WO2000033689A1 - Casque de protection - Google Patents

Casque de protection Download PDF

Info

Publication number
WO2000033689A1
WO2000033689A1 PCT/FR1999/003035 FR9903035W WO0033689A1 WO 2000033689 A1 WO2000033689 A1 WO 2000033689A1 FR 9903035 W FR9903035 W FR 9903035W WO 0033689 A1 WO0033689 A1 WO 0033689A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
skull
helmet according
cap
resistance
Prior art date
Application number
PCT/FR1999/003035
Other languages
English (en)
Other versions
WO2000033689B1 (fr
Inventor
Catalin Obreja
Original Assignee
Catalin Obreja
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9815393A external-priority patent/FR2786670B1/fr
Priority claimed from FR9908536A external-priority patent/FR2786671B3/fr
Priority claimed from FR9912345A external-priority patent/FR2799103B1/fr
Priority to CA002354161A priority Critical patent/CA2354161A1/fr
Priority to US09/857,828 priority patent/US6604246B1/en
Priority to AU15666/00A priority patent/AU765483B2/en
Application filed by Catalin Obreja filed Critical Catalin Obreja
Priority to AT99958257T priority patent/ATE292398T1/de
Priority to MXPA01005864A priority patent/MXPA01005864A/es
Priority to BR9915989-9A priority patent/BR9915989A/pt
Priority to EP99958257A priority patent/EP1137350B1/fr
Priority to DE69924637T priority patent/DE69924637T2/de
Priority to JP2000586194A priority patent/JP2002531719A/ja
Publication of WO2000033689A1 publication Critical patent/WO2000033689A1/fr
Publication of WO2000033689B1 publication Critical patent/WO2000033689B1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/10Linings
    • A42B3/12Cushioning devices
    • A42B3/125Cushioning devices with a padded structure, e.g. foam
    • A42B3/128Cushioning devices with a padded structure, e.g. foam with zones of different density
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/06Impact-absorbing shells, e.g. of crash helmets

Definitions

  • PROTECTIVE HELMET The invention relates to the production of a craniocerebral protective helmet adapted to the anatomy of the head and to neurosurgical knowledge.
  • the skull has two segments: the neuro-skull which contains the brain and the viscero-skull which represents the skeleton of the face.
  • the present invention mainly relates to the cap of the helmet covering the neuro-skull.
  • Protective helmets have: - two components which must meet biomechanical safety requirements:
  • an external shell - hereinafter called “the shell” - which ensures, during an impact, the distribution of the energy delivered to a surface larger than that concerned by the external shock. It also provides increased resistance to the penetration of the cap and the sliding of the helmet on different surfaces in the event of an accident;
  • an intermediate cap - hereafter called “the cap” - intended for the absorption of energy by its crushing in the event of impact; an internal component also called comfort padding, intended to improve user comfort.
  • Some helmets also have intermediate shells. The concept of shell as used in this description covers both the outer shell and any other intermediate shell.
  • the shell distributes on the surface and returns to the intermediate cap almost all of the energy received, even if it s is a high neurological risk impact (NRI).
  • NRI neurological risk impact
  • the shell does not, or practically not, perform a biomechanical function.
  • the residual kinetic energy is transmitted to the skull and finally to the brain.
  • the immediate neurological disturbances that can result are all the more serious the higher the energy transmitted to the brain.
  • Another disadvantage of current helmets is related to the fact that the hardness of their cap is not adapted to the resistance of the different regions of the skull. Because of the differences in thickness of the skull (less than 2 millimeters in the anterior temporal region, almost 10 millimeters in the parietal region), the different radii of curvature of the cranial vault as well as the presence of cranial sutures, the resistance of the skull varies greatly from region to region.
  • the aim of this invention is the reduction of cranio-cerebral lesions and post-traumatic neurological disorders thanks to a significant absorption of energy in the event of a violent impact by the deformation or the fracture of the shell of the helmet with regard to the areas of maximum resistance of the skull and by better protection of the skull thanks to an intermediate cap having a hardness, see a variable density and adapted to the resistance of the different regions of the cranial vault.
  • the shell of the helmet according to the invention has the capacity to undergo deformations or fractures preferably with respect to the regions of maximum resistance of the human skull, in the event of IRN.
  • the energy thus absorbed or consumed ensures the reduction of the energy transferred to the head and also to the cervical spine.
  • the risks of post-traumatic quadriplegia secondary to a fracture of the cervical spine will thus also be reduced.
  • the shell according to the invention operates on the same principle as the shell of current motorcycle helmets. From this point of view the ZBR and the CBR operate on the same principle as the "safety valves" of the pressure vessels.
  • the helmet cover according to the invention has a density, even a hardness, which is variable and adapted to the resistance of the different regions of the cranial vault. .
  • the helmet according to the invention thus has a cap with areas of low crushing resistance - soft - facing fragile areas of the human skull, and areas of high crushing resistance - hard - facing areas of maximum resistance of the human skull.
  • the deformation or fracture of the shell has important biomechanical consequences:
  • HIC Head Injury Criterion
  • the fracture occurs by tearing low resistance zones (ZBR), preferably at a distance from the point of impact.
  • Deformation occurs by crushing the low resistance layers (CBR), preferably opposite the point of impact.
  • the ZBRs are arranged in the thickness of the hull.
  • the CBRs are placed outside the thickness of the hull.
  • the CBRs can be placed on one or both surfaces (internal and external) of the hull.
  • the ZBR or CBR are concentrated opposite at least two or four of the zones of maximum mechanical resistance of the human skull.
  • the regions of the anterior midline and temporal lines will preferably be exempt from their presence to reduce the risk of injury to the upper longitudinal sinus and respectively to the middle meningeal artery.
  • These anatomical structures are particularly exposed by their position to a high risk of bleeding in the event of a nearby skull fracture and at the same time these regions of the skull are fragile.
  • Figure 1 shows by way of non-limiting example a left side view of the portion corresponding to the cranial vault of a variant of protective helmet.
  • the fragile areas of the skull are represented by the anterior temporal regions (1), the midline and the paramedian regions (2), in particular the frontal (3) and occipital (4) regions.
  • the zones of maximum resistance of the skull are represented in their turn by the two fronto-lateral pillars (5), the two retro-auricular pillars (6) and the two parietal regions (7).
  • Areas or layers of low resistance can cover less than 20% of the total surface of the hull.
  • ZBR or CBR can be in contact or located less than 10 mm between them or any solution of continuity such as the ventilation holes, fixing (chin strap, visor, etc.) and thus form a low resistance spatial grouping. (GSBR).
  • ZBR or CBR can be in contact or located less than 5 mm from the edge of the hull - frontal (BFC), lateral (BLC) or posterior (BPC).
  • the large circumference of the shell covering the cranial vault will be called hereinafter “the large circumference of the shell” (GCC). Its direction is approximately horizontal. It coincides in front with the front edge of the shell (BFC) for both full face helmets and for other types of helmet and is defined by the intersection between the plane containing the BFC and the external surface of the shell.
  • Each ZBR can have a point with minimal tear or shear strength. Thereafter this point will be called “the point of minimum resistance” (PRM) of the
  • the PRM of any ZBR will preferably be located at the level of the third of the ZBR furthest from the CC.
  • Each ZBR has, thanks to its conformation, a direction of minimum resistance which corresponds with the direction of the hull fracture which will occur in the event of IRN. This direction will be called hereinafter “the direction of minimum resistance” (DRM) of the ZBR.
  • DRM direction of minimum resistance
  • the angle defined between the DRM and the CCG is preferably between 60 ° and 120 °.
  • the surface dimensions of the ZBRs are variable.
  • the maximum surface diameter - the length - can be at least 20 times greater than their minimum diameter - width.
  • the DRM of a ZBR often corresponds with its length.
  • the angle defined between the length of the ZBR and the GCC is preferably between 60 ° and 120 °.
  • the ZBRs can be produced in a variant by reducing the thickness of the hull and producing depressions or grooves on at least one of the two surfaces, external or internal, of the hull. Their depth and their surface can be variable or gradually variable. The dimensions of the depressions or furrows measured on the surface on sections parallel to the edge of the shell may vary gradually. The depth can exceed, at least in places, 50% of the thickness of the shell measured near the ZBR on a cut parallel with the edge of the helmet.
  • the length of the SCs can be at least 20 times greater than their width. Their length can be greater than 70 mm.
  • the length of the SC measured on any direction which passes through the center of the hull can be less than 7 mm, in particular for the SC located in contact or less than 5 mm from the edge of the hull (BFC, BLC or BPC) or within 10 mm of other hull continuity solutions (such as ventilation or fixing holes) or other areas or layers of low resistance.
  • At least one diameter of the SC can be less than 3 mm.
  • the ZBRs can be obtained by including in the thickness of the shell gas bubbles or other structures made of a material different or similar to the rest of the shell.
  • inclusion can also be done on at minus one of the hull surfaces This situation corresponds to a furrow or a depression, see a CS filled with the material in question
  • the lack of substance in the thickness of the hull can be at least partially occupied by metallic inclusions the areas of which the thickness is less than 80% of the thickness of the shell, are at least partially covered towards the two surfaces of the shell by the main component of the shell
  • One of these variants is represented by the inclusion in the thickness of the shell of the flattened structures and of variable shapes, having rigidity, hardness and high mechanical resistance. They can be produced with the use of metallic structures or other materials. like resins, other polymers or composite materials Unlike composite materials, when resistant fibers are used to reinforce the tear resistance of the shell, and the case of which will be described later, the use of solid structures described here achieves a reduction in tear resistance, thus favoring, in the event of a violent impact, the occurrence of fractures at a distance from the impact pump and with an optimal direction At the same time they increase the resistance of these zones to direct impacts .
  • the thickness of such a structure is variable and preferably measures between 0.5 mm and 3 mm. It can also be equal, at least in places, to the thickness of the shell, but preferably does not exceed it.
  • the surface of the hull corresponding to such a structure is variable and will preferably be between 0.3 and 5 cm 2
  • the surface of the hull segments which contains such structures can represent less than 10% of the total surface of the hull
  • These structures can measure between 1 and 3 mm 2 on at least two sections perpendicular to their maximum dimension and located more than 10 mm apart. They can have an oval or polygonal shape in section. Preferably, they are made of metal and have in surface an isosceles triangle shape, with the base thicker in section and parallel to the maximum perimeter of the hull, see located in contact with or less than 5 mm from the edge of the hull
  • the ZBRs can also be obtained by modifying the density or the orientation of the fibers used (glass fibers, carbon, aramid, metallic) before injection of the resin or polymer in the mold
  • Areas of low resistance can be obtained by spreading at least 50% of the density of the fibers compared to the regions close to the areas low resistance.
  • the zones of low resistance are obtained by the reduction of at least 30% or 50% of the density of the non-radial and long fibers compared to the density of the fibers parallel with their directions and located in regions close to the low resistance areas.
  • Non-radial fibers are defined as fibers whose direction crosses the CCG at an angle less than 70 ° or greater than 1 10 °.
  • Long fibers are defined as fibers that exceed the limits of the ZBR by at least 10 mm.
  • Another variant consists in the interruption of more than 50% of the long fibers which cross the direction of minimum resistance at any angle, or preferably at an angle between 30 ° and 150 °.
  • the decrease in the density of long fibers can be at least 50% compared to parallel fibers, or making with their directions angles less than 10 °, and located in the areas close to the ZBR.
  • the long fibers which cross the direction of minimum resistance at any angle may be absent or interrupted by cutting.
  • additional layers of fibers, the direction of which crosses the direction of minimum strength of the ZBR are added in the areas close to the ZBR before the injection of the polymer or of the resin.
  • Another variant is that which includes in the zones close to the ZBRs additional bundles of fibers making angles of 30 ° - 150 ° with the length of the ZBR.
  • Another variant of obtaining the ZBRs is the arrangement of more than 75% of the fibers contained in the surface corresponding to the ZBRs, in directions parallel to the direction of minimum resistance or to the length of the ZBR.
  • the low resistance zones can also consist of several orifices located less than 10 mm between them.
  • the hull can be produced by sectors.
  • the sectors can form a common part with each other towards the center of the hull and thus create, from the start, a single polygonal part.
  • the number of sectors to be assembled at least partially is variable and will preferably be between 2 and 5.
  • the sectors are assembled making ZBRs facing these junctions.
  • the tear resistance of the joints can vary and preferably represents between 30% and 70% of the tear resistance of the neighboring shell segments. Stamping, hot gluing, the use of adhesive substances or the interlocking of structures with hooks at least partially removable and adjustable can be envisaged.
  • the hook structures can be partially removable, integral with one of the segments to be assembled, adjustable, and thus form "bracelet" structures.
  • the hook structures can be detachable from the two segments to be assembled and thus form "bridge" structures.
  • the hook structures can be arranged on a single surface of the shell, preferably the internal surface. This variant is particularly suitable for the situation when the sectors form a common unit with one another towards the center of the hull.
  • the hook structures can be arranged on the two surfaces of the shell.
  • the zones of low relative strength of the shell are obtained by strengthening the zones of the shell situated opposite the fragile zones of the skull. Reinforcement of the shell facing fragile areas of the skull can be obtained by the use of rigid and resistant structures made of metal, plastic, composites or other materials.
  • the reinforcement of the shell opposite fragile areas of the skull can be obtained by reducing, gradually or not, the radius of curvature of the shell towards any solution of continuity located in the reinforced areas of the shell and towards the periphery of the reinforced areas and obtaining the depressions of the shell concentrated opposite the resistant areas of the skull and which may measure more than 5 mm.
  • the helmet shell can also present continuity solutions whose length is at least 20 times greater than its width.
  • CBR Resistance base layers
  • CBRs can have a compact or cellular structure. Their manufacture can be carried out at the same time as the rest of the shell or be applied secondarily to the surface of a shell produced in the state of the art. In this second variant, the low-resistance layer can be applied directly in contact with the shell or by interposing at least one intermediate energy absorbing structure.
  • the CBRs can be obtained by making pleated structures in "U”, “M”, each having several contacts with the shell seen in section, or in "T”, in "L”, each having a single contact with the shell seen in section.
  • the thickness of the materials used is variable and may be less than 75% of the thickness of the opposite shell. The thickness of the CBRs can exceed 5 mm or even 10 mm.
  • the surface of the hull covered by each CBR can vary between 0.5 cm 2 and 30 cm 2 . At least two thirds of the CBRs can measure on the surface between 3 cm 2 and 15 cm 2 .
  • Identical, similar or different materials from the rest of the shell can be used for their manufacture. They will preferably be identical with the polymer or the resin used for the rest of the shell.
  • the CBRs can thus be manufactured at the same time as the rest of the hull by modifying the injection mold. In another variant they can be manufactured separately.
  • the CBRs can also have hooks fitted into the hull.
  • the CBRs can be located in contact with the external or internal face of the shell, or at a distance from the shell, in the thickness of the intermediate cap. In the last variant exposed, the CBRs come into contact with the shell at the time of a violent impact, after the crushing of the intermediate cap between the shell and the head.
  • the CBR of the shell included in the thickness of the cap increases the resistance to crushing in these regions of the cap because they have a hardness, see a density greater than the hardness, see the density of the cap.
  • the functions of the CBR of the shell included in the thickness of the cap can be ensured by the cap itself which has zones of high crushing resistance - hard - facing the zones of maximum skull resistance and areas of low crushing resistance - soft - compared to fragile areas of the human skull.
  • a first category of technical solutions relates to increasing the hardness or density of the cap with respect to the zones of maximum resistance of the skull and the use of different structures with a hardness greater than the hardness of the base material of the cap. , located in the thickness of the cap or outside its thickness, on its external face and near the helmet shell or on its internal face and near the head, see being integral with or forming an integral part of the shell or comfort padding respectively.
  • These hard structures can store more energy by crushing them than the base material of the cap.
  • the term cap used in this description corresponds to all the structures of the helmet which are intended for the absorption of energy by their crushing in the event of impact, and not only to the intermediate cap in the classic sense of term.
  • the increase in the resistance to crushing opposite the zones of maximum resistance of the skull can be obtained by:
  • the cap situated opposite the zones of maximum resistance of the human skull may have, over at least the outer quarter of its thickness, a density or a hardness of at least 40% greater than the density, even a hardness, of the rest of the cap.
  • the cap situated opposite the zones of maximum resistance of the human skull has, over at least the outer quarter of its thickness, a density or even a
  • the cap situated opposite the zones of maximum resistance of the human skull has, over at least the outer half of its thickness, a density or even a hardness at least 100% greater than the density, even the hardness, of the internal part of the 1 * cap situated opposite the fragile areas of the human skull.
  • the notion of hardness can be superimposed on that of density. Otherwise or in the case of use of the inclusions as described below, the notion of hardness corresponds 2 "better to the results sought by this invention, than the notion of density.
  • deformable structures in the event of a violent impact, made of a plastic, glass, metal or other material, having a hardness greater than the hardness of the base material of the cap, included at least partially in the thickness of The hairdo.
  • These structures can • "have various shapes (spherical, dome, U, T, M) and may have at least one dimension greater than 5 mm.
  • the hardness of these structures is preferably at least 50% greater than the hardness of the base material of the cap
  • the density of the inclusions located in the outer half of the cap facing the areas of maximum resistance of the human skull is at least twice as high as the density of the inclusions located in the inner half of the cap facing the fragile areas of the human skull
  • the present invention relates to the reduction in the resistance to crushing of the cap situated opposite the fragile areas of the skull.
  • the reduction in resistance to crushing facing fragile areas of the skull can be obtained by: - Adequate distribution of the grooves made on at least one of the surfaces of the cap, or of the cavities located in the thickness of the cap.
  • the cap located opposite the fragile areas of the human skull has furrows on at least one of its surfaces, see cavities in its thickness, and these furrows or cavities are less important, see absent next to the areas of maximum resistance of the skull human.
  • the configuration of the grooves can achieve a wavy appearance of the cap on at least one section perpendicular to the skull.
  • the volume of the furrows, see cavities represents more than 20% of the volume delimited between the head and the outer shell of the helmet facing fragile areas of the human skull and less than 20% of the volume delimited between the head and the outer shell of the helmet opposite the areas of maximum resistance of the human skull.
  • the volume of the grooves see cavities of the cap, represents - opposite the fragile areas of the skull - between 50% and 100% of the volume delimited between the head and the outer shell of the helmet.
  • the cap of the helmet according to the invention can be produced, by way of nonlimiting example based on expanded polystyrene, expanded polyethylene, expanded polypropylene, polyurethane foam or other products and any combination between these materials.
  • the helmet according to the invention can be integral or non-integral and is particularly intended for the civil fields (motorcycle - tests, competition and users; cars - tests, competition; bicycle - competition, users; other sports - roller skating, skateboard, sports of winter; industrial environment).

Abstract

L'invention concerne la réalisation d'un casque de protection crânio-cérébrale adapté à l'anatomie de la tête et aux connaissances neurochirurgicales. Le but de cette invention est la diminution des lésions crânio-cérébrales et des troubles neurologiques post traumatiques grâce à une importante absorption d'énergie en cas d'impact violent par la déformation ou la fracture de la coque du casque en regard des zones de maximale résistance du crâne et par une meilleure protection du crâne grâce à une coiffe intermédiaire ayant une dureté, voir une densité variable et adaptée à la résistance des différentes régions de la voûte crânienne. Le casque selon l'invention peut être intégral ou non intégral et est particulièrement destiné aux domaines civils (motocyclette - essais, compétition et usagers; automobiles - essais, compétition; vélo - compétition, usagers; autres sports - roller, skateboard, sports d'hiver; milieu industriel).

Description

CASQUE DE PROTECTION L'invention concerne la réalisation d'un casque de protection crânio-cérébrale adapté à l'anatomie de la tête et aux connaissances neurochirurgicales.
Le crâne comporte deux segments : le neuro-crâne qui contient le cerveau et le viscèro-crâne qui représente le squelette de la face. La présente invention concerne principalement la calotte du casque couvrant le neuro-crâne.
Les casques de protection ont : - deux composantes qui doivent répondre à des exigences de sécurité biomécanique :
1. une coque externe - appelée par la suite "la coque" - qui assure, lors d'un impact, la distribution de l'énergie délivrée à une surface plus grande que celle intéressée par le choc externe. Elle assure aussi une résistance accrue à la pénétration de la calotte et le glissement du casque sur différentes surfaces en cas d'accident ; 2. une coiffe intermédiaire - appelée par la suite "la coiffe" - destinée à l'absorption d'énergie par son écrasement en cas d'impact ; une composante interne aussi appelée rembourrage de confort, destinée à améliorer le confort de l'utilisateur. Certains casques ont également des coques intermédiaires. La notion de coque tel qu'employée dans cette description couvre aussi bien la coque externe que toute autre coque intermédiaire.
Dans le cas des casques pour motocyclistes (ou similaire), par l'utilisation des matériaux de plus en plus résistants, la coque distribue en surface et restitue à la coiffe intermédiaire la quasi-totalité de l'énergie reçue, même s'il s'agit d'un impact à risque neurologique (IRN) élevé. Dans le cas des casques pour cyclistes (ou similaire), par l'utilisation des matériaux très souples, la coque n'assure pas, ou pratiquement pas, de fonction biomécanique. Dans tous les cas, après l'absorption partielle d'énergie par la coiffe intermédiaire, l'énergie cinétique résiduelle est transmise au crâne et finalement au cerveau. Les troubles neurologiques immédiats qui peuvent en résulter sont d'autant plus graves que l'énergie transmise au cerveau est plus élevée. Par IRN on comprend les impacts qui exposent le sujet à la survenue des troubles neurologiques (transitoires ou persistants) malgré le port d'un casque conçu dans l'état de la technique. La conception des casques actuels rencontre plusieurs problèmes :
1. Comment augmenter leur efficacité sans pour autant augmenter leur épaisseur et leur volume au-delà des limites acceptables ? A part le manque de confort et la fatigue des muscles du cou, cette augmentation peut en elle-même favoriser les accidents par la diminution de la perception (visuelle et sonore) du milieu environnant. En même temps, l'augmentation exagérée du volume et/ou du poids du casque peut facilement freiner son utilisation.
2. Quand protéger mieux la tête : en cas d'impacts violents (rares) ou en cas d'impacts modérés (fréquents) ? Les travaux publiés par Corner (1987), Mills (1991), Smith (1993) montrent que si les casques actuels sont conçus pour mieux amortir les impacts violents, ils seront durs et moins efficaces en cas d'impact d'énergie moyenne.
3. Un autre inconvénient des casques actuels est lié au fait que la dureté de leur coiffe n'est pas adaptée à la résistance des différentes régions du crâne. A cause des différences d'épaisseur du crâne (moins de 2 millimètres dans la région temporale antérieure, presque 10 millimètres dans la région pariétale), des différents rayons de courbure de la voûte crânienne ainsi que de la présence des sutures crâniennes, la résistance du crâne varie beaucoup d'une région à l'autre.
Le but de cette invention est la diminution des lésions crânio-cérébrales et des troubles neurologiques post traumatiques grâce à une importante absorption d'énergie en cas d'impact violent par la déformation ou la fracture de la coque du casque en regard des zones de maximale résistance du crâne et par une meilleure protection du crâne grâce à une coiffe intermédiaire ayant une dureté, voir une densité variable et adaptée à la résistance des différentes régions de la voûte crânienne.
Autant la coque que la coiffe du casque selon l'invention permettent de résoudre ces problèmes. Ainsi la coque du casque selon l'invention a la capacité de subir des déformations ou des fractures de préférence en regard des régions de résistance maximale du crâne humain, en cas d'IRN. L'énergie ainsi absorbée ou consommée assure la diminution de l'énergie transférée à la tête et aussi au rachis cervical. Les risques de tétraplégie post-traumatique secondaire à une fracture du rachis cervical seront ainsi également diminués.
Les déformations ou les fractures surviennent dans des régions de la coque contenant des couches de basse résistance (CBR) ou des zones de basse résistance (ZBR) mécanique. En cas d'impact de faible énergie, la coque selon l'invention fonctionne sur le même principe que la coque des casques moto actuels. De ce point de vue les ZBR et les CBR fonctionnent sur le même principe que les « soupapes de sûreté » des récipients sous pression. A fin de répartir d'une manière différenciée la pression exercée sur le crâne en cas d'impact, la coiffe du casque selon l'invention a une densité, voir une dureté, variable et adaptée à la résistance des différentes régions de la voûte crânienne. Le casque selon l'invention présente ainsi une coiffe avec des zones de basse résistance à l'écrasement - molles - en regard des zones fragiles du crâne humain, et des zones de haute résistance à l'écrasement - dures - en regard des zones de résistance maximale du crâne humain. Par la juste répartition des zones dures et molles de la coiffe on obtient pour un volume et un poids similaire, un casque beaucoup plus efficace qu'un casque actuel.
La déformation ou la fracture de la coque a des conséquences biomécaniques importantes:
1. la durée (t) de l'impact augmente.
2. l'énergie cinétique (Ec = mV2/2) reçue par la tête (Ec3) diminue car l'énergie absorbée par le casque (ΔE1 + ΔE2) augmente.
Ec! = l'énergie cinétique de l'ensamble avant l'impact ΔE 1 = énergie absorbée par la coque
ΔE2 = énergie absorbée par la coiffe Ec3= Ecl - (ΔEl + ΔE2)
L'accélération moyenne (a) α*iιmnue car Ec3 diminue et t augmente. (a = V/t = (2Ec3/m)1/2/t)
Le "Head Injury Criterion" (HIC), utilisé pour évaluer l'amortissement des choques normatifs, est exprimé dans sa forme simplifiée:
HIC = dV2'5/dt1,5 = (dV2/dt)(dV/dt)1/2
Il est proportionnel à l'énergie cinétique (dV2) et inversement proportionnel à la durée du transfert d'énergie pendant l'impact (dt). Pour les raisons déjà exposés, il va baisser, témoignant ainsi d'un meilleur amortissement des chocs.
Les modalités de réalisation pratique présentées plus bas sont simplement données à titre d'exemples non limitatifs. Différentes combinaisons entre des solutions présentées et leurs variantes sont également envisagées.
Concernant la coque du casque, deux groupes de solutions pratiques et quelques exemples seront présentés :
A. La fracture se produit par la déchinire des zones de basse résistance (ZBR), de préférence à distance du point d'impact. B. La déformation se produit par l'écrasement des couches de basse résistance (CBR), de préférence en regard du point d'impact.
Les ZBR sont disposées dans l'épaisseur de la coque. Les CBR sont placées en dehors de l'épaisseur de la coque. Les CBR peuvent être disposées sur une ou les deux surfaces (interne et externe) de la coque.
De préférence les ZBR ou CBR sont concentrées en regard d'au moins deux ou quatre des zones de résistance mécanique maximale du crâne humain. Les régions de la ligne médiane et temporales antérieures seront de préférence exemptées de leur présence pour diminuer le risque de blessure du sinus longitudinal supérieur et respectivement de l'artère méningée moyenne. Ces structures anatomiques sont particulièrement exposées par leur position à un risque élevé de saignement en cas de fracture de crâne à proximité et en même temps ces régions du crâne sont fragiles.
La figure 1 représente à titre d'exemple non limitatif une vue latérale gauche de la portion correspondant à la voûte crânienne d'une variante de casque de protection. Les zones fragiles du crâne sont représentées par les régions temporales antérieures (1), la ligne médiane et les régions paramédianes (2), en particulier frontales (3) et occipitales (4). Les zones de résistance maximale du crâne sont représentées à leur tour par les deux piliers fronto-latéraux (5), les deux piliers rétro-auriculaires (6) et les deux régions pariétales (7).
Les zones ou les couches de basse résistance peuvent couvrir moins de 20% de la surface totale de la coque.
Plusieurs ZBR ou CBR peuvent être en contact ou situées à moins de 10 mm entre elles ou de toute solution de continuité telle que les orifices d'aération, de fixation (jugulaire, visière, etc.) et former ainsi un groupement spatial de basse résistance (GSBR). Les ZBR ou les CBR peuvent être en contact ou situées à moins de 5 mm du bord de la coque - frontal (BFC), latéral (BLC) ou postérieur (BPC).
Le point le plus haut de la coque, pour un casque positionné sur la tête, représente le centre de la coque (CC). La grande circonférence de la coque couvrant la voûte crânienne sera appelée par la suite "la grande circonférence de la coque" (GCC). Sa direction est approximativement horizontale. Elle coïncide en avant avec le bord frontal de la coque (BFC) aussi bien pour les casques intégrales que pour les autres types de casque et est définie par le croisement entre le plan contenant le BFC et la surface externe de la coque. Les zones de basse résistance (ZBR)
Chaque ZBR peut présenter un point avec une résistance minimale au déchirement ou au cisaillement. Par la suite ce point sera appelé "le point de résistance minimale" (PRM) de la
ZBR. Le PRM de toute ZBR sera situé de préférence au niveau du tiers de la ZBR le plus éloigné du CC.
Chaque ZBR a, grâce à sa conformation, une direction de résistance minimale qui correspond avec la direction de la fracture de coque qui surviendra en cas d'IRN. Cette direction sera appelée par la suite "la direction de résistance minimale" (DRM) de la ZBR. L'angle définit entre la DRM et la GCC est de préférence entre 60° et 120°.
Les dimensions en surface des ZBR sont variables. Le diamètre maximal en surface- la longueur - peut être au moins 20 fois supérieur à leur diamètre minimal - largeur. La DRM d'une ZBR correspond souvent avec sa longueur. Ainsi l'angle définit entre la longueur des ZBR et la GCC est de préférence entre 60° et 120°.
Les ZBR peuvent être réalisées dans une variante par la diminution de l'épaisseur de la coque et réalisation des dépressions ou sillons sur au moins une des deux surfaces, externe ou interne, de la coque. Leur profondeur et leur surface peuvent être variables ou progressivement variables. Les dimensions des dépressions ou sillons mesurées en surface sur des coupes parallèles au bord de la coque peuvent varier progressivement. La profondeur peut dépasser, au moins par endroits, 50% de l'épaisseur de la coque mesurée en proximité de la ZBR sur une coupe parallèle avec le bord du casque.
Elle peut représenter, au moins par endroits, 100% de l'épaisseur de la coque et réaliser ainsi des solutions de continuité (SC). La longueur des SC peut être au moins 20 fois supérieure à leur largeur. Leur longueur peut être supérieure à 70 mm. La longueur des SC mesurée sur toute direction qui passe par le centre de la coque peut être inférieure à 7 mm, en particulier pour les SC situées au contact ou à moins de 5 mm du bord de la coque (BFC, BLC ou BPC) ou à moins de 10 mm d'autres solutions de continuité de la coque (telles que les orifices d'aération ou de fixation) ou d'autres zones ou couches de basse résistance. Au moins un diamètre des SC peut être inférieur à 3 mm.
Dans une autre variante, les ZBR peuvent être obtenues par l'inclusion dans l'épaisseur de la coque des bulles de gaz ou d'autres structures réalisées d'un matériau différent ou similaire au reste de la coque. Dans le cas d'un matériau solide, l'inclusion peut aussi être faite sur au moins une des surfaces de la coque Cette situation correspond a un sillon ou a une dépression, voir a une SC remplie avec le matériau en cause Ainsi le manque de substance dans l'épaisseur de la coque peut être occupe au moins partiellement par des inclusions métalliques dont les zones ayant une épaisseur inférieure a 80% de l'épaisseur de la coque, sont couvertes au moins partiellement vers les deux surfaces de la coque par le composant principal de la coque
Une de ces variantes est représentée par l'inclusion dans l'épaisseur de la coque des structures aplaties et de formes variables, ayant une rigidité, une dureté et une résistance mécanique élevée Elles peuvent être réalisées avec l'emploi des structures métalliques ou autres matéπaux comme des résines, d'autres polymères ou des mateπaux composites A la différence des matéπaux composites, quand des fibres résistantes sont utilisées pour renforcer la résistance au déchirement de la coque, et dont le cas sera décrit plus loin, l'emploi des structures solides ici décrites réalise une baisse de la résistance au déchirement, favorisant ainsi, en cas d'impact violent, la survenue des fractures a distance du pomt d'impact et avec une direction optimale En même temps elles augmentent la résistance de ces zones aux impacts directs.
L'épaisseur d'une telle structure est variable et mesure de préférence entre 0,5 mm et 3 mm Elle peut aussi être égale, au moins par endroits, à l'épaisseur de la coque mais, de préférence, ne la dépasse pas La surface de la coque correspondant a une telle structure est variable et sera de préférence entre 0,3 et 5 cm2 La surface des segments de coque qui contient des telles structures peut représenter moms de 10% de la surface totale de la coque
Ces structures peuvent mesurer entre 1 et 3 mm2 sur au moins deux coupes perpendiculaires a leur dimension maximale et situées à plus de 10 mm entre elles Elles peuvent avoir une foπne ovale ou polygonale en section De préférence, elles sont réalisées en métal et ont en surface une forme de triangle isocèle, avec la base plus épaisse en section et parallèle au périmètre maximal de la coque, voir située au contact ou a moins de 5 mm du bord de la coque
Dans une autre variante, pour les coques fabπquees en matériaux composites, les ZBR peuvent aussi être obtenues par la modification de la densité ou de l'orientation des fibres employées (fibres de verre, carbone, aramide, métalliques) avant l'injection de la résine ou de la polymère dans le moule Les zones de basse résistance peuvent être obtenues par la dmunution d'au moms 50% de la densité des fibres par rapport aux régions proches des zones de basse résistance. Dans une autre variante les zones de basse résistance sont obtenues par la diminution d'au moins 30% ou 50% de la densité des fibres non radiales et longues par rapport à la densité des fibres parallèles avec leur directions et situées dans des régions proches des zones de basse résistance. Les fibres non radiales sont définies comme les fibres dont la direction croise la GCC selon un angle inférieur à 70° ou supérieur à 1 10°.
Les fibres longues sont définies comme les fibres qui dépassent les limites de la ZBR d'au moins 10 mm. Une autre variante consiste dans l'interruption de plus de 50% des fibres longues qui croisent la direction de résistance minimale sous tout angle, ou de préférence sous un angle entre 30° et 150°. La diminution de la densité des fibres longues peut être d'au moins 50% par rapport aux fibres parallèles, ou faisant avec leurs directions des angles inférieurs à 10°, et situées dans les zones proches des ZBR. Dans ces ZBR, les fibres longues qui croisent la direction de résistance minimale sous tout angle peuvent être absentes ou interrompues par découpe. Dans une autre variante, des couches supplémentaires de fibres dont la direction croise la direction de résistance minimale de la ZBR, sont rajoutées dans les zones proches des ZBR avant l'injection de la polymère ou de la résine. Une autre variante est celle qui consiste dans l'inclusion dans les zones proches des ZBR des faisceaux supplémentaires de fibres faisant des angles de 30° - 150° avec la longueur de la ZBR. Une autre variante d'obtention des ZBR est la disposition de plus de 75% des fibres contenues dans la surface correspondante aux ZBR, selon des directions parallèles à la direction de résistance minimale ou à la longueur de la ZBR.
Les zones de basse résistance peuvent aussi être constituées de plusieurs orifices situés à moins de 10 mm entre eux.
Dans une autre variante la coque peut être réalisée par secteurs. Les secteurs peuvent faire corps commun entre eux vers le centre de la coque et réaliser ainsi, dès le départ, une pièce polygonale unique. Le nombre de secteurs à assembler au moins partiellement est variable et sera de préférence compris entre 2 et 5. Les secteurs sont assemblés réalisant des ZBR en regard de ces jonctions. La résistance au déchirement des jonctions peut varier et représente de préférence entre 30% et 70% de la résistance au déchirement des segments de coque avoisinants. L'emboutissage, le collage à chaud, l'emploi des substances adhésives ou l'emboîtement des structures à crochets au moins partiellement amovibles et réglables peuvent être envisagés. Les structures à crochets peuvent être partiellement amovibles, solidaires avec un des segments à assembler, réglables, et former ainsi des structures "en bracelet". Elles peuvent être fabriquées en même temps que le reste de la coque ou y être rajoutées ultérieurement par tout procédé technique (emboutissage, collage, traversée de la coque sur une partie ou toute l'épaisseur). Les structures à crochets peuvent être détachables des deux segments à assembler et former ainsi des structures "en pont". Les structures à crochets peuvent être disposées sur une seule surface de la coque, de préférence la surface interne. Cette variante est particulièrement adaptée à la situation quand les secteurs font corps commun entre eux vers le centre de la coque. Dans une autre variante, les structures à crochets peuvent être disposées sur les deux surfaces de la coque. Par leur emboîtement alternatif (externe - interne en section, droite - gauche en surface) ils assurent la solidité de l'ensemble.
Dans d'autres variantes les zones de basse résistance relative de la coque sont obtenues par le renforcement des zones de la coque situées en regard des zones fragiles du crâne. Le renforcement de la coque en regard des zones fragiles du crâne peut être obtenu par l'emploi des structures rigides et résistantes en métal, plastique, composites ou autres matériaux.
Le renforcement de la coque en regard des zones fragiles du crâne peut être obtenu par la réduction, progressive ou non, du rayon de courbure de la coque vers toute solution de continuité située dans les zones renforcées de la coque et vers la périphérie des zones renforcées et l'obtention des dépressions de la coque concentrées en regard des zones résistantes du crâne et pouvant mesurer plus de 5 mm.
La coque du casque peut aussi présenter des solutions de continuité dont la longueur est au moins 20 fois supérieure à sa largeur.
Les couches de base résistance (CBR)
Les CBR peuvent avoir une structure compacte ou alvéolaire. Leur fabrication peut être réalisée en même temps que le reste de la coque ou être appliquées secondairement sur la surface d'une coque réalisée dans l'état de la technique. Dans cette deuxième variante, la couche de basse résistance peut être appliquée directement au contact de la coque ou par l'interposé d'au moins une structure absorbante d'énergie intermédiaire. Les CBR peuvent être obtenues par la réalisation des structures plissées en "U", en "M", chacune ayant plusieurs contacts avec la coque vue en section, ou en "T", en "L", chacune ayant un seul contact avec la coque vue en section. L'épaisseur des matériaux utilisés est variable et peut être inférieure à 75% de l'épaisseur de la coque en regard. L'épaisseur des CBR peut dépasser 5 mm ou même 10 mm. La surface de la coque couverte par chaque CBR peut varier entre 0,5 cm2 et 30 cm2. Au moins les deux tiers des CBR peuvent mesurer en surface entre 3 cm2 et 15 cm2. Matériaux identiques, similaires ou différents par rapport au reste de la coque peuvent être utilisés pour leur fabrication. Ils seront de préférence identiques avec la polymère ou la résine utilisée pour le reste de la coque. Les CBR pourront ainsi être fabriquées en même temps que le reste de la coque par la modification du moule d'injection. Dans une autre variante elles peuvent être fabriquées séparément. Les CBR peuvent aussi présenter des crochets emboîtés dans la coque.
Les CBR peuvent être situées au contact de la face externe ou interne de la coque, ou à distance de la coque, dans l'épaisseur de la coiffe intermédiaire. Dans la dernière variante exposée, les CBR entrent en contact avec la coque au moment d'un impact violent, après l'écrasement de la coiffe intermédiaire entre la coque et la tête.
Les CBR de la coque incluses dans l'épaisseur de la coiffe augmente la résistance à l'écrasement dans ces régions de la coiffe parce qu'elles ont une dureté, voir une densité supérieure à la dureté, voir à la densité de la coiffe. Dans une autre variante de l'invention, les fonctions des CBR de la coque incluses dans l'épaisseur de la coiffe peuvent être assurées par la coiffe elle-même qui présente zones de haute résistance à l'écrasement - dures - en regard des zones de résistance maximale du crâne et des zones de basse résistance à l'écrasement - molles - en regard des zones fragiles du crâne humain.
Une-première catégorie de solutions techniques concerne l'augmentation de la dureté ou de la densité de la coiffe en regard des zones de résistance maximale du crâne et l'emploi de différentes structures à dureté supérieure à la dureté du matériau de base de la coiffe, situées dans l'épaisseur de la coiffe ou en dehors de son épaisseur, sur sa face externe et en proximité de la coque du casque ou sur sa face interne et en proximité de la tête, voir étant solidaires ou faisant partie intégrante de la coque ou respectivement du rembourrage de confort. Ces structures dures peuvent emmagasiner par leur écrasement plus d'énergie que le matériau de base de la coiffe. Ainsi, le terme de coiffe utilisé dans cette description correspond à l'ensemble des structures du casque qui sont destinées à l'absorption d'énergie par leur écrasement en cas d'impact, et pas seulement à la coiffe intermédiaire dans le sens classique du terme. A titre d'exemple non limitatif, l'augmentation de la résistance à l'écrasement en regard des zones de résistance maximale du crâne peut être obtenue par :
La modification de la densité du même matériau ou l'emploi de matériaux expansés avec une dureté différente.
Ainsi, la coiffe située en regard des zones de résistance maximale du crâne humain peut avoir, sur au moins le quart externe de son épaisseur, une densité voir une dureté d'au moins 40% supérieure à la densité, voir à la dureté, du reste de la coiffe. Dans une autre variante la coiffe située en regard des zones de résistance maximale du crâne humain a, sur au moins le quart externe de son épaisseur, une densité voir une
10 dureté d'au moins 60% supérieure à la densité, voir à la dureté, de la partie interne de la coiffe située en regard des zones fragiles du crâne.
Dans une autre variante la coiffe située en regard des zones de résistance maximale du crâne humain a, sur au moins la moitié externe de son épaisseur, une densité voir une dureté d'au moins 100% supérieure à la densité, voir à la dureté, de la partie interne de la 1* coiffe située en regard des zones fragiles du crâne humain.
Quand la coiffe est constituée par des segments réalisés en même matériau avec une densité différente, la notion de dureté est superposable à celle de la densité. Dans le cas contraire ou en cas d'utilisation des inclusions tel que décrites plus bas, la notion de dureté correspond 2" mieux aux résultats recherchés par cette invention, que la notion de densité.
L'inclusion des structures déformables en cas d'impact violent, faites d'un matériau plastique, verre, métal ou autres, ayant une dureté supérieure à la dureté du matériau de base de la coiffe, incluses au moins partiellement dans l'épaisseur de la coiffe. Ces structures peuvent " avoir des formes variées (sphérique, en coupole, en U, en T, en M) et peuvent avoir au moins une dimension supérieure à 5 mm. La dureté de ces structures est de préférence d'au moins 50% supérieure à la dureté du matériau de base de coiffe. Ces structures sont concentrées en regard des zones de résistance maximale du crâne humain.
Dans une variante, la densité des inclusions situées dans la moitié externe de la coiffe en regard des zones de résistance maximale du crâne humain est au moins deux fois supérieure à la densité des inclusions situées dans la moitié interne de la coiffe en regard des zones fragiles du crâne humain
35 Dans une deuxième catégorie de solutions techniques la présente invention concerne la diminution de la résistance à l'écrasement de la coiffe située en regard des zones fragiles du crâne. A titre d'exemple non limitatif, la diminution de la résistance à l'écrasement en regard des zones fragiles du crâne peut être obtenue par : - La répartition adéquate des sillons réalisés sur au moins une des surfaces de la coiffe, ou des cavités situées dans l'épaisseur de la coiffe. Ainsi la coiffe située en regard des zones fragiles du crâne humain présente des sillons sur au moins une de ses surfaces, voir des cavités dans son épaisseur, et ces sillons ou cavités sont moins importantes, voir absentes en regard des zones de résistance maximale du crâne humain. La conformation des sillons peut réaliser un aspect ondulé de la coiffe sur au moins une section perpendiculaire au crâne.
Dans une variante le volume des sillons, voir des cavités, représente plus de 20% du volume délimité entre la tête et la coque externe du casque en regard des zones fragiles du crâne humain et moins de 20% du volume délimité entre la tête et la coque externe du casque en regard des zones de résistance maximale du crâne humain.
Dans une variante le volume des sillons, voir des cavités de la coiffe, représente - en regard des zones fragiles du crâne - entre 50% et 100% du volume délimité entre la tête et la coque externe du casque.
La coiffe du casque selon l'invention peut être réalisée, à titre d'exemple non limitatif à base de polystyrène expansé, polyéthylène expansé, polypropylène expansé, mousse de polyuréthanne ou autre produits et toute combinaison entre ces matériaux.
Le casque selon l'invention peut être intégral ou non intégral et est particulièrement destiné aux domaines civils (motocyclette - essais, compétition et usagers ; automobiles - essais, compétition ; vélo - compétition, usagers ; autres sports - roller, skateboard, sports d'hiver ; milieu industriel).

Claims

REVEND1CATIONS
1. Un casque de protection crânio-cérébrale caractérisé en ce que sa coque comporte une couche ou des zones de basse résistance qui assurent une absorption d'énergie, par leur déformation ou fracture en cas d'impact violent à risque neurologique, et qui sont concentrées en regard des principaux piliers de résistance du crâne hurn2in - froπrcv latéraux (5), rétro-auriculares (6) et les régions pariétales (7) - et sa coiffe intermédiaire- appelée par la suite "la coiffe", a des zones de haute résistance à l'écrasement - dures - en regard d'au moins deux des six zones de résistance maximale du crâne plus haut décrites-
2. Un casque selon la revendication 1 caractérisé en ce que les zones ou les couches de basse résistance de sa coque sont absentes de la proximité de la ligne médiane (2) et des régions temporales antérieures (1) et sa coiffe a des zones de basse résistance à l'écrasement - molles - en regard des zones fragiles du crâne humain, représentées par les régions temporales antérieures (1), la ligne médiane (2) et les régions paramédianes. en particulier frontales (3) et occipitales (4).
3. Un casque selon les revendications 1-2 caractérisé en ce que les zones ou les couches de basse résistance de la coque couvrent moins de 20% de sa surface.
4. Un casque selon les revendications 1-3 caractérisé en ce qu'au moins une partie des couches ou des zones de basse résistance de la coque sont situées à moins de 10 mm de toute solution de continuité telle que les orifices d'aération, de fixation, araxe zone ou couche de basse résistance ou à moins de 5 mm du bord de la coque.
5. Un casque selon les revendications 1-4 caractérisé par l'altération du parallélisme des faces externe et interne de la coque, avec diminution de l'épaisseur de la coque en regard des dites zones de basse résistance et l'obtention des dépressions ou sillons.
6. Un casque selon la revendication 5 caractérisé en ce que la profondeur des dépressions ou sillons est variable.
7. Un casque selon les revendications 5-6 caractérisé en ce que les dépressions ou sillons de la coque ont une profondeur qui représente, au moins par endroits, entre 50°'. et 100% e l'épaisseur de la coque mesurée en proximité de la zone de basse résistance.
8. Un casque selon la revendication 7 caractérisé en ce que le segment traversant toise l'épaisseur de la coque mesure moins de 7 mm sur la direction qui passe par le centre de la coque.
9. Un casque selon les revendications 5-8 caractérisé en ce que la surface des dépressions ou sillons de la coque est variable.
10. Un casque selon les revendications 1-4 caractérisé en ce que les zones de basse résistance de la coque sont obtenues par l'inclusion dans son épaisseur des bulles de gaz ou des structures réalisées d'un matériau différent ou similaire à celui utilisé pour le reste de la coque.
1 1. Un casque selon les revendications 5-10 caractérisé en ce que le manque de substance dans l'épaisseur de la coque est occupé au moins partiellement par des inclusions métalliques dont les zones ayant une épaisseur inférieure à 80% de l'épaisseur de la coque, sont couvertes au moins partiellement par le composant principal de la coque.
12. Un casque selon les revendications 1-4 caractérisé en ce que sa coque est réalisée en matériaux composites et les zones de basse résistance sont obtenues par la diminution d'au moins 30% de la densité des fibres non radiales (dont la direction croise la grande circonférence de la coque, décrite par le croisement entre le plan contenant le bord frontal du casque et la surface externe de la coque, selon un angle inférieur à 70° ou supérieur à 110°) et longues (qui dépassent les limites opposées de la zone de basse résistance, d'au moins 10 mm) par rapport à la densité des fibres parallèles avec leur directions et situées dans des régions proches des zones de basse résistance de la coque.
13. Un casque selon la revendication 12 caractérisé en ce que les zones de basse résistance de la coque sont obtenues par la diminution d'au moins 50% de la densité des fibres par rapport aux régions proches des zones de basse résistance de la coque.
14. Un casque selon les revendications 1-4 caractérisé en ce que sa coque comporte au moins une zone de basse résistance constituée par plusieurs orifices situés à moins de 10 mm entre eux.
15. Un casque selon les revendications 1-4 caractérisé en ce que les zones de basse résistance de la coque sont représentées par des jonctions entre des segments de la coque.
16. Un casque selon la revendication 15 caractérisé en ce que les jonctions sont réalisées au moins en partie par l'emboîtement des structures à crochets, au moins partiellement amovibles, réglables.
17. Un casque selon les revendications 1-4 caractérisé en ce que les zones de basse résistance relative de la coque sont obtenues par le renforcement des zones de la coque situées en regard des zones fragiles du crâne.
18. Un casque selon la revendication 17 caractérisé en ce que le renforcement de la coque en regard des zones fragiles du crâne est obtenu par l'emploi des structures rigides et résistantes en métal, plastique, composites ou autres matériaux.
19. Un casque selon les revendications 17-18 caractérisé en ce que le renforcement de la coque en regard des zones fragiles du crâne est obtenu par la réduction du rayon de courbure de la coque vers la périphérie des zones renforcées et l'obtention des dépressions de la coque mesurant plus de 5 mm et concentrées en regard des zones résistantes du crâne.
20. Un casque selon les revendications 1-4 caractérisé en ce que les couches de basse résistance de la coque sont représentées par des structures compactes plissées en U, M, T, L.
21. Un casque selon les revendications 1-4 caractérisé en ce que les couches de basse résistance de la coque sont représentées par des structures alvéolaires.
22. Un casque selon les revendications 20-21 caractérisé en ce que les couches de basse résistance sont incluses dans l'épaisseur de la coiffe constituant ainsi des zones de coiffe avec une haute résistance à l'écrasement.
23. Un casque selon la revendication 22 caractérisé en ce que la dureté, voir la densité des inclusions est d'au moins 50% supérieure à la dureté, voir à la densité du matériau de base de la coiffe et la densité des inclusions situées dans la moitié externe de la coiffe en regard des zones de résistance maximale du crâne est au moins deux fois supérieure à la densité des inclusions situées dans la moitié interne de la coiffe en regard des zones fragiles du crâne.
24. Un casque selon les revendications 1-2 caractérisé en ce que la coiffe située en regard des zones de résistance maximale du crâne humain a, sur au moins le quart de son épaisseur, une densité voir une dureté d'au moins 40% supérieure à la densité voir à la dureté du reste de la coiffe.
25. Un casque selon les revendications 1-2 caractérisé en ce que la coiffe située en regard des zones de résistance maximale du crâne humain a, sur au moins le quart de son épaisseur, une densité, voir une dureté d'au moins 60% supérieure à la densité, voir à la dureté de la partie interne de la coiffe située en regard des zones fragiles du crâne.
26. Un casque selon les revendications 1-2 caractérisé en ce que la coiffe située en regard des zones de résistance maximale du crâne humain a, sur au moins la moitié de son épaisseur, une densité, voir une dureté d'au moins 100% supérieure à la densité, voir à la dureté de la partie interne de la coiffe située en regard des zones fragiles du crâne.
27. Un casque selon les revendications 24-26 caractérisé en ce que les structures plus denses, voir plus dures, avec une haute résistance à l'écrasement et capables d'emmagasiner plus d'énergie en cas d'impact violent, sont solidaires avec le rembourrage de confort du casque.
28. Un casque selon les revendications 1-2 caractérisé en ce que la coiffe située en regard des zones fragiles du crâne humain présente des sillons sur au moins une de ses surfaces, voir des cavités dans son épaisseur, et que ces sillons ou cavités sont moins importantes, voir absentes en regard des zones de résistance maximale du crâne.
5 29. Un casque selon la revendication 28 caractérisé en ce que le volume des sillons, voir des cavités de la coiffe, représente - en regard des zones fragiles du crâne - plus de 20% du volume délimité entre la tête et la coque externe du casque et - en regard des zones de résistance maximale du crâne - moins de 20% du volume délimité entre la tête et la coque externe du casque.
10 30. Un casque selon la revendication 28 caractérisé en ce que le volume des sillons, voir des cavités de la coiffe, représente - en regard des zones fragiles du crâne - entre 50% et 100% du volume délimité entre la tête et la coque externe du casque.
15
20
25
30
5
PCT/FR1999/003035 1998-12-07 1999-12-07 Casque de protection WO2000033689A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000586194A JP2002531719A (ja) 1998-12-07 1999-12-07 保護ヘルメット
DE69924637T DE69924637T2 (de) 1998-12-07 1999-12-07 Schutzhelm
EP99958257A EP1137350B1 (fr) 1998-12-07 1999-12-07 Casque de protection
US09/857,828 US6604246B1 (en) 1998-12-07 1999-12-07 Protective helmet
AU15666/00A AU765483B2 (en) 1998-12-07 1999-12-07 Protective helmet
CA002354161A CA2354161A1 (fr) 1998-12-07 1999-12-07 Casque de protection
AT99958257T ATE292398T1 (de) 1998-12-07 1999-12-07 Schutzhelm
MXPA01005864A MXPA01005864A (es) 1998-12-07 1999-12-07 Casco de proteccion..
BR9915989-9A BR9915989A (pt) 1998-12-07 1999-12-07 Capacete de proteção

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR98/15393 1998-12-07
FR9815393A FR2786670B1 (fr) 1998-12-07 1998-12-07 Coque externe pour casques de protection cranio-cerebrale
FR9908536A FR2786671B3 (fr) 1998-12-07 1999-07-02 Coque pour casques de protection cramio-cerebrale
FR99/08536 1999-07-02
FR9912345A FR2799103B1 (fr) 1999-10-04 1999-10-04 Casque de protection adapte a l'anatomie du crane
FR99/12345 1999-10-04

Publications (2)

Publication Number Publication Date
WO2000033689A1 true WO2000033689A1 (fr) 2000-06-15
WO2000033689B1 WO2000033689B1 (fr) 2000-08-03

Family

ID=27253494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/003035 WO2000033689A1 (fr) 1998-12-07 1999-12-07 Casque de protection

Country Status (11)

Country Link
US (1) US6604246B1 (fr)
EP (1) EP1137350B1 (fr)
JP (1) JP2002531719A (fr)
CN (1) CN1149024C (fr)
AT (1) ATE292398T1 (fr)
AU (1) AU765483B2 (fr)
BR (1) BR9915989A (fr)
CA (1) CA2354161A1 (fr)
DE (1) DE69924637T2 (fr)
MX (1) MXPA01005864A (fr)
WO (1) WO2000033689A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333733A1 (fr) * 2000-10-12 2003-08-13 Bostock Developments Pty. Ltd. Casque protecteur

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10319500A1 (de) 2002-05-01 2004-01-15 Riddell Inc., Chicago Football-Helm
AU2003247414A1 (en) 2002-05-14 2003-12-02 White Water Research And Safety Institute, Inc. Protective headgear for whitewater use
CA2495016A1 (fr) * 2002-08-08 2004-02-19 Marc S. Schneider Casque de sport a absorption d'energie
US7341776B1 (en) 2002-10-03 2008-03-11 Milliren Charles M Protective foam with skin
US20040139531A1 (en) * 2002-12-06 2004-07-22 Moore Dan T. Custom fitted helmet and method of making the same
US7044633B2 (en) * 2003-01-09 2006-05-16 International Business Machines Corporation Method to calibrate a chip with multiple temperature sensitive ring oscillators by calibrating only TSRO
US20080256686A1 (en) 2005-02-16 2008-10-23 Xenith, Llc. Air Venting, Impact-Absorbing Compressible Members
US20060059606A1 (en) * 2004-09-22 2006-03-23 Xenith Athletics, Inc. Multilayer air-cushion shell with energy-absorbing layer for use in the construction of protective headgear
US8039078B2 (en) 2004-08-26 2011-10-18 Intellectual Property Holdings, Llc Energy-absorbing pads
US20060059605A1 (en) * 2004-09-22 2006-03-23 Xenith Athletics, Inc. Layered construction of protective headgear with one or more compressible layers of thermoplastic elastomer material
US7814579B2 (en) * 2004-09-27 2010-10-19 Kbc America, Inc. Modular helmet
CA2588404C (fr) 2004-11-22 2011-06-28 Marc S. Schneider Bourrage absorbeur d'energie pour applications sportives
US7802320B2 (en) * 2005-06-30 2010-09-28 Morgan Don E Helmet padding
US20110047685A1 (en) * 2006-02-16 2011-03-03 Ferrara Vincent R Impact energy management method and system
US7895681B2 (en) * 2006-02-16 2011-03-01 Xenith, Llc Protective structure and method of making same
US7774866B2 (en) * 2006-02-16 2010-08-17 Xenith, Llc Impact energy management method and system
US8117679B2 (en) * 2006-03-22 2012-02-21 Fox Head, Inc. Molded articles and molding methods particularly for a protective helmet
US7913325B2 (en) * 2006-05-19 2011-03-29 Specialized Bicycle Components, Inc. Bicycle helmet with reinforcement structure
US7698750B2 (en) * 2006-05-19 2010-04-20 Specialized Bicycle Components, Inc. Bicycle helmet with reinforcement structure
JP4973272B2 (ja) * 2007-03-27 2012-07-11 ブラザー工業株式会社 カートリッジおよび画像形成装置
US9289024B2 (en) 2007-04-16 2016-03-22 Riddell, Inc. Protective sports helmet
ITBO20080063A1 (it) * 2008-01-30 2009-07-31 Piero Malpezzi Imbottitura della calotta interna di un casco protettivo del capo.
US20090313736A1 (en) * 2008-06-18 2009-12-24 Robert William Kocher Varying thickness Helmet for reduced weight and increased protection
US20100000009A1 (en) * 2008-07-02 2010-01-07 Morgan Donald E Compressible Liner for Impact Protection
US9107466B2 (en) 2009-08-31 2015-08-18 Rawlings Sporting Goods Company, Inc. Batting helmet having localized impact protection
US8524338B2 (en) 2009-11-16 2013-09-03 9Lives Llc Impact energy attenuation system
WO2011068854A2 (fr) * 2009-12-01 2011-06-09 Massachusetts Institute Of Technology Articles de protection permettant de résister à des charges mécaniques et procédés associés
USD617503S1 (en) 2010-01-27 2010-06-08 Intellectual Property Holdings, Llc Helmet pad structure
US8726424B2 (en) 2010-06-03 2014-05-20 Intellectual Property Holdings, Llc Energy management structure
USD838922S1 (en) 2011-05-02 2019-01-22 Riddell, Inc. Football helmet
USD681281S1 (en) 2011-05-02 2013-04-30 Riddell, Inc. Protective sports helmet
USD679058S1 (en) 2011-07-01 2013-03-26 Intellectual Property Holdings, Llc Helmet liner
US9516910B2 (en) 2011-07-01 2016-12-13 Intellectual Property Holdings, Llc Helmet impact liner system
US20130042748A1 (en) * 2011-08-17 2013-02-21 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Mesostructure Based Scatterers in Helmet Suspension Pads
US9763488B2 (en) 2011-09-09 2017-09-19 Riddell, Inc. Protective sports helmet
USD683079S1 (en) 2011-10-10 2013-05-21 Intellectual Property Holdings, Llc Helmet liner
US8814150B2 (en) 2011-12-14 2014-08-26 Xenith, Llc Shock absorbers for protective body gear
US8950735B2 (en) 2011-12-14 2015-02-10 Xenith, Llc Shock absorbers for protective body gear
US11278076B2 (en) 2012-03-06 2022-03-22 Loubert S. Suddaby Protective helmet with energy storage mechanism
US9795178B2 (en) 2012-03-06 2017-10-24 Loubert S. Suddaby Helmet with multiple protective zones
US9980531B2 (en) 2012-03-06 2018-05-29 Loubert S. Suddaby Protective helmet with energy storage mechanism
US10517347B2 (en) 2012-03-06 2019-12-31 Loubert S. Suddaby Helmet with multiple protective zones
US20130232668A1 (en) 2012-03-06 2013-09-12 Loubert S. Suddaby Helmet with multiple protective zones
US9320311B2 (en) 2012-05-02 2016-04-26 Intellectual Property Holdings, Llc Helmet impact liner system
US9585433B1 (en) 2012-05-02 2017-03-07 Rawlings Sporting Goods Company, Inc. Fiber reinforced helmet
US9578917B2 (en) * 2012-09-14 2017-02-28 Pidyon Controls Inc. Protective helmets
US9894953B2 (en) 2012-10-04 2018-02-20 Intellectual Property Holdings, Llc Helmet retention system
US9603408B2 (en) * 2012-10-05 2017-03-28 Elwood J. B. Simpson Football helmet having improved impact absorption
US9572390B1 (en) 2012-10-05 2017-02-21 Elwood J. B. Simpson Football helmet having improved impact absorption
US10159296B2 (en) 2013-01-18 2018-12-25 Riddell, Inc. System and method for custom forming a protective helmet for a customer's head
US9656148B2 (en) 2013-02-12 2017-05-23 Riddell, Inc. Football helmet with recessed face guard mounting areas
USD733972S1 (en) 2013-09-12 2015-07-07 Intellectual Property Holdings, Llc Helmet
WO2015065902A1 (fr) 2013-10-28 2015-05-07 Intellectual Property Holdings, Llc Système de retenue de casque
JP2016539253A (ja) 2013-12-06 2016-12-15 ベル スポーツ, インコーポレイテッド 可撓性多層ヘルメット及びその作製方法
USD752822S1 (en) 2014-02-12 2016-03-29 Riddell, Inc. Football helmet
USD739087S1 (en) * 2014-04-30 2015-09-15 William J. Jennings Shock absorbing head cap
USD793625S1 (en) 2014-10-23 2017-08-01 Intellectual Property Holdings, Llc Helmet
CN113907477A (zh) 2014-10-28 2022-01-11 贝尔运动股份有限公司 内成型转动头盔
CN107404961B (zh) * 2015-02-05 2020-12-04 劳伯特·S·萨德达比 具有多个保护区域的头盔
WO2018017867A1 (fr) 2016-07-20 2018-01-25 Riddell, Inc. Système et procédés de conception et de fabrication d'un casque de sport de protection fait sur mesure
US20180199653A1 (en) * 2017-01-18 2018-07-19 Quentin Kelly Paige, SR. Lightweight protective headgear
US10542788B2 (en) 2017-05-11 2020-01-28 Safer Sports, LLC Football helmet having three energy absorbing layers
US11399589B2 (en) 2018-08-16 2022-08-02 Riddell, Inc. System and method for designing and manufacturing a protective helmet tailored to a selected group of helmet wearers
CA3120841A1 (fr) 2018-11-21 2020-05-28 Riddell, Inc. Casque de sport recreatif de protection avec des composants fabriques de facon additive pour gerer des forces d'impact
USD927084S1 (en) 2018-11-22 2021-08-03 Riddell, Inc. Pad member of an internal padding assembly of a protective sports helmet
USD927073S1 (en) 2019-04-16 2021-08-03 Safer Sports, LLC Football helmet
USD888968S1 (en) * 2019-10-12 2020-06-30 911 Medical Devices Head wrap
USD935106S1 (en) 2019-11-22 2021-11-02 Safer Sports, LLC Helmet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2688747A (en) * 1952-05-26 1954-09-14 B F Mcdonald Company Plastic helmet
US2926356A (en) * 1958-01-03 1960-03-01 James P Taylor Beanproof cap for baseball, racing and allied sports
FR1214865A (fr) * 1958-06-27 1960-04-12 Casque de protection en matière plastique et procédé pour sa fabrication
DE2133215A1 (de) * 1970-07-06 1972-01-13 Mine Safety Appliances Co Schutzhelm
FR2376635A1 (fr) * 1977-01-07 1978-08-04 Draegerwerk Ag Casque de protection
GB2021470A (en) * 1978-05-25 1979-12-05 Kangol Helmets Ltd Manufacture of hollow plastics articles
DE2921354A1 (de) * 1979-05-25 1980-12-04 Brian John Littler Schutzhelm
FR2557437A3 (fr) * 1984-01-02 1985-07-05 Kiwi Sa Calotte interieure pour casques de protection
EP0183588A2 (fr) * 1984-11-26 1986-06-04 Jean-Jaques Georges Roger Santini Casque de protection sportif ou professionnel
JPH06173110A (ja) * 1992-12-02 1994-06-21 Yamaha Motor Co Ltd ヘルメットの帽体構造

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462763A (en) * 1967-10-03 1969-08-26 Richard C Schneider Impact absorbing protective headgear
US5309576A (en) * 1991-06-19 1994-05-10 Bell Helmets Inc. Multiple density helmet body compositions to strengthen helmet
US5669079A (en) * 1995-10-31 1997-09-23 Morgan; Don E. Safety enhanced motorcycle helmet
US5930841A (en) * 1997-03-21 1999-08-03 Soccer Strategies/Llc Soccer headguard
US5950244A (en) * 1998-01-23 1999-09-14 Sport Maska Inc. Protective device for impact management

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2688747A (en) * 1952-05-26 1954-09-14 B F Mcdonald Company Plastic helmet
US2926356A (en) * 1958-01-03 1960-03-01 James P Taylor Beanproof cap for baseball, racing and allied sports
FR1214865A (fr) * 1958-06-27 1960-04-12 Casque de protection en matière plastique et procédé pour sa fabrication
DE2133215A1 (de) * 1970-07-06 1972-01-13 Mine Safety Appliances Co Schutzhelm
FR2376635A1 (fr) * 1977-01-07 1978-08-04 Draegerwerk Ag Casque de protection
GB2021470A (en) * 1978-05-25 1979-12-05 Kangol Helmets Ltd Manufacture of hollow plastics articles
DE2921354A1 (de) * 1979-05-25 1980-12-04 Brian John Littler Schutzhelm
FR2557437A3 (fr) * 1984-01-02 1985-07-05 Kiwi Sa Calotte interieure pour casques de protection
EP0183588A2 (fr) * 1984-11-26 1986-06-04 Jean-Jaques Georges Roger Santini Casque de protection sportif ou professionnel
JPH06173110A (ja) * 1992-12-02 1994-06-21 Yamaha Motor Co Ltd ヘルメットの帽体構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 517 (C - 1254) 29 September 1994 (1994-09-29) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333733A1 (fr) * 2000-10-12 2003-08-13 Bostock Developments Pty. Ltd. Casque protecteur
EP1333733A4 (fr) * 2000-10-12 2008-03-19 Bostock Developments Pty Ltd Casque protecteur

Also Published As

Publication number Publication date
CN1149024C (zh) 2004-05-12
CN1334707A (zh) 2002-02-06
MXPA01005864A (es) 2003-06-09
DE69924637T2 (de) 2006-06-22
JP2002531719A (ja) 2002-09-24
DE69924637D1 (de) 2005-05-12
BR9915989A (pt) 2002-01-08
WO2000033689B1 (fr) 2000-08-03
AU1566600A (en) 2000-06-26
US6604246B1 (en) 2003-08-12
AU765483B2 (en) 2003-09-18
EP1137350B1 (fr) 2005-04-06
CA2354161A1 (fr) 2000-06-15
EP1137350A1 (fr) 2001-10-04
ATE292398T1 (de) 2005-04-15

Similar Documents

Publication Publication Date Title
EP1137350B1 (fr) Casque de protection
US6381759B1 (en) Impact absorbing protective apparatus for the frontal, temporal and occipital basilar skull
US5950243A (en) Structural shell for protective headgear
US7832023B2 (en) Protective headgear with improved shell construction
US6343385B1 (en) Impact absorbing protective apparatus for the frontal, temporal and occipital basilar skull
EP2974612B1 (fr) Casque à amortissement
CN107635425B (zh) 头颅保护单元中引入的改进
US20060112477A1 (en) Energy absorbing sports helmet
US20040034903A1 (en) Protective sports hat insert device
CA2816873C (fr) Protection intra-buccale adaptable aeropermeable machoires serrees
EP3231307B1 (fr) Casque de sport
CH692011A5 (fr) Ensemble de protection de la tête contre les chocs
US11147332B2 (en) Protective helmet
US10667572B1 (en) Protective helmet having force impact distribution
FR2786671A1 (fr) Coque pour casques de protection cramio-cerebrale
ZA200105533B (en) Protective helmet.
FR2799103A1 (fr) Casque de protection adapte a l'anatomie du crane
AU2005202254A1 (en) Safety head gear
EP3430928B1 (fr) Calotin interieur de casque de protection
FR2557437A3 (fr) Calotte interieure pour casques de protection
FR3054413B1 (fr) Casque muni d'une calotte amortissante
EP0645099B1 (fr) Casque

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99815873.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2000 15666

Country of ref document: AU

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: B1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: B1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

B Later publication of amended claims
121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2354161

Country of ref document: CA

Ref document number: 2354161

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2000 586194

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/005864

Country of ref document: MX

Ref document number: 09857828

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999958257

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001/05533

Country of ref document: ZA

Ref document number: 200105533

Country of ref document: ZA

Ref document number: IN/PCT/2001/00595/DE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 15666/00

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1999958257

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 15666/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1999958257

Country of ref document: EP