WO2000029442A1 - Verfahren zur herstellung von antikörpern gegen ein polypeptid, von dem nur die kodierende nukleinsäure bekannt ist - Google Patents

Verfahren zur herstellung von antikörpern gegen ein polypeptid, von dem nur die kodierende nukleinsäure bekannt ist Download PDF

Info

Publication number
WO2000029442A1
WO2000029442A1 PCT/EP1999/008678 EP9908678W WO0029442A1 WO 2000029442 A1 WO2000029442 A1 WO 2000029442A1 EP 9908678 W EP9908678 W EP 9908678W WO 0029442 A1 WO0029442 A1 WO 0029442A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
sequence
antibodies
coding
antibody
Prior art date
Application number
PCT/EP1999/008678
Other languages
English (en)
French (fr)
Inventor
Fritz Grunert
John Thompson
Wolfgang Zimmermann
Original Assignee
Genovac Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genovac Ag filed Critical Genovac Ag
Priority to JP2000582427A priority Critical patent/JP2002530065A/ja
Priority to AU11621/00A priority patent/AU768631B2/en
Priority to NZ511040A priority patent/NZ511040A/en
Priority to EP99972225A priority patent/EP1131355A1/de
Priority to CA002350078A priority patent/CA2350078A1/en
Priority to IL14246599A priority patent/IL142465A0/xx
Publication of WO2000029442A1 publication Critical patent/WO2000029442A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4208Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an idiotypic determinant on Ig

Definitions

  • proteins can be detected by suitable antibodies.
  • antibodies either the proteins can be purified or for example, it is possible to determine the location of the proteins in tissues and cells.
  • Antibodies are conventionally produced in such a way that the proteins are first purified from the cells or the tissue or are produced recombinantly with the aid of bacteria or in insect cells or mammalian cells and that these proteins are then used for the immunization of animals. These processes are often very complex and lengthy. In the case of production in bacteria, the proteins produced in this way are often not identical to the naturally occurring proteins, since the secondary structure can differ from the native proteins and because bacteria do not have the same post-translational modification mechanisms that are present in eukaryotic organisms.
  • the present invention therefore relates to a method for producing antibodies which react specifically with a polypeptide from which the coding nucleic acid is known, in which
  • the DNA coding for the polypeptide is expressed in a host cell with the aid of a vector which has at least one sequence coding for a detection signal, and the expressed polypeptide is bound to a solid phase with the aid of the detection signal,
  • step b) regardless of step a) the DNA coding for the polypeptide is introduced directly into an animal, whereby a Expression of the polypeptide takes place in the animal, which causes the formation of antibodies against the polypeptide and
  • step b) the antibodies formed in step b) are reacted with the polypeptide formed in step a) and detected or enriched.
  • the method according to the invention essentially consists of three steps.
  • the DNA coding for the polypeptide is expressed with the aid of a vector in a suitable host cell (step a)). Since the polypeptide expressed with the aid of the vector is generally only present in a relatively low concentration in the host cell, the vector used according to the invention is provided with a nucleotide sequence which codes for a discovery sequence (tag sequence). This tag sequence is linked to the sequence coding for the polypeptide, which means that the expressed polypeptide has this discovery peptide sequence, for example at the C-terminus.
  • step b) which is carried out independently of step a), the DNA coding for the polypeptide is introduced into a suitable animal and brought to expression there.
  • the genetic immunization used according to the invention enables the direct formation of antibodies in a host animal.
  • purified DNA which contains the genetic information for the protein to be examined and suitable control elements, is injected directly into the organism intended for antibody production (mouse, rabbit, etc.).
  • the DNA is taken up by cells of the recipient organism and the protein is expressed in native form (ie with correct post-translational modifications).
  • the protein foreign to the recipient organism causes the immune system to produce antibodies directed against the foreign antigen (humoral Immune response).
  • This method has already been used successfully for the production of high-affinity, monoclonal antibodies which recognize native proteins
  • the expression vectors used for the genetic immunization in step b) for the production of the desired antibodies should also be used in vitro for the production of the target protein.
  • the expression vectors are introduced into suitable target cells, in particular mammalian cells, which then synthesize the desired protein. These cells (intact or after lysis with suitable buffers) or media supernatants (in the case of secreted proteins) are intended to serve to detect the protein-recognizing antibody by FACScan analyzes (in the case of cellular proteins) or ELISA.
  • the expressed polypeptide when a foreign polypeptide is expressed in a host cell, the expressed polypeptide can be secreted using a secretion or leader sequence. In these cases it is important that the expressed and secreted polypeptide have a detection signal so that the polypeptide can be isolated from the medium. However, if the polypeptide is not channeled outside but remains on the surface of the cell membrane, an additional detection sequence is not absolutely necessary. In this case, the site of the polypeptide that is responsible for the anchorage between the polypeptide and the cell takes over the function of the discovery sequence. In this case, since the expressed polypeptide remains connected to the cell, the antibodies formed can be detected by binding to the polypeptide and subsequent reaction with a fluorescence-labeled antibody by FACScan analyzes.
  • a cell ELISA is also possible, in which the bound antibodies are coupled to an enzyme Secondary antibodies and a suitable substrate reaction can be detected.
  • the anchoring sequence is a signal sequence which is responsible for membrane anchoring by means of a glycosylphosphatidylinositol (GPI) residue
  • the corresponding expression plasmid can be used both for DNA immunization and for detection of the antigen-specific antibodies which have arisen, for example after transient transfection .
  • GPI anchor is that it is easily cleaved enzymatically from the cell surface in vivo and thus, as is known for secreted proteins, a good antibody response can be achieved (see Example 7 for a good immune response after genetic immunization with an expression plasmid, which codes for a GPI-anchored protein).
  • Sequence suitable complexed Ni 2+ ions to fish out the protein from the cell supernatant or cell lysate.
  • Short and / or less immunogenic peptide sequences are particularly suitable as the tag sequence.
  • Mouse proteins which stimulate the. Can also serve as less immunogenic tag sequences (for the production of antibodies in mice)
  • Antibody production work e.g. GM-CSF, IL-4, IL-10 etc.
  • tags have the advantage of not developing an immune response due to the tolerance of the immunized animal to these self-proteins. If the formation of the antibodies recognizing the tag sequence of the recombinant protein cannot be prevented, these can be identified with the aid of constructs which code for irrelevant proteins provided with an identical tag.
  • the immobilized protein produced by transient transfection now serves to bind the antibodies which recognize it from the serum or hybridoma culture supernatant (in the production of monoclonal antibodies).
  • the detection of the bound specific antibodies is then carried out via enzyme-linked anti-antibodies (detection antibodies), which can be quantified using a specific substrate conversion, usually photometrically.
  • detection antibodies enzyme-linked anti-antibodies
  • the specificity and sensitivity of the detection system can be significantly increased when using peptide tags if F (ab) 2 fragments of the anti-tag antibody are used as the capture antibody and an Fc region-recognizing antibody is used as the detection antibody.
  • This configuration of the ELISA prevents cross detection of the catcher antibody.
  • the transcription unit coding for the polypeptide can have a polyadenylation sequence at the 3 'end which is necessary for the stabilization of a eukaryotic mRNA.
  • the vector In order for the polypeptide to be expressed in the host cell, the vector usually has a promoter, with strong promoters preferably being used.
  • the promoter of the elongation factor l ⁇ or the promoter of the cytomegalovirus can be mentioned as examples.
  • the nucleic acid coding for the polypeptide is introduced directly into an animal in order to generate antibodies against the polypeptide there.
  • the DNA used for this is in the form of a vector which is selected such that it can be used simultaneously for the two steps a) and b).
  • the DNA coding for the polypeptide is introduced by using a so-called gene gun.
  • the gene gun microscopic gold particles with the DNA, preferably the vector or Plasmid DNA encased and shot on the shaved skin of the animal. The gold particles penetrate the skin and the DNA applied to them is expressed in the host animal.
  • Laboratory animals such as mice, rats or rabbits are preferably used according to the invention.
  • genetic adjuvants are also applied in a preferred embodiment together with the DNA coding for the polypeptide.
  • plasmids expressing cytokines such as GM-CSF, IL-4, IL-10) that stimulate the humoral immune response in the laboratory animals.
  • hybridoma cells are particularly useful when the laboratory animal used is a mouse or rat.
  • the immunized mice are sacrificed, spleen cells are isolated and fused with tumor cells and then those clones are selected which secrete the desired monoclonal antibodies.
  • the polypeptides to be examined are secreted by the host cells in step a). Since a detection signal is associated with the polypeptides, the polypeptides sought can be isolated by forming a bond between the detection signal (tag sequence) and a suitable ligand.
  • the tag sequence is preferably bound to a solid phase. These can be the walls of microtiter plates, gel beads or magnetic beads (so-called magnetic beads).
  • the magnetic beads have the advantage that the solution containing the expressed polypeptide can be easily mixed with the magnetic beads.
  • the magnetic beads have a ligand (for example antibody fragments) that binds to the tag sequence.
  • the magnetic beads can then be enriched by applying a magnetic field. By choosing suitable conditions the polypeptide sought can then be eluted again from the magnetic beads if the antibodies are to be enriched.
  • the present application also relates to those antibodies which can be obtained by the process according to the invention.
  • FIG. 1 shows the detection of anti-hp70 antibodies in the serum and in the culture supernatant of hybridomas obtained from mice immunized from lymph nodes hp70-pcDNA3-DNA with the aid of FACScan analysis.
  • FACScan analysis either untransfected (gray curves) or transiently transfected with hp70-pcDNA3-DNA BOSC cells (white curves) were used.
  • GV114 mouse immunized with the hp70-pcDNA3 expression vector. The experiment is explained in more detail in Example 7.
  • Promoters eg the promoter of the elongation factor 1 ⁇ [EF-l ⁇ ] gene
  • the cDNA region coding for the extracellular domain of thyroid peroxidase (TPO) in humans (2602 bp; 859 amino acids) was cloned into the BamH1 / EcoRV cleavage sites of the polylinker sequence and at the 3 ' end also provided with a region coding for a His ⁇ -ag and a subsequent stop codon (TPO sol. -His-pcDNA3).
  • the plasmid DNA was grown in E. coli and purified using a Qiagen plasmid isolation kit (Qiagen, Hilden).
  • Expression plasmid-encoded protein can be produced.
  • the expression construct was brought into BOSC23 cells by transfection (Pear et al. F (1993) PNAS, 84, 8392-8396].
  • the BOSC23 cells is a modified adenovirus 5 transformed human embryonic Renal cell line (HEK293), which is very transiently transfectable. The cells were plated in 6-well cell culture dishes so that they reached 80% confluence the next day.
  • DMEM Dulbecco 's modified Eagle 's medium
  • FCS fetal calf serum
  • the medium was replaced by 5 ml DMEM / 5% FCS. After a further 48 h (72 h after transfection), the cell culture supernatant was removed and stored at -70 ° C.
  • TPO sol.-His His 6 -day protein produced by transient transfection to nickel chelate microtiter plates (DÜNN, Asbach)
  • the wells were each provided with 200 ⁇ l of supernatant from the transient transfection batch (see above) or one; n ⁇ c. fc-transfected BOSC23 culture supernatant incubated overnight at 4 ° C., then four times with buffer A (50 mM Tris / HCl pH 7.5, IM NaCl) and twice with buffer B (phosphate buffered saline (PBS), 0.1% BSA, 0.05% Tween 20).
  • buffer A 50 mM Tris / HCl pH 7.5, IM NaCl
  • buffer B phosphate buffered saline
  • BSA phosphate buffered saline
  • Non-specific binding sites were then blocked by incubation with 300 ⁇ l of 3% bovine serum albumin (BSA) / PBS for 1 h at room temperature and the washings were repeated with buffers A and B.
  • BSA bovine serum albumin
  • the preimmune and immune sera of the immunized mice were diluted 1: 100 with Buffer B.
  • 100 ⁇ l of the diluted mouse sera were placed in the wells of the Given nickel chelate microtiter plates. After a one hour incubation at room temperature, the wells were washed four times with buffer C (50 mM Tris / HCl pH 7.5, 0.5 M NaCl, 0.1% BSA, 0.05% Tween 20), twice with buffer B.
  • the specific antibodies directed against TPO were "classically" detected using a commercially available TPO antibody ELISA (Varelisa TPO Antibodies; Pharmacia-Upjohn, Freiburg).
  • Anti-TPO antibody is detected in this test system by purified recombinant TPO.
  • the anti-TPO antibody content of the preimmune and immune sera of the immunized mice was determined in a dilution of 1: 100 according to the manufacturer's instructions.
  • Table 1 Detection of anti-TPO antibodies in the serum TPO sol.-His-pcDNA3-DNA of immunized mice with the help of purified TPO protein (Varelisa TPO Antibodies detection system). Mouse optical density 450 nm
  • the preimmune and immune serum of a mouse (GV1 from Table 1) was examined as an example.
  • Table 2 at a serum dilution of 1: 100 anti-TPO antibodies can be clearly detected in the immune serum, while the pre-immune serum showed no reaction.
  • Table 2 Detection of anti-TPO antibodies in the serum of a mouse immunized with TPO sol. His pcDNA3 DNA using TPO sol. His protein generated by transient expression.
  • the ubiquitously active promoter of the elongation factor 1 ⁇ (EF-l ⁇ ) gene was used for expression control.
  • the expression vector used is based on the pBluescript vector (Stratagene, Heidelberg), in which a 1.2 kb fragment of the human EF-l ⁇ gene promoter, a 0.7 kb EcoRI fragment with the polyadenylation signal of the human G-CSF cDNA (Mizushima and Nagata, 1990), and between the BaiwHI / iV ⁇ tl interfaces which are responsible for the influenza virus hemagglutinin (HA) - tag-coding oligonucleotide sequence were inserted.
  • HA hemagglutinin
  • the human cDNA region (431 bp; 135 amino acids) coding for the extracellular domain of the activin receptor IIA (431 bp; 135 amino acids) was cloned into the Clal / BamHI cleavage sites of the polylinker sequence in such a way that the HA-coding region and a subsequent region were found at the 3 ' end Stop codon came to rest (pEF-l ⁇ -ActRII-HA).
  • the protein encoded by the expression plasmid pEF-l ⁇ -ActRII-HA was produced by transient transfection of BOSC23 cells as described in Example 2.
  • the wells were first coated with the F (ab) 2 fragment of the anti-HA-ag antibody.
  • 150 ⁇ l of the antibody fragment were added to each well of the microtiter plate and washed at room temperature with PBS and free protein binding sites were blocked by incubation with 200 ⁇ l of 0.2% BSA / PBS.
  • the supernatant of the transient transfection batch (see Example 5) or a mock-transfected BOSC23 culture supernatant was then incubated for 2 h at room temperature, then washed three times with phosphate-buffered saline (PBS).
  • PBS phosphate-buffered saline
  • the preimmune and immune sera of the immunized rabbits were diluted 1: 100 and 1: 500 with 0.2% BSA / PBS. 100 ⁇ l of the diluted rabbit sera were added to the wells of the coated microtiter plates.
  • hp70-pcDNA3 pcDNA3
  • the human hp70 amino acid sequence corresponds to the murine hp70 sequence in approximately 70% of the residues.
  • mice with the gene gun were carried out according to a short protocol (6 immunizations within 13 days) as described by Kilpatrick et al. (1998), Hybridoma 17: 569-576.
  • lymphocytes from the regional (axillary, brachial, inguinal and popliteal) lymph nodes of three mice were isolated and fused according to a standard protocol with exponentially growing SP2 / 0 mouse myeloma cells (American Tissue Type Culture Collection) with the aid of polyethylene glycol (Sigma) (Campbell AM (1986).
  • Monoclonal antibody technology The production and characterization of rodent and human monoclonal antibodies. Book series: Laboratory Techniques in Biochemistry and Molecular Biology (RH Burdon and PH van Knippenberg, eds.), Elsevier Science Publishers, Amsterdam) .
  • Lymph node lymphocytes were plated per well of a 96-well microtiter plate and cultured in 100 ⁇ l hypoxanthine / aminopterin thymidine (HAT) -containing DMEM medium (Sigma) with 20% FCS and 5% hybridoma enhancing factor (Sigma).
  • HAT hypoxanthine / aminopterin thymidine
  • Candidate hybridoma clones were identified using a cell ELISA.
  • BOSC cells as described in Example 2, were transiently transfected with the hp70-pcDNA3 expression construct, resuspended in 4% formaldehyde in PBS and fixed for 10 min. The cells were then diluted 1:10 with PBS and stored at 4 ° C. for up to four weeks.
  • 96-well round-bottom microtiter plates were blocked by adding 300 ⁇ l of 1% BSA in PBS for 1 h at room temperature. After the solution had been removed by inversion of the plate, 75 ⁇ l of the hybrid o cell supernatant and 10 ⁇ l of transiently transfected BOSC cell suspension (6 ⁇ 10 6 cells / ml of 1% BSA in PBS) were added and incubated at 4 ° C. for 1 h. After adding 100 ⁇ l of 1% BSA in PBS, the mixture was centrifuged at 300 ⁇ g for 4 min and the supernatant was dumped as above.
  • the cells were washed again with 200 ⁇ l of 1% BSA / PBS, resuspended in 75 ⁇ l, peroxidase-coupled goat anti-mouse immunoglobulin antibody (DAKO), l: 2,000 diluted in 1% BSA / PBS, and left for 1 h incubated at 4 ° C. Then 100 ul 0.1% Tween 20 / PBS were added and centrifuged as above and the supernatant discarded. The cells were then washed three times with 200 ul 0.1% Tween 20 / PBS and twice with 200 ul PBS.
  • DAKO peroxidase-coupled goat anti-mouse immunoglobulin antibody
  • Table 3 Detection of anti-hp70 antibodies in the serum and in the culture supernatant of hybridomas obtained from mice immunized from lymph nodes hp70-pcDNA3-DNA using a cell ELISA. BOSC cells transiently transfected with hp70-pcDNA3-DNA were used for the cell ELISA.
  • Preimmune serum GV114 1 100 0.08
  • FIG. IB shows the histograms obtained for an irrelevant negative control used as negative control (26/3/13) and for the positive hybridoma supernatant N1F4 with BOSC cells transiently transfected or not transfected with the hp70-pcDNA3 expression vector.
  • FIG. 1A the histograms obtained in the same test for the immune and preimmune serum of a mouse used for hybridoma production are shown (FIG. 1A). All 20 selected hybridoma supernatants were found to be positive in the FACScan analysis.
  • the immunoglobulin class of the hp70-specific antibodies was determined in 19 of the 20 supernatants. Two of the supernatants tested contained hp70-specific IgM antibodies, 17 supernatants contained hp70-specific IgG antibodies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Offenbart wird ein Verfahren zur Erzeugung von Antikörpern, die spezifisch mit einem Polypeptid reagieren von dem die kodierende Nukleinsäure bekannt ist, worin a) die für das Polypeptid kodierende DNA mit Hilfe eines Vektors, der wenigstens eine für ein Auffindungssignal kodierende Sequenz aufweist, in einer Wirtszelle exprimiert wird und das exprimierte Polypeptid mit Hilfe des Auffindungssignals an eine feste Phase gebunden wird; b) unabhängig von Schritt a) die für das Polypeptid kodierende DNA direkt in ein Tier eingebracht wird, wodurch eine Expression des Polypeptids in dem Tier erfolgt, die die Bildung von Antikörpern gegen das Polypeptid verursacht und c) die in Schritt b) gebildeten Antikörper mit dem in Schritt a) gebildeten Polypeptid umgesetzt und nachgewiesen oder angereichert werden.

Description

VERFAHREN ZUR HERSTELLUNG VON ANTIKÖRPERN GEGEN EIN POLYPEPTID, VON DEM NUR DIE KODIERENDE NUKLEINSÄURE BEKANNT IST
In der Molekularbiologie stellt sich aufgrund der enormen Fortschritte der Sequenzierungsmöglichkeiten von Nukleinsäuren häufig das Problem, daß die genetische Information für ein Polypeptid bzw. Protein bekannt ist und, daß andererseits dieses Polypeptid bzw. Protein nicht in reiner Form vorliegt. Durch das sogenannte Human Genome Project werden laufend Nukleotidsequenzen veröffentlicht, häufig ist aber völlig unklar, welche Funktion die von diesen Genen kodierten Polypeptide bzw. Proteine haben.
Für die praktische Anwendung und Auswertung dieser wissenschaftlichen Erkenntnisse ist es in der Regel sehr hilfreich, wenn diese Proteine durch geeignete Antikörper nachgewiesen werden können. Durch den Einsatz derartiger Antikörper können entweder die Proteine gereinigt werden oder es ist beispielsweise möglich, die Lokalisation der Proteine in Geweben und Zellen zu bestimmen.
Es ist daher eine Aufgabe der vorliegenden Erfindung, Antikörper bereitzustellen, die gegen solche Polypeptide bzw. Proteine gerichtet sind, von denen zwar die Nukleotidsequenz bekannt ist, die aber nicht in angereicherter oder gar gereinigter Form vorliegen.
Herkömmlicherweise werden Antikörper so hergestellt, daß zunächst die Proteine aus den Zellen oder dem Gewebe gereinigt werden oder mit Hilfe von Bakterien oder in Insektenzellen oder Säugerzellen rekombinant hergestellt werden und, daß diese Proteine dann für die Immunisierung von Tieren verwendet werden. Diese Verfahren sind häufig sehr aufwendig und langwierig. Im Falle der Herstellung in Bakterien sind die so hergestellten Proteine häufig nicht identisch mit den natürlich vorkommenden Proteinen, da sich die SekundärStruktur von den nativen Proteinen unterscheiden kann und da Bakterien nicht über dieselben posttranslationalen Modifikationsmechanismen verfügen, die bei eukaryotischen Organismen vorhanden sind.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Erzeugung von Antikörpern, die spezifisch mit einem Polypeptid reagieren von dem die kodierende Nukleinsäure bekannt ist, worin
a) die für das Polypeptid kodierende DNA mit Hilfe eines Vektors, der wenigstens eine für ein Auffindungssignal kodierende Sequenz aufweist, in einer Wirtszelle exprimiert wird und das exprimierte Polypeptid mit Hilfe des Auffindungssignals an eine feste Phase gebunden wird,
b) unabhängig von Schritt a) die für das Polypeptid kodierende DNA direkt in ein Tier eingebracht wird, wodurch eine Expression des Polypeptids in dem Tier erfolgt, die die Bildung von Antikörpern gegen das Polypeptid verursacht und
c) die in Schritt b) gebildeten Antikörper mit dem in Schritt a) gebildeten Polypeptid umgesetzt und nachgewiesen oder angereichert werden.
Das erfindungsgemäße Verfahren besteht im wesentlichen aus drei Schritten. Einerseits wird die für das Polypeptid kodierende DNA mit Hilfe eines Vektors in einer geeigneten Wirtszelle exprimiert (Schritt a) ) . Da das mit Hilfe des Vektors exprimierte Polypeptid in der Wirtszelle in der Regel nur in einer verhältnismäßig geringen Konzentration vorliegt, wird erfindungsgemäß der eingesetzte Vektor mit einer Nukleotidsequenz versehen, die für eine Auffindungssequenz (tag-Sequenz) kodiert. Diese tag-Sequenz ist mit der für das Polypeptid kodierenden Sequenz verbunden, was dazu führt, daß das exprimierte Polypeptid zum Beispiel am C-Terminus diese Auffindungspeptidsequenz aufweist .
In dem unabhängig von Schritt a) durchgeführten Schritt b) wird die für das Polypeptid kodierende DNA in ein geeignetes Tier eingebracht und dort zur Expression gebracht. Die erfindungsgemäß verwendete genetische Immunisierung ermöglicht die direkte Bildung von Antikörpern in einem Wirtstier.
Bei dieser Methode der Herstellung von Antikörpern wird gereinigte DNA, die die genetische Information für das zu untersuchende Protein und geeignete Steuerelemente enthält, direkt in den für die Antikörperproduktion vorgesehenen Organismus (Maus, Kaninchen, etc.) injiziert. Die DNA wird von Zellen des Empfängerorganismus aufgenommen und das Protein, in nativer Form (d.h. mit korrekten posttranslationalen Modifikationen) exprimiert. Das für den Empfängerorganismus fremde Protein veranlaßt das Immunsystem, gegen das Fremdantigen gerichtete Antikörper zu produzieren (humorale Immunantwort) . Diese Methode ist bereits erfolgreich zur Produktion von hochaffinen, native Proteine erkennenden monoklonalen Antikörpern eingesetzt worden
Die für die genetische Immunisierung in Schritt b) zur Herstellung der gewünschten Antikörper eingesetzten Expressionsvektoren sollen auch in vi tro zur Produktion des Zielproteins verwendet werden. Durch transiente Transfektion (Elektroporation, Lipofektion, etc.) werden die Expressionsvektoren in geeignete Zielzellen, insbesondere Säugerzellen eingeschleust, die dann das gewünschte Protein synthetisieren. Diese Zellen (intakt oder nach Lyse mit geeigneten Puffern) bzw. Medienüberstände (bei sezernierten Proteinen) sollen dazu dienen, den Protein-erkennenden Antikörper durch FACScan-Analysen (im Falle von zellständigen Proteinen) oder ELISA nachzuweisen.
Wenn ein fremdes Polypeptid in einer Wirtszelle exprimiert wird, kann das exprimierte Polypeptid üblicherweise durch Verwendung einer Sekretionssequenz oder Leadersequenz nach außen geschleust werden. In diesen Fällen ist es wichtig, daß das exprimierte und sezernierte Polypeptid ein Auffindungssignal aufweist, damit das Polypeptid aus dem Medium isoliert werden kann. Wenn aber das Polypeptid nicht nach außen geschleust wird, sondern an der Oberfläche der Zellmembran verbleibt, ist eine zusätzliche Auffindungssequenz nicht unbedingt erforderlich. In diesem Fall übernimmt diejenige Stelle des Polypeptids, die für die Verankerung zwischen Polypeptid und Zelle verantwortlich ist die Funktion der Auffindungssequenz. Da in diesem Fall das exprimierte Polypeptid mit der Zelle verbunden bleibt, können die gebildeten Antikörper durch Bindung an das Polypeptid und nachfolgender Reaktion mit einem fluoreszenzmarkierten Antikörper durch FACScan-Analysen nachgewiesen werden. Als Alternative ist auch ein Zell-ELISA möglich, bei dem die gebundenen Antikörper über einen mit einem Enzym gekoppelten Sekundärantikörper und einer geeigneten Substratreaktion detektiert werden. Stellt die Verankerungssequenz eine Signalsequenz dar, die für eine Membranverankerung durch einen Glykosyl-Phosphatidylinositol (GPI)-Rest verantwortlich ist, so kann das korrespondierende Expressionsplasmid sowohl zur DNA- Immunisierung als auch zum Nachweis der entstandenen Antigen- spezifischen Antikörper z.B. nach transienter Transfektion verwendet werden. Der Vorteil eines GPI-Ankers besteht darin, daß er leicht in vivo enzymatisch von der Zelloberfläche gespalten wird und sich somit, wie für sezernierte Proteine bekannt, eine gute Antikörperreaktion erzielen läßt (siehe Beispiel 7 für eine gute Immunantwort nach genetischer Immunisierung mit einem Expressionsplasmid, das für ein GPI- verankertes Protein kodiert) .
Im Falle von sezernierten Proteinen (ggf. auch bei intrazellulär exprimierten Proteinen) ist es nötig, eine Auffindungssequenz ( tag) dem Antigen rekombinant anzuhängen. Diese tag-Sequenz erlaubt es, mit Hilfe von mit ihr interagierenden, an eine feste Matrix gebunden Substanzen (z.B. die tag-Sequenz erkennende Antikörper; im Falle der Hisβ-tag-
Sequenz geeignete komplexierte Ni 2+ -Ionen ) , das Protein aus dem Zeilüberstand bzw. Zelllysat herauszufischen . Als tag-Sequenz kommen insbesondere kurze und/oder wenig immunogene Peptidsequenzen in Frage . Als wenig immunogene tag-Sequenzen können ( für die Herstellung von Antikörpern in Mäusen) auch Mausproteine dienen, die stimulierend auf die
Antikörperproduktion wirken ( z . B . GM-CSF , IL-4 , IL-10 etc . ) und gleichzeitig als tag fungieren können . Solche tags haben den Vorteil , aufgrund der Toleranz des immunisierten Tiers gegenüber diesen Selbstproteinen keine Immunantwort zu entwickeln . Falls die Bildung der die tag-Sequenz des rekombinanten Proteins erkennenden Antikörper nicht verhindert werden kann , können diese mit Hil fe von Konstrukten identif iziert werden , die für irrelevante , mit einem identischen tag versehene Proteine kodieren . Das immobilisierte, durch transiente Transfektion hergestellte Protein dient nun dazu, aus dem Serum bzw. Hybridomkulturüberstand (bei der Herstellung von monoklonalen Antikörpern) die es erkennenden Antikörper zu binden. Der Nachweis der gebundenen spezifischen Antikörper erfolgt dann über enzymgekoppelte Anti-Antikörper (Nachweisantikörper), die über eine spezifische Substratumsetzung, in der Regel photometrisch, quantifizierbar sind. Die Spezifität und Sensitivität des Nachweissystems kann bei Verwendung von Peptid- tags bedeutend erhöht werden, wenn als Fängerantikörper F(ab)2-Fragmente des anti-tag-Antikörpers und als Nachweisantikörper ein Fc-Region-erkennender Antikörper verwendet wird. Durch diese Konfigurierung des ELISA wird eine Kreuzerkennung des Fängerantikörpers ausgeschlossen.
Die für das Polypeptid kodierende Transkriptionseinheit kann am 3 '-Ende eine Polyadenylierungssequenz aufweisen, die für die Stabilisierung einer eukaryotischen mRNA nötig ist.
Damit eine Expression des Polypeptids in der Wirtszelle stattfindet verfügt der Vektor üblicherweise über einen Promotor, wobei bevorzugt starke Promotoren verwendet werden. Als Beispiele können der Promotor des Elongationsfaktors lα oder der Promotor des Cytomegalovirus genannt werden.
Bei dem erfindungsgemäßen Verfahren wird die für das Polypeptid kodierende Nukleinsäure direkt in ein Tier eingebracht um dort Antikörper gegen das Polypeptid zu erzeugen. In bevorzugter Form liegt die dazu verwendete DNA in Form eines Vektors vor, der so gewählt wird, daß er gleichzeitig für die beiden Schritte a) und b) verwendet werden kann. Die Einführung der für das Polypeptid kodierenden DNA erfolgt in einer besonders bevorzugten Ausführungsform durch die Verwendung einer sogenannten gene gun. Bei der gene gun werden mikroskopisch kleine Goldpartikel mit der DNA, bevorzugt der Vektor bzw. Plasmid-DNA umhüllt und auf die rasierte Haut des Versuchstieres geschossen. Dabei dringen die Goldpartikelchen in die Haut ein und die an ihnen aufgebrachte DNA wird in dem Wirtstier exprimiert. Bevorzugt werden erfindungsgemäß Labortiere, wie Maus, Ratte oder Kaninchen verwendet.
Um eine stärkere Antikörperbildung zu erzielen, werden in einer bevorzugten Ausführungsform zugleich mit der für das Polypeptid kodierenden DNA auch sogenannte genetische Adjuvantien appliziert. Hierbei handelt es sich um Zytokine (wie z.B. GM- CSF, IL-4, IL-10) exprimierende Plasmide, die die humorale Immunantwort in den Labortieren stimulieren.
Insbesondere wenn es sich bei dem verwendeten Labortier um eine Maus oder Ratte handelt, bietet sich die Bildung von Hybridomazellen an. Die immunisierten Mäuse werden geopfert, Milzzellen werden isoliert und mit Tumorzellen fusioniert und anschließend werden solche Klone selektioniert, die die gewünschten monoklonalen Antikörper sezernieren.
In einer besonders vorteilhaften Ausführungsform werden bei Schritt a) die zu untersuchenden Polypeptide von den Wirtszellen sezerniert. Da mit den Polypeptiden ein Auffindungssignal verbunden ist, können die gesuchten Polypeptide dadurch isoliert werden, daß eine Bindung zwischen dem Auffindungssignal (tag-Sequenz) und einem geeigneten Liganden gebildet wird. Die tag-Sequenz ist vorzugsweise an einer festen Phase gebunden. Hierbei kann es sich um die Wände von Mikrotiterplatten, Gelkügelchen oder auch magnetische Kügelchen (sogenannte magnetic beads) handeln. Die magnetic beads haben den Vorteil, daß die das exprimierte Polypeptid enthaltende Lösung mit den magnetic beads leicht gemischt werden kann. Die magnetic beads weisen einen Liganden (bspw. Antikörperfragmente) auf, der an die tag-Sequenz bindet. Durch Anlegen eines magnetischen Feldes können dann die magnetic beads angereichert werden. Durch Wahl geeigneter Bedingungen kann dann das gesuchte Polypeptid von den magnetic beads wieder eluiert werden, wenn die Antikörper angereichert werden sollen.
Gegenstand der vorliegenden Anmeldung sind auch solche Antikörper, die durch das erfindungsgemäße Verfahren erhältlich sind.
Figur 1 zeigt den Nachweis von anti-hp70-Antikörpern im Serum und im Kulturüberstand von aus Lymphknoten hp70-pcDNA3-DNA immunisierter Mäuse gewonnenen Hybridomen mit Hilfe von FACScan-Analyse. Für die FACScan-Analyse wurden entweder untransfizierte (graue Kurven) oder transient mit hp70-pcDNA3- DNA transfizierte BOSC-Zellen (weiße Kurven) verwendet. GV114, mit dem hp70-pcDNA3-Expressionsvektor immunisierte Maus. Der Versuch ist im Beispiel 7 näher erläutert.
Die vorliegende Erfindung wird anhand der nachfolgenden Beispiele näher erläutert.
Beispiel 1
Herstellung von murinen monoklonalen Antikörpern mit Hilfe genetischer Immunisierung ohne gereinigtes Antigen (Protein)
a) Expreεsionskonstrukt für die genetische Immunisierung
Es wurde ein Expressionskonstrukt gewählt, das auf dem kommerziell erhältlichen Expressionsvektor pcDNA3 (Invitrogen) basiert. Bei diesem Vektor wird die cDNA unter der Kontrolle des Cytomegalovirus (CMV) -Promotors exprimiert. Es können jedoch auch andere, bevorzugt starke, meist ubiquitär aktive
Promotoren (z.B. der Promotor des Elongationsfaktor 1 α [EF- lα]-Gens) Verwendung finden. In die BamHl /EcoRV-Schnittstellen der Polylinkersequenz wurde der für die extrazelluläre Domäne von thyroid peroxidase (TPO) -kodierende cDNA-Bereich des Menschen (2602 bp; 859 Aminosäuren) einkloniert und am 3 '-Ende noch mit einer für ein Hisβ- ag-kodierende Region und einem nachfolgenden Stopkodon versehen (TPO sol . -His-pcDNA3) . Die Plasmid-DNA wurde in E. coli vermehrt und mit Hilfe eines Qiagen-Plasmidisolierungskit (Qiagen, Hilden) gereinigt.
b) Genetische Immunisierung von Mäusen
Für die genetische Immunisierung gibt es grundsätzlich zwei unterschiedliche DNA-Applikationsverfahren. Die intramuskuläre Injektion oder die intrakutane Applikation mit Hilfe Gasdruckbeschleunigter mikroskopisch kleiner, mit Plasmid-DNA umhüllter Goldpartikel ( gene gun) . Für das Beispiel verwendeten wir das gene gun-Ver fahren . Dazu wurden 200 μg TPO sol.-His-pcDNA3-DNA pro 25 mg Goldpartikel nach Vorschrift des Herstellers ( gene gun opti ization kit; Bio-Rad, München) aufgebracht. Zur genetischen Immunisierung wurde bei fünf Mäuse nach Narkotisierung (intraperitonial) mit 110 μl Ketamin/Xylazin (100 mg/kg/16 mg/kg) das Bauchfell (ca. 4 cm ) mit parfümfreier Enthaarungscreme (Veet) entfernt und zweimal mit der gene gun (Helios Gene Gun; Bio-Rad) beschossen. Pro "Schuß" wurden 1 μg Plasmid-DNA appliziert. Nach 19 Tagen wurde die Immunisierung wiederholt und 14 Tage später Blut zur Bestimmung der Menge an spezifischen Antikörpern entnommen.
Beispiel 2
Expression des Expressionskonstrukt-kodierten Proteins
Zum Nachweis der spezifischen, durch die genetische Immunisierung gebildeten Antikörper muß das vom
Expressionsplasmid kodierte Protein hergestellt werden . Um das Protein in nativer Form ( ähnlich wie im immunisierten Tier) zu erhalten, wurde das Expressionskonstrukt durch Trans fektion in BOSC23-Zellen ( Pear et al . f ( 1993 ) PNAS , 84 , 8392-8396 ] gebracht . Bei den BOSC23-Zellen handelt es sich um eine modif izierte Adenovirus 5 -trans formierte humane embryonale Nierenzellinie (HEK293), die sehr gut transient transfizierbar ist. Die Zellen wurden in 6-Loch-Zellkulturschalen ausplattiert, so daß sie tags darauf eine 80%ige Konfluenz erreichten. Sie wurden dann dreimal mit je 2 ml serum- und antibiotikafreiem Dulbecco 's modified Eagle 's medium (DMEM)- Medium gewaschen und mit 2 μg Expressionsplasmid/10 μl Lipofectamin (Life Technologies, Eggenstein) in 1 ml serum- und antibiotikafreiem DMEM-Medium versetzt. Die DNA/Lipofectamin/Medium-Mischung wurde zuvor in einem Polystyrolgefäß zusammenpipettiert und 10 min bei Raumtemperatur inkubiert. Nach einer 6-stündigen Inkubation bei 37°C und 10% C02 wurden 2 ml DMEM/20% fötales Kälberserum (FCS) zugegeben. 24 h nach Transfektion (entspricht dem Zeitpunkt der DNA-Zugabe) wurde das Medium durch 5 ml DMEM/5% FCS ersetzt. Nach weiteren 48 h (72 h nach Transfektion) wurde der Zellkulturüberstand abgenommen und bei -70°C aufbewahrt.
Beispiel 3
Nachweis von spezifischen Antikörpern, die gegen das vom Expressionskonstrukt kodierte Protein gerichtet sind
Zur Bindung des durch transiente Transfektion hergestellten His6-tag-Protein (TPO sol.-His) an Nickelchelat- Mikrotiterplatten (DÜNN, Asbach) wurden die Vertiefungen mit je 200 μl Überstand des transienten Transfektionsansatzes (siehe oben) bzw. eines ;nσc.fc-transfizierten BOSC23-Kulturüberstandes über Nacht bei 4°C inkubiert, dann viermal mit Puffer A (50 mM Tris/HCl pH 7,5, I M NaCl) und zweimal mit Puffer B (phosphate buffered saline (PBS), 0,1 % BSA, 0,05 % Tween 20) gewaschen. Unspezifische Bindungsstellen wurden anschließend durch Inkubation mit 300 μl 3 % Rinder-Serumalbumin (BSA) /PBS für 1 h bei Raumtemperatur blockiert und die Waschungen mit Puffer A und B wiederholt. Die Präimmun- und Immunseren der immunisierten Mäuse wurden 1:100 mit Puffer B verdünnt. Jeweils 100 μl der verdünnten Mäuseseren wurden in die Vertiefungen der Nickelchelat-Mikrotiterplatten gegeben. Nach einer einstündigen Inkubation bei Raumtemperatur wurden die Vertiefungen je viermal mit Puffer C (50 mM Tris/HCl pH 7,5, 0,5 M NaCl, 0,1 % BSA, 0,05 % Tween 20), zweimal mit Puffer B gewaschen und anschließend mit 100 μl 1:2000 mit Puffer B verdünnten Kaninchen anti-Maus-Ig-Peroxydasekonjugat (DAKO, Hamburg) versetzt. Nach einer einstündigen Inkubation wurden die Vertiefungen viermal mit Puffer C, zweimal mit Puffer B gewaschen, mit je 100 μl 3, 3' ,5,5 '-Tetramethylbenzidin- Substratlösung (Fluka, Buchs, Schweiz) versetzt. Die Farbreaktion wurde nach ausreichender Entwicklung durch Zugabe von 50 μl 0,5 M H2SO4 abgestoppt und in einem ELISA-reader bei einer Wellenlänge von 450 nm gemessen.
Zur Überprüfung der Funktionstüchtigkeit der hier vorgestellten Erfindung wurden die spezifischen, gegen TPO gerichteten Antikörper "klassisch" mit Hilfe eines kommerziell erhältlichen TPO-Antikörper-ELISAs (Varelisa TPO Antibodies; Pharmacia- Upjohn, Freiburg) nachgewiesen. Der Nachweis von anti-TPO- Antikörper erfolgt in diesem TestSystem durch gereinigtes rekombinantes TPO. Der anti-TPO-Antikσrpergehalt der Präimmun- und Immunseren der immunisierten Mäuse wurde in einer Verdünnung von 1:100 nach Vorschrift des Herstellers bestimmt.
Ergebnisse:
Bei allen 5 mit TPO sol .-His-pcDNA3-DNA immunisierten Mäusen konnten, im Vergleich zu den Präimmunseren, bei einer Verdünnung von 1:100 eindeutig anti-TPO-Antikörper im Serum nachgewiesen werden. Die Ergebnisse sind in Tabelle 1 dargestellt.
Tabelle 1: Nachweis von anti-TPO-Antikörpern im Serum TPO sol.- His-pcDNA3-DNA immunisierter Mäuse mit Hilfe von gereinigtem TPO-Protein ( Varelisa TPO Antibodies-Uachweissystem) . Maus Optische Dichte 450 nm
Präimmunserum Immunserum
GV1 0,09 2,53
GV2 0,06 1,97
GV3 0,07 1,13
GV4 0,08 1,63
GV5 0,08 0,60
Mit Hilfe des erfindungsgemäßen Nachweissystems wurde beispielhaft das Präimmun- und Immunserum einer Maus (GV1 von Tabelle 1) untersucht. Wie in Tabelle 2 zu sehen ist, können bei einer Serumverdünnung von 1:100 eindeutig anti-TPO- Antikörper im Immunserum nachgewiesen werden, während das Präimmunserum keine Reaktion zeigte.
Tabelle 2: Nachweis von anti-TPO-Antikörpern im Serum einer TPO sol.-His-pcDNA3-DNA immunisierten Maus mit Hilfe von durch transiente Expression erzeugtem TPO sol.-His-Protein.
Figure imgf000014_0001
Beispiel 4
Herstellung von polyklonalen Antikörpern mit Hilfe genetischer Immunisierung ohne gereinigtes Antigen (Protein) in Kaninchen
a) Express ionskonstrukt für die genetische Immunisierung
Für das zweite Fallbeispiel wurde der ubiquitär aktive Promotor des Elongationsfaktor 1 α (EF-lα)-Gens zur Expressionssteuerung verwendet. Der verwendete Expressionsvektor basiert auf dem pBluescript-Vektor (Stratagene, Heidelberg), in den ein 1,2 kb Fragment des humanen EF-lα-Genpromotors , ein 0,7 kb EcoRI-Fragment mit dem Polyadenylierungssignal der humanen G-CSF-cDNA (Mizushima und Nagata, 1990), sowie zwischen die BaiwHI/iVσtl-Schnittstellen die für das Influenzavirus Hämagglutinin (HA) -tag-kodierende Oligonukleotidsequenz eingebaut wurden. In die Clal/BamHI- Schnittstellen der Polylinkersequenz wurde der für die extrazelluläre Domäne des Aktivinrezeptors IIA kodierende cDNA- Bereich des Menschen (431 bp; 135 Aminosäuren) so einkloniert, daß am 3 '-Ende die HA- ag-kodierende Region und ein nachfolgendes Stopkodon zu liegen kam (pEF-lα-ActRII-HA) .
b) Genetische Immunisierung von Kaninchen
Es wurden zur genetischen Immunisierung 100 μg pEF-lα-ActRII- HA-DNA pro 25 mg Goldpartikel nach Vorschrift des Herstellers ( gene gun optimization kit; Bio-Rad, München) aufgebracht. Zwei Kaninchen (Chinchilla Bastard; Charles River, Sulzfeld) wurden nach Narkotisierung mit 50 mg/kg Pentobarbital und Enthaarung von 200 cm Bauchfell mit Enthaarungscreme dreißigmal mit der gene gun beschossen. Pro "Schuß" wurden 1 μg Plasmid-DNA- Gemisch appliziert. Nach 21 Tagen wurde die Immunisierung wiederholt und 21 Tage später Blut zur Bestimmung der Menge an spezifischen Antikörpern entnommen.
Beispiel 5
Expression des Express ionskonstrukt-kodierten Proteins
Die Herstellung des vom Expressionsplasmid pEF-lα-ActRII-HA kodierten Proteins durch transiente Transfektion von BOSC23- Zellen erfolgte wie in Beispiel 2 beschrieben. Beispiel 6
Nachweis von spezifischen Antikörpern, die gegen das vom Express ionskonstrukt- kodierte Protein gerichtet sind
Zur Bindung des durch transiente Transfektion hergestellten HA- tag-Protein (EF-l -ActRII-HA) an Mikrotiterplatten wurden die Vertiefungen zunächst mit dem F(ab)2-Fragment des anti-HA- ag- Antikörper beschichtet. Dazu wurden 150 μl des Antikörperfragments je Vertiefung der Mikrotiterplatte gegeben und bei Raumtemperatur mit PBS gewaschen und freie Proteinbindungsstellen durch Inkubation mit 200 μl 0,2% BSA/PBS blockiert.
Anschließend wurde der Überstand des transienten Transfektionsansatzes (siehe Beispiel 5) bzw. eines mock- transfizierten BOSC23-Kulturüberstandes für 2 h bei Raumtemperatur inkubiert, dann dreimal mit phosphate-buffered saline (PBS) gewaschen. Die Präimmun- und Immunseren der immunisierten Kaninchen wurden 1:100 bzw. 1:500 mit 0,2% BSA/PBS verdünnt. Jeweils 100 μl der verdünnten Kaninchenseren wurden in die Vertiefungen der beschichteten Mikrotiterplatten gegeben. Nach einer einstündigen Inkubation bei Raumtemperatur wurden die Vertiefungen je dreimal mit PBS gewaschen und anschließend mit 100 μl 1:2000 mit PBS/0,2% BSA verdünnten Ziege-anti-Kaninchen-Ig-Peroxydasekonjugat (DAKO, Hamburg) versetzt. Nach einer 1-stündigen Inkubation wurden die Vertiefungen dreimal mit PBS gewaschen, mit je 100 μl 3,3',5,5'-Tetramethylbenzidin-Substratlösung (Fluka, Buchs, Schweiz) versetzt. Die Farbreaktion wurde nach ausreichender Entwicklung durch Zugabe von 50 μl 0,5 M H2S0 abgestoppt und in einem ELISA-reader gemessen. Die Ergebnisse zeigten, daß durch das erfindungsgemäße Verfahren auch in Kaninchen spezifische polyklonale Antikörper gegen ein unbekanntes Genprodukt erzeugt werden können. Beispiel 7
Herstellung von murinen monoklonalen Antikörpern gegen ein humanes GPI- verankertes Oberflächenprotein mit Hilfe genetischer Immunisierung
a) Expressionskonstrukt für die genetische Immunisierung
Für die genetische Immunisierung wurde die vollständige hp70- cDNA, die für ein 70 kDa GPI-verankertes humanes Oberflächenprotein kodiert, in pcDNA3 kloniert (hp70-pcDNA3) und vermehrt (siehe Beispiel 1). Die humane hp70- Aminosäuresequenz stimmt mit der murinen hp70-Sequenz in ca. 70% der Reste überein.
b) Genetische Immunisierung von Mäusen
Die Immunisierung der Mäuse mit der gene gun (siehe Beispiel lb) wurde nach einem Kurzprotokoll (6 Immunisierungen innerhalb von 13 Tagen), wie von Kilpatrick et al. (1998), Hybridoma 17: 569-576 beschreiben, durchgeführt.
c) Herstellung von Hybridomen zur Produktion von monoklonalen Antikörpern
Zur Herstellung von Hybridomen wurden Lymphozyten aus den regionalen (axillaren, brachialen, inguinalen und poplitealen) Lymphknoten von drei Mäusen isoliert und nach einem Standardprotokoll mit exponential wachsenden SP2/0- Mausmyelomzellen (American Tissue Type Culture Collection) mit Hilfe von Polyethylenglykol (Sigma) fusioniert (Campbell A M (1986). Monoclonal antibody technology: The production and characterization of rodent and human monoclonal antibodies. Book series : Laboratory Techniques in Biochemistry and Molecular Biology (R H Burdon and P H van Knippenberg, eds . ) , Elsevier Science Publishers, Amsterdam). Je 2 x 10 fusionierte Ly phknotenlymphozyten wurden pro Vertiefung einer 96-well- Mikrotiterplatte ausplattiert und in jeweils 100 μl Hypoxanthin/Aminopterin Thymidin (HAT) -haltigen DMEM-Mediu (Sigma) mit 20% FCS und 5% Hybridoma Enhancing Factor (Sigma) kultiviert.
d) Nachweis von spezifischen Antikörpern mit Hilfe von Zellen, in denen das für die genetische Immunisierung verwendete Express ionskonstrukt nach transienter
Transfektion exprimiert wird
Kandidatenhybridomklone wurden mit Hilfe eines Zell-ELISA identifiziert. Dazu wurden BOSC-Zellen, wie in Beispiel 2 beschrieben, transient mit dem hp70-pcDNA3-Expressionskonstrukt transfiziert, in 4% Formaldehyd in PBS resuspendiert und für 10 min fixiert. Anschließend wurden die Zellen mit PBS 1:10 verdünnt und bei 4°C bis zu vier Wochen aufbewahrt.
Zell-ELISA
96-well-Rundboden-Mikrotiterplatten wurden durch Zugabe von 300 μl 1% BSA in PBS für 1 h bei Raumtemperatur blockiert. Nach Entfernen der Lösung durch Inversion der Platte wurden jeweils 75 μl des Hybrido zellüberStands und 10 μl transient transfizierte BOSC-Zellsuspension (6 x 106 Zellen/ml 1% BSA in PBS) zugegeben und 1 h bei 4°C inkubiert. Nach Zugabe von 100 μl 1% BSA in PBS wurde für 4 min bei 300x g zentrifugiert und der Überstand wie oben abgekippt. Die Zellen wurden nochmals mit 200 μl 1% BSA/PBS gewaschen, in 75 μl, Peroxidase- gekoppeltem Ziege-anti-Maus-Immunglobulin-Antikörper (DAKO), l:2.000-verdünnt in 1% BSA/PBS, resuspendiert und für lh bei 4°C inkubiert. Anschließend wurden 100 μl 0,1% Tween 20/PBS zugesetzt und wie oben zentrifugiert und der Überstand verworfen. Die Zellen wurden dann dreimal mit je 200 μl 0,1% Tween 20/PBS und zweimal mit je 200 μl PBS gewaschen. Zur Bestimmung der Immunglobulinklasse (IgG oder IgM) der monoklonalen Antikörper in den Hybridomüberständen wurden Peroxidase-gekoppelte Ziege-anti-Maus-IgG-Antikörper (1:2.000- verdünnt) oder Ziege-anti-Maus-IgM-Antikörper (1:2.000- verdünnt) verwendet (Southern Biotechnσlogies Associates). Die über die Antikörper an die Zellen gebundene Peroxidase wurde durch Zugabe von 3 , 3 '5 , 5 ' -Tetramethylbenzidin-Substratlösung wie in Beispiel 3 beschrieben quantifiziert.
Ergebnisse:
Mit der oben beschriebenen Fusion wurden insgesamt 176 mit Hybridomen bewachsene Mikrotitervertiefungen erhalten. Davon erwiesen sich 64 Überstände als positive für anti-hp70- Antikörper, legt man einen OD 5o-Wert, der doppelt so hoch wie der mit Medium erhaltene Leerwert ist (Leerwert: 0,035), als Schwellenwert zugrunde. In Tabelle 3 sind die für einen negativen (N1B10) und für einen positiven Hybridomüberstand (N1F4) gemessenen Werte aufgeführt. In Vergleich sind die im selben Test erhaltenen OD-Werte für das Immun- und Präimmunserum einer für die hp70-Hybridomherstellung verwendeten Maus (GV114) gezeigt. Dieselben N1B10- und N1F4- Hybridomüberstände wurden auch mit Hilfe einer FACScan ( fluorescence-activated cell scanning) -Analyse auf Anwesenheit von spezifischen anti-hp70-Antikörpern getestet (siehe unten).
Tabelle 3: Nachweis von anti-hp70-Antikörpern im Serum und im Kulturüberstand von aus Lymphknoten hp70-pcDNA3-DNA immunisierter Mäuse gewonnenen Hybridomen mit Hilfe eines Zell- ELISA. Für den Zell-ELISA wurden transient mit hp70-pcDNA3-DNA transfizierte BOSC-Zellen verwendet.
Serum bzw. Verdünnung Optische Dichte Hybridomüberstand
Präimmunserum GV114 1:100 0,08
Immunserum GV114 1:100 1,21
Hybridomüberstand N1B10 unverdünnt 0,05
Hybridomüberstand N1F4 unverdünnt 1,07 FACScan-Analyse
Jeweils 10 μl der unter Zell-ELISA beschriebenen Suspension fixierter transient transfizierter BOSC-Zellen (20 x 10 in 3% FCS/PBS) wurde in eine 96-well-Mikrotiterrundbodenplatte pipettiert und 75 μl der jeweiligen Hybridomüberstände zugegeben. Zur Kontrolle wurden Zellen mit entweder 25 μl 1:100 mit 3% FCS/PBS verdünnten Präimmun- oder Immunseren bzw. mit 25 μl eines monoklonalen Kontrollantikörpers (50 μg/ml 3% FCS/PBS) versetzt. Nach einer Inkubation von 30 min bei 4°C wurden je 200 μl 3% FCS/PBS zugegeben, die Zellen wie oben abzentrifugiert und der Überstand verworfen. Nach einmaligem Waschen mit 200 μl 3% FCS/PBS wurden 25 μl eines 1:50 mit 3% FCS/PBS verdünnten (Endkonzentration: 10 μg/ml), mit Phycoerythrin-gekoppelten Ziege-anti-Maus-Immunglobulin- Antikörpers (Southern Biotechnologies Associates) zugesetzt und 30 min bei 4°C inkubiert. Anschließend wurden die Zellen zweimal wie oben gewaschen und in einem FACScan-Gerät (Becton Dickinson) die Fluoreszenz vermessen.
Ergebnisse:
Von den im Zell-ELISA als positiv bestimmte Hybridomüberstände (siehe oben) wurden 20 Überstände, die OD5o- erte von >0,2 ergaben, für die anti-hp70-Antikörperbestimmung durch FACScan- Analyse ausgewählt. In Figur IB sind die für einen irrelevanten als negative Kontrolle verwendeten Antikörper (26/3/13) und für den positiven Hybridomüberstand N1F4 erhaltenen Histogramme mit transient mit dem hp70-pcDNA3-Expressionsvektor transfizierten oder nichttransfizierten BOSC-Zellen gezeigt. In Vergleich sind die im selben Test erhaltenen Histogramme für das Immun- und Präimmunserum einer für die Hybridomherstellung verwendeten Maus abgebildet (Figur 1A) . Alle 20 ausgewählten Hybridomüberstände erwiesen sich als positiv in der FACScan- Analyse. In 19 der insgesamt 20 Überstände wurden die Immunglobulinklasse der hp70-spezifischen Antikörper bestimmt. Zwei der getesteten Überstände enthielten hp70-spezif ische IgM- Antikörper, 17 Überstände hp70-spezif ische IgG-Antikörper .

Claims

Patentansprüche
1. Verfahren zur Erzeugung von Antikörpern, die spezifisch mit einem Polypeptid reagieren von dem die kodierende Nukleinsäure bekannt ist, worin
a) die für das Polypeptid kodierende DNA mit Hilfe eines Vektors, der wenigstens eine für ein Auffindungssignal kodierende Sequenz aufweist, in einer Wirtszelle exprimiert wird und das exprimierte Polypeptid mit Hilfe des Auffindungssignals an eine feste Phase gebunden wird,
b) unabhängig von Schritt a) die für das Polypeptid kodierende DNA direkt in ein Tier eingebracht wird, wodurch eine Expression des Polypeptids in dem Tier erfolgt, die die Bildung von Antikörpern gegen das Polypeptid verursacht und
c) die in Schritt b) gebildeten Antikörper mit dem in Schritt a) gebildeten Polypeptid umgesetzt und nachgewiesen oder angereichert werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der in Schritt a) verwendete Vektor am C-Terminus der für das Polypeptid kodierenden DNA eine Sequenz aufweist, die für das Auffindungssignal kodiert.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Auffindungssequenz ausgewählt ist aus der Hisβ-tag-Sequenz, der Hämagglutinin-Sequenz eines Influenzavirus oder der myc- tag-Sequenz .
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der für das Polypeptid kodierende Vektor am C-terminalen Ende der Auffindungssequenz eine Polyadenylierungssequenz aufweist .
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der für das Polypeptid kodierende Vektor am 5 ' -Ende der für das Polypeptid kodierenden DNA- Sequenz einen starken Promotor aufweist.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der starke Promotor ausgewählt ist aus der Gruppe bestehend aus starken eukaryotischen Promotoren, insbesondere dem Promotor des Elongationsfaktors 1 oder des Cytomegalovirus-Promotors .
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die für das Polypeptid kodierende DNA, die gemäß Schritt b) direkt in ein Tier eingebracht wird in einem Vektor vorliegt.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die für das Polypeptid kodierende DNA in Schritt b) mit Hilfe einer gene gun in das Tier eingebracht wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es sich bei dem in Schritt b) eingesetzten Tier um eine Maus, eine Ratte oder ein Kaninchen handelt.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in Schritt b) zusätzlich zu der für das Polypeptid kodierenden DNA ein genetisches Adjuvans appliziert wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß das genetische Adjuvans ausgewählt ist aus der Gruppe umfassend Zytokinexpressionsvektoren, die die Antikörperproduktion erhöhen.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß geeignete Zellen eines gemäß Schritt b) immunisierten Tieres für die Herstellung von Hybridomazellen zur Bildung von monoklonalen Antikörpern verwendet werden.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das in Schritt a) gebildete Polypeptid durch Bindung des Auffindungssignals an einen hiergegen gerichteten Antikörper oder ein Antikörperfragment an eine feste Phase gebunden wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß es sich bei der festen Phase um Mikrotiterplatten, Gelkügelchen oder magnetische Kügelchen handelt.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der in Schritt b) gebildete Antikörper nach Bindung an das in Schritt a) gebildete Polypeptid mit Hilfe eines gegen den Antikörper gerichteten Anti-Antikörpers nachgewiesen wird.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der in Schritt c) an das exprimierte Polypeptid gebundene Antikörper durch Elution freigesetzt wird.
17. Antikörper, dadurch gekennzeichnet, daß er nach einem der Verfahren gemäß Anspruch 1-17 erhältlich ist.
PCT/EP1999/008678 1998-11-16 1999-11-11 Verfahren zur herstellung von antikörpern gegen ein polypeptid, von dem nur die kodierende nukleinsäure bekannt ist WO2000029442A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000582427A JP2002530065A (ja) 1998-11-16 1999-11-11 コードする核酸が公知であるポリペプチドに対する抗体を産生させる方法
AU11621/00A AU768631B2 (en) 1998-11-16 1999-11-11 Method for producing antibodies acting against a polypeptide that only recognises the coding nucleic acid
NZ511040A NZ511040A (en) 1998-11-16 1999-11-11 Method for producing antibodies acting against a polypeptide that only recognises the coding nucleic acid
EP99972225A EP1131355A1 (de) 1998-11-16 1999-11-11 Verfahren zur herstellung von antikörpern gegen ein polypeptid, von dem nur die kodierende nukleinsäure bekannt ist
CA002350078A CA2350078A1 (en) 1998-11-16 1999-11-11 Method for producing antibodies acting against a polypeptide that only recognises the coding nucleic acid
IL14246599A IL142465A0 (en) 1998-11-16 1999-11-11 Method for producing antibodies acting against a polypeptide that only recognizes the coding nucleic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19852800.0 1998-11-16
DE19852800A DE19852800C1 (de) 1998-11-16 1998-11-16 Verfahren zur Herstellung von Antikörpern gegen ein Polypeptid, von dem die kodierende Nukleinsäure bekannt ist

Publications (1)

Publication Number Publication Date
WO2000029442A1 true WO2000029442A1 (de) 2000-05-25

Family

ID=7887961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/008678 WO2000029442A1 (de) 1998-11-16 1999-11-11 Verfahren zur herstellung von antikörpern gegen ein polypeptid, von dem nur die kodierende nukleinsäure bekannt ist

Country Status (8)

Country Link
EP (1) EP1131355A1 (de)
JP (1) JP2002530065A (de)
AU (1) AU768631B2 (de)
CA (1) CA2350078A1 (de)
DE (1) DE19852800C1 (de)
IL (1) IL142465A0 (de)
NZ (1) NZ511040A (de)
WO (1) WO2000029442A1 (de)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043044A (ja) * 2001-07-30 2003-02-13 Denka Seiken Co Ltd 抗体捕捉法による抗体の免疫学的測定方法
US6800462B2 (en) 2001-09-10 2004-10-05 Abgenomics Corporation Production of recombinant proteins in vivo and use for generating antibodies
WO2006016999A1 (en) 2004-07-09 2006-02-16 Cythera, Inc. Methods for identifying factors for differentiating definitive endoderm
WO2007066823A1 (ja) * 2005-12-07 2007-06-14 Nosan Corporation 結合組織増殖因子に対する抗体又はそれを含む組成物
WO2008044754A1 (fr) 2006-10-06 2008-04-17 Takeda Pharmaceutical Company Limited Agent prophylactique ou thérapeutique pour le cancer
US7510876B2 (en) 2003-12-23 2009-03-31 Cythera, Inc. Definitive endoderm
US7541185B2 (en) 2003-12-23 2009-06-02 Cythera, Inc. Methods for identifying factors for differentiating definitive endoderm
EP2070546A1 (de) 2004-04-09 2009-06-17 Takeda Pharmaceutical Company Limited Vorbeugungsmaßnahmen/Heilmittel für Krebs
US7625753B2 (en) 2003-12-23 2009-12-01 Cythera, Inc. Expansion of definitive endoderm cells
US7695963B2 (en) 2007-09-24 2010-04-13 Cythera, Inc. Methods for increasing definitive endoderm production
US7695965B2 (en) 2006-03-02 2010-04-13 Cythera, Inc. Methods of producing pancreatic hormones
WO2010096941A1 (en) * 2009-02-24 2010-09-02 Esbatech, An Alcon Biomedical Research Unit Llc Methods for identifying immunobinders of cell-surface antigens
US7985585B2 (en) 2004-07-09 2011-07-26 Viacyte, Inc. Preprimitive streak and mesendoderm cells
US7989204B2 (en) 2006-04-28 2011-08-02 Viacyte, Inc. Hepatocyte lineage cells
EP2377922A2 (de) 2004-04-27 2011-10-19 Viacyte, Inc. PDX1-exprimierendes Endoderm
US8129182B2 (en) 2006-03-02 2012-03-06 Viacyte, Inc. Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
US8187878B2 (en) 2004-08-13 2012-05-29 University Of Georgia Research Foundation, Inc. Methods for increasing definitive endoderm differentiation of pluripotent human embryonic stem cells with PI-3 kinase inhibitors
US8586357B2 (en) 2003-12-23 2013-11-19 Viacyte, Inc. Markers of definitive endoderm
US8633024B2 (en) 2004-04-27 2014-01-21 Viacyte, Inc. PDX1 expressing endoderm
US8647873B2 (en) 2004-04-27 2014-02-11 Viacyte, Inc. PDX1 expressing endoderm
US9132226B2 (en) 2008-11-14 2015-09-15 Viacyte, Inc. Encapsulation of pancreatic cells derived from human pluripotent stem cells
US9243065B2 (en) 2002-11-08 2016-01-26 Ablynx N.V. Polypeptide constructs including VHH directed against EGFR for intracellular delivery
US9320792B2 (en) 2002-11-08 2016-04-26 Ablynx N.V. Pulmonary administration of immunoglobulin single variable domains and constructs thereof
US9371381B2 (en) 2002-11-08 2016-06-21 Ablynx, N.V. Single domain antibodies directed against tumor necrosis factor-alpha and uses therefor
US9499795B2 (en) 2005-10-27 2016-11-22 Viacyte, Inc. PDX1-expressing dorsal and ventral foregut endoderm
US11254916B2 (en) 2006-03-02 2022-02-22 Viacyte, Inc. Methods of making and using PDX1-positive pancreatic endoderm cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10314412A1 (de) * 2003-03-28 2004-10-14 Genovac Ag Genetische Immunisierung mit multiplen Expressionskonstrukten zur Herstellung von monoklonalen Antikörpern

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994027435A1 (en) * 1993-06-01 1994-12-08 Life Technologies, Inc. Genetic immunization with cationic lipids
WO1997007132A1 (en) * 1995-08-15 1997-02-27 Commonwealth Scientific And Industrial Research Organisation Epitope tagging system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994027435A1 (en) * 1993-06-01 1994-12-08 Life Technologies, Inc. Genetic immunization with cationic lipids
WO1997007132A1 (en) * 1995-08-15 1997-02-27 Commonwealth Scientific And Industrial Research Organisation Epitope tagging system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ULIVIERI C ET AL: "Generation of a monoclonal antibody to a defined portion of the Helicobacter pylori vacuolating cytotoxin by DNA immunization", JOURNAL OF BIOTECHNOLOGY,NL,ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, vol. 51, no. 2, 1 November 1996 (1996-11-01), pages 191 - 194, XP004037124, ISSN: 0168-1656 *

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619580B2 (ja) * 2001-07-30 2011-01-26 デンカ生研株式会社 抗体捕捉法による抗体の免疫学的測定方法
JP2003043044A (ja) * 2001-07-30 2003-02-13 Denka Seiken Co Ltd 抗体捕捉法による抗体の免疫学的測定方法
US6800462B2 (en) 2001-09-10 2004-10-05 Abgenomics Corporation Production of recombinant proteins in vivo and use for generating antibodies
US9371381B2 (en) 2002-11-08 2016-06-21 Ablynx, N.V. Single domain antibodies directed against tumor necrosis factor-alpha and uses therefor
US9725522B2 (en) 2002-11-08 2017-08-08 Ablynx N.V. Pulmonary administration of immunoglobulin single variable domains and constructs thereof
US9243065B2 (en) 2002-11-08 2016-01-26 Ablynx N.V. Polypeptide constructs including VHH directed against EGFR for intracellular delivery
US9320792B2 (en) 2002-11-08 2016-04-26 Ablynx N.V. Pulmonary administration of immunoglobulin single variable domains and constructs thereof
US7625753B2 (en) 2003-12-23 2009-12-01 Cythera, Inc. Expansion of definitive endoderm cells
US7541185B2 (en) 2003-12-23 2009-06-02 Cythera, Inc. Methods for identifying factors for differentiating definitive endoderm
US9605243B2 (en) 2003-12-23 2017-03-28 Viacyte, Inc. Markers of definitive endoderm
US10550367B2 (en) 2003-12-23 2020-02-04 Viacyte, Inc. Methods of making human primitive ectoderm cells
US7704738B2 (en) 2003-12-23 2010-04-27 Cythera, Inc. Definitive endoderm
US11667889B2 (en) 2003-12-23 2023-06-06 Viacyte, Inc. Methods of making human primitive ectoderm cells
US9732318B2 (en) 2003-12-23 2017-08-15 Viacyte, Inc. Preprimitive streak and mesendoderm cells
US8586357B2 (en) 2003-12-23 2013-11-19 Viacyte, Inc. Markers of definitive endoderm
US10179902B2 (en) 2003-12-23 2019-01-15 Viacyte, Inc. Methods of making human primitive ectoderm cells
US7510876B2 (en) 2003-12-23 2009-03-31 Cythera, Inc. Definitive endoderm
US10421942B2 (en) 2003-12-23 2019-09-24 Viacyte, Inc. Definitive endoderm
EP2722387A2 (de) 2003-12-23 2014-04-23 Viacyte, Inc. Definitives Endoderm
US8658151B2 (en) 2003-12-23 2014-02-25 Viacyte, Inc. Expansion of definitive endoderm cells
US8623645B2 (en) 2003-12-23 2014-01-07 Viacyte, Inc. Definitive endoderm
US8216836B2 (en) 2003-12-23 2012-07-10 Viacyte, Inc. Methods for identifying factors for differentiating definitive endoderm
EP2070546A1 (de) 2004-04-09 2009-06-17 Takeda Pharmaceutical Company Limited Vorbeugungsmaßnahmen/Heilmittel für Krebs
US9222069B2 (en) 2004-04-27 2015-12-29 Viacyte, Inc. Methods for making anterior foregut endoderm
US8633024B2 (en) 2004-04-27 2014-01-21 Viacyte, Inc. PDX1 expressing endoderm
US8647873B2 (en) 2004-04-27 2014-02-11 Viacyte, Inc. PDX1 expressing endoderm
US11746323B2 (en) 2004-04-27 2023-09-05 Viacyte, Inc. PDX1 positive foregut endoderm cells and methods of production
EP2377922A2 (de) 2004-04-27 2011-10-19 Viacyte, Inc. PDX1-exprimierendes Endoderm
US10465162B2 (en) 2004-04-27 2019-11-05 Viacyte, Inc. Anterior endoderm cells and methods of production
WO2006016999A1 (en) 2004-07-09 2006-02-16 Cythera, Inc. Methods for identifying factors for differentiating definitive endoderm
US7985585B2 (en) 2004-07-09 2011-07-26 Viacyte, Inc. Preprimitive streak and mesendoderm cells
US8187878B2 (en) 2004-08-13 2012-05-29 University Of Georgia Research Foundation, Inc. Methods for increasing definitive endoderm differentiation of pluripotent human embryonic stem cells with PI-3 kinase inhibitors
US11427805B2 (en) 2005-10-27 2022-08-30 Viacyte, Inc. Methods of producing human foregut endoderm cells expressing PDX1 from human definitive endoderm
US9499795B2 (en) 2005-10-27 2016-11-22 Viacyte, Inc. PDX1-expressing dorsal and ventral foregut endoderm
WO2007066823A1 (ja) * 2005-12-07 2007-06-14 Nosan Corporation 結合組織増殖因子に対する抗体又はそれを含む組成物
US7993920B2 (en) 2006-03-02 2011-08-09 Viacyte, Inc. Methods of producing pancreatic hormones
US10517901B2 (en) 2006-03-02 2019-12-31 Viacyte, Inc. Methods of lowering blood glucose levels in a mammal
US7695965B2 (en) 2006-03-02 2010-04-13 Cythera, Inc. Methods of producing pancreatic hormones
US9980986B2 (en) 2006-03-02 2018-05-29 Viacyte, Inc. Methods of producing pancreatic hormones
US9585917B2 (en) 2006-03-02 2017-03-07 Viacyte, Inc. Methods of producing pancreatic hormones
US8129182B2 (en) 2006-03-02 2012-03-06 Viacyte, Inc. Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
US11896622B2 (en) 2006-03-02 2024-02-13 Viacyte, Inc. Methods of producing pancreatic hormones
US8603811B2 (en) 2006-03-02 2013-12-10 Viacyte, Inc. Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
US10370645B2 (en) 2006-03-02 2019-08-06 Emory University Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
US11254916B2 (en) 2006-03-02 2022-02-22 Viacyte, Inc. Methods of making and using PDX1-positive pancreatic endoderm cells
US7989204B2 (en) 2006-04-28 2011-08-02 Viacyte, Inc. Hepatocyte lineage cells
US8574905B2 (en) 2006-04-28 2013-11-05 Viacyte, Inc. Hepatocyte lineage cells
WO2008044754A1 (fr) 2006-10-06 2008-04-17 Takeda Pharmaceutical Company Limited Agent prophylactique ou thérapeutique pour le cancer
US7993916B2 (en) 2007-09-24 2011-08-09 Viacyte, Inc. Methods for increasing definitive endoderm production
US7695963B2 (en) 2007-09-24 2010-04-13 Cythera, Inc. Methods for increasing definitive endoderm production
US9764062B2 (en) 2008-11-14 2017-09-19 Viacyte, Inc. Encapsulation of pancreatic cells derived from human pluripotent stem cells
US9132226B2 (en) 2008-11-14 2015-09-15 Viacyte, Inc. Encapsulation of pancreatic cells derived from human pluripotent stem cells
US10272179B2 (en) 2008-11-14 2019-04-30 Viacyte, Inc. Encapsulation of pancreatic cells derived from human pluripotent stem cells
US9913930B2 (en) 2008-11-14 2018-03-13 Viacyte, Inc. Encapsulation of pancreatic cells derived from human pluripotent stem cells
US11660377B2 (en) 2008-11-14 2023-05-30 Viacyte, Inc. Cryopreserved in vitro cell culture of human pancreatic progenitor cells
US9221905B2 (en) 2009-02-24 2015-12-29 Esbatech, An Alcon Biomedical Research Unit Llc Methods for producing immunobinders of cell-surface antigens
US8465937B2 (en) 2009-02-24 2013-06-18 ESBATech, an Alcon Biomedical Research Unit, LLC Methods for identifying B-clones which bind cell-surface antigens
US8227199B2 (en) 2009-02-24 2012-07-24 ESBATech, an Alcon Biomedical Research Unit, LLC Methods for identifying immunobinders of cell-surface antigens
WO2010096941A1 (en) * 2009-02-24 2010-09-02 Esbatech, An Alcon Biomedical Research Unit Llc Methods for identifying immunobinders of cell-surface antigens
US9908940B2 (en) 2009-02-24 2018-03-06 Esbatech, An Alcon Biomedical Research Unit Llc Humanized immunobinders of cell-surface antigens

Also Published As

Publication number Publication date
IL142465A0 (en) 2002-03-10
CA2350078A1 (en) 2000-05-25
JP2002530065A (ja) 2002-09-17
AU1162100A (en) 2000-06-05
EP1131355A1 (de) 2001-09-12
AU768631B2 (en) 2003-12-18
NZ511040A (en) 2003-07-25
DE19852800C1 (de) 2000-04-13

Similar Documents

Publication Publication Date Title
WO2000029442A1 (de) Verfahren zur herstellung von antikörpern gegen ein polypeptid, von dem nur die kodierende nukleinsäure bekannt ist
DE60211329T2 (de) Isolierung von sezernierte proteine exprimierenden zellen
AU627183B2 (en) Method for producing recombinant dna proteins
DE69736486T2 (de) Gerichtete umschalt-vermittelte dns-rekombination
DE69026615T2 (de) Igg3-antikörper mit verkürzter hinge-region und einem komplementaktivierungstest
DE3883899T3 (de) Geänderte antikörper.
DE69718341T2 (de) Verfahren und mittel zur auswahl von peptiden und proteinen mit spezifischer affinität zu einem zielmolekül
DE69730592T2 (de) Expressionssteigernde sequenzelemente (ease) für eukaryontische expressionssysteme
EP0531300B1 (de) Variante cd44-oberflächenproteine, diese kodierende dna-sequenzen, antikörper gegen diese proteine sowie ihre verwendung in der diagnostik und therapie
DE4037837A1 (de) Zellfreie rezeptorbindungsteste, ihre herstellung und verwendung
EP3424527A1 (de) Diagnostisches verfahren
DE69915320T2 (de) Immunoglobulin-bindende proteine
CN117362431B (zh) 抗小鼠白细胞介素10的兔单克隆抗体及其应用
AU2006231795B2 (en) Process for production of protein having triple-helical structure
DE19718249A1 (de) Myc-bindende Zinkfinger-Proteine, ihre Herstellung und ihre Verwendung
DE69630008T2 (de) Treponema palladium Fusions-Antigen, Nachweis für Anti-treponema palladium Antikörpern mit diesen Fusions-Antigenen
EP0815141B1 (de) Antikörper gegen ein, einen histidin-anteil aufweisendes fusionspolypeptid
WO2021009322A1 (de) VERFAHREN ZUR SELEKTION VON HYBRIDOMZELLEN AUS EINER VIELZAHL VON HYBRIDOMZELLEN MITTELS EINES BIRA-EXPRESSIONSVEKTORs
DE69334156T2 (de) Verfahren zur Reduzierung der Immunogenizität der variablen Regionen von Antikörpern
EP0532979B1 (de) Petide zur Herstellung von Mitteln zur Diagnose und Therapie von systemischem Lupus
DE19643314A1 (de) Monoklonale Antikörper gegen das Epitop YPYDVPDYA, Verfahren zu deren Herstellung und Verwendung
DE19837751A1 (de) Markierung, Immobilisierung, Anreicherung, Reinigung und Nachweis von Zellen mittels der Verwendung spezifischer Zellwand-bindender Domänen (CBD) von Zellwand-bindenden Proteinen aus Viren, Bakterien oder eukaryontischen Zellen
DE19526384C2 (de) Rekombinante autologe Fusionsproteine des Epstein-Barr-Virus, sowie diese enthaltende Testkits zum Nachweis von Epstein-Barr-Virus-spezifischen Antikörpern
DE60207409T2 (de) Hiv1-vpr-wechselwirkungen mit dem mitochondrialen apoptosis-induzierenden faktor sowie verfahren zur verwendung davon
EP0420043A1 (de) Antikörper gegen hochkonservierte Aminosäuresequenzen von immunogenen Substanzen, Verfahren zur Herstellung dieser Antikörper, sowie deren Verwendung in Immunoassays

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2000 11621

Country of ref document: AU

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA IL JP MX NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 142465

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 11621/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 511040

Country of ref document: NZ

Ref document number: 1999972225

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2000 582427

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/004612

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2350078

Country of ref document: CA

Kind code of ref document: A

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 09807509

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999972225

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 11621/00

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1999972225

Country of ref document: EP