WO2000029094A1 - Method for operating a combustion plant - Google Patents

Method for operating a combustion plant Download PDF

Info

Publication number
WO2000029094A1
WO2000029094A1 PCT/EP1999/008040 EP9908040W WO0029094A1 WO 2000029094 A1 WO2000029094 A1 WO 2000029094A1 EP 9908040 W EP9908040 W EP 9908040W WO 0029094 A1 WO0029094 A1 WO 0029094A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
nitrogen
zone
substoichiometric
flame zone
Prior art date
Application number
PCT/EP1999/008040
Other languages
German (de)
French (fr)
Inventor
Hermann BRÜGGENDICK
Andreas Hospital
Original Assignee
Steag Encotec Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steag Encotec Gmbh filed Critical Steag Encotec Gmbh
Priority to AT99972122T priority Critical patent/ATE232133T1/en
Priority to DK99972122T priority patent/DK1131150T3/en
Priority to CA002351663A priority patent/CA2351663A1/en
Priority to EP99972122A priority patent/EP1131150B1/en
Priority to PL99348340A priority patent/PL194273B1/en
Priority to DE59904247T priority patent/DE59904247D1/en
Publication of WO2000029094A1 publication Critical patent/WO2000029094A1/en
Priority to US11/879,212 priority patent/US20080286704A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire

Definitions

  • the invention relates to a method for operating a combustion device while reducing nitrogen oxides.
  • the SCR process is mainly used to reduce nitrogen oxide emissions from industrial plants.
  • SCR stands for Selective Catalytic Reduction.
  • the burned-out flue gas is passed behind the burnout zone with the addition of a reducing agent through a catalytic reactor in which the nitrogen oxides are split up at temperatures of 300-400 ° C. to form molecular nitrogen.
  • the investment required by the catalytic reactor is considerable.
  • the SNCR method is also known.
  • SNCR stands for Selective Non-Catalytic Reduction.
  • the reducing agent is introduced into the overstoichiometric, high-temperature burnt flue gas directly after the burnout zone.
  • Reducing agent is carried away by the flue gas as an ineffective base.
  • the effectiveness of the SNCR process presupposes that the reducing agent is very intensive and uniform, for example over lances and the like, using a propellant with the burnt out
  • Flue gas is mixed. Accordingly, the large-scale use of this process is prohibited. Its application is limited to smaller incinerators, e.g. B. on thermal power stations and waste incineration plants. A large-scale use would presuppose that a mixing over a cross-section of 100-500 m 2 is carried out in a uniform manner, which is obviously excluded.
  • the reducing agent is fed into a reduction zone, which is located between the burner zone and the burnout zone. Burner zone and reduction zone are operated stoichiometrically. For this it may be necessary to work with fuel grading, ie one Enter the remaining portion of the fuel in the reduction zone. A carrier medium is required to introduce the reducing agent. Air is out of the question since the reduction zone must remain substoichiometric. In turn, nitrogen is too expensive. This leaves water vapor and vaporizable liquids, reducing the efficiency of the process in both cases. The same applies to the introduction of ammonia water, the water content of which is to be evaporated is approx. 75%. In the burnout zone following the reduction zone, the air ratio is increased to over 1 by adding additional combustion air.
  • the proportion of the NO produced is comparatively low.
  • the NO is broken down to form molecular nitrogen.
  • the invention has for its object to provide a method of the type mentioned which is suitable for large-scale use in an effective and reliable manner with low investment and operating costs.
  • Method according to the invention characterized in that a substoichiometric flame zone is generated and that the nitrogen oxide reducing agent is introduced into the substoichiometric flame zone.
  • the substoichiometric flame zone has a comparatively small cross-section, so that there is none Difficulties in distributing the reducing agent evenly over this cross section. Load changes also play no role here.
  • the method according to the invention is free from the temperature restrictions to which the SNCR method is subject. Rather, it has proven to be particularly advantageous to set a temperature of over 1,100 ° C. in the substoichiometric flame zone.
  • Ammonia as well as ammonia water, urea and similar nitrogen compounds, as well as hydrocarbons, especially natural gas (CH 4 ), are usually suitable as reducing agents.
  • reducing agents In the sub-stoichiometric flame zone, practically all of the available oxygen is used for the partial oxidation of the carbon. NO is only produced to a small extent.
  • the presence of the reducing agent causes the concentration of the radicals NHi, CHi, HCN to increase. These radicals react with the resulting nitrogen monoxide, reduce it and thereby generate molecular nitrogen.
  • the temperature of the process should preferably be carried out in such a way that during subsequent burn-out, i. H. with later air supply, the nitrogen molecules (as well as the N2 molecules of the combustion air) do not thermally decompose again and form nitrogen oxides.
  • the temperature must not exceed 1400 ° C.
  • Reducing agent slip cannot occur because the reducing agent is completely converted during the subsequent burnout with the addition of oxygen.
  • the residues can therefore be used without restrictions.
  • the substoichiometric flame zone be generated as a flame core from fuel and primary air and with a veil made of secondary air, preferably with another veil made of tertiary air.
  • the decomposition and reduction of the NO takes place in the substoichiometric flame core.
  • the veils of secondary air, and preferably of tertiary air subsequently burn out the fuel and decompose excess reducing agent.
  • the flue gas therefore does not come into contact with the surrounding walls in a substoichiometric state. This effectively prevents the occurrence of high-temperature corrosion, which is to be seen as a further significant advantage of the invention.
  • the nitrogen oxide reducing agent can be introduced into the substoichiometric flame zone through lateral or central lances. However, it is preferably introduced together with the fuel into the substoichiometric flame zone. It may also be advantageous to introduce the nitrogen oxide reducing agent together with the primary air into the substoichiometric flame zone. Possibly. the fuel will already be mixed with the primary air or part of the primary air. Under these circumstances, the mixture consists of fuel, primary air and reducing agent.
  • the invention preferably develops its advantages wherever the fuel contains a high proportion of nitrogen. This is the case, for example, with hard coal, tar oil, heavy oil, residual oil, process gas and the like.
  • Solid fuels are ground before combustion.
  • the reducing agent can be in solid form (also ground) or else in liquid or gaseous form.
  • the process is suitable for all performance levels and works without additional pressure loss.
  • the main field of application of the invention is power plant technology.
  • the burners are arranged in several levels one above the other in the side of the boiler wall, whereby the cross section of the boiler can be 100-500 m 2 . Upper air is blown in above the top burner level.
  • Each burner represents its own sub-stoichiometric NO reduction system and delivers super-stoichiometric flue gases into the boiler. Obviously, it is not difficult to switch individual burner levels on or off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Gas Separation By Absorption (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

To reduce the quantity of nitrogen oxides resulting from the nitrogen present in fuel, a substoichiometric flame zone is generated and a nitrogen oxide reducing agent introduced into said substoichiometric flame zone. When the oxygen supply is discontinued the reducing agent increases the concentration of radicals which in turn reduce the nitrogen being produced and release molecular oxygen.

Description

Verfahren zum Betreiben einer Verbrennungseinrichtung Method for operating an incinerator
Die Erfindung betrifft ein Verfahren zum Betreiben einer Verbrennungseinrichtung unter Verminderung von Stickstoffoxiden .The invention relates to a method for operating a combustion device while reducing nitrogen oxides.
Unter dem Gesichtspunkt des Umweltschutzes spielt die Verminderung der Schadstoffemissionen bei der Verbrennung fossiler Brennstoffe eine maßgebliche Rolle. Kritisch sind insbesondere solche Schadstoffe, die weder ausgefiltert, noch ausgewaschen werden können. Hierzu gehören die Stickstoffoxide, vorwiegend NO und NO2. Zu unterscheiden ist zwischen thermisch gebildeten Stickstoffoxiden, die sich auf der Basis des Luftstickstoffs bilden, und solchen Stickstoffoxiden, die aus dem BrennstoffStickstoff resultieren. Thermische Stickstoffoxide entstehen im wesentlichen bei Temperaturen oberhalb von 1.400 °C. Ihre Entstehung läßt sich bei bestimmten Prozessen durch entsprechende Temperatursteuerung beherrschen.From the point of view of environmental protection, the reduction of pollutant emissions in the combustion of fossil fuels plays a major role. Those pollutants that cannot be filtered out or washed out are particularly critical. These include the nitrogen oxides, mainly NO and NO2. A distinction must be made between thermally formed nitrogen oxides, which are formed on the basis of atmospheric nitrogen, and those nitrogen oxides, which result from the fuel nitrogen. Thermal nitrogen oxides essentially arise at temperatures above 1,400 ° C. Their formation can be controlled in certain processes by appropriate temperature control.
Stickstoffoxide auf der Basis des Brennstoffstickstoffs hingegen bilden sich bereits bei niedrigen Verbrennungstemperaturen.In contrast, nitrogen oxides based on the fuel nitrogen form even at low combustion temperatures.
Zur Verminderung der Stickstoffoxid-Emissionen von großtechnischen Anlagen wird vorwiegend das SCR-Verfahren angewendet. SCR steht für Selektive Katalytische Reduktion. Dabei wird das ausgebrannte Rauchgas hinter der Ausbrandzone unter Zugabe eines Reduktionsmittels durch einen katalytischen Reaktor geleitet, in welchem bei Temperaturen von 300-400 °C eine Aufspaltung der Stickstoffoxide unter Bildung von molekularem Stickstoff erfolgt. Der durch den katalytischen Reaktor bedingte Investionsaufwand ist erheblich. Auch fallen hohe Betriebskosten an, da die Katalysatoren gereinigt und erneuert werden müssen. Bekannt ist ferner das SNCR-Verfahren. SNCR steht für Selektive Nicht-Katalytische Reduktion. Hier wird das Reduktionsmittel direkt im Anschluß an die Ausbrandzone in das überstöchiometrische, auf hoher Temperatur befindliche ausgebrannte Rauchgas eingebracht. Es finden dieselben Reaktionen wie im katalytischen Reaktor statt, allerdings mangels Katalysator auf höherem Temperaturniveau und mit geringerem Druckverlust. Dabei muß ein Temperaturfenster eingehalten werden, das etwa zwischen 950 und 1050 °C liegt. Oberhalb dieses Temperaturfensters besteht die Gefahr, daß das Reduktionsmittel in Anwesenheit des herrschenden SauerstoffÜberschusses zu Stickstoffoxiden oxidiert . Unterhalb des Temperaturfensters kommt es nur in unzureichendem Ausmaß zu den gewünschten Reaktionen. Es ergibt sich ein Reduktionsmittelschlupf, d. h. , dasThe SCR process is mainly used to reduce nitrogen oxide emissions from industrial plants. SCR stands for Selective Catalytic Reduction. The burned-out flue gas is passed behind the burnout zone with the addition of a reducing agent through a catalytic reactor in which the nitrogen oxides are split up at temperatures of 300-400 ° C. to form molecular nitrogen. The investment required by the catalytic reactor is considerable. There are also high operating costs because the catalytic converters have to be cleaned and replaced. The SNCR method is also known. SNCR stands for Selective Non-Catalytic Reduction. Here, the reducing agent is introduced into the overstoichiometric, high-temperature burnt flue gas directly after the burnout zone. The same reactions take place as in the catalytic reactor, but due to a lack of catalyst at a higher temperature level and with less pressure loss. A temperature window must be maintained, which is approximately between 950 and 1050 ° C. Above this temperature window there is a risk that the reducing agent will oxidize to nitrogen oxides in the presence of the excess of oxygen. The desired reactions occur to an insufficient extent below the temperature window. There is a slippage of reducing agent, ie, that
Reduktionsmittel wird als unwirksamer Baiast vom Rauchgas mitgenommen. Im übrigen setzt die Wirksamkeit des SNCR- Verfahrens voraus, daß das Reduktionsmittel sehr intensiv und gleichmäßig beispielsweise über Lanzen und dergleichen unter Einsatz eines Treibmittels mit dem ausgebranntenReducing agent is carried away by the flue gas as an ineffective base. For the rest, the effectiveness of the SNCR process presupposes that the reducing agent is very intensive and uniform, for example over lances and the like, using a propellant with the burnt out
Rauchgas vermischt wird. Dementsprechend verbietet sich der großtechnische Einsatz dieses Verfahrens. Seine Anwendung beschränkt sich auf kleinere Verbrennungsanlagen, z. B. auf Heizkraftwerke und Müllverbrennungsanlagen. Ein großtechnischer Einsatz würde voraussetzen, daß eine Durchmischung über einen Querschnitt von 100-500 m2 in gleichmäßiger Weise durchgeführt wird, was ersichtlich ausgeschlossen ist.Flue gas is mixed. Accordingly, the large-scale use of this process is prohibited. Its application is limited to smaller incinerators, e.g. B. on thermal power stations and waste incineration plants. A large-scale use would presuppose that a mixing over a cross-section of 100-500 m 2 is carried out in a uniform manner, which is obviously excluded.
Die Schwierigkeiten, das Reduktionsmittel intensiv und gleichmäßig in den Rauchgasstrom einzumischen, haften auch dem in der Entwicklung befindlichen Hochtemperaturverfahren an. Hier wird das Reduktionsmittel in eine Reduktionszone eingegeben, die sich zwischen der Brennerzone und der Ausbrandzone befindet. Brennerzone und Reduktionszone werden unterstöchiometrisch betrieben. Hierzu kann es erforderlich sein, mit Brennstoffstufung zu arbeiten, d. h., einen Restanteil des Brennstoffs in die Reduktionszone einzugeben. Zum Einbringen des Reduktionsmittels bedarf es eines Trägermediums. Luft kommt nicht in Frage, da die Reduktionszone unterstöchiometrisch bleiben muß. Stickstoff wiederum ist zu teuer. Es verbleiben also Wasserdampf und verdampfbare Flüssigkeiten, wodurch in beiden Fällen der Wirkungsgrad des Prozesses sinkt . Gleiches gilt für die Einbringung von Ammoniakwasser, dessen zu verdampfender Wasseranteil bei ca. 75% liegt. In der an die Reduktionszone anschließenden Ausbrandzone wird die Luftzahl auf über 1 angehoben, und zwar durch Zugabe von zusätzlicher Verbrennungsluft .The difficulties of mixing the reducing agent intensively and evenly into the flue gas flow also adhere to the high-temperature process that is currently being developed. Here the reducing agent is fed into a reduction zone, which is located between the burner zone and the burnout zone. Burner zone and reduction zone are operated stoichiometrically. For this it may be necessary to work with fuel grading, ie one Enter the remaining portion of the fuel in the reduction zone. A carrier medium is required to introduce the reducing agent. Air is out of the question since the reduction zone must remain substoichiometric. In turn, nitrogen is too expensive. This leaves water vapor and vaporizable liquids, reducing the efficiency of the process in both cases. The same applies to the introduction of ammonia water, the water content of which is to be evaporated is approx. 75%. In the burnout zone following the reduction zone, the air ratio is increased to over 1 by adding additional combustion air.
Aufgrund des Sauerstoffmangels in der Reduktionszone ist der Anteil des entstehenden NO vergleichsweise gering. Unter Zugabe des Reduktionsmittels erfolgt eine Aufspaltung des NO unter Bildung von molekularem Stickstoff .Due to the lack of oxygen in the reduction zone, the proportion of the NO produced is comparatively low. With the addition of the reducing agent, the NO is broken down to form molecular nitrogen.
Zu den Schwierigkeiten, das Reduktionsmittel gleichmäßig und intensiv in die Reduktionszone einzumischen, treten Regelungsprobleme hinzu. Bei Laständerung verkürzt sich naturgemäß die Brennerzone. Die Reduktionszone muß also näher an die Brenner herangerückt werden. Bei Erhöhung der Last gilt es zu verhindern, daß die Reduktionszone in die Ausbrandzone hineinwandert und dort mit zusätzlicher Verbrennungsluft beaufschlagt wird, wodurch sich überstöchiometrische Verhältnisse einstellen würden.In addition to the difficulties of mixing the reducing agent evenly and intensively into the reduction zone, there are control problems. The burner zone is naturally shortened when the load changes. The reduction zone must therefore be moved closer to the burners. When the load is increased, it is important to prevent the reduction zone from migrating into the burnout zone and being exposed to additional combustion air, which would result in superstoichiometric conditions.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, das sich bei geringem Investitions- und Betriebsaufwand in wirksamer und zuverlässiger Weise für den großtechnischen Einsatz eignet . Zur Lösung dieser Aufgabe ist das eingangs genannteThe invention has for its object to provide a method of the type mentioned which is suitable for large-scale use in an effective and reliable manner with low investment and operating costs. To solve this problem, the above is
Verfahren erfindungsgemäß dadurch gekennzeichnet, daß eine unterstöchiometrische Flammenzone erzeugt wird und daß das Stickstoffoxid-Reduktionsmittel in die unterstöchiometrische Flammenzone eingebracht wird. Die unterstöchiometrische Flammenzone besitzt einen vergleichsweise geringen Querschnitt, so daß es keinerlei Schwierigkeiten bereitet, das Reduktionsmittel gleichmäßig über diesem Querschnitt zu verteilen. Auch spielen hierbei Laständerungen keine Rolle.Method according to the invention, characterized in that a substoichiometric flame zone is generated and that the nitrogen oxide reducing agent is introduced into the substoichiometric flame zone. The substoichiometric flame zone has a comparatively small cross-section, so that there is none Difficulties in distributing the reducing agent evenly over this cross section. Load changes also play no role here.
Ferner ist das Verfahren nach der Erfindung frei von den Temperaturbeschränkungen, denen das SNCR-Verfahren unterliegt. Vielmehr hat es sich als besonders vorteilhaft herausgestellt, in der unterstöchiometrischen Flammenzone eine Temperatur von über 1.100 °C einzustellen.Furthermore, the method according to the invention is free from the temperature restrictions to which the SNCR method is subject. Rather, it has proven to be particularly advantageous to set a temperature of over 1,100 ° C. in the substoichiometric flame zone.
Als Reduktionsmittel kommt üblicherweise Ammoniak in Frage, ferner Ammoniakwasser, Harnstoff und ähnliche StickstoffVerbindungen, außerdem auch Kohlenwasserstoffe, vor allen Dingen Erdgas (CH4) . In der unterstöchiometrischen Flammenzone wird praktisch der gesamte zur Verfügung stehende Sauerstoff zur Teiloxidation des Kohlenstoffs verbraucht. NO entsteht nur in geringem Ausmaß. Die Anwesenheit des Reduktionsmittels führt dazu, daß die Konzentration der Radikale NHi, CHi, HCN zunimmt. Diese Radikale reagieren mit dem entstandenen Stickstoffmonoxid, reduzieren es und lassen dabei molekularen Stickstoff entstehen.Ammonia, as well as ammonia water, urea and similar nitrogen compounds, as well as hydrocarbons, especially natural gas (CH 4 ), are usually suitable as reducing agents. In the sub-stoichiometric flame zone, practically all of the available oxygen is used for the partial oxidation of the carbon. NO is only produced to a small extent. The presence of the reducing agent causes the concentration of the radicals NHi, CHi, HCN to increase. These radicals react with the resulting nitrogen monoxide, reduce it and thereby generate molecular nitrogen.
Die Temperatur des Prozesses sollte vorzugsweise so geführt werden, daß beim späteren Ausbrand, d. h. bei späterer Luftzufuhr, die entstandenen Stickstoffmoleküle (sowie auch die N2-Moleküle der Verbrennungsluft) nicht wieder thermisch zerfallen und Stickstoffoxide bilden. Die Temperatur darf also 1400 °C nicht übersteigen.The temperature of the process should preferably be carried out in such a way that during subsequent burn-out, i. H. with later air supply, the nitrogen molecules (as well as the N2 molecules of the combustion air) do not thermally decompose again and form nitrogen oxides. The temperature must not exceed 1400 ° C.
Sofern Reduktionsmittel im Übermaß eingesetzt wird, so hat dies keine negativen Auswirkungen. EinIf reducing agents are used in excess, this has no negative effects. On
Reduktionsmittelschlupf kann deshalb nicht auftreten, weil das Reduktionsmittel beim anschließenden Ausbrand unter Zufuhr von Sauerstoff vollständig umgesetzt wird. Die Reststoffe (Flugasche und Gips) können also ohne Einschränkungen verwertet werden.Reducing agent slip cannot occur because the reducing agent is completely converted during the subsequent burnout with the addition of oxygen. The residues (fly ash and gypsum) can therefore be used without restrictions.
In wesentlicher Weiterbildung der Erfindung wird vorgeschlagen, daß die unterstöchiometrische Flammenzone als Flammenkern aus Brennstoff und Primärluft erzeugt und mit einem Schleier aus Sekundärluft, vorzugsweise mit einem weiteren Schleier aus Tertiärluft umhüllt wird. Im unterstöchiometrischen Flammenkern findet also die Zersetzung und Reduktion des NO statt . Die Schleier aus Sekundärluft und vorzugsweise aus Tertiärluft sorgen anschließend für den Ausbrand des Brennstoffs und die Zersetzung von überschüssigem Reduktionsmittel. Das Rauchgas tritt also mit den umgebenden Wänden nicht in unterstöchiometrischem Zustand in Berührung. Dadurch wird das Auftreten von Hochtemperaturkorrosion wirksam verhindert, worin ein wesentlicher weiterer Vorteil der Erfindung zu sehen ist.In a further development of the invention, it is proposed that the substoichiometric flame zone be generated as a flame core from fuel and primary air and with a veil made of secondary air, preferably with another veil made of tertiary air. The decomposition and reduction of the NO takes place in the substoichiometric flame core. The veils of secondary air, and preferably of tertiary air, subsequently burn out the fuel and decompose excess reducing agent. The flue gas therefore does not come into contact with the surrounding walls in a substoichiometric state. This effectively prevents the occurrence of high-temperature corrosion, which is to be seen as a further significant advantage of the invention.
Das Stickstoffoxid-Reduktionsmittel kann durch seitliche oder zentrale Lanzen in die unterstöchiometrische Flammenzone eingebracht werden. Vorzugsweise jedoch wird es gemeinsam mit dem Brennstoff in die unterstöchiometrische Flammenzone eingebracht. Ferner kann es vorteilhaft sein, das Stickstoffoxid-Reduktionsmittel gemeinsam mit der Primärluft in die unterstöchiometrische Flammenzone einzubringen. Ggf. wird man den Brennstoff bereits mit der Primärluft oder einem Teil der Primärluft mischen. Das Gemisch besteht unter diesen Umständen aus Brennstoff, Primärluft und Reduktionsmittel .The nitrogen oxide reducing agent can be introduced into the substoichiometric flame zone through lateral or central lances. However, it is preferably introduced together with the fuel into the substoichiometric flame zone. It may also be advantageous to introduce the nitrogen oxide reducing agent together with the primary air into the substoichiometric flame zone. Possibly. the fuel will already be mixed with the primary air or part of the primary air. Under these circumstances, the mixture consists of fuel, primary air and reducing agent.
Ferner besteht die Möglichkeit, mindestens einen Teil der Primärluft als Kernluft in die Flamme einzublasen, wobei dies vorzugsweise gemeinsam mit dem Stickstoffoxid- Reduktionsmittel geschieht.There is also the possibility of blowing at least part of the primary air into the flame as core air, this preferably being done together with the nitrogen oxide reducing agent.
Die Erfindung entwickelt ihre Vorteile bevorzugt überall dort, wo der Brennstoff einen hohen Anteil an Stickstoff enthält. Dies ist der Fall beispielsweise bei Steinkohle, Teeröl, Schweröl, Rückstandsöl, Prozeßgas und dergleichen. Feste Brennstoffe werden vor der Verbrennung vermählen. Das Reduktionsmittel kann in fester Form (ebenfalls vermählen) vorliegen oder auch flüssig oder gasförmig. Das Verfahren eignet sich für sämtliche Leistungsstufen und arbeitet ohne zusätzlichen Druckverlust. Hauptanwendungsgebiet der Erfindung ist die Kraftwerkstechnik. Hier sind die Brenner in mehreren Ebenen übereinander seitlich in der Kesselwand angeordnet, wobei der Querschnitt des Kessels 100-500 m2 betragen kann. Oberhalb der obersten Brennerebene wird Oberluft eingeblasen. Jeder Brenner stellt ein eigenes, unterstöchiometrisches NO-Reduktionssystem dar und liefert überstöchiometrische Rauchgase in den Kessel. Ersichtlich bereitet es keine Schwierigkeiten, einzelne Brennerebenen zu- oder abzuschalten. The invention preferably develops its advantages wherever the fuel contains a high proportion of nitrogen. This is the case, for example, with hard coal, tar oil, heavy oil, residual oil, process gas and the like. Solid fuels are ground before combustion. The reducing agent can be in solid form (also ground) or else in liquid or gaseous form. The process is suitable for all performance levels and works without additional pressure loss. The main field of application of the invention is power plant technology. Here the burners are arranged in several levels one above the other in the side of the boiler wall, whereby the cross section of the boiler can be 100-500 m 2 . Upper air is blown in above the top burner level. Each burner represents its own sub-stoichiometric NO reduction system and delivers super-stoichiometric flue gases into the boiler. Obviously, it is not difficult to switch individual burner levels on or off.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Verfahren zum Betreiben einer Verbrennungseinrichtung unter Verminderung von Stickstoffoxiden, d a d u r c h g e k e n n z e i c h n e t , daß eine unterstöchiometrische Flammenzone erzeugt wird und daß ein Stickstoffoxid-Reduktionsmittel in die unterstöchiometrische Flammenzone eingebracht wird.1. A method for operating a combustion device with the reduction of nitrogen oxides, so that a sub-stoichiometric flame zone is generated and that a nitrogen oxide reducing agent is introduced into the sub-stoichiometric flame zone.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet daß in der unterstöchiometrischen Flammenzone eine Temperatur von über 1.100 °C eingestellt wird.2. The method according to claim 1, characterized in that a temperature of over 1,100 ° C is set in the substoichiometric flame zone.
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß die unterstöchiometrische Flammenzone als Flammenkern aus Brennstoff und Primärluft erzeugt und mit einem Schleier aus Sekundärluft, vorzugsweise mit einem weiteren Schleier aus Tertiärluft umhüllt wird.3. The method according to claim 1 or 2, characterized in that the substoichiometric flame zone is generated as a flame core from fuel and primary air and is covered with a veil of secondary air, preferably with a further veil of tertiary air.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Stickstoffoxid-Reduktionsmittel gemeinsam mit dem Brennstoff in die unterstöchiometrische Flammenzone eingebracht wird.4. The method according to any one of claims 1 to 3, characterized in that the nitrogen oxide reducing agent is introduced together with the fuel in the substoichiometric flame zone.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Stickstoffoxid-Reduktionsmittel gemeinsam mit der Primärluft in die unterstöchiometrische Flammenzone eingebracht wird.5. The method according to any one of claims 1 to 4, characterized in that the nitrogen oxide reducing agent is introduced together with the primary air into the substoichiometric flame zone.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß Kernluft in die Flamme eingeblasen wird und daß das Stickstoffoxid-Reduktionsmittel gemeinsam mit der Kernluft in die unterstöchiometrische Flammenzone eingebracht wird. 6. The method according to claim 5, characterized in that core air is blown into the flame and that the nitrogen oxide reducing agent is introduced together with the core air into the substoichiometric flame zone.
PCT/EP1999/008040 1998-11-18 1999-10-22 Method for operating a combustion plant WO2000029094A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT99972122T ATE232133T1 (en) 1998-11-18 1999-10-22 METHOD FOR OPERATING A COMBUSTION DEVICE
DK99972122T DK1131150T3 (en) 1998-11-18 1999-10-22 Process for operating a combustion device.
CA002351663A CA2351663A1 (en) 1998-11-18 1999-10-22 Method for operating a combustion plant
EP99972122A EP1131150B1 (en) 1998-11-18 1999-10-22 Method for operating a combustion plant
PL99348340A PL194273B1 (en) 1998-11-18 1999-10-22 Method for operating a combustion plant
DE59904247T DE59904247D1 (en) 1998-11-18 1999-10-22 METHOD FOR OPERATING A COMBUSTION DEVICE
US11/879,212 US20080286704A1 (en) 1998-11-18 2007-07-16 Method of burning a nitrogen-containing fuel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853162A DE19853162C2 (en) 1998-11-18 1998-11-18 Process for burning a nitrogenous fuel
DE19853162.1 1998-11-18

Publications (1)

Publication Number Publication Date
WO2000029094A1 true WO2000029094A1 (en) 2000-05-25

Family

ID=7888204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/008040 WO2000029094A1 (en) 1998-11-18 1999-10-22 Method for operating a combustion plant

Country Status (8)

Country Link
EP (1) EP1131150B1 (en)
AT (1) ATE232133T1 (en)
CA (1) CA2351663A1 (en)
DE (2) DE19853162C2 (en)
DK (1) DK1131150T3 (en)
ES (1) ES2192417T3 (en)
PL (1) PL194273B1 (en)
WO (1) WO2000029094A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142804A1 (en) * 2000-10-17 2002-08-08 Bosch Gmbh Robert Emission control system and method for emission control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2484277A1 (en) * 1980-06-11 1981-12-18 Steinmueller Gmbh L & C Nitrogen oxide redn. by ammonia - using burner with reductant fed to flame through a curtain of gas or liq.
WO1991010864A1 (en) * 1990-01-08 1991-07-25 Transalta Resources Investment Corporation Combustion process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023921A (en) * 1975-11-24 1977-05-17 Electric Power Research Institute Oil burner for NOx emission control
DE3331989A1 (en) * 1983-09-05 1985-04-04 L. & C. Steinmüller GmbH, 5270 Gummersbach METHOD FOR REDUCING NO (DOWN ARROW) X (DOWN ARROW) EMISSIONS FROM THE COMBUSTION OF NITROGENOUS FUELS
NL8902963A (en) * 1989-12-01 1991-07-01 Int Flame Research Foundation PROCESS FOR BURNING FUEL OF LOW NOX CONTENT IN THE COMBUSTION GASES USING THROUGH STAGE FUEL SUPPLY AND BURNER.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2484277A1 (en) * 1980-06-11 1981-12-18 Steinmueller Gmbh L & C Nitrogen oxide redn. by ammonia - using burner with reductant fed to flame through a curtain of gas or liq.
WO1991010864A1 (en) * 1990-01-08 1991-07-25 Transalta Resources Investment Corporation Combustion process

Also Published As

Publication number Publication date
PL194273B1 (en) 2007-05-31
DE59904247D1 (en) 2003-03-13
DE19853162A1 (en) 2000-05-31
ES2192417T3 (en) 2003-10-01
PL348340A1 (en) 2002-05-20
EP1131150B1 (en) 2003-02-05
EP1131150A1 (en) 2001-09-12
ATE232133T1 (en) 2003-02-15
DE19853162C2 (en) 2003-04-30
DK1131150T3 (en) 2003-06-02
CA2351663A1 (en) 2000-05-25

Similar Documents

Publication Publication Date Title
DE3601378C2 (en)
DE60308728T2 (en) DEVICE AND METHOD FOR REGULATING NOX EMISSIONS FROM CARBON FUEL-BOILED BOILERS WITHOUT USING AN EXTERNAL REAGENT
EP0350706B1 (en) Process for reducing nitrogen oxides in combustion gases
DE3331989A1 (en) METHOD FOR REDUCING NO (DOWN ARROW) X (DOWN ARROW) EMISSIONS FROM THE COMBUSTION OF NITROGENOUS FUELS
DE2807076A1 (en) USE OF CALCIUM OXIDE AS AN AGENT TO REDUCE SULFUR EMISSIONS IN BOILER FIRING
EP0977708B1 (en) Method and device for converting hydrogen sulfide into elemental sulfur
EP0132584B1 (en) Method and installation for reducing the emission of noxious matter in the flue gases of combustion plants
EP0302910B1 (en) Coal combustion with a fluidized incineration bed
WO1984004053A1 (en) Method and installation for the purification of combustion gas from domestic heatings, combustion engines or similar heatings
EP1131150B1 (en) Method for operating a combustion plant
DE10123402A1 (en) Removal of ammoniacal components from flue gas treated by selective non-catalytic reduction process, e.g. in waste incineration plants, involves contacting flue gas with ferro-oxide catalyst
DE3502866A1 (en) Two-stage process and apparatus for purifying combustion gases
DE3823848A1 (en) METHOD FOR REDUCING SO (ARROW DOWN) 2 (ARROW DOWN) AND / OR NO (ARROW DOWN) X (ARROW DOWN) EMISSIONS IN COMBUSTION PROCESSES
DE10051733B4 (en) Process for the gradual combustion of fuels
EP0783916A1 (en) Process for the denitration of flue gases
WO2001066233A1 (en) Method and device for catalytically treating exhaust gas containing dust and oxygen
EP0671201B1 (en) Process for separating sulphurtrioxid and for operating a catalytic denitration device
EP0363812A2 (en) Method and installation for generating steam, especially in heat power plants
DE2852336C2 (en) Process for the separation of NO? X? and SO? x? from combustion exhaust gases
DE4116950A1 (en) METHOD AND DEVICE FOR REDUCING NO (ARROW DOWN) X (ARROW DOWN) EMISSION
DE3823223A1 (en) Process for purifying flue gases containing sulphur oxides and nitrogen oxides
DE3522820A1 (en) Process and device for reducing the pollutant emissions of combustion plants
DE2150687A1 (en) Waste-gas sulphur dioxide removal - by conversion to sulphates on metal oxide mixtures
DE3729482A1 (en) METHOD FOR REDUCING NO (ARROW DOWN) X (ARROW DOWN) EMISSIONS FROM SMOKE GASES FROM COMBUSTION SYSTEMS
DE19962743A1 (en) Reduction of nitrogen oxide emissions from material stream involves producing material stream from sub-stoichiometric combustion of fuels, forming product

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN CZ IL IN JP KR PL TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2351663

Country of ref document: CA

Ref country code: CA

Ref document number: 2351663

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1999972122

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09856342

Country of ref document: US

ENP Entry into the national phase

Ref country code: US

Ref document number: 2001 856342

Date of ref document: 20010825

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999972122

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999972122

Country of ref document: EP