WO2000030276A1 - Dispositif de radiocommunication et procede de commutation pour antenne d'emission - Google Patents

Dispositif de radiocommunication et procede de commutation pour antenne d'emission Download PDF

Info

Publication number
WO2000030276A1
WO2000030276A1 PCT/JP1999/006378 JP9906378W WO0030276A1 WO 2000030276 A1 WO2000030276 A1 WO 2000030276A1 JP 9906378 W JP9906378 W JP 9906378W WO 0030276 A1 WO0030276 A1 WO 0030276A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna switching
paths
switching operation
wireless communication
circuit
Prior art date
Application number
PCT/JP1999/006378
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Hiramatsu
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CA002317586A priority Critical patent/CA2317586A1/en
Priority to AU11807/00A priority patent/AU744923B2/en
Priority to BR9907026A priority patent/BR9907026A/pt
Priority to KR1020007007845A priority patent/KR20010034201A/ko
Priority to US09/600,329 priority patent/US6980833B1/en
Priority to EP99972389A priority patent/EP1049271A4/en
Publication of WO2000030276A1 publication Critical patent/WO2000030276A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7087Carrier synchronisation aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7113Determination of path profile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • H04B1/7117Selection, re-selection, allocation or re-allocation of paths to fingers, e.g. timing offset control of allocated fingers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70707Efficiency-related aspects

Definitions

  • the present invention relates to a radio communication apparatus and a transmission antenna switching method in a radio communication system that performs radio transmission by selection diversity.
  • space diversity has been adopted in which a base station apparatus has a plurality of antenna branches (hereinafter simply referred to as “antennas”) to secure a plurality of paths.
  • antenna branches hereinafter simply referred to as “antennas”
  • selection diversity for selecting an optimum antenna according to a propagation state.
  • transmission selection diversity a method of using selection diversity on the transmission side.
  • This method calculates the received power of a communication channel by averaging the correlation value of each branch of the uplink for the immediately preceding slot (0.625 ms), selects the antenna with the higher received power, and transmits the downlink slot (0.625 ms). How to do.
  • a transmission antenna can be selected based on the received power of the uplink.
  • FDD Frequency Division Duplex
  • Terminal equipment The transmission antenna of the base station device is selected based on the reception power at the base station.
  • a control signal of spread code A is transmitted from antenna A, and a control signal of spread code B is transmitted from antenna B.
  • the terminal device measures the received power of spread code A and the received power of spread code B, respectively, and reports a spread code having a large received power, that is, an antenna number, to the base station device.
  • the base station device selects an antenna for transmitting data to the terminal device based on the report from the terminal device.
  • RAKE combining for improving reception performance by combining received signals having different arrival times may be performed. Due to the characteristics of RAKE combining, when the number of reception paths is large, the reception characteristics on the reception side hardly improve even if the transmission antenna is switched on the transmission side. In addition, when the transmitting antenna is switched, the reception power of other terminal devices greatly changes because the reception power of the interference signal changes greatly. Therefore, in consideration of the entire system, it is desirable to minimize the necessity of switching the transmitting antenna.
  • the transmission selection diversity of the wireless communication device in the above-mentioned conventional FDD scheme has a problem that the antenna switching is performed even when the reception characteristics on the receiving side hardly improve, that is, even when the antenna switching is unnecessary. . Disclosure of the invention
  • a first object of the present invention is to provide an FDD wireless communication apparatus and a transmission antenna switching method that perform a transmission antenna switching operation only when reception quality is improved by switching transmission antennas.
  • the purpose is to measure the number of paths on the line from the delay profile of the received signal and determine whether to perform the antenna switching operation based on the measured number of paths on the line. Is achieved by BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a block diagram illustrating a configuration of a base station device according to Embodiment 1 of the present invention
  • FIG. 2 is a block diagram illustrating a configuration of a terminal device according to Embodiment 1
  • FIG. 3 is a diagram for explaining a delay profile according to the first embodiment.
  • FIG. 4 is a flowchart showing a process of the determination circuit according to the first embodiment.
  • FIG. 5 is a block diagram illustrating a configuration of a base station apparatus according to Embodiment 2
  • FIG. 6 is a block diagram illustrating a configuration of a terminal apparatus according to Embodiment 2
  • FIG. 7 is a block diagram illustrating a configuration of a base station apparatus according to Embodiment 3
  • FIG. 8 is a block diagram illustrating a configuration of a terminal apparatus according to Embodiment 3
  • FIG. 9 is a block diagram illustrating a configuration of a terminal device according to Embodiment 4
  • FIG. 10 is a flowchart illustrating processing of a determination circuit according to Embodiment 4.
  • Embodiment 1 focuses on the fact that the diversity effect by antenna switching is small because the path diversity effect by RAKE combining is obtained when the number of reception paths is large. Is measured, the necessity of antenna switching is determined based on the number of paths, information indicating the determination result is transmitted to the base station device, and the antenna switching is performed based on the determination result received by the base station device from the terminal device. This is a mode for selecting whether or not to do so.
  • FIG. 1 is a block diagram showing a configuration of a base station apparatus according to Embodiment 1 of the present invention.
  • the antenna duplexer 103 is the same for transmission and reception. It outputs a signal wirelessly received by the antenna 101 to the reception RF section 105, and outputs a transmission signal output from the transmission RF section 121 to the antenna 101.
  • antenna duplexer 104 outputs a signal wirelessly received by antenna 102 to reception RF section 106, and outputs a transmission signal output from transmission RF section 122 to antenna 102.
  • Receiving RF sections 105 and 106 amplify the received signal input from antenna duplexers 103 and 104, convert the frequency to an intermediate frequency or baseband frequency, and output them to matched filters 107 and 108, respectively.
  • Matched filters 107 and 108 perform despreading by multiplying the output signals of reception RF sections 105 and 106 by the spreading code D multiplied by the terminal device, respectively, and provide delay profile measurement circuits 109, 110 and RAKE.
  • the delay profile measurement circuits 109 and 110 measure the delay profiles of the output signals of the matched filters 107 and 108, respectively, determine the arrival time of the signal in each path and the power at the arrival time, and obtain the time information of the reception path.
  • R AK E Combination circuit 1 1 1 Output to 1.
  • the RAKE synthesis circuit 1 1 based on the time information of the reception path output from the delay profile measurement circuits 109 and 1 10, converts the signals with different arrival times output from the matched Are combined and output to the demodulation circuit 112.
  • the demodulation circuit 112 demodulates the output signal of the RAKE combining circuit 111 and outputs it to the separating circuit 113.
  • the separation circuit 113 separates the control signal from the output signal of the demodulation circuit 112 to extract the received data, and from the control signal, a switching necessity signal indicating the necessity of the antenna switching operation and an antenna indicating the transmission antenna number.
  • the selection signal is extracted and output to the antenna switching control unit 114.
  • the antenna switching control circuit 114 reads the switching necessity signal output from the separation circuit 113, and if antenna switching operation is necessary, the antenna switching operation is performed. That is, the switch 118 is switched so that a signal is transmitted from the antenna indicated by the antenna selection signal output from the separation circuit 113.
  • Modulation circuit 1 15 performs primary modulation such as PSK on the control signal A and secondary modulation by multiplying by spread code A, and outputs the result to adder 119.
  • the modulation circuit 1 16 performs a secondary modulation of multiplying the control signal B by a primary modulation process such as PSK and a spreading code B, and outputs the result to the adder 120.
  • the modulator circuit 117 performs primary modulation processing such as PSK on the transmission data and secondary modulation by multiplying the spread code A, and outputs the result to the switch 118.
  • the switch 118 outputs the output signal of the modulation circuit 117 to either the adder 119 or the adder 120 under the control of the antenna switching control circuit 114.
  • the adders 1 1 9 and 1 2 0 multiplex the input signals and output the multiplexed signals to the transmission RF sections 1 2 1 and 1 2, respectively.
  • the transmission RF circuit 121 performs processing such as quadrature modulation, frequency conversion, and amplification on the output signal of the adder 119, and wirelessly transmits the signal from the antenna 101 through the antenna duplexer 103.
  • the transmission RF circuit 122 performs processing such as orthogonal modulation, frequency conversion, and amplification on the output signal of the adder 120, and wirelessly transmits the signal from the antenna 102 through the antenna duplexer 104. .
  • FIG. 2 is a block diagram showing a configuration of the terminal device according to Embodiment 1 of the present invention.
  • the antenna duplexer 202 is for using the same antenna for transmission and reception, and outputs a signal wirelessly received by the antenna 201 to the reception RF unit 203. Then, the transmission signal output from the transmission RF section 216 is output to the antenna 201.
  • the reception RF section 203 amplifies the reception signal input from the antenna duplexer 202, converts the frequency to an intermediate frequency or baseband frequency, and outputs it to the matched filters 204, 205, and 206. I do.
  • the matched filter 204 multiplies the output signal of the reception RF section 203 by the spreading code A. By performing the above calculation, despreading is performed and output to the power measurement circuit 210. Similarly, matched filter 205 performs despreading by multiplying the output signal of reception RF section 203 by spreading code B, and outputs the result to power measurement circuit 211.
  • the matched filter 206 performs despreading by multiplying the output signal of the reception RF section 203 by the spreading code C, and outputs the result to the delay profile measurement circuit 207 and the rake synthesis circuit 208.
  • the delay profile measurement circuit 207 measures the delay profile of the output signal of the matched filter 206, finds the arrival time of each path and the power at the arrival time, and combines the time information of the reception path with RAKE synthesis. Output to circuit 208 and decision circuit 213. When transmitting data in bursts, measure the delay profile of the control signal. In this case, delay profile measurement is performed from the output of matched fill layer 204 or matched fill layer 205.
  • the RAKE combining circuit 208 calculates the time of each signal having a different arrival time output from the matched filter 206 based on the reception path time information output from the delay profile measurement circuit 207. In addition, by combining these signals, the demodulation circuit 209 demodulates the output signal of the RAKE combining circuit 209 and extracts the received data.
  • the power measurement circuit 210 measures the output power of the matched filter 204 and outputs the measurement result to the comparison circuit 212. Similarly, the power measurement circuit 211 measures the output power of the matched filter 205 and outputs the measurement result to the comparison circuit 212.
  • the comparison circuit 211 compares the power measured by the power measurement circuit 210 and the power measured by the power measurement circuit 211, and selects the larger spreading code, that is, the antenna indicating the antenna number of the base station apparatus. A signal is generated and output to the multiplexing circuit 214.
  • the decision circuit 2 13 measures the number of paths from the time information of the reception path, and based on the number of paths, the necessity of the antenna switching operation, that is, the reception quality may be improved by switching the antenna.
  • a switching necessity signal indicating whether or not the signal is generated is generated and output to the multiplexing circuit 214.
  • the multiplexing circuit 214 multiplexes on the transmission data the switching necessity signal output from the determination circuit 213 and the antenna selection signal output from the comparison circuit 212 on a frame format, and outputs the multiplexed signal to the modulation circuit 215.
  • the modulation circuit 215 performs a primary modulation process such as PSK and a secondary modulation by multiplying the output signal of the multiplexing circuit 214 by a spreading code D, and outputs the result to the transmission RF unit 216.
  • the transmission RF circuit 216 performs processes such as quadrature modulation, frequency conversion, and amplification on the output signal of the modulation circuit 215, and wirelessly transmits the signal from the antenna 201 through the antenna duplexer 202.
  • the measurement process of the delay profile in the delay profile measurement circuits 109 and 110 in FIG. 1 and the delay profile measurement circuit 207 in FIG. 2 will be described in detail with reference to a diagram showing an example of the delay profile in FIG. In Fig. 3, the horizontal axis is time, and the vertical axis is power.
  • FIG. 3 shows that a direct wave signal with power ⁇ ⁇ arrives at time t0, and a delayed wave signal with powers p i, p 2, and p 3 arrives at times t l, t 2, and t 3, respectively.
  • the delay profile measuring circuits 109 and 110 and the delay profile measuring circuit 2007 measure the delay profile as shown in FIG. 3 and obtain the number of paths whose power is higher than a preset threshold value and the arrival time of each path. In the case of FIG. 3, the power of the received signal at time t0 and time t1 is larger than the threshold, so that the number of paths is obtained as “2”.
  • the determination process of the determination circuit 213 in the first embodiment will be described with reference to the flowchart of FIG.
  • a switching necessity signal carrying information indicating that an antenna switching operation is required is generated (ST12). If the number of paths is greater than or equal to the threshold, a switching necessity signal is generated that carries information indicating that the antenna switching operation is unnecessary. (ST 13).
  • the determination circuit 213 generates a switching necessity signal carrying information indicating that the antenna switching operation is required, and outputs the signal to the multiplexing circuit 214.
  • the switching necessity signal and the antenna selection signal are multiplexed on a frame format by a multiplexing circuit 214, and a primary circuit such as PSK is multiplexed by a modulation circuit 215.
  • the secondary modulation is performed by multiplying the modulation process and the spreading code D.
  • the output signal of the modulation circuit 215 is subjected to processing such as quadrature modulation, frequency conversion, and amplification in the transmission RF circuit 216, and is wirelessly transmitted from the antenna 201 through the antenna duplexer 202.
  • a signal wirelessly transmitted from antenna 201 of the terminal device is received by antenna 101 and antenna 102 of the base station device.
  • the signal received by antenna 101 is input to receiving RF circuit 105 through antenna duplexer 103, amplified by receiving RF circuit 105, and frequency-converted to intermediate frequency or baseband frequency. Is done.
  • the output signal of the reception RF circuit 105 is despread by the spreading code D in the matched filter 107 and output to the delay profile measurement circuit 109 and the RAKE combining circuit 111.
  • the delay profile measurement circuit 109 measures the delay profile of the output signal of the matched filter 107, calculates the arrival time of each reception path and the power at each arrival time, and calculates the time information of the reception path as R AK Output to E-combining circuit 1 1 1.
  • the signal received by the antenna 102 is input to the reception RF circuit 106 through the antenna duplexer 104, amplified by the reception RF circuit 106, The frequency is converted to a frequency or a baseband frequency.
  • the output signal of the receiving RF circuit 106 is despread by the spreading code D at the matched filter 108 and output to the delay profile measuring circuit 110 and the RAKE combining circuit 111.
  • the delay profile measurement circuit 110 measures the delay profile of the output signal of the matched filter 108, calculates the arrival time of each reception path and the power at each arrival time, and obtains the time information of the reception path by RAKE. Output to the synthesis circuit 1 1 1.
  • the RAKE combining circuit 1 1 1 combines the signals having different arrival times, and the combined signal is demodulated by the demodulation circuit 1 1 2, and the switching circuit 1 1 3 switching necessity signal and antenna selection signal And the received data is extracted.
  • the separated switching necessity signal and antenna selection signal are output to the antenna switching control circuit 114, and the antenna switching control circuit 114 determines whether or not to perform antenna switching based on the switching necessity signal When the antenna switching is performed, the switch 118 is switched based on the antenna selection signal.
  • the control signal A transmitted from the base station apparatus is subjected to primary modulation processing such as PSK in a modulation circuit 115, and further to secondary modulation processing of spreading processing using a spreading code A, and an adder 111 Output to 9
  • a control signal B transmitted from the base station apparatus is subjected to primary modulation processing such as PSK in a modulation circuit 116, and further subjected to secondary modulation processing of spreading processing using a spreading code B, and added.
  • Downlink transmission data transmitted from the base station apparatus is subjected to primary modulation processing such as PSK in a modulation circuit 117, and further to secondary modulation processing of spreading processing using a spreading code C, and a switch 1
  • the signal is output to the adder 119 or the adder 120 through 18 and multiplexed with the control signal A or the control signal B.
  • the output signal of the adder 1 19 is subjected to processing such as quadrature modulation, frequency conversion, and amplification in the transmission RF circuit 121, and then passed through the antenna duplexer 103. It is transmitted wirelessly from 101.
  • the output signal of the adder 120 is subjected to processing such as quadrature modulation, frequency conversion, and amplification in the transmission RF circuit 122, and then transmitted wirelessly from the antenna 102 through the antenna duplexer 104.
  • Signals wirelessly transmitted from antenna 101 and antenna 102 of the base station apparatus are received by antenna 201 of the terminal apparatus.
  • the signal received by antenna 201 is input to reception RF circuit 203 through antenna duplexer 202, amplified by reception RF circuit 203, and frequency-converted to intermediate frequency or baseband frequency Input to the matched filters 204, 205, 206.
  • the signal input to the matched filter 206 is subjected to despreading processing by the spread code C in the matched filter 206, and the delay profile measurement circuit 206 and R A K
  • the delay profile measurement circuit 207 measures the delay profile of the output signal of the matched filter 206, determines the arrival time of each reception path and the power at each arrival time, and obtains the time information of the reception path RAK E This is output to the synthesis circuit 208 and the judgment circuit 213.
  • the R AKE combining circuit 208 combines the signals having different arrival times based on the time information of the reception path, and the combined signal is demodulated by the demodulation circuit 209 to extract the received data.
  • the decision circuit 213 measures the number of paths from the time information of the reception path, generates a switching necessity signal based on the measured number of paths, and outputs the signal to the multiplexing circuit 214.
  • the signal input to the matched filter 204 is subjected to despreading processing with the spreading code A in the matched filter 204, the power is measured in the power measurement circuit 210, and the measurement result is compared with the comparison circuit.
  • the signal input to the matched filter 205 is subjected to despreading processing with the spreading code B in the matched filter 205, the power is measured in the power measurement circuit 211, and the measurement result is obtained.
  • the comparison circuit 211 the power measured by the power measurement circuit 210 and the power measured by the power measurement circuit 211 are compared, and the larger spreading code, that is, the antenna selection signal indicating the antenna number of the base station apparatus is obtained. It is generated and output to the multiplexing circuit 214.
  • the number of reception paths is small, by selecting a propagation path and performing antenna switching, reception performance can be improved.
  • the number of reception paths is large, a path diversity effect by RAKE combining can be obtained.By controlling so that antenna switching is not performed, abrupt changes in interference power with respect to the other terminal due to antenna switching can be avoided. As a result, the deterioration of the reception quality of other terminal devices can be suppressed.
  • the terminal device measures the number of reception paths from the received signal, transmits information indicating the number of paths to the base station device, and switches the antenna based on the number of paths received by the base station device from the terminal device. In this embodiment, it is determined whether or not antenna switching is necessary, and whether to perform antenna switching is selected based on the determination result.
  • FIG. 5 is a block diagram showing a configuration of a base station apparatus according to Embodiment 2 of the present invention.
  • the base station apparatus shown in FIG. 5 employs a configuration in which a determination circuit 301 is added to the base station apparatus shown in FIG.
  • a determination circuit 301 is added to the base station apparatus shown in FIG.
  • components having the same operations as those of the base station apparatus shown in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and description thereof is omitted.
  • the separation circuit 113 separates the control signal from the output signal of the demodulation circuit 112, extracts the received data, extracts the reception path time information and antenna selection signal from the control signal, and determines the reception path time information. Output to the circuit 301 and output the antenna selection signal to the antenna switching control circuit 114.
  • the decision circuit 301 measures the number of paths from the time information of the reception path output from the separation circuit 113, generates a switching necessity signal based on the number of paths, and outputs the signal to the antenna switching control circuit 114. I do.
  • the antenna switching control circuit 114 reads the switching necessity signal output from the determination circuit 301, and if the antenna switching operation is necessary, indicates the antenna selection signal output from the separation circuit 113.
  • the switch 1 18 is switched so that a signal is transmitted from the selected antenna.
  • FIG. 6 is a block diagram showing a configuration of a terminal device according to Embodiment 2 of the present invention.
  • the terminal device shown in FIG. 6 adopts a configuration in which the determination circuit 213 is deleted from the terminal device shown in FIG.
  • components having the same operations as those of the base station apparatus shown in FIG. 2 are denoted by the same reference numerals as in FIG. 2, and description thereof is omitted.
  • the delay profile measurement circuit 207 measures the delay profile of the output signal of the matched filter 206, finds the arrival time of each path and the power at that arrival time, and uses the time information of the reception path as a RAKE combining circuit. Output to 208 and multiplexing circuit 214.
  • the multiplexing circuit 214 multiplexes the reception path time information output from the delay profile measurement circuit 207 and the antenna selection signal output from the comparison circuit 212 on the frame format in the transmission data. Output to the modulation circuit 215.
  • the base station device determines whether or not to perform antenna switching based on the number of reception paths measured by the terminal device, thereby reducing the size of the hardware or software of the terminal device. Accordingly, the terminal device can be reduced in size and power consumption can be reduced.
  • FIG. 7 is a block diagram showing a configuration of a base station apparatus according to Embodiment 3 of the present invention. is there.
  • the base station apparatus shown in FIG. 7 employs a configuration in which a determination circuit 401 is added to the base station apparatus shown in FIG.
  • components having the same operations as those of the base station apparatus shown in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and description thereof will be omitted.
  • the delay profile measuring circuits 109 and 110 measure the delay profiles of the output signals of the matched filters 107 and 108, respectively, and determine the arrival time of the signal in each path and the power at the arrival time, The time information of the reception path is output to the RAKE combining circuit 111 and the judging circuit 401.
  • the decision circuit 410 measures the number of paths from the time information of the reception paths output from the delay profile measurement circuits 109 and 110, generates a switching necessity signal based on the number of paths, and controls antenna switching. Output to circuit 1 1 4.
  • the antenna switching control circuit 111 reads the switching necessity signal output from the determination circuit 401 and, when antenna switching operation is required, indicates the antenna selection signal output from the separation circuit 113.
  • the switch 1 18 is switched so that a signal is transmitted from the selected antenna.
  • FIG. 8 is a block diagram showing a configuration of a terminal device according to Embodiment 3 of the present invention.
  • the terminal device shown in FIG. 8 employs a configuration in which the determination circuit 213 is deleted from the terminal device shown in FIG. Note that, in the base station device shown in FIG. 8, components having the same operations as those of the base station device shown in FIG. 2 are denoted by the same reference numerals as in FIG. 2, and description thereof is omitted.
  • the delay profile measurement circuit 207 measures the delay profile of the output signal of the matched filter 206, finds the arrival time of each path and the power at that arrival time, and uses the time information of the reception path as a RAKE combining circuit. Output to 208.
  • the multiplexing circuit 214 multiplexes, on a frame format, the antenna selection signal output from the comparison circuit 212 in the transmission data, and outputs the multiplexed signal to the modulation circuit 215.
  • the base station measures the number of reception paths and determines whether or not to perform antenna switching.
  • the scale can be reduced, and the terminal device can be reduced in size and power consumption can be reduced.
  • Embodiment 4 focuses on the fact that, when the Doppler frequency is high, the effect of transmission diversity is small because the reception signal is continuously dropped and the delay time is short.
  • One frequency is measured, information indicating the number of paths and the Doppler frequency is transmitted to the base station apparatus, and the base station apparatus determines whether antenna switching is necessary based on the number of paths and the Doppler frequency received from the terminal apparatus, and makes a determination. This is a mode for selecting whether or not to perform antenna switching based on the result.
  • FIG. 9 is a block diagram showing a configuration of a terminal device according to Embodiment 4.
  • the terminal device shown in FIG. 9 employs a configuration in which a Dobler frequency measurement circuit 501 is added to the terminal device shown in FIG.
  • components having the same operations as those of the base station apparatus shown in FIG. 2 are denoted by the same reference numerals as in FIG. 2, and description thereof will be omitted.
  • the matched filter 206 performs despreading by multiplying the output signal of the reception RF section 203 by a spreading code C, and outputs a delay profile measurement circuit 207, a RAKE combining circuit 208 and a Doppler frequency measurement circuit. Output to 501.
  • the Doppler frequency measurement circuit 501 measures the Doppler frequency of the output signal of the matched filter 206, and outputs the measurement result to the judgment circuit 211.
  • the Doppler frequency measurement method has already been proposed in the literature such as "Basics of Mobile Communication (IEICE, published on October 1, 1986)".
  • the decision circuit 2 13 measures the number of paths from the time information of the reception path output from the delay profile measurement circuit 2 07, and determines the number of paths and the Doppler frequency measured by the Doppler frequency measurement circuit 501. Generates a switching necessity signal based on the Output to 2 1 4
  • the delay profile measurement circuit 207 determines whether or not the number of paths input from the delay profile measurement circuit 207 is smaller than a preset threshold 1 (ST 21). Then, when the number of paths is smaller than the threshold value 1, it is determined whether or not the Doppler frequency input from the Doppler frequency measuring circuit 501 is smaller than a preset threshold value 2 (ST22). If the Doppler frequency is smaller than the threshold value 2 set in advance, a switching necessity signal indicating that an antenna switching operation is necessary is generated (ST 23).
  • a switching necessity signal indicating that the antenna switching operation is unnecessary is generated (ST 24 ).
  • the reception performance can be improved by selecting a propagation path and performing antenna switching.
  • the number of reception paths is large, or when the frequency offset is large, a path diversity effect by RAKE combining can be obtained.
  • By controlling so as not to perform antenna switching interference with other terminal devices due to antenna switching is achieved. A sharp change in power is eliminated, and deterioration of the reception quality of other terminal devices can be suppressed.
  • Embodiment 4 can also be combined with Embodiment 2 or Embodiment 3. That is, measurement of the number of paths and measurement of the Doppler frequency are performed by the terminal device, and the necessity of antenna switching is determined by the base station apparatus. Measurement of the number of paths, measurement of the Doppler frequency and the necessity of antenna switching are performed. The judgment must be performed by the base station device, the number of paths must be measured by the terminal device, and the Doppler frequency measurement and antenna The switching necessity determination can be performed by the base station device, and the Doppler frequency can be measured by the terminal device to measure the number of paths and the antenna switching necessity determination can be performed by the base station device.
  • antenna switching can be performed starting from the point in time when reception quality deteriorates, and further, the effect of improving antenna performance due to antenna switching is small. In this case, it is possible to stop the antenna switching operation and eliminate a change in the amount of interference with other terminal devices.

Description

明 細 書 無線通信装置及び送信ァンテナ切替方法 技術分野
本発明は、 選択ダイバーシチにより無線送信を行う無線通信システムにおけ る無線通信装置及び送信アンテナ切替方法に関する。 背景技術
近年、無線通信システムにおいて、基地局装置に複数のアンテナブランチ(以 下、 単に 「アンテナ」 という) を備えて複数のパスを確保するスペースダイバ 一シチが採用されている。 スペースダイバ一シチの 1つとして、 伝搬状態に応 じて最適なアンテナを選択する選択ダイバーシチがある。 以下、 選択ダイバー シチを送信側に用いる方法を送信選択ダイバ一シチという。
T D D (Time Division Duplex) 方式の無線通信装置における送信選択ダ ィバーシチは、 文献"次世代\ -じ01^ /丁0 0システムの伝送特性(電子情 報通信学会 信学技報 SSE97-41 RCS97-36(1997-06))"等に既に開示されてい る。
この方法は、 上り回線の各ブランチの相関値を直前のスロット (0.625ms) 分平均して通信チャネルの受信電力を求め、 受信電力の大きいアンテナを選択 して下り回線スロット (0.625ms) の送信を行う方法である。
このように、 上り回線及び下り回線とも同じ周波数を利用する T D D方式の 場合、 上り回線の受信電力に基づいて送信アンテナを選択することができる。 これに対し、 上り回線と下り回線とで異なる周波数を利用する F D D (Frequency Division Duplex) 方式では、 上り回線の受信電力に基づいて送 信アンテナを選択することができないので、 1スロット前の制御信号の端末装 置における受信電力に基づいて、 基地局装置の送信アンテナを選択している。 以下、 従来の F D D方式の無線通信装置における送信選択ダイバーシチにつ いて、 C D MA方式の場合を例に説明する。
まず、基地局装置において、 アンテナ Aから拡散符号 Aの制御信号を送信し、 アンテナ Bから拡散符号 Bの制御信号を送信する。 そして、 端末装置では、 拡 散符号 Aの受信電力と拡散符号 Bの受信電力とをそれぞれ測定し、 この受信電 力の大きい拡散符号、 即ち、 アンテナ番号を基地局装置に報告する。 基地局装 置は、 端末装置からの報告に基づいて、 端末装置に対するデータを送信するァ ンテナを選択する。
ここで、 C D MAなどの遅延波に対する分解能が高い通信方式では、 到達時 間の異なる受信信号を合成することにより受信性能を向上させる R A K E合成 を行う場合がある。 R A K E合成の特性により、 受信パス数が多いときには送 信側で送信アンテナを切替えても受信側の受信特性はほとんど向上しない。 ま た、 送信アンテナを切替えると、 他の端末装置では、 干渉信号の受信電力が大 きく変化するので受信品質が悪くなる。 よって、 システム全体を考慮すると、 送信アンテナの切替の実施を必要最小限に抑えるのが望ましい。
しかし、 上記従来の F D D方式における無線通信装置の送信選択ダイバーシ チは、 受信側の受信特性がほとんど向上しない場合、 すなわち、 アンテナ切替 が不要な場合でもアンテナの切替を実施してしまうという問題を有する。 発明の開示
本発明の第 1目的は、 送信アンテナを切替ることによって受信品質が改善さ れる場合のみ送信アンテナ切替動作を実施する F D D方式の無線通信装置及び 送信ァンテナ切替方法を提供することである。
この目的は、 受信信号の遅延プロファイルから回線のパス数を測定し、 測定 した回線のパス数に基づいてアンテナ切替動作を実施するか否かを決定するこ とにより達成される。 図面の簡単な説明
図 1は、 本発明の実施の形態 1に係る基地局装置の構成を示すプロック図、 図 2は、 実施の形態 1に係る端末装置の構成を示すブロック図、
図 3は、 実施の形態 1に係る遅延プロファイルを説明するための図、 図 4は、 実施の形態 1に係る判定回路の処理を示すフロー図、
図 5は、 実施の形態 2に係る基地局装置の構成を示すプロック図、 図 6は、 実施の形態 2に係る端末装置の構成を示すプロック図、
図 7は、 実施の形態 3に係る基地局装置の構成を示すブロック図、 図 8は、 実施の形態 3に係る端末装置の構成を示すプロック図、
図 9は、 実施の形態 4に係る端末装置の構成を示すブロック図、 及び、 図 1 0は、 実施の形態 4に係る判定回路の処理を示すフロー図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 添付図面を参照して詳細に説明する。 (実施の形態 1 )
実施の形態 1は、 受信パス数が多い場合は R AK E合成によるパスダイバー シチ効果が得られるために、 ァンテナ切替によるダイバーシチ効果は小さいこ とに着目し、 端末装置が受信信号から受信パス数を測定し、 パス数に基づいて アンテナ切替の要否を判定し、 判定結果を表す情報を基地局装置に送信し、 基 地局装置が端末装置から受信した判定結果に基づいてアンテナ切替を実施する か否かを選択する形態である。
図 1は、 本発明の実施の形態 1に係る基地局装置の構成を示すブロック図で ある。
図 1の基地局装置において、 アンテナ共用器 1 0 3は、 送信と受信とで同一 のアンテナを用いるためのものであり、 アンテナ 101に無線受信された信号 を受信 RF部 105に出力し、 送信 RF部 121から出力された送信信号をァ ンテナ 101に出力する。 同様に、 アンテナ共用器 104は、 アンテナ 102 に無線受信された信号を受信 RF部 106に出力し、 送信 RF部 122から出 力された送信信号をアンテナ 102に出力する。
受信 RF部 105、 106は、 それぞれアンテナ共用器 103、 104から 入力した受信信号を増幅し、 中間周波数又はベースバンド周波数に周波数変換 して、 それぞれマッチドフィル夕 107、 108に出力する。 マッチドフィル 夕 107、 108は、 それぞれ受信 RF部 105、 106の出力信号に端末装 置で乗算された拡散符号 Dを乗算することによって逆拡散を行い、 遅延プロフ アイル測定回路 109、 1 10及び RAKE合成回路 1 1 1に出力する。 遅延プロフアイル測定回路 109、 1 10は、 それぞれマツチドフィル夕 1 07、 108の出力信号の遅延プロファイルを測定し、 各パスにおける信号の 到達時刻とその到達時刻における電力を求め、 受信パスの時間情報を R AK E 合成回路 1 1 1に出力する。
RAKE合成回路 1 1 1は、 遅延プロファイル測定回路 109、 1 10のか ら出力された受信パスの時間情報に基づいて、 マッチドフィル夕 107、 10 8から出力された到達時間の異なる各信号を、 時間を合わせて合成し、 復調回 路 1 12に出力する。 復調回路 112は、 RAKE合成回路 1 1 1の出力信号 を復調し、 分離回路 1 13に出力する。
分離回路 1 13は、 復調回路 1 12の出力信号から制御信号を分離して受信 デー夕を抽出し、 制御信号からァンテナ切替動作の要否を示す切替要否信号お よび送信ァンテナ番号を示すァンテナ選択信号を取り出してァンテナ切替制御 部 1 14に出力する。
アンテナ切替制御回路 1 14は、 分離回路 1 13から出力された切替要否信 号を読取り、 アンテナ切替動作が必要である場合、 アンテナ切替動作、 すなわ ち、 分離回路 1 1 3から出力されたアンテナ選択信号に示されたアンテナから 信号を送信するように切替器 1 1 8の切替を行う。
変調回路 1 1 5は、 制御信号 Aに対して P S Kなどの一次変調処理と拡散符 号 Aを乗算する二次変調を行い、加算器 1 1 9に出力する。変調回路 1 1 6は、 制御信号 Bに対して P S Kなどの一次変調処理と拡散符号 Bを乗算する二次変 調を行い、 加算器 1 2 0に出力する。 変調回路 1 1 7は、 送信デ一夕に対して P S Kなどの一次変調処理と拡散符号 Aを乗算する二次変調を行い、 切替器 1 1 8に出力する。
切替器 1 1 8は、 アンテナ切替制御回路 1 1 4の制御により、 変調回路 1 1 7の出力信号を加算器 1 1 9または加算器 1 2 0のいずれかに出力する。 加算 器 1 1 9、 1 2 0は、 入力した信号を多重して、 それぞれ送信 R F部 1 2 1 、 1 2 2に出力する。
送信 R F回路 1 2 1は、 加算器 1 1 9の出力信号に対して直交変調、 周波数 変換、 増幅などの処理を行い、 アンテナ共用器 1 0 3を通じてアンテナ 1 0 1 から無線送信する。 同様に、 送信 R F回路 1 2 2は、 加算器 1 2 0の出力信号 に対して直交変調、 周波数変換、 増幅などの処理を行い、 アンテナ共用器 1 0 4を通じてアンテナ 1 0 2から無線送信する。
図 2は、 本発明の実施の形態 1に係る端末装置の構成を示すブロック図であ る。
図 2の端末装置において、 アンテナ共用器 2 0 2は、 送信と受信とで同一の アンテナを用いるためのものであり、 アンテナ 2 0 1に無線受信された信号を 受信 R F部 2 0 3に出力し、 送信 R F部 2 1 6から出力された送信信号をアン テナ 2 0 1に出力する。 受信 R F部 2 0 3は、 アンテナ共用器 2 0 2から入力 した受信信号を増幅し、中間周波数又はベースバンド周波数に周波数変換して、 マッチドフィルタ 2 0 4、 2 0 5、 2 0 6に出力する。
マッチドフィルタ 2 0 4は、 受信 R F部 2 0 3の出力信号に拡散符号 Aを乗 算することによって逆拡散を行い、 電力測定回路 2 1 0に出力する。 同様に、 マッチドフィルタ 2 0 5は、 受信 R F部 2 0 3の出力信号に拡散符号 Bを乗算 することによって逆拡散を行い、 電力測定回路 2 1 1に出力する。
マッチドフィルタ 2 0 6は、 受信 R F部 2 0 3の出力信号に拡散符号 Cを乗 算することによって逆拡散を行い、 遅延プロファイル測定回路 2 0 7及び R A K E合成回路 2 0 8に出力する。
遅延プロファイル測定回路 2 0 7は、 マッチドフィル夕 2 0 6の出力信号の 遅延プロフアイルを測定し、 各パスの到達時刻とその到達時刻における電力を 求め、 受信パスの時間情報を R AK E合成回路 2 0 8及び判定回路 2 1 3に出 力する。 なお、 データをバースト的に送信する場合は、 制御信号に対して遅延 プロファイル測定を行う。 この場合、 マッチドフィル夕 2 0 4またはマッチド フィル夕 2 0 5の出力から遅延プロファイル測定を行う。
R AK E合成回路 2 0 8は、 遅延プロファイル測定回路 2 0 7から出力され た受信パスの時間情報に基づいて、 マッチドフィル夕 2 0 6から出力された到 達時間の異なる各信号の時間を合わせ、 これらの信号を合成して復調回路 2 0 9は、 R AK E合成回路 2 0 8の出力信号を復調して受信デ一夕を抽出する。 電力測定回路 2 1 0は、 マッチドフィル夕 2 0 4の出力電力を測定し、 測定 結果を比較回路 2 1 2に出力する。 同様に、 電力測定回路 2 1 1はマッチドフ ィル夕 2 0 5の出力電力を測定し、 測定結果を比較回路 2 1 2に出力する。 比 較回路 2 1 2は、 電力測定回路 2 1 0及び電力測定回路 2 1 1で測定された電 力を比較し、 大きい方の拡散符号、 即ち、 基地局装置のアンテナ番号を示すァ ンテナ選択信号を生成し、 多重回路 2 1 4に出力する。
判定回路 2 1 3は、 受信パスの時間情報からパス数を測定し、 パス数に基づ いて、 アンテナ切替動作の要否、 すなわち、 アンテナを切替えることにより受 信品質が向上する可能性があるか否かを示す切替要否信号を生成し、 多重回路 2 1 4に出力する。 多重回路 214は、 送信データに判定回路 213から出力された切替要否信 号と比較回路 212から出力されたアンテナ選択信号とをフレームフォーマツ ト上に多重化し、 変調回路 215に出力する。 変調回路 215は、 多重回路 2 14の出力信号に対して P SKなどの一次変調処理と拡散符号 Dを乗算する二 次変調を行い、 送信 RF部 216に出力する。 送信 RF回路 216は、 変調回 路 215の出力信号に対して直交変調、 周波数変換、 増幅などの処理を行い、 アンテナ共用器 202を通じてアンテナ 201から無線送信する。
次に、 図 1の遅延プロファイル測定回路 109、 1 10及び図 2の遅延プロ ファイル測定回路 207における遅延プロファイルの測定処理について、 図 3 の遅延プロファイルの一例を示す図を用いて詳細に説明する。 図 3において、 横軸が時間であり、 縦軸が電力である。
無線通信では、 送信した信号が受信側に直接届く直接波の他に、 山やビル等 に反射した後に届く遅延波が存在する。 図 3では、 時刻 t 0に電力 ρ θの直接 波信号が届き、 時刻 t l、 t 2、 t 3にそれぞれ電力 p i、 p 2、 p 3の遅延 波信号が届くことを示している。
遅延プロフアイル測定回路 109、 1 10及び遅延プロフアイル測定回路 2 07は、 図 3のような遅延プロファイルを測定し、 電力が予め設定された閾値 より高いパス数及び各パスの到達時刻を求める。 図 3の場合、 時刻 t 0と時刻 t 1の受信信号の電力が閾値よりも大きいので、 パス数は「2」 と求められる。 次に、 実施の形態 1における判定回路 213の判定処理について、 図 4のフ ロー図を用いて説明する。
まず、 遅延プロファイル測定回路 207から入力したパス数が予め設定され た閾値よりも小さいか否かを判定する (ST1 1) 。 そして、 パス数が閾値よ りも小さい場合、 アンテナ切替動作が必要である旨の情報を載せた切替要否信 号を生成する (ST12) 。 また、 パス数が閾値よりも大きいまたは等しい場 合、 アンテナ切替動作が不要である旨の情報を載せた切替要否信号を生成する ( S T 1 3 ) 。
例えば、 予め設定された閾値が 「3」 であり、 遅延プロファイル測定回路 2 0 7にて図 3に示す遅延プロファイルが測定された場合、 判定回路 2 1 3に入 力されるパス数は 「2」 であり、 閾値 「3」 より小さい。 よって、 判定回路 2 1 3は、 アンテナ切替動作が必要である旨の情報を載せた切替要否信号を生成 し多重回路 2 1 4に出力する。
次に、 実施の形態 1の無線通信システムにおける上り回線の信号の流れにつ いて説明する。
端末装置からの送信デ—夕は、 多重回路 2 1 4にて、 フレームフォーマツ卜 上に切替要否信号とアンテナ選択信号とが多重化され、 変調回路 2 1 5にて、 P S Kなどの一次変調処理と拡散符号 Dを乗算する二次変調が行われる。 変調 回路 2 1 5の出力信号は、 送信 R F回路 2 1 6にて、 直交変調、 周波数変換、 増幅などの処理がなされ、 アンテナ共用器 2 0 2を通じてアンテナ 2 0 1から 無線送信される。
端末装置のアンテナ 2 0 1から無線送信された信号は、 基地局装置のアンテ ナ 1 0 1及びアンテナ 1 0 2に受信される。
アンテナ 1 0 1に受信された信号は、 アンテナ共用器 1 0 3を通じて受信 R F回路 1 0 5に入力され、 受信 R F回路 1 0 5にて、 増幅され、 中間周波数又 はベースバンド周波数に周波数変換される。受信 R F回路 1 0 5の出力信号は、 マッチドフィル夕 1 0 7にて拡散符号 Dで逆拡散され、 遅延プロファイル測定 回路 1 0 9及び R AK E合成回路 1 1 1に出力される。 遅延プロファイル測定 回路 1 0 9では、 マッチドフィルタ 1 0 7の出力信号の遅延プロファイルが測 定され、各受信パスの到達時刻とそれぞれの到達時刻における電力が求められ、 受信パスの時間情報が R AK E合成回路 1 1 1に出力される。
同様に、 アンテナ 1 0 2で受信された信号は、 アンテナ共用器 1 0 4を通じ て受信 R F回路 1 0 6に入力され、 受信 R F回路 1 0 6にて、 増幅され、 中間 周波数又はべ一スバンド周波数に周波数変換される。 受信 R F回路 1 0 6の出 力信号は、 マッチドフィル夕 1 0 8にて拡散符号 Dで逆拡散され、 遅延プロフ アイル測定回路 1 1 0及び R A K E合成回路 1 1 1に出力される。 遅延プロフ アイル測定回路 1 1 0では、 マッチドフィルタ 1 0 8の出力信号の遅延プロフ アイルが測定され、 各受信パスの到達時刻とそれぞれの到達時刻における電力 が求められ、 受信パスの時間情報が R A K E合成回路 1 1 1に出力される。
R A K E合成回路 1 1 1では、 到達時間の異なる各信号が合成され、 合成さ れた信号は、 復調回路 1 1 2にて復調され、 分離回路 1 1 3にて切替要否信号 およびアンテナ選択信号を分離され、 受信デ一夕が抽出される。
分離された切替要否信号およびアンテナ選択信号は、 アンテナ切替制御回路 1 1 4に出力され、 アンテナ切替制御回路 1 1 4では、 切替要否信号に基づい てアンテナ切替を実施するか否かが判定され、 アンテナ切替を実施する場合、 アンテナ選択信号に基づいて、 切替器 1 1 8が切替えられる。
次に、 実施の形態 1の無線通信システムにおける下り回線の信号の流れにつ いて説明する。
基地局装置から送信される制御信号 Aは、 変調回路 1 1 5にて、 P S Kなど の一次変調処理され、 さらに、 拡散符号 Aを用いた拡散処理の二次変調処理さ れ、 加算器 1 1 9に出力される。 同様に、 基地局装置から送信される制御信号 Bは、 変調回路 1 1 6にて、 P S Kなどの一次変調処理され、 さらに、 拡散符 号 Bを用いた拡散処理の二次変調処理され、 加算器 1 1 9に出力される。 基地局装置から送信される下り回線の送信データは、 変調回路 1 1 7にて、 P S Kなどの一次変調処理され、 さらに、 拡散符号 Cを用いた拡散処理の二次 変調処理され、 切替器 1 1 8を通じて、 加算器 1 1 9または加算器 1 2 0に出 力され、 制御信号 A又は制御信号 Bと多重される。
加算器 1 1 9の出力信号は、 送信 R F回路 1 2 1にて、 直交変調、 周波数変 換及び増幅などの処理が行われた後、 アンテナ共用器 1 0 3を通じてアンテナ 1 0 1から無線送信される。 加算器 1 2 0の出力信号は、 送信 R F回路 1 2 2 にて、 直交変調、 周波数変換及び増幅などの処理が行われた後、 アンテナ共用 器 1 0 4を通じてアンテナ 1 0 2から無線送信される。
基地局装置のアンテナ 1 0 1及びアンテナ 1 0 2から無線送信された信号は、 端末装置のアンテナ 2 0 1に受信される。
アンテナ 2 0 1に受信された信号は、 アンテナ共用器 2 0 2を通じて受信 R F回路 2 0 3に入力され、 受信 R F回路 2 0 3にて、 増幅され、 中間周波数又 はベースバンド周波数に周波数変換され、 マッチドフィルタ 2 0 4、 2 0 5 、 2 0 6に入力する。
マッチドフィル夕 2 0 6に入力した信号は、 マッチドフィルタ 2 0 6にて拡 散符号 Cで逆拡散処理が行われ、 遅延プロファイル測定回路 2 0 7及び R A K
E合成回路 2 0 8に出力される。
遅延プロファイル測定回路 2 0 7では、 マッチドフィルタ 2 0 6の出力信号 の遅延プロファイルが測定され、 各受信パスの到達時刻とそれぞれの到達時刻 における電力が求められ、 受信パスの時間情報が R AK E合成回路 2 0 8及び 判定回路 2 1 3に出力される。
R A K E合成回路 2 0 8では、 受信パスの時間情報に基づいて、 到達時間の 異なる各信号が合成され、 合成された信号は、 復調回路 2 0 9にて復調され、 受信データが抽出される。
判定回路 2 1 3では、 受信パスの時間情報からパス数が測定され、 測定され たパス数に基づいて、切替要否信号が生成され、多重回路 2 1 4に出力される。 マッチドフィルタ 2 0 4に入力した信号は、 マッチドフィル夕 2 0 4にて拡 散符号 Aで逆拡散処理が行われ、 電力測定回路 2 1 0にて電力が測定され、 測 定結果が比較回路 2 1 2に出力される。 同様に、 マッチドフィルタ 2 0 5に入 力した信号は、マッチドフィル夕 2 0 5にて拡散符号 Bで逆拡散処理が行われ、 電力測定回路 2 1 1にて電力が測定され、 測定結果が比較回路 2 1 2に出力さ れる。 比較回路 2 1 2では、 電力測定回路 2 1 0及び電力測定回路 2 1 1で測 定された電力が比較され、 大きい方の拡散符号、 即ち、 基地局装置のアンテナ 番号を示すアンテナ選択信号が生成され、 多重回路 2 1 4に出力される。 このように、 受信パス数が少ない場合に、 伝搬路を選択してアンテナ切替を 実施することにより、 受信性能を向上させることができる。 一方、 受信パス数 が多い場合には R A K E合成によるパスダイバーシチ効果が得られるため、 ァ ンテナ切替を実施しないように制御することにより、 アンテナ切替による他端 末装置に対する千渉電力の急激な変化がなくなり、 他端末装置の受信品質の劣 化を抑えることができる。
(実施の形態 2 )
実施の形態 2は、 端末装置が受信信号から受信パス数を測定し、 パス数を表 す情報を基地局装置に送信し、 基地局装置が端末装置から受信したパス数に基 づいてアンテナ切替の要否を判定し、 判定結果に基づいてアンテナ切替を実施 するか否かを選択する形態である。
図 5は、 本発明の実施の形態 2に係る基地局装置の構成を示すブロック図で ある。 図 5に示す基地局装置は、 図 1に示す基地局装置に判定回路 3 0 1を追 加した構成を採る。 なお、 図 5に示す基地局装置において、 図 1に示す基地局 装置と動作が共通する構成部分については、 図 1と同一符号を付して説明を省 略する。
分離回路 1 1 3は、 復調回路 1 1 2の出力信号から制御信号を分離して受信 データを抽出し、 制御信号から受信パスの時間情報およびァンテナ選択信号を 取り出し、 受信パスの時間情報を判定回路 3 0 1に出力し、 アンテナ選択信号 をアンテナ切替制御回路 1 1 4に出力する。
判定回路 3 0 1は、 分離回路 1 1 3から出力された受信パスの時間情報から パス数を測定し、 パス数に基づいて切替要否信号を生成し、 アンテナ切替制御 回路 1 1 4に出力する。 アンテナ切替制御回路 1 1 4は、 判定回路 3 0 1から出力された切替要否信 号を読取り、 アンテナ切替動作が必要である場合、 分離回路 1 1 3から出力さ れたアンテナ選択信号に示されたアンテナから信号を送信するように切替器 1 1 8の切替を行う。
図 6は、 本発明の実施の形態 2に係る端末装置の構成を示すブロック図であ る。 図 6に示す端末装置は、 図 2に示す端末装置から判定回路 2 1 3を削除し た構成を採る。 なお、 図 6に示す基地局装置において、 図 2に示す基地局装置 と動作が共通する構成部分については、 図 2と同一符号を付して説明を省略す る。
遅延プロファイル測定回路 2 0 7は、 マッチドフィル夕 2 0 6の出力信号の 遅延プロファイルを測定し、 各パスの到達時刻とその到達時刻における電力を 求め、 受信パスの時間情報を R AK E合成回路 2 0 8及び多重回路 2 1 4に出 力する。
多重回路 2 1 4は、 送信デ一夕に遅延プロファイル測定回路 2 0 7から出力 された受信パスの時間情報と比較回路 2 1 2から出力されたアンテナ選択信号 とをフレームフォーマツト上に多重化し、 変調回路 2 1 5に出力する。
このように、 端末装置にて測定した受信パス数に基づいて、 基地局装置にて アンテナ切替を実施するか否かの判定を行うことにより、 端末装置のハードウ エアまたはソフトウエアの規模を低減することができ、 端末装置の小型化及び 消費電力の低減を図ることができる。
(実施の形態 3 )
実施の形態 3は、 端末装置における遅延プロファイルと基地局装置における 遅延プロファイルはほぼ同じであることに着目し、 基地局装置が受信信号から 受信パス数を測定し、測定したパス数に基づいてアンテナ切替の要否を判定し、 判定結果に基づいてアンテナ切替を実施するか否かを選択する形態である。 図 7は、 本発明の実施の形態 3に係る基地局装置の構成を示すブロック図で ある。 図 7に示す基地局装置は、 図 1に示す基地局装置に判定回路 4 0 1を追 加した構成を採る。 なお、 図 7に示す基地局装置において、 図 1に示す基地局 装置と動作が共通する構成部分については、 図 1と同一符号を付して説明を省 略する。
遅延プロファイル測定回路 1 0 9、 1 1 0は、 それぞれマッチドフィル夕 1 0 7、 1 0 8の出力信号の遅延プロファイルを測定し、 各パスにおける信号の 到達時刻とその到達時刻における電力を求め、 受信パスの時間情報を R A K E 合成回路 1 1 1及び判定回路 4 0 1に出力する。
判定回路 4 0 1は、 遅延プロファイル測定回路 1 0 9、 1 1 0から出力され た受信パスの時間情報からパス数を測定し、 パス数に基づいて切替要否信号を 生成し、 アンテナ切替制御回路 1 1 4に出力する。
アンテナ切替制御回路 1 1 4は、 判定回路 4 0 1から出力された切替要否信 号を読取り、 アンテナ切替動作が必要である場合、 分離回路 1 1 3から出力さ れたアンテナ選択信号に示されたアンテナから信号を送信するように切替器 1 1 8の切替を行う。
図 8は、 本発明の実施の形態 3に係る端末装置の構成を示すブロック図であ る。 図 8に示す端末装置は、 図 2に示す端末装置から判定回路 2 1 3を削除し た構成を採る。 なお、 図 8に示す基地局装置において、 図 2に示す基地局装置 と動作が共通する構成部分については、 図 2と同一符号を付して説明を省略す る。
遅延プロファイル測定回路 2 0 7は、 マッチドフィル夕 2 0 6の出力信号の 遅延プロファイルを測定し、 各パスの到達時刻とその到達時刻における電力を 求め、 受信パスの時間情報を R AK E合成回路 2 0 8に出力する。
多重回路 2 1 4は、 送信デ一夕にに比較回路 2 1 2から出力されたアンテナ 選択信号とをフレームフォーマット上に多重化し、変調回路 2 1 5に出力する。 このように、 端末装置における遅延プロファイルと基地局装置における遅延 プロファイルはほぼ同じであることに着目し、 基地局装置にて受信パス数を測 定し、 アンテナ切替を実施するか否かの判定を行うことにより、 端末装置のハ 一ドウエアまたはソフ卜ウェアの規模を低減することができ、 端末装置の小型 化及び消費電力の低減を図ることができる。
(実施の形態 4)
実施の形態 4は、 ドッブラ周波数が高い場合は連続して受信信号が落ち込ん でレ ^る時間が短いために送信ダイバーシチの効果は小さいことに着目し、 端末 装置が受信信号から受信パス数及びドッブラ一周波数を測定し、 パス数及びド ップラー周波数を表す情報を基地局装置に送信し、 基地局装置が端末装置から 受信したパス数及びドップラー周波数に基づいてアンテナ切替の要否を判定し、 判定結果に基づいてアンテナ切替を実施するか否かを選択する形態である。 図 9は、 実施の形態 4に係る端末装置の構成を示すブロック図である。 図 9 に示す端末装置は、 図 2に示す端末装置からドッブラ周波数測定回路 5 0 1を 追加した構成を採る。 なお、 図 9に示す基地局装置において、 図 2に示す基地 局装置と動作が共通する構成部分については、 図 2と同一符号を付して説明を 省略する。
マッチドフィルタ 2 0 6は、 受信 R F部 2 0 3の出力信号に拡散符号 Cを乗 算することによって逆拡散を行い、 遅延プロファイル測定回路 2 0 7、 R A K E合成回路 2 0 8及びドッブラ周波数測定回路 5 0 1に出力する。
ドッブラ周波数測定回路 5 0 1は、 マッチドフィル夕 2 0 6の出力信号のド ップラ周波数を測定し、 測定結果を判定回路 2 1 3に出力する。 なお、 ドッブ ラ周波数の測定方法に関しては、 文献"移動通信の基礎 (電子情報通信学会、 昭和 6 1年 1 0月 1日発行) "等に既に提案されている。
判定回路 2 1 3は、 遅延プロファイル測定回路 2 0 7から出力された受信パ スの時間情報からパス数を測定し、 このパス数とドッブラ周波数測定回路 5 0 1にて測定されたドッブラ周波数に基づいて切替要否信号を生成し、 多重回路 2 1 4に出力する。
以下、 実施の形態 1における判定回路 2 1 3の判定処理について、 図 1 0の フロー図を用いて説明する。
まず、 遅延プロファイル測定回路 2 0 7から入力したパス数が予め設定され た閾値 1よりも小さいか否かを判定する (S T 2 1 ) 。 そして、 パス数が閾値 1よりも小さい場合、 ドッブラ周波数測定回路 5 0 1から入力したドッブラ周 波数が予め設定された閾値 2よりも小さいか否かを判定する (S T 2 2 ) 。 そ して、 ドッブラ周波数が予め設定された閾値 2よりも小さい場合、 アンテナ切 替動作が必要である旨の切替要否信号を生成する (S T 2 3 ) 。
また、 パス数が閾値 1よりも大きいあるいは等しい場合、 ドッブラ周波数が 予め設定された閾値 2よりも大きいあるいは等しい場合、 アンテナ切替動作が 不要である旨の切替要否信号を生成する (S T 2 4 ) 。
このように、 受信パス数が少なく、 かつ、 周波数オフセットが小さい場合に は、 伝搬路を選択してアンテナ切替を実施することにより、 受信性能を向上さ せることができる。 一方、 受信パス数が多い場合、 あるいは、 周波数オフセッ トが大きい場合には R A K E合成によるパスダイバーシチ効果が得られるため、 ァンテナ切替を実施しないように制御することにより、 アンテナ切替による他 端末装置に対する干渉電力の急激な変化がなくなり、 他端末装置の受信品質の 劣化を抑えることができる。
なお、 実施の形態 4における基地局装置の構成及び動作は、 図 1と同一であ るので説明を省略する。
また、 実施の形態 4は、 実施の形態 2又は実施の形態 3と組み合わせること もできる。 すなわち、 パス数の測定並びにドッブラ周波数の測定を端末装置で 行いってアンテナ切替の要否の判定を基地局装置で実施すること、 パス数の測 定、 ドッブラ周波数の測定及びアンテナ切替の要否判定を基地局装置で実施す ること、 パス数の測定を端末装置で行ってドッブラ周波数の測定及びアンテナ 切替の要否判定を基地局装置で実施すること、 ドッブラ周波数の測定を端末装 置で行ってパス数の測定及びアンテナ切替の要否判定を基地局装置で実施する こともできる。
以上説明したように本発明の無線通信装置及び無線通信方法によれば、 受信 品質が悪くなつた時点を起点としてアンテナ切替を行うことができ、 更に、 ァ ンテナ切替による受信性能の改善効果が少ない場合に、 アンテナ切替動作を停 止して、 他端末装置への干渉量の変化をなくすることができる。
本明細書は、 1 9 9 8年 1 1月 1 8日出願の特願平 1 0— 3 2 8 2 9 3号に 基づくものである。 この内容をここに含めておく。

Claims

請 求 の 範 囲
1 . 下り回線のパス数を測定する第 1パス数測定手段と、 パス数に基づいてァ ンテナ切替動作の要否を判定する第 1判定手段と、 この第 1判定手段の判定結 果を載せた第 1制御信号を送信データに多重する第 1多重手段とを具備する無 線通信装置。
2 . 第 1判定手段は、 下り回線のパス数が予め設定された第 1閾値よりも小さ いときにアンテナ切替動作を実施する必要があると判定する請求の範囲 1記載 の無線通信装置。
3 . 受信信号のドッブラ周波数を測定する第 1 ドッブラ周波数測定手段を具備 し、 第 1判定手段は、 下り回線のパス数及びドッブラ周波数に基づいてアンテ ナ切替動作の要否を判定する請求の範囲 1記載の無線通信装置。
4 . 第 1判定手段は、 下り回線のパス数が予め設定された第 1閾値よりも小さ く、 かつ、 ドッブラ周波数が予め設定された第 2閾値よりも小さいときにアン テナ切替動作を実施する必要があると判定する請求の範囲 3記載の無線通信装 置。
5 . 下り回線のパス数を測定する第 1パス数測定手段と、 下り回線のパス数を 示す情報を載せた第 2制御信号を送信データに多重する第 2多重手段とを具備 する無線通信装置。
6 . 受信信号のドッブラ周波数を測定する第 1 ドッブラ周波数測定手段を具備 し、 第 2多重手段は、 下り回線のパス数を示す情報を載せた第 2制御信号及び ドッブラ周波数を示す情報を載せた第 3制御信号を送信データに多重する請求 の範囲 5記載の無線通信装置。
7 . 無線通信装置を搭載する通信端末装置であって、 前記無線通信装置は、 下 り回線のパス数を測定する第 1パス数測定手段と、 パス数に基づいてアンテナ 切替動作の要否を判定する第 1判定手段と、 この第 1判定手段の判定結果を載 せた第 1制御信号を送信データに多重する第 1多重手段とを具備する。
8 . 受信信号から第 1制御信号を分離する第 1分離手段と、 送信アンテナ切替 動作を実施するか否かを前記第 1制御信号に基づいて決定する第 1切替制御手 段と、 を具備する無線通信装置。
9 . 受信信号から第 2制御信号を分離する第 2分離手段と、 第 2制御信号に基 づいてアンテナ切替動作の要否を判定する第 2判定手段と、 送信アンテナ切替 動作を実施するか否かを前記第 2判定手段の判定結果に基づいて決定する第 2 切替制御手段と、 を具備する無線通信装置。
1 0 . 第 2判定手段は、 下り回線のパス数が予め設定された第 1閾値よりも小 さいときにアンテナ切替動作を実施する必要があると判定する請求の範囲 9記 載の無線通信装置。
1 1 .第 2分離手段は、受信信号から第 2制御信号及び第 3制御信号を分離し、 第 2判定手段は、 第 2制御信号及び第 3制御信号に基づいてアンテナ切替動作 の要否を判定する請求の範囲 9記載の無線通信装置。
1 2 . 第 2判定手段は、 下り回線のパス数が予め設定された第 1閾値よりも小 さく、 かつ、 ドッブラ周波数が予め設定された第 2閾値よりも小さいときにァ ンテナ切替動作を実施する必要があると判定する請求の範囲 1 1記載の無線通 信装置。
1 3 . 上り回線のパス数を測定する第 2パス数測定手段と、 上り回線のパス数 に基づいてアンテナ切替の要否を判定する第 3判定手段と、 送信アンテナ切替 動作を実施するか否かを前記第 3判定手段の判定結果に基づいて決定する第 3 切替制御手段と、 を具備する無線通信装置。
1 4 . 第 3判定手段は、 上り回線のパス数が予め設定された第 3閾値よりも小 さいときにアンテナ切替動作を実施する必要があると判定する請求の範囲 1 3 記載の無線通信装置。
1 5 . 受信信号のドッブラ周波数を測定する第 2ドッブラ周波数測定手段を具 備し、 第 3判定手段は、 上り回線のパス数及びドッブラ周波数に基' テナ切替の要否を判定する請求の範囲 1 3記載の無線通信装置。
1 6 . 第 3判定手段は、 上り回線のパス数が予め設定された第 3閾値よりも小 さく、 かつ、 ドッブラ周波数が予め設定された第 4閾値よりも小さいときにァ ンテナ切替が必要であると判定する請求の範囲 1 5記載の無線通信装置。
1 7 . 無線通信装置を搭載する基地局装置であって、 前記無線通信装置は、 受 信信号から第 1制御信号を分離する第 1分離手段と、 送信アンテナ切替動作を 実施するか否かを前記第 1制御信号に基づいて決定する第 1切替制御手段と、 を具備する。
1 8 . 回線のパス数を測定する工程と、 測定したパス数に基づいてアンテナ切 替動作の要否を判定する工程と、 下り送信データの送信アンテナ切替動作を実 施するか否かを前記判定する工程の判定結果に基づいて決定する切替制御工程 とを有する送信ァンテナ切替方法。
1 9 . 判定する工程において、 回線のパス数が予め設定された第 1閾値よりも 小さいときにアンテナ切替動作を実施する必要があると判定する請求の範囲 1 8記載の送信ァンテナ切替方法。
2 0 . 受信信号のドッブラ周波数を測定する工程を有し、 判定する工程は、 回 線のパス数及びドッブラ周波数に基づいてアンテナ切替動作の要否を判定する 請求の範囲 1 8記載の送信アンテナ切替方法。
2 1 . 判定する工程において、 回線のパス数が予め設定された第 1閾値よりも 小さく、 かつ、 ドッブラ周波数が予め設定された第 2閾値よりも小さいときに ァンテナ切替動作を実施する必要があると判定する請求の範囲 2 0記載の送信 アンテナ切替方法。
PCT/JP1999/006378 1998-11-18 1999-11-16 Dispositif de radiocommunication et procede de commutation pour antenne d'emission WO2000030276A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002317586A CA2317586A1 (en) 1998-11-18 1999-11-16 Radio communication apparatus and transmission antenna changing method
AU11807/00A AU744923B2 (en) 1998-11-18 1999-11-16 Radio communication device and transmission antenna switching method
BR9907026A BR9907026A (pt) 1998-11-18 1999-11-16 Aparelho de comunicação por rádio e método de mudança de antena de transmissão
KR1020007007845A KR20010034201A (ko) 1998-11-18 1999-11-16 무선 통신 장치 및 송신 안테나 전환 방법
US09/600,329 US6980833B1 (en) 1998-11-18 1999-11-16 Radio communication device and transmission antenna switching method
EP99972389A EP1049271A4 (en) 1998-11-18 1999-11-16 RADIO COMMUNICATION DEVICE AND SWITCHING ANTENNA SWITCHING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/328293 1998-11-18
JP32829398A JP3583304B2 (ja) 1998-11-18 1998-11-18 通信端末装置、基地局装置及び送信アンテナ切替方法

Publications (1)

Publication Number Publication Date
WO2000030276A1 true WO2000030276A1 (fr) 2000-05-25

Family

ID=18208619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006378 WO2000030276A1 (fr) 1998-11-18 1999-11-16 Dispositif de radiocommunication et procede de commutation pour antenne d'emission

Country Status (9)

Country Link
US (1) US6980833B1 (ja)
EP (1) EP1049271A4 (ja)
JP (1) JP3583304B2 (ja)
KR (1) KR20010034201A (ja)
CN (1) CN1205764C (ja)
AU (1) AU744923B2 (ja)
BR (1) BR9907026A (ja)
CA (1) CA2317586A1 (ja)
WO (1) WO2000030276A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120033644A1 (en) * 2004-08-13 2012-02-09 Jeyhan Karaoguz Multi-dimensional network resource allocation

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3421314B2 (ja) * 2000-10-04 2003-06-30 松下電器産業株式会社 パス選択装置及びパス選択方法
JP2003332955A (ja) * 2002-05-17 2003-11-21 Toshiba Corp 無線送信装置及び無線通信システム
US20040008648A1 (en) * 2002-07-11 2004-01-15 Schmidl Timothy M. Diversity decisions for downlink antenna transmission
WO2006049177A1 (ja) * 2004-11-02 2006-05-11 Matsushita Electric Industrial Co., Ltd. 移動局装置および通信相手選択方法
US8441913B2 (en) * 2005-09-27 2013-05-14 Qualcomm Incorporated Switching diversity in broadcast OFDM systems based on multiple receive antennas
KR100796008B1 (ko) * 2005-12-13 2008-01-21 한국전자통신연구원 이동통신 시스템의 기지국 송신 장치 및 그의 송신 방법과,단말 수신 장치 및 그의 통신 방법
JP4905461B2 (ja) * 2006-12-14 2012-03-28 富士通株式会社 多入力多出力通信のためのアンテナを選択する制御装置
JP4869972B2 (ja) * 2007-02-14 2012-02-08 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、送信方法、及び無線通信システム
US8532584B2 (en) * 2010-04-30 2013-09-10 Acco Semiconductor, Inc. RF switches
CN106598004A (zh) * 2016-12-05 2017-04-26 渤海大学 一种机器人控制电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219675A (ja) * 1996-02-14 1997-08-19 Toshiba Corp 無線通信システムにおける伝搬パス選択方法
US5671221A (en) * 1995-06-14 1997-09-23 Sharp Microelectronics Technology, Inc. Receiving method and apparatus for use in a spread-spectrum communication system
JPH10117165A (ja) * 1996-10-11 1998-05-06 Fujitsu Ltd サイトダイバーシチシステム及び基地局及び移動局及び通信制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417165A (en) * 1987-07-13 1989-01-20 Toshiba Corp Picture processor
JP2751869B2 (ja) * 1995-04-28 1998-05-18 日本電気株式会社 送信ダイバシティ方式
KR0137684B1 (ko) 1995-05-10 1998-07-01 김광호 페이딩의 영향을 경감시키기 위한 무선통신시스템의 수신기
JP3720141B2 (ja) * 1996-10-01 2005-11-24 松下電器産業株式会社 移動体通信方法およびその装置
JP3108643B2 (ja) 1996-12-04 2000-11-13 株式会社ワイ・アール・ピー移動通信基盤技術研究所 アンテナ切り替え制御方式
US6400780B1 (en) * 1998-11-06 2002-06-04 Lucent Technologies Inc. Space-time diversity for wireless systems
US6724828B1 (en) * 1999-01-19 2004-04-20 Texas Instruments Incorporated Mobile switching between STTD and non-diversity mode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5671221A (en) * 1995-06-14 1997-09-23 Sharp Microelectronics Technology, Inc. Receiving method and apparatus for use in a spread-spectrum communication system
JPH09219675A (ja) * 1996-02-14 1997-08-19 Toshiba Corp 無線通信システムにおける伝搬パス選択方法
JPH10117165A (ja) * 1996-10-11 1998-05-06 Fujitsu Ltd サイトダイバーシチシステム及び基地局及び移動局及び通信制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1049271A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120033644A1 (en) * 2004-08-13 2012-02-09 Jeyhan Karaoguz Multi-dimensional network resource allocation
US8867479B2 (en) * 2004-08-13 2014-10-21 Broadcom Corporation Multi-dimensional network resource allocation

Also Published As

Publication number Publication date
BR9907026A (pt) 2000-10-17
EP1049271A1 (en) 2000-11-02
JP3583304B2 (ja) 2004-11-04
KR20010034201A (ko) 2001-04-25
CA2317586A1 (en) 2000-05-25
AU1180700A (en) 2000-06-05
CN1205764C (zh) 2005-06-08
JP2000156656A (ja) 2000-06-06
AU744923B2 (en) 2002-03-07
US6980833B1 (en) 2005-12-27
EP1049271A4 (en) 2006-07-12
CN1288617A (zh) 2001-03-21

Similar Documents

Publication Publication Date Title
KR100292318B1 (ko) 이동통신기지국장치
US7340248B2 (en) Calibration apparatus
AU723992B2 (en) Devices for transmitter path weights and methods therefor
US7190957B2 (en) Base station connection method, radio network controller, and mobile station
JP3073767B2 (ja) Cdmaセルラ電話システムにおけるダイバーシティ受信機
US6615030B1 (en) Mobile communications system and radio base station apparatus
WO1999052229A1 (fr) Appareil pour station de base radio, et procede de radiocommunications
JPH07283779A (ja) 移動体通信装置
WO2006064806A1 (ja) 無線回線制御局、基地局、移動局、移動通信システム及び移動通信方法
JP3554207B2 (ja) 無線通信装置及び無線通信方法
JP3583304B2 (ja) 通信端末装置、基地局装置及び送信アンテナ切替方法
JP2000151465A (ja) 無線通信装置及び無線通信方法
KR100453501B1 (ko) 이동 통신망에서 대역 변환 중계 장치 및 방법
US7020122B1 (en) CDMA system mobile radio terminal equipment
KR20010034353A (ko) 기지국 장치 및 송신 전력 제어 방법
AU771784B2 (en) Transmission power control method of measuring Eb/N0 after weighted signals are combined
JP2001156752A (ja) 移動無線端末装置
WO2000031999A1 (fr) Station de base et procede de regulation de puissance d'emission
JPH07245577A (ja) ダイバーシチ通信装置
JP4266826B2 (ja) データ送信方法及び受信器
JP3208343B2 (ja) ダイバーシチ装置
EP1026907A1 (en) Base station device and radio communication method
JP2001251227A (ja) 送信ダイバーシチ装置及び送信ダイバーシチ方法
KR20030090173A (ko) 시간 지연 특성을 갖는 공간-시간 송신 다이버시티 장치
MXPA00006949A (en) Radio communication device and transmission antenna switching method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99802164.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2000 11807

Country of ref document: AU

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 09600329

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2317586

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11807/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1999972389

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/006949

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020007007845

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999972389

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020007007845

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 11807/00

Country of ref document: AU

WWR Wipo information: refused in national office

Ref document number: 1020007007845

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999972389

Country of ref document: EP