeled from the food container. Further, the transparency of the titanium oxide thin film is lowered, which is not preferable.
このように酸化チタン粒子を表面に存在させた食品容器は、 酸化チタン粒子の 光触媒機能によって付着した汚れを分解し、 また、 接触する微生物を殺傷したり、 その増殖を抑えることができる。 また、 酸化チタン粒子は親水性に優れ、 その水 との接触角は 2 0度以下であるため、 食品容器に吸着した汚れ、 例えば、 屋外で 使用した場合の容器の外側の汚れや、 注ぎ口の汚れ等がつきにくく、 または汚れ た場合でも容易に洗浄できるものとなる。 また、 酸化チタン粒子により形成され た膜は、 透明性に優れており、 食品容器の色に影響を与えない。 食品容器がガラ ス製容器である場合には、 酸化チタン薄膜によりその機械的強度も向上する。 さらに、 酸化チタン粒子を、 バインダーおよび または焼結助剤を用いて表面 に存在させることによって、 酸化チタン粒子が強力に食品容器表面に接着され膜 硬度に優れ、 剥がれにくいものとなり、 酸化チタン粒子による上記効果が長期に わたり持続するものとなる。 また、 この場合、 食品容器の表面に酸化チタン粒子 を固定させる温度が、 2 0〜4 5 0 °Cという低温であるため、 熱処理のためのェ ネルギーコストを低く抑えることができるとともに、 食品容器の材質がガラスの 場合には、 その熱による変形を防ぐことができる。  The food container having the titanium oxide particles on the surface in this way can decompose the dirt attached by the photocatalytic function of the titanium oxide particles, kill the microorganisms in contact, and suppress the growth thereof. In addition, titanium oxide particles have excellent hydrophilicity and the contact angle with water is less than 20 degrees, so that the dirt adsorbed on the food container, for example, the dirt on the outside of the container when used outdoors or the spout It is difficult for dirt, etc. to adhere, and even if dirty, it can be easily washed. Moreover, the film formed by the titanium oxide particles has excellent transparency and does not affect the color of the food container. When the food container is a glass container, the mechanical strength of the titanium oxide thin film is also improved. Furthermore, the presence of titanium oxide particles on the surface using a binder and / or a sintering aid allows the titanium oxide particles to be strongly adhered to the food container surface, has excellent film hardness, and is difficult to peel off. The above effects will be sustained for a long time. In this case, since the temperature at which the titanium oxide particles are fixed to the surface of the food container is as low as 20 to 450 ° C, the energy cost for heat treatment can be kept low and the food container can be kept low. When the material is glass, deformation due to heat can be prevented.
このような食品容器は、 屋内だけでなく屋外においても使用し、 また、 特に注 ぎ口が複雑な凸凹形状であったり、 大小の複雑な曲率を有する形状であったりす るために、 汚れやすく洗浄しにくいステンレス製ビール樽、 ガラス製ビール瓶に 好ましく適用される。 ビールの成分は水が 9 1〜9 3重量%、 エタノールが 3 . 3〜3 . 9重量%、 エキスが 3 . :!〜 4 . 0重量%、 二酸化炭素が 0 . 4 2〜0 . 5 5 %であり、 この中で不揮発性有機物であるエキスは、 デキストリン等の全糖 からなる炭水化物を 7 5〜8 0重量%含んでいる。 したがって、 ビール成分の中 で特にエキスが汚れの主原因となる。  Such food containers are used not only indoors but also outdoors.In particular, since the spout has a complicated uneven shape or a shape having a large and small complicated curvature, it is easily soiled. It is preferably applied to stainless steel beer barrels and glass beer bottles that are difficult to wash. The ingredients of the beer are 91-93% by weight of water, 3.3-3.9% by weight of ethanol, and 3.1 :! The amount of carbon dioxide is 0.42 to 0.55%, and the extract, which is a non-volatile organic substance, contains 75 to 80% by weight of carbohydrates composed of total sugars such as dextrin. Contains. Therefore, among the beer components, extracts are the main cause of soiling.
このようなデキストリン等の有機物による汚れが、 ブルーカイト型結晶等を含 有する酸化チタン粒子の光触媒機能によって分解され、 汚れにくく、 または汚れ た場合でも容易に洗浄できるものとなる。 実施例 Such dirt due to organic substances such as dextrin is decomposed by the photocatalytic function of the titanium oxide particles containing brookite-type crystals and the like, so that the dirt is less likely to be soiled, and even if soiled, it can be easily washed. Example
以下、 本発明を実施例をあげて具体的に説明する。  Hereinafter, the present invention will be described specifically with reference to examples.
実施例 1 Example 1
蒸留水 954mLを還流冷却器付きの内容積 1 Lのガラス反応槽に装入し、 9 954 mL of distilled water was charged into a 1 L internal volume glass reactor equipped with a reflux condenser, and 9
5 °Cに加温した。 次に反応槽を約 200 r pmで撹拌し、 槽内の液温を 95でに 保ちながら、 四塩化チタン水溶液 46mLを約 2mLZm i nの速度で反応槽に 滴下した。 このようにして、 四塩化チタン濃度が 0. 25mo l ZL (酸化チタ ン換算 2重量%) の溶液を得た。 滴下終了後、 沸点 (104°C) 付近まで加熱し、 その温度で 60分間保持して四塩化チタンを加水分解した。 得られたゾルを冷却 濃縮し、 加水分解で生成した塩素を旭化成工業 (株) 製電気透析装置 G 3型を用 いて電気透析により取り除き、 pH=4. 0 (塩素イオン約 400 p pm) の水 分散酸化チタンゾルを得た。 また、 透過型電子顕微鏡でゾル中の粒子を観察した ところ、 粒子の粒径は 0. 01〜0. 03 mであった。 Heated to 5 ° C. Next, the reaction vessel was stirred at about 200 rpm, and while maintaining the liquid temperature in the vessel at 95, 46 mL of an aqueous solution of titanium tetrachloride was dropped into the reaction vessel at a rate of about 2 mL Zmin. Thus, a solution having a titanium tetrachloride concentration of 0.25 mol ZL (2% by weight in terms of titanium oxide) was obtained. After the completion of the dropwise addition, the mixture was heated to near the boiling point (104 ° C.) and maintained at that temperature for 60 minutes to hydrolyze titanium tetrachloride. The resulting sol was cooled and concentrated, and the chlorine generated by the hydrolysis was removed by electrodialysis using an electrodialyzer G3 manufactured by Asahi Kasei Kogyo Co., Ltd. to obtain a pH of 4.0 (chlorine ion of about 400 ppm). A water-dispersed titanium oxide sol was obtained. When the particles in the sol were observed with a transmission electron microscope, the particle size was 0.01 to 0.03 m.
このゾル中に含まれる酸化チタン粒子の結晶構造を調べるために、 このゾルを To examine the crystal structure of the titanium oxide particles contained in this sol,
60°Cの真空乾燥器にて乾燥させ、 得られた酸化チタン粒子を X線回折で分析し た。 X線回折は理学電機 (株) 製 X線回折装置 (RAD— B ローターフレック ス) で行い、 管球は Cuを用いた。 その結果、 ブル一カイ卜型結晶の (121) 面の回折を示すピークが 20 = 30. 8° に検出された。 ルチル型およびアナ夕 —ゼ型は検出されなかつた。 The particles were dried in a vacuum dryer at 60 ° C., and the obtained titanium oxide particles were analyzed by X-ray diffraction. X-ray diffraction was performed with an X-ray diffractometer (RAD-B rotorflex) manufactured by Rigaku Denki Co., Ltd. Cu was used for the tube. As a result, a peak indicating the diffraction of the (121) plane of the blue kite type crystal was detected at 20 = 30.8 °. Rutile and anazygous forms were not detected.
上記のようにして得たブル一カイト型酸化チタンを含む水分散酸化チタンゾル を塗布するために、 バインダー前駆体としてシリコン系接着剤であるテトラメト キシシランと乾燥速度を向上させるためのエチルアルコールを添加して、 表 1に 示す組成の塗料を調製した。  In order to apply the water-dispersed titanium oxide sol containing brookite-type titanium oxide obtained as described above, tetramethoxysilane, which is a silicon-based adhesive, and ethyl alcohol for improving a drying rate are added as a binder precursor. Thus, paints having the compositions shown in Table 1 were prepared.
得られた塗料を、 ステンレス製ビール樽 (容積 10L) に刷毛塗り法で塗布し、 大気中、 50°Cで 1時間乾燥後、 大気中、 200°Cで 2時間熱処理し、 膜厚 0. 4 z mの酸化チタン薄膜を表面に存在させたビール樽を得た。  The resulting paint is applied to a stainless steel beer barrel (volume of 10 L) by the brush method, dried at 50 ° C for 1 hour in the air, and heat-treated at 200 ° C for 2 hours in the air. A beer barrel having a titanium oxide thin film of 4 zm on the surface was obtained.
このようにして得られたビール樽表面の上面および側面にビール 1 Lを霧吹き 器で吹き付け、 屋外に 3ヶ月間放置後、 このビール樽の外観を目視で評価した。 汚れは特に、 注ぎ口の複雑な凸凹形状の部分が強く、 この部分で汚れにくさの評 価をした。 その後、 水温 2 0 °Cのシャワー水 1 0 Lをビール樽に浴びせて、 汚れ の洗浄しやすさを目視で評価した。 その結果を表 2に示す。 1 L of beer was sprayed on the upper and side surfaces of the beer barrel obtained in this manner with a sprayer, left outdoors for 3 months, and the appearance of the beer barrel was visually evaluated. Dirt is particularly strong in the complex uneven shape of the spout, and this part is rated Valued. Thereafter, 10 L of shower water at a water temperature of 20 ° C. was poured into a beer keg, and the ease of cleaning dirt was visually evaluated. The results are shown in Table 2.
表 1 table 1
Figure imgf000012_0001
Figure imgf000012_0001
表 2 Table 2
実施例番号 汚れにくさ 洗浄しやすさ  Example number Easy to clean Easy to clean
実施例 1 ◎ ◎  Example 1 ◎ ◎
実施例 2 ◎ ◎  Example 2 ◎ ◎
実施例 3 〇 〇 '  Example 3 〇 〇 '
実施例 4 〇 〇  Example 4
実施例 5 ◎ ◎  Example 5 ◎ ◎
実施例 6 ◎ ◎  Example 6 ◎ ◎
比較例 1 X X  Comparative Example 1 X X
比較例 2 X X 表 2中の略号はそれぞれ以下の内容を示す。 Comparative Example 2 XX The abbreviations in Table 2 indicate the following contents.
①汚れにくさ  ①Difficulty of dirt
◎ ほとんど汚れていない  ◎ Almost clean
〇 若千汚れている  〇 Young dirty
X かなり汚れている  X quite dirty
②洗浄しやすさ  ②Easy to clean
◎ 汚れがすぐに落ちる  ◎ Dirt quickly removes
〇 汚れがやや落ちにくい  汚 れ Slightly hard to remove dirt
X 汚れが落ちない  X Does not remove dirt
実施例 2 Example 2
四塩化チタン水溶液を滴下する前に、 燐酸を P04 3— として 200 p pmとな るように反応槽に添加した以外は実施例 1と同様にして、 四塩化チタンを加水分 解した。 得られたゾルの pHを 1. 9 (塩素イオン約 600 p pm、 燐酸イオン 約 2 O O p pm) とした以外は実施例 1と同様にして水分散酸化チタンゾルを得 た。 また、 実施例 1と同様にしてゾル中の粒子を観察したところ、 粒子の粒径は 0. 01〜0. 03 mであった。 Before dropping the aqueous solution of titanium tetrachloride, phosphoric acid P0 4 3 - except for adding to the reaction vessel in so that such a 200 p pm as in the same manner as in Example 1 was solution hydrolyzed fraction of titanium tetrachloride. A water-dispersed titanium oxide sol was obtained in the same manner as in Example 1 except that the pH of the obtained sol was set to 1.9 (chlorine ion: about 600 ppm, phosphate ion: about 200 ppm). Further, when the particles in the sol were observed in the same manner as in Example 1, the particle size of the particles was 0.01 to 0.03 m.
このゾル中に含まれる酸化チタン粒子の結晶構造を実施例 1と同様にして調べ た。 その結果、 ブル一カイト型結晶の (121) 面の回折を示すピーク、 ルチル 型のメインピークである (1 10) 面の回折を示すピークが検出された。 また、 アナ夕ーゼ型のメインピークは、 ブル—カイト型のメインピークと重なるため判 別できなかったが、 アナ夕一ゼ型結晶の (004) 面の回折を示すピークが検出 された。 したがって、 得られたゾルはブルーカイト型結晶、 アナ夕ーゼ型結晶、 ルチル型結晶の混合物であった。 これらの結晶の含有率は以下のようにして算出 した。  The crystal structure of the titanium oxide particles contained in this sol was examined in the same manner as in Example 1. As a result, a peak showing diffraction on the (121) plane of the brookite type crystal and a peak showing diffraction on the (110) plane, which is the main rutile type peak, were detected. In addition, although the main peak of the anazygase type could not be determined because it overlapped with the main peak of the brookite type, a peak indicating diffraction of the (004) plane of the anazygous type crystal was detected. Therefore, the obtained sol was a mixture of brookite-type crystals, ananases-type crystals, and rutile-type crystals. The content of these crystals was calculated as follows.
ブルーカイト型結晶、 アナ夕一ゼ型結晶、 ルチル型結晶の酸化チタンはそれぞ れ表 3 (J CPDSカード抜粋) に示す X線回折ピークを有するが、 これらはそ の d値からわかるように重なっている部分が多い。 特にブル一カイ卜型とアナ夕 ーゼ型のメインピークの d値はそれぞれ 3. 51、 3. 52であるし、 さらにブ ルーカイト型は 3. 47にもピークを有し、 これら 3者のピークは実質的にかさ なる。 Titanium oxide of brookite-type crystal, ananode-type crystal, and rutile-type crystal each have the X-ray diffraction peaks shown in Table 3 (excerpted from J CPDS card). There are many overlapping parts. In particular, the d values of the main peaks of the blue kite type and the analog type are 3.51 and 3.52, respectively, and the blue kite type has a peak at 3.47, respectively. Peaks are virtually bulky Become.
このように、 ブル一カイト型とアナ夕一ゼ型のメインピークの強度比は求めら れないので、 ここではアナ夕一ゼ型のピークと重ならないブルーカイト型の (1 2 1) 面のピークを用い、 これと上記 3者のピークが重なるピークの強度比 (ブ ル一カイト型 (12 1) 面のピーク強度) / (3者が重なるピーク強度) を求め、 これからブル一カイト型とアナターゼ型の酸化チタンの含有率を求めた。 また、 ルチル型については、 そのメインピークである (1 10) 面の回折を示すピーク と、 上記 3者が重なるピークの強度比 (ルチル型メインピーク強度) Z (3者が 重なるピーク強度) から含有率を求めた。  As described above, since the intensity ratio between the blue and yellow anacheid type main peaks cannot be determined, here the blue kite type (1 2 1) plane that does not overlap with the anazygous type peak is used. Using the peaks, the intensity ratio of the peak where the above three peaks overlap with each other (the peak intensity of the blue kite-type (12 1) plane) / (the peak intensity where the three peaks overlap) is calculated. The content of anatase-type titanium oxide was determined. In addition, for the rutile type, the main peak, which indicates the diffraction of the (1 10) plane, and the intensity ratio of the above three peaks (rutile type main peak intensity) Z (peak intensity of the three peaks) The content was determined.
その結果、 (ブルーカイト型 (121) 面のピーク強度) Z (3者が重なるピ —ク強度) =0. 38、 (ルチル型メインピーク強度) Z (3者が重なるピーク 強度) =0. 05であり、 ブル一カイト型結晶が約 70重量%、 ルチル型結晶が 約 1. 2重量%、 アナ夕一ゼ型結晶が約 28. 8重量%含まれていることがわか つ†乙。  As a result, (peak intensity of the brookite-type (121) plane) Z (peak intensity of three overlapping) = 0.38, (rutile-type main peak intensity) Z (peak intensity of three overlapping) = 0. 05, which means that it contains about 70% by weight of bull kite-type crystals, about 1.2% by weight of rutile-type crystals, and about 28.8% by weight of ana-yose-type crystals.
上記のようにして得た燐酸入りブル一カイト型酸化チタンを含む水分散酸化チ タンゾルに、 乾燥速度を向上させるためのエチルアルコールを添加して、 表 1に 示す組成の塗料を調製した。  Ethyl alcohol for improving the drying rate was added to the water-dispersed titanium oxide sol containing the phosphoric acid-containing brookite-type titanium oxide obtained as described above to prepare a paint having the composition shown in Table 1.
このようにして得られた塗料を用いた以外は、 実施例 1と同様にして酸化チタ ン粒子を表面に存在させたピール樽を得て、 同様に評価した。 その結果を表 2に 示す。 表 3  Except for using the coating material thus obtained, a peel barrel having titanium oxide particles present on the surface was obtained in the same manner as in Example 1, and similarly evaluated. The results are shown in Table 2. Table 3
Brookite(29-1360) Anatase(21-1272) Rutile(21-1276) d値 結晶面 強度比 d値 結晶面 強度比 d値 結晶面 強度比 Brookite (29-1360) Anatase (21-1272) Rutile (21-1276) d-value crystal plane intensity ratio d-value crystal plane intensity ratio d-value crystal plane intensity ratio
3. 51 120 100 3. 52 101 100 3. 25 1 10 1003.51 120 100 3.52 101 100 3.25 1 10 100
2. 90 12 1 90 1. 89 200 35 1. 69 221 602.90 12 1 90 1.89 200 35 1.69 221 60
3. 47 1 1 1 80 2. 38 004 20 2. 49 101 50 実施例 3 3.47 1 1 1 80 2.38 004 20 2.49 101 50 Example 3
ブルーカイト型を含有しないアナ夕ーゼ型結晶からなる水分散酸化チタンゾル Water-dispersed titanium oxide sol composed of ananases type crystals not containing brookite type
(比表面積約 2 7 0 m2 Z g ) に、 バインダー前駆体としてシリコン系接着剤で あるテトラメトキシシランと乾燥速度を向上させるためのエチルアルコールを添 加して、 表 1に示す組成の塗料を調製した。 (The specific surface area of about 2 7 0 m 2 Z g) , ethyl alcohol for improving the tetramethoxysilane and the drying rate is a silicon-based adhesive as the binder precursor was added pressure, coating the composition shown in Table 1 Was prepared.
このようにして得られた塗料を用いた以外は、 実施例 1と同様にして酸化チタ ン粒子を表面に存在させたビール樽を得て、 同様に評価した。 その結果を表 2に 示す。 実施例 4  A beer barrel having titanium oxide particles on the surface was obtained in the same manner as in Example 1 except that the thus obtained coating material was used, and evaluated similarly. The results are shown in Table 2. Example 4
ブルーカイト型を含有しないルチル型結晶からなる水分散酸化チタンゾル (比 表面積 5 0 m2 / g ) に、 バインダー前駆体としてシリコン系接着剤であるテト ラメトキシシランと乾燥速度を向上させるためのエチルアルコールを添加して、 表 1に示す組成の塗料を調製した。 A water-dispersed titanium oxide sol (specific surface area: 50 m 2 / g) consisting of rutile-type crystals that do not contain brookite-type crystals, tetra-methoxysilane, a silicon-based adhesive as a binder precursor, and ethyl for improving the drying rate A paint having the composition shown in Table 1 was prepared by adding alcohol.
このようにして得られた塗料を用いた以外は、 実施例 1と同様にして酸化チタ ン粒子を表面に存在させたビール樽を得て、 同様に評価した。 その結果を表 2に 示す。 実施例 5  A beer barrel having titanium oxide particles on the surface was obtained in the same manner as in Example 1 except that the thus obtained coating material was used, and evaluated similarly. The results are shown in Table 2. Example 5
ステンレス製ビール樽の代わりに、 ガラス製のビール瓶 (大瓶: 5 3 5 m l ) を用いた以外は実施例 1と同様にして酸化チタン粒子を表面存在させたガラスビ 一ル瓶を得て、 同様に評価した。 その結果を表 2に示す。  A glass vial having titanium oxide particles on the surface was obtained in the same manner as in Example 1 except that a glass beer bottle (large bottle: 5355 ml) was used instead of the stainless steel beer barrel. evaluated. The results are shown in Table 2.
さらに、 このガラス製ビール瓶について強度試験を実施した。 強度測定は簡易 測定法として、 ビール瓶を構成するガラスと同成分の 5 c m x 5 c m x 1 . 2 m mのガラス板を代替として使用した。 このガラス板を平滑な台上に置き、 上方か ら直径 1 0 mmのステンレス球を自由落下させた。 この際、 ステンレス球を自由 落下させる高さを徐々に上げていき、 ガラス板にヒビ (割れ) の入る高さを測定 し、 破壊発生高さとした。 その結果を表 4に示す。 高さが高い程、 機械的強度が 優れていることを示す。 なお測定は 5回行い、 そのうちの最高値を示した。 表 4 Further, a strength test was performed on the glass beer bottle. As a simple measurement method for strength measurement, a 5 cm x 5 cm x 1.2 mm glass plate of the same composition as the glass constituting the beer bottle was used as an alternative. The glass plate was placed on a smooth table, and a stainless steel ball having a diameter of 10 mm was freely dropped from above. At this time, the height at which the stainless steel balls were allowed to fall freely was gradually increased, and the height at which cracks (cracks) entered the glass plate was measured to determine the height at which breakage occurred. The results are shown in Table 4. The higher the height, the better the mechanical strength. The measurement was performed five times, and the highest value was shown. Table 4
Figure imgf000016_0001
Figure imgf000016_0001
実施例 6 Example 6
ステンレス製ビール樽の代わりに、 ガラス製のビール瓶 (大瓶: 5 3 5 m l ) を用いた以外は実施例 2と同様にして酸化チタン粒子を表面存在させたガラスビ 一ル瓶を得て、 同様に評価した。 その結果を表 2に示す。  A glass vial having titanium oxide particles on the surface was obtained in the same manner as in Example 2 except that a glass beer bottle (large bottle: 53.5 ml) was used instead of the stainless steel beer barrel. evaluated. The results are shown in Table 2.
さらに、 このガラス製ビール瓶について実施例 5と同様にして強度試験を実施 した。 その結果を表 4に示す。 比較例 1  Further, a strength test was performed on this glass beer bottle in the same manner as in Example 5. The results are shown in Table 4. Comparative Example 1
酸化チタン粒子を表面に存在させない未処理のステンレス製ビール樽 (容積 1 0 L ) を、 実施例 1と同様に評価した。 その結果を表 2に示す。 比較例 2  An untreated stainless steel beer barrel (volume of 10 L) in which titanium oxide particles were not present on the surface was evaluated in the same manner as in Example 1. The results are shown in Table 2. Comparative Example 2
酸化チタン粒子を表面に存在させない未処理のガラス製のビール瓶 (大瓶: 5 3 5 m l ) を、 実施例 1と同様に評価した。 その結果を表 2に示す。 さらに、 こ のガラス製ビール瓶について実施例 5と同様にして強度試験を実施した。 その結 果を表 4に示す。  An untreated glass beer bottle (large bottle: 5355 ml) having no titanium oxide particles on the surface was evaluated in the same manner as in Example 1. The results are shown in Table 2. Further, a strength test was performed on this glass beer bottle in the same manner as in Example 5. The results are shown in Table 4.
表 2に示したように酸化チタン粒子を表面に存在させたビール樽、 ビール瓶は、 汚れにくく、 また、 汚れても洗浄しやすいものであった。 特に、 ブルーカイト型 結晶を多く含有する酸化チタン粒子を表面に存在させたビール樽はそのような効 果がより優れていた。 また、 瓶の場合は表 4に示すようにその機械的強度も向上 していた。 産業上の利用可能性 As shown in Table 2, beer barrels and beer bottles having titanium oxide particles present on the surface were resistant to soiling and easy to clean even if soiled. In particular, a beer barrel in which titanium oxide particles containing a large amount of brookite-type crystals were present on the surface was more excellent in such an effect. In the case of bottles, the mechanical strength is also improved as shown in Table 4. Was. Industrial applicability
以上説明したように、 本発明の食品容器は酸化チタン粒子が表面に存在してい るので、 汚れにくく、 また、 汚れた場合も容易に洗浄することができるものとな る。 さらに、 酸化チタン粒子をブル一カイト型結晶を含有するものとすることに よって、 上記の効果をより優れたものとすることができる。 .  As described above, since the food container of the present invention has titanium oxide particles on the surface, it is difficult to be soiled, and even when soiled, it can be easily washed. Further, the above effects can be further improved by making the titanium oxide particles contain brookite type crystals. .
また、 樹脂コ一ティング剤と異なり、 酸化チタン膜は透明性に優れているため、 容器本来の外観を保つことができ、 例えば、 ステンレス等の金属性容器であれば、 金属光沢のある清潔感のある容器とすることができる。 食品容器の材質がガラス 製の場合であれば、 その機械的強度も合わせて向上させることができるので、 ガ ラス肉厚を薄くすることが可能となり、 結果として軽量な瓶とすることが可能で ある。  Also, unlike the resin coating agent, the titanium oxide film is excellent in transparency, so that the original appearance of the container can be maintained. It can be a container with the. If the material of the food container is made of glass, its mechanical strength can also be improved, so that the glass thickness can be reduced, resulting in a lightweight bottle. is there.
また、 酸化チタン粒子を食品容器上に密着させるために、 焼結助剤またはバイ ンダーを使用することができるので、 酸化チ夕ン粒子が剥がれにくいものとなり、 長期にわたり汚れにくく、 また汚れた場合にも容易に洗浄することのできるもの となる。 さらに、 焼結助剤またはバインダーを使用すると、 5 0 0 °C以上の高温 で熱処理することなく酸化チタン粒子を食品容器表面に固定できる。  In addition, since a sintering aid or binder can be used to adhere the titanium oxide particles to the food container, the titanium oxide particles are less likely to be peeled off, and are less likely to become dirty over a long period of time. It can also be easily cleaned. Further, when a sintering aid or binder is used, the titanium oxide particles can be fixed to the surface of the food container without heat treatment at a high temperature of 500 ° C. or more.

Claims

請求の範囲 The scope of the claims
1 . 酸化チタン粒子を表面に存在させた食品容器。 1. Food containers with titanium oxide particles on the surface.
2 . 酸化チタン粒子がブルーカイト型結晶を含有するものであることを特徴とす る請求項 1に記載の食品容器。 2. The food container according to claim 1, wherein the titanium oxide particles contain brookite-type crystals.
3 . 酸化チタン粒子が存在する表面が、 ステンレスからなることを特徴とする請 求項 1または 2に記載の食品容器。 3. The food container according to claim 1, wherein the surface on which the titanium oxide particles are present is made of stainless steel.
4 . 酸化チタン粒子が存在する表面が、 ガラスからなることを特徴とする請求項 1または 2に記載の食品容器。 4. The food container according to claim 1, wherein the surface on which the titanium oxide particles are present is made of glass.
5 . 酸化チタン粒子を、 バインダーおよび/または焼結助剤を用いて表面に存在 させたことを特徴とする請求項 1または 2に記載の食品容器。 5. The food container according to claim 1, wherein the titanium oxide particles are present on the surface using a binder and / or a sintering aid.
6 . 酸化チタン粒子を、 バインダーおよび/または焼結助剤を用いて表面に存在 させたことを特徴とする請求項 3に記載の食品容器。 6. The food container according to claim 3, wherein the titanium oxide particles are present on the surface using a binder and / or a sintering aid.
7 . 酸化チタン粒子を、 バインダーおよびノまたは焼結助剤を用いて表面に存在 させたことを特徴とする請求項 4に記載の食品容器。 7. The food container according to claim 4, wherein the titanium oxide particles are present on the surface using a binder and a sintering aid.
8 . 酸化チタン粒子を、 バインダーおよびノまたは焼結助剤を用いて表面に存在 させ、 2 0〜4 5 0 °Cで固定させたことを特徴とする請求項 1または 2に記載の 。口谷 25。 8. The method according to claim 1, wherein the titanium oxide particles are present on the surface using a binder and a sintering agent, and are fixed at 20 to 450 ° C. Kuchiya 25.
9 . 酸化チタン粒子を、 バインダーおよび または焼結助剤'を用いて表面に存在 させ、 2 0〜4 5 0 °Cで固定させたことを特徴とする請求項 3に記載の食品容器。 9. The food container according to claim 3, wherein the titanium oxide particles are present on the surface using a binder and / or a sintering aid, and are fixed at 20 to 450 ° C.
10. 酸化チタン粒子を、 バインダーおよび Zまたは焼結助剤を用いて表面に存 在させ、 20〜450°Cで固定させたことを特徴とする請求項 4に記載の食品容 器。 10. The food container according to claim 4, wherein the titanium oxide particles are present on the surface using a binder and Z or a sintering aid, and are fixed at 20 to 450 ° C.
1 1. 酸化チタン粒子を、 バインダーおよび または焼結助剤を用いて表面に存 在させることを特徴とする食品容器の製造方法。 1 1. A method for producing a food container, characterized in that titanium oxide particles are present on the surface using a binder and / or a sintering aid.
12. 酸化チタン粒子を、 バインダーおよび または焼結助剤を用いて表面に存 在させ、 ついで、 20〜450°Cで固定させることを特徴とする食品容器の製造 方法。 12. A method for producing a food container, wherein titanium oxide particles are present on a surface using a binder and / or a sintering aid, and then fixed at 20 to 450 ° C.
PCT/JP1999/006878 1998-12-09 1999-12-08 Food container utilizing titanium oxide particles and method for preparing the same WO2000034146A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP35040698 1998-12-09
JP10/350406 1998-12-09
US13623199P 1999-05-26 1999-05-26
US60/136,231 1999-05-26
JP28611499A JP2000229618A (en) 1998-12-09 1999-10-06 Food container using titanium oxide grains and manufacture thereof
JP11/286114 1999-10-06
US16675699P 1999-11-22 1999-11-22
US60/166,756 1999-11-22

Publications (1)

Publication Number Publication Date
WO2000034146A1 true WO2000034146A1 (en) 2000-06-15

Family

ID=27479395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006878 WO2000034146A1 (en) 1998-12-09 1999-12-08 Food container utilizing titanium oxide particles and method for preparing the same

Country Status (1)

Country Link
WO (1) WO2000034146A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053285A1 (en) * 2000-12-28 2002-07-11 Showa Denko K.K. Powder exhibiting optical function and use thereof
US7060643B2 (en) 2000-12-28 2006-06-13 Showa Denko Kabushiki Kaisha Photo-functional powder and applications thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232080A (en) * 1993-12-28 1995-09-05 Toto Ltd Multifunctional material with photocatalyst function and its preparation
JPH07275137A (en) * 1994-04-06 1995-10-24 Kato Kikai Seisakusho:Kk Kit for food, drink and cooking
JPH10287810A (en) * 1997-04-11 1998-10-27 Sumitomo Chem Co Ltd Microwave oven member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232080A (en) * 1993-12-28 1995-09-05 Toto Ltd Multifunctional material with photocatalyst function and its preparation
JPH07275137A (en) * 1994-04-06 1995-10-24 Kato Kikai Seisakusho:Kk Kit for food, drink and cooking
JPH10287810A (en) * 1997-04-11 1998-10-27 Sumitomo Chem Co Ltd Microwave oven member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053285A1 (en) * 2000-12-28 2002-07-11 Showa Denko K.K. Powder exhibiting optical function and use thereof
US7060643B2 (en) 2000-12-28 2006-06-13 Showa Denko Kabushiki Kaisha Photo-functional powder and applications thereof
US7169728B2 (en) 2000-12-28 2007-01-30 Showa Denko Kabushiki Kaisha Photo-functional powder and applications thereof

Similar Documents

Publication Publication Date Title
US9458539B2 (en) Metal surfaces compromising a thin glass- or ceramic type protective layer having high chemical resistance and improved non-stick properties
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
US7311944B2 (en) Aluminum phosphate coatings
US8101280B2 (en) Alkali-resistant coating on light metal surfaces
ES2338140T3 (en) PROCEDURE FOR THE PREPARATION OF PHOTOCATALLICALLY ACTIVE AND SUBSTRATE TIO2 PARTICLES WITH A LAYER OF PHOTOCATALYTIC TIO2.
CN100535052C (en) Photocatalyst-containing silicone resin composition, and coated article having cured coating film therefrom
WO2000018504A1 (en) Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
JPH09310039A (en) Photocatalyst coating agent
US20120082792A1 (en) Method for manufacturing soil-resistant glass and soil-resistant glass
US7029768B1 (en) Food container using titanium oxide particle and production method thereof
JP5118068B2 (en) PHOTOCATALYST THIN FILM, PHOTOCATALYST THIN FILM FORMATION METHOD, AND PHOTOCATALYST THIN FILM COATED PRODUCT
JP3961097B2 (en) Blind slat manufacturing method
WO2000034146A1 (en) Food container utilizing titanium oxide particles and method for preparing the same
JP3759651B2 (en) Resin or resin coating material having photocatalytic surface and method for producing the same
JPH11513359A (en) A system that imparts tack-free and non-wetting properties to the surface
JP2000229618A (en) Food container using titanium oxide grains and manufacture thereof
JPH09328336A (en) Coating film having photocatalyst activity and composition forming the same coating film
JP4131534B2 (en) Stainless steel fixtures
JP2007217739A (en) Method for forming water-repellent film
JP2003299606A (en) Dish washer and dryer
JP2001040294A (en) Hygroscopic coating composition
WO2001095309A1 (en) Self-cleaning transparent sound barrier and process for producing the same
CN1167760C (en) Titania nano-paint for forming photocatalytic transparent hydrophilic coating and its prepn
JP4132468B2 (en) Metal plate for containers with excellent rust resistance, corrosion resistance and adhesion
Subasri et al. Applications of sol–gel coatings: past, present, and future

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase