WO2000030537A1 - Tomograph mit hoher ortsauflösung - Google Patents

Tomograph mit hoher ortsauflösung Download PDF

Info

Publication number
WO2000030537A1
WO2000030537A1 PCT/DE1999/003682 DE9903682W WO0030537A1 WO 2000030537 A1 WO2000030537 A1 WO 2000030537A1 DE 9903682 W DE9903682 W DE 9903682W WO 0030537 A1 WO0030537 A1 WO 0030537A1
Authority
WO
WIPO (PCT)
Prior art keywords
detectors
tomograph
axis
breast
rotation
Prior art date
Application number
PCT/DE1999/003682
Other languages
English (en)
French (fr)
Inventor
Frank Sonnenberg
Norbert Kress
Anne Rose BÖRNER
Horst Halling
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO2000030537A1 publication Critical patent/WO2000030537A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • A61B6/0414Supports, e.g. tables or beds, for the body or parts of the body with compression means

Definitions

  • the invention relates to a tomograph.
  • a tomograph has a table on which the object to be measured, e.g. a rat, mouse or human is placed. The table is moved into the interior of the tomograph together with the object.
  • detectors are then either arranged around the object or detectors circle the object.
  • the axis around which the detectors are arranged, or which are encircled by detectors, then lies in the plane of the table surface.
  • an object human, animal, test specimen or also called phantom
  • Radioactive tracer Radiopharmaceuticals
  • the three-dimensional distribution of which is then measured by the detectors m-vivo and finally calculated using more or less complex mathematical methods (reconstruction methods).
  • Other types of tomography are known, for example x-ray, nuclear spin or positron emission tomography.
  • a special case of the SPECT is the scintimammography, in which a patient is placed on a table designed as a couch and this is moved into the tomograph. The detectors are then arranged rotationally symmetrically around the patient's body.
  • a disadvantage of the known scintimammography is that not only radiation originating from the breast of the woman is measured by the detectors, but also a large proportion of scattered radiation.
  • the scattered radiation comes in particular from the heart, liver and chest (chest wall). The scattered radiation affects the quality of the measurement and prevents better spatial resolution.
  • the detectors are also at a relatively large distance from the actual measurement object, that is to say from the breast of the woman
  • a so-called three-axis table is provided for a human patient instead of a couch.
  • smaller objects such as rats or mice
  • the surface of the three-axis table can be moved in three dimensions. It is pushed into the inside of the tomograph from the front, ie it is inserted from the side where the controls for the three-axis table are located.
  • the object of the invention is to create a tomograph in which higher spatial resolutions, in particular in the case of scintimammography, are possible compared to the prior art.
  • the sophisticated tomograph has detectors which are arranged rotationally symmetrically about an axis (axis of rotation) or which rotate about such an axis.
  • the axis of rotation runs perpendicular to the table surface of the tomograph.
  • the table is designed as a horizontally arranged patient couch.
  • the bed has at least one opening (hole) at breast height through which at least one female breast can be positioned exactly.
  • the arrangement of the detectors is then located below the table.
  • the axis of rotation runs through the center of the opening.
  • the patient lies on the patient couch in the prone position.
  • the breast extends through the opening into the detector arrangement.
  • the detectors are moved very close to the breast, the breast reaching into the detector arrangement due to gravity.
  • the optimal alignment of the breast is ensured in a particularly simple manner.
  • the table surface also shields radiation from the chest or liver.
  • the table surface therefore advantageously has shielding materials such as lead.
  • the spatial resolution measurement is further improved in this way.
  • the radiation originating from the heart runs parallel to the axis of rotation in scinti mammography with the sophisticated tomograph. Therefore, it does not come or only to a small extent in the detectors, since these are aligned perpendicular to the axis of rotation.
  • disturbing radiation from surrounding body regions of the breast are additionally eliminated by having parallel-hole collimators in front of the detector or detectors.
  • parallel-hole collimators in front of the detector or detectors.
  • photons that are perpendicular to the axis of rotation are registered.
  • the detector arrangement is fastened in a foldable manner, for example by a hinge.
  • the detector arrangement can be folded back and forth by 90 ° between two positions. It is thus possible to toggle between a normal position, which is known from the prior art mentioned at the outset, and a position for the scintammammography according to the invention. This enables the universal use of a tomograph for different applications.
  • the detectors can be moved radially, as is known from the prior art, and the distance between the object and the detectors can thus be minimized.
  • a three-axis table is located on the rear of the tomograph, that is, opposite to the side on which the control elements for the three-axis table are attached.
  • the three-axis table is now pushed into the inside of the tomograph from behind.
  • the object i.e. a rat or a mouse, is placed on the table top of the three-axis table from the front.
  • the object is then moved to the desired position using the control elements.
  • the three-axis table does not interfere with the observation. This enables comparatively quick and easy positioning.
  • the flexible and modular design of the tomograph proves to be particularly advantageous here.
  • the device according to the invention can be used in particular for single photon emission computed tomography (SPECT) or for positron emission tomography (PET).
  • SPECT single photon emission computed tomography
  • PET positron emission tomography
  • Figure 1 In Figures la and lb, the rotation unit is shown in front view and in side view.
  • Figure la shows the arrangement of three SPECT detectors, which are positioned around the axis of rotation on linear drives. They give the detectors radial freedom of movement.
  • the rotation unit is designed to allow a flexible number of 1 to 8 detectors. If radial freedom of movement is dispensed with, it is possible to place a ring of small detectors symmetrically about the axis of rotation.
  • FIG. 1b shows the rotation unit in a side view.
  • the cross struts shown in it can be moved parallel to the axis of rotation (horizontal in the picture), so that detectors of different sizes can be integrated. This flexibility enables The smallest possible distance between the detectors and the woman's chest during scinti mammography.
  • the central module of the SPECT mechanism is shown in FIG.
  • the figure illustrates the possible folding (tiltable up to 90 °) between a normal position and the demanding position of the axis of rotation.
  • the height can also be adjusted (stroke).
  • FIG. 1 A modular structure of the SPECT mechanism described is illustrated in FIG.
  • a 3-axis table is attached to the central module from FIG. 2 via an infeed unit, which moves a measuring table for animal and test specimens precisely.
  • connection between the central module and the delivery unit is such that it can be easily fixed and released as required.
  • FIG. 4 The flexible and modular design of the device according to the invention benefits in particular the scintimammography recording technique as outlined in FIG. 4.
  • the axis of rotation is now tilted by 90 ° to the normal recording technology.
  • the delivery unit shown in Figure 3 was decoupled and replaced by a patient couch. Imagine the patient to be diagnosed on the prone couch so that exactly one breast projects into the tomograph through an opening (recess) in the examination table (patient couch).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Nuclear Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Die Erfindung betrifft einen Tomographen, der einen modularen und flexiblen Dreiachsentisch aufweist. Auf diesem Tisch wird ein Meßobjekt plaziert und in das Innere des Tomographen verschoben. Im Inneren des Tomographen befinden sich Detektoren, die rotationssymmetrisch und/oder rotierbar angeordnet sind. Es sind Mittel vorgesehen, die aus den mit den Detektoren gemessenen Werten ein dreidimensionales Bild rekonstruieren. Die Achse, um die die Detektoren senkrecht angeordnet sind oder um die die Detektoren rotieren, ist über einen entsprechenden Mechanismus wahlweise senkrecht oder parallel zur Oberfläche des Tisches angeordnet. Mit Hilfe des Tomographen sind besonders hoch ortsauflösende Messungen möglich, die die Qualität der Szintimammographie erheblich verbessern.

Description

B e s c h r e i b u n g
Tomograph mit hoher Ortsauflosung
Die Erfindung betrifft einen Tomographen. Ein Tomograph weist einen Tisch auf, auf den das zu messende Objekt, z.B. eine Ratte, eine Maus oder ein Mensch, plaziert wird. Der Tisch wird zusammen mit dem Objekt m das Innere des Tomographen hineingefahren.
Im Inneren sind dann Detektoren entweder um das Objekt herum angeordnet oder Detektoren umkreisen das Objekt. Die Achse, um die die Detektoren herum angeordnet sind, bzw. die von Detektoren umkreist werden, liegt dann in der Ebene der Tischoberflache.
Mit Hilfe der Detektoren werden zweidimensionale Aufnahmen aus verschiedenen Blickwinkeln gefertigt. Aus den zweidimensionalen Aufnahmen werden mit Hilfe mathematischer Verfahren dreidimensionale Bilder rekonstru- lert.
Bei einem Emzel-Photonen-Emissions-Tomographen (kurz SPECT) , zum Beispiel bekannt aus „K. Jordan, Handbuch der medizinischen Radiologie, Nuklearmedizin, Teil 1B, Meßtechnik in der Emissions-Computertomographie, Seite 149-313, A. Springer Verlag, 1980", werden einem Objekt (Mensch, Tier, Prüfkörper oder auch Phantom genannt) ein radioaktiver Tracer (Radiopharmaka) injiziert, dessen dreidimensionale Verteilung anschließend durch die Detektoren m-vivo gemessen und schließlich mittels mehr oder weniger komplexer mathematischer Verfahren (Rekonstruktionsverfahren) berechnet wird. Weitere Arten der Tomographie sind bekannt, so zum Beispiel die Röntgen-, Kernspin- oder Positronen- Emissions-Tomographie .
Einen Spezialfall des SPECT stellt die Szintimammogra- phie dar, bei der eine Patientin auf einen als Liege ausgestalteten Tisch gelegt und dieser in den Tomographen hineingefahren wird. Die Detektoren sind dann rotationssymmetrisch um den Körper der Patientin angeordnet .
Nachteilhaft bei der bekannten Szintimammograhpie ist, daß nicht nur aus der Brust der Frau stammende Strahlung von den Detektoren gemessen werden, sondern auch ein großer Anteil an Streustrahlung. Die Streustrahlung stammt insbesondere vom Herzen, von der Leber sowie vom Brustkorb (Thoraxwand) . Die Streustrahlung beeinträchtigt die Qualität der Messung und verhindert bessere Ortsauflösung.
Bei der bekannten Szintimammograhpie befinden sich ferner die Detektoren in einem relativ großen Abstand vom eigentlichen Meßobjekt, also von der Brust der Frau
(Mamma) . Der große Abstand der Detektoren führt zu weiteren Meßungenauigkeiten.
Bei einer anderen Form einer Untersuchung mit einem Einzel-Photonen-Emissions-Tomographen wird statt einer Liege für einen menschlichen Patienten ein sogenannter Dreiachsentisch vorgesehen. Mit Hilfe des Dreiachsentisches werden kleinere Objekte, wie Ratten oder Mäuse, in den Tomographen hineingefahren. Die Oberfläche des Dreiachsentisches kann in drei Dimensionen bewegt wer- den. Er wird von vorne in das Innere des Tomographen hineingeschoben, d.h. er wird von der Seite hineinge- schoben, an der sich die Steuerelemente für den Dreiachsentisch befinden.
Nachteilhaft erschwert sich bei der vorgenannten Position des Dreiachsentisches (d. h. Standort vor dem Tomographen) die exakte Ausrichtung des Objektes im Tomographen. Das Ausrichtung ist deshalb aufwendig und zeitintensiv.
Aufgabe der Erfindung ist die Schaffung eines Tomogra- phen, bei dem höhere Ortsauflösungen, insbesondere bei der Szintimammographie im Vergleich zum Stand der Technik möglich sind.
Die Aufgabe wird durch einen Tomographen mit den Merk- malen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den rückbezogenen Ansprüchen.
Der anspruchsgemäße Tomograph weist Detektoren auf, die rotationssymmetrisch um eine Achse (Rotationsachse) an- geordnet sind oder die um eine solche Achse rotieren. Die Rotationsachse verläuft im Unterschied zum Stand der Technik senkrecht zur Tischoberfläche des Tomographen. Zum Beispiel kann nun ausschließlich die Brust einer Frau entlang der Rotationsachse in der Detektor- anordnung positioniert werden. Es ist so möglich, die Detektoren sehr nahe beim eigentlichen Meßobjekt zu plazieren. Höhere Ortsauflösungen werden so im Vergleich zum Stand der Technik erzielt. In einer vorteilhaften Ausgestaltung der Erfindung ist der Tisch als horizontal angeordnete Patientenliege ausgestaltet. Die Liege weist in Brusthöhe wenigstens eine Öffnung (Loch) auf, durch die wenigstens eine weibliche Brust genau positioniert werden kann. Unterhalb des Tisches befinden sich dann die Anordnung der Detektoren. Die Rotationsachse verläuft durch das Zentrum der Öffnung.
Die Patientin legt sich bei der vorgenannten Ausgestal- tung in Bauchlage auf die Patientenliege. Die Brust reicht durch die Öffnung hindurch in die Detektoranordnung hinein. Die Detektoren werden sehr nahe an die Brust herangefahren, wobei die Brust schwerkraftbedingt in die Detektoranordnung hineinreicht. Die optimale Ausrichtung der Brust wird so auf besonders einfache Weise sichergestellt.
Genaue ortsauflösende Messungen sind bei der vorgenannten Anordnung insbesondere dann möglich, wenn nur eine Brust durch ein Loch hineinreicht. Die Detektoren kön- nen dann sehr nahe an eine einzelne Brust herangefahren werden. Entsprechend verbesserte ortsauflösende Messungen sind dann möglich.
Die Tischoberfläche schirmt ferner Strahlung ab, die vom Brustkorb oder der Leber stammt. Vorteilhaft weist die Tischoberfläche daher abschirmende Materialien wie Blei auf. Die ortsauflösende Messung wird so weiter verbessert .
Die vom Herzen stammende Strahlung verläuft bei der Szintimammographie mit dem anspruchsgemäßen Tomographen parallel zur Rotationsachse. Sie gelangt daher nicht oder nur in einem geringen Umfang in die Detektoren, da diese senkrecht zur Rotationsachse ausgerichtet sind.
Störende Strahlung aus umliegenden Körperregionen der Brust (insbesondere des Herzens, der Lunge und der Tho- raxwand) werden in einer weiter verbesserten Ausgestaltung der Erfindung zusätzlich eliminiert, indem sich vor dem oder den Detektoren Parallellochkollimatoren befinden. Es werden dann im wesentlichen nur Photonen registriert, die senkrecht zur Rotationsachse verlau- fen.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist die Detektoranordnung klappbar zum Beispiel durch ein Scharnier befestigt. Die Detektoranordnung kann um 90° Winkel zwischen zwei Stellungen hin und her geklappt werden. So ist es möglich, zwischen einer Normalstellung, die vom eingangs genannten Stand der Technik her bekannt ist, und einer Stellung für die erfindungsgemäße Szintimammographie hin und her zu klappen. Dies ermöglicht den universellen Einsatz eines Tomo- graphen für unterschiedliche Anwendungsfälle.
Die Detektoren können bei der vorgenannten Ausführungsform, wie vom Stand der Technik her bekannt, radial bewegt und so der Abstand zwischen Objekt und Detektoren minimiert werden.
In einer weiteren Ausgestaltung der Erfindung befindet sich ein Dreiachsentisch an der Hinterseite des Tomographen, also entgegengesetzt zu der Seite, an der die Steuerelemente für den Dreiachsentisch angebracht sind. Bei einer Tiermessung wird nun der Dreiachsentisch von hinten in das Innere des Tomographen hineingeschoben. Von vorne wird das Objekt, also eine Ratte oder eine Maus, auf die Tischplatte des Dreiachsentisches gelegt. Anschließend wird das Objekt mittels der Steuerelemente in die gewünschte Position gefahren. Der Dreiachsentisch stört dabei nicht die Beobachtung. Vergleichsweise schnelle und einfache Positionierungen sind so mög- lieh. Hier erweist sich die flexible und modulare Bauweise des Tomographen als besonders vorteilhaft.
Die anspruchsgemäße Vorrichtung kann insbesondere für die Einzel-Photonen-Emissions-Computer-Tomographie (SPECT) oder für die Positronen-Emissions-Tomographie (PET) verwendet werden.
Ausführungsbeispiel
Figur 1: In den Figuren la und lb ist die Rotationseinheit in Vorderansicht beziehungsweise in Seitenansicht dargestellt.
Figur la zeigt die Anordnung dreier SPECT-Detektoren, die um die Rotationsachse auf Linearantrieben positio- niert sind. Sie bewirken die radiale Bewegungsfreiheit der Detektoren.
Die Rotationseinheit ist so ausgelegt, daß sie eine flexible Anzahl von 1 bis 8 Detektoren zuläßt. Bei Verzicht der radialen Bewegungsfreiheit ist es möglich, einen Ring aus kleinen Detektoren um die Rotationsachse symmetrisch zu plazieren.
Figur lb stellt die Rotationseinheit in Seitenansicht dar. Die in ihr gezeigten Querverstrebungen sind parallel zur Rotationsachse (Horizontale im Bild) verschieb- bar, so daß Detektoren unterschiedlicher Größen integriert werden können. Diese Flexibilität ermöglicht ei- nen möglichst geringen Abstand der Detektoren vom Brustkorb der Frau bei der Szintimammographie.
Figur 2:
In der Figur 2 ist das Zentralmodul der SPECT-Mechanik wiedergegeben. Die Figur veranschaulicht das mögliche Umklappen (kippbar bis zu 90°) zwischen einer Normalstellung und der anspruchsgemäßen Stellung der Rotationsachse. Ferner kann die Höhe verstellt werden (Hub).
Figur 3:
In der Figur 3 wird ein modularer Aufbau der beschriebenen SPECT-Mechanik verdeutlicht. An das Zentralmodul aus Figur 2 wird von hinten über eine Zustelleinheit ein 3-Achsen-Tisch angebracht, der einen Meßtisch für Tier- und Prüfkörper präzise verfährt.
Die Verbindung zwischen Zentralmodul und Zustelleinheit ist so beschaffen, daß sie je nach Bedarf einfach fixiert und gelöst werden kann.
Figur 4 : Die flexible und modulare Bauweise der erfindungsgemäßen Vorrichtung kommt insbesondere der szintimammogra- phischen Aufnahmetechnik zugute, wie sie in Figur 4 skiziert ist.
Die Rotationsachse ist nun um 90° zur üblichen Aufnah- metechnik in die Vertikale gekippt. Die in Figur 3 gezeigte Zustelleinheit wurde entkoppelt und durch eine Patientenliege ersetzt. Man stellt sich die zu diagnostizierende Patientin auf der Liege in Bauchlage so vor, daß genau eine Brust durch eine Öffnung (Aussparung) im Untersuchungstisch (Patientenliege) in den Tomographen hineinragt.

Claims

P a t e n t a n s p r ü c h e
1. Tomograph
- mit einem fahrbaren Tisch, auf den das Meßobjekt plaziert wird,
- mit Detektoren, die rotationssymmetrisch oder ro- tierbar im Inneren des Tomographen angeordnet sind,
- mit Mitteln, die aus den mit den Detektoren gemessenen Werten ein dreidimensionales Bild rekonstruieren, da durch ge ke nn z e i chne t , daß - die Achse, um die die Detektoren senkrecht angeordnet sind oder um die Detektoren rotieren, im wesentlichen senkrecht zur Oberfläche des Tisches angeordnet ist.
2. Tomograph nach vorhergehendem Anspruch, bei dem der Tisch eine horizontal angeordnete Patientenliege ist, die in Brusthöhe einer Frau wenigstens eine Öffnung aufweist, durch die die Brust einer auf der Patientenliege befindlichen Frau hindurchgeschoben werden kann und bei der die Detektoren unterhalb des Tisches so angeordnet sind, daß eine durch die Öffnung hindurchgeschobene Brust das zu vermessende Objekt bildet.
3. Tomograph nach einem der vorhergehenden Ansprüche, bei dem die Detektoren mit Parallelloch-Kollimatoren versehen sind.
4. Tomograph nach einem der vorhergehenden Ansprüche, bei der die Anordnung der Detektoren klappbar befestigt ist, so daß die Anordnung der Detektoren um 90° in eine Normalstellung geklappt werden kann.
5. Tomograph nach Anspruch 1, bei der der Tisch ein Dreiachsentisch ist, der an der Hinterseite des Tomographen angeordnet ist.
PCT/DE1999/003682 1998-11-20 1999-11-18 Tomograph mit hoher ortsauflösung WO2000030537A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998153708 DE19853708A1 (de) 1998-11-20 1998-11-20 Tomograph mit hoher Ortsauflösung
DE19853708.5 1998-11-20

Publications (1)

Publication Number Publication Date
WO2000030537A1 true WO2000030537A1 (de) 2000-06-02

Family

ID=7888525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003682 WO2000030537A1 (de) 1998-11-20 1999-11-18 Tomograph mit hoher ortsauflösung

Country Status (2)

Country Link
DE (1) DE19853708A1 (de)
WO (1) WO2000030537A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157472A (en) * 1976-09-16 1979-06-05 General Electric Company X-ray body scanner for computerized tomography
US4649275A (en) * 1984-06-25 1987-03-10 Nelson Robert S High resolution breast imaging device utilizing non-ionizing radiation of narrow spectral bandwidth
EP0562585A2 (de) * 1992-03-24 1993-09-29 Jun Ikebe Stereotaktisches Röngtenstrahlentherapiesystem mit einer rechnergesteuerten tomographischen Abtastung
US5692511A (en) * 1995-06-07 1997-12-02 Grable; Richard J. Diagnostic tomographic laser imaging apparatus
WO1998023207A1 (en) * 1996-11-29 1998-06-04 Imaging Diagnostic Systems, Inc. Method for reconstructing the image of an object scanned with a laser imaging apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973126A (en) * 1975-07-31 1976-08-03 General Electric Company Mammography

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157472A (en) * 1976-09-16 1979-06-05 General Electric Company X-ray body scanner for computerized tomography
US4649275A (en) * 1984-06-25 1987-03-10 Nelson Robert S High resolution breast imaging device utilizing non-ionizing radiation of narrow spectral bandwidth
EP0562585A2 (de) * 1992-03-24 1993-09-29 Jun Ikebe Stereotaktisches Röngtenstrahlentherapiesystem mit einer rechnergesteuerten tomographischen Abtastung
US5692511A (en) * 1995-06-07 1997-12-02 Grable; Richard J. Diagnostic tomographic laser imaging apparatus
WO1998023207A1 (en) * 1996-11-29 1998-06-04 Imaging Diagnostic Systems, Inc. Method for reconstructing the image of an object scanned with a laser imaging apparatus

Also Published As

Publication number Publication date
DE19853708A1 (de) 2000-06-08

Similar Documents

Publication Publication Date Title
EP1898234B1 (de) Bildgebende medizinische Einheit
EP2168484B1 (de) Röntgengerät zur Brustuntersuchung mit einer in eine Patientenliege integrierten Gantry
DE3217478C2 (de)
EP3548876B1 (de) Dunkelfeldtensortomographieverfahren
EP1754969B1 (de) Computertomograph und Verfahren zur Untersuchung unterschiedlich großer Objekte
DE19505276A1 (de) Computertomograph
DE102011056347A1 (de) Integrierte Röntgendetektoranordnung und Verfahren zur Herstellung derselben
DE102005028411B4 (de) Kollimator für einen Strahlendetektor und Computertomographiegerät
EP2045626A2 (de) Vorrichtung für SPECT-Untersuchungen
DE102018107442A1 (de) C-Bogen-Bildgebungssystem mit mehreren unabhängigen automatisierten Drehachsen
DE102011057133A1 (de) Verfahren zur unterstützten Positionierung eines Organs an einer Plattform eines medizinischen Bildgebungssystems
DE112006003480T5 (de) Röntgen-Computertomographievorrichtung
DE102005034913A1 (de) Vorrichtung und Verfahren zur Gewinnung eines Bilddatensatzes zur Planung einer Strahlentherapie eines Patienten, Verwenden einer derartigen Vorrichtung sowie Verfahren zur Patientenpositionierung
DE10146915B4 (de) Vefahren und Bildgebungsgerät für eine 3D-Untersuchung am Patienten in aufrechter oder teilweise aufrechter Körperhaltung
DE102006027221B4 (de) Gerät zur medizinischen Bildgebung mit zwei Detektorsystemen
DE102004052911A1 (de) Röntgenstrahler mit einem Strahlergehäuse, Röntgeneinrichtung mit einem derartigen Röntgenstrahler und Computertomographiegerät mit einer derartigen Röntgeneinrichtung
DE10317132A1 (de) Kombination von Tomographie- und radiographischem Projektions-System
DE202020104200U1 (de) Gerät zur Aufnahme von Panoramaschicht-Röntgenbildern, CBCT-Volumen-Röntgenbildern und Fernröntgenbildern
WO2008046781A1 (de) Medizinisches diagnosesystem
DE202012013203U1 (de) Röntgentisch und röntgenologischer Arbeitsplatz damit
DE3715247A1 (de) Rechnergestuetztes roentgentomographiegeraet
DE102008019645A1 (de) Positronenemissionstomographie-Gerät
DE102006036571A1 (de) Medizinisches Diagnosesystem und Verfahren zur Erfassung medizinischer Bildinformationen
WO2000030537A1 (de) Tomograph mit hoher ortsauflösung
DE102004033989A1 (de) Verfahren zur Messung der dreidimensionalen Dichteverteilung in Knochen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase