EP0363812A2 - Method and installation for generating steam, especially in heat power plants - Google Patents

Method and installation for generating steam, especially in heat power plants Download PDF

Info

Publication number
EP0363812A2
EP0363812A2 EP89118445A EP89118445A EP0363812A2 EP 0363812 A2 EP0363812 A2 EP 0363812A2 EP 89118445 A EP89118445 A EP 89118445A EP 89118445 A EP89118445 A EP 89118445A EP 0363812 A2 EP0363812 A2 EP 0363812A2
Authority
EP
European Patent Office
Prior art keywords
fluidized bed
free space
air
combustion
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89118445A
Other languages
German (de)
French (fr)
Other versions
EP0363812A3 (en
Inventor
Fritz Dipl.-Ing. Schinkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANNOVER-BRAUNSCHWEIGISCHE STROM-VERSORGUNGS-AKTIENGESELLSCHAFT
Original Assignee
HANNOVER-BRAUNSCHWEIGISCHE STROM-VERSORGUNGS-AKTIENGESELLSCHAFT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANNOVER-BRAUNSCHWEIGISCHE STROM-VERSORGUNGS-AKTIENGESELLSCHAFT filed Critical HANNOVER-BRAUNSCHWEIGISCHE STROM-VERSORGUNGS-AKTIENGESELLSCHAFT
Publication of EP0363812A2 publication Critical patent/EP0363812A2/en
Publication of EP0363812A3 publication Critical patent/EP0363812A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/002Fluidised bed combustion apparatus for pulverulent solid fuel

Definitions

  • the invention relates to a method for generating steam, in particular in thermal power stations, by means of combustion of solid fuels, in particular coal, by a fluidized bed process in which the combustion takes place in a fluidized bed comprising the fuels at - relatively low - temperatures up to approx. 900 ° C., whereby the gases above the fluidized bed are additionally supplied with heat, and a system for generating steam by burning solid fuels in a stationary fluidized bed boiler, a space for the generated heating gases being formed in the boiler above a fluidized bed, generally made of coal and lime.
  • coal as a solid fuel, that is to say a sulfur-containing material, SO2 which forms is converted to calcium sulfate by means of the lime.
  • the fluidized bed technology is used in practice, in particular, in thermal power stations with the aim of avoiding the aftertreatment of flue gases to reduce pollutants by regularly burning the solid fuels at low temperatures of around 850 ° C. This ensures that, on the one hand, no or hardly any thermal nitrogen oxide is formed and, on the other hand, SO2 on limestone which forms during the combustion process of coal is optimally converted to calcium sulfate.
  • the disadvantage of burning at low temperatures is that toxic carbon monoxide emissions are higher than with conventional rust or coal dust furnaces.
  • the atmospheric, stationary fluidized bed boiler which is customary in practice forms a chemical reactor in a steam boiler.
  • the most important parameter, the temperature of the fluidized bed cannot be changed independently of the boiler output.
  • the temperature in the fluidized bed cannot be raised above 900 ° C, because then the ash softening sets in, which brings the fluidized bed combustion to a standstill.
  • a circulating fluidized bed has been developed in which the fluidized bed reactor, the steam boiler and the ash cooler are separate apparatuses. This technology is considerably more expensive to purchase and can therefore only be used economically for larger steam boilers (over 30 t / h).
  • a method and a plant for generating steam of the type described at the outset aim to substantially reduce the amount of unburned fuel particles emerging from the fluidized bed in order to reduce the load on the downstream filter.
  • solid particles should be combusted. This combustion takes place in the area of a drawn-in flow cross-section of the flue gas flue, that is to say in a zone which is largely dependent on Fluid bed is removed and in which there has already been a significant reduction in the temperature of the exhaust gases after exiting the fluid bed.
  • an average temperature of substantially more than 900 ° C. must prevail in the afterburner area in order to be able to carry out the combustion of the solid particles completely.
  • This temperature is usually between 1200 and 1600 ° C and the particles have to stay at this temperature for some time. This requires a relatively large space. Following this afterburning, the temperatures drop due to heat dissipation on the heating surfaces.
  • This process aims at the combustion of solid particles, which necessitates constructive measures such as narrowing the cross-section of the boiler and a longer, uncooled residence zone behind the flame zone in order to achieve sufficient burnout.
  • the disadvantage is that thermal nitrogen oxide is formed by the necessary high temperatures and excess air.
  • JP 59-81409 a method is known (JP 59-81409) in which unburned constituents, that is to say both gaseous and solid, are to be burned in the free space above a fluidized bed by supplying gas in flame form.
  • unburned constituents that is to say both gaseous and solid
  • a coal storage container serves as a further heating gas source, from which exhaust gas is fed to another burner nozzle via a flap.
  • the aim of this process is to lower the fluidized bed temperature to 700 ° in order in any case to generate thermal nitrogen oxides, that is to say additional nitrogen oxides to those which occur when the coal decays thermally during combustion to avoid the result of the nitrogen compounds present in this.
  • thermal nitrogen oxides that is to say additional nitrogen oxides to those which occur when the coal decays thermally during combustion to avoid the result of the nitrogen compounds present in this.
  • a two-stage furnace with a first stage in the form of a pyrolysis or smoldering chamber and a second stage in the form of a post-combustion chamber is known (DE-A1 35 03 603), in which the latter is designed as a cyclone. Otherwise the ash would not be separated.
  • the aim of the two-stage incineration is to avoid the evaporation of heavy metals, such as those that occur in particular during waste disposal. The aim of this is to ensure that non-combustible, environmentally harmful substances such as heavy metals can be brought into the gas phase and released into the environment with the exhaust gas or have to be separated again by means of complex other processes.
  • the low air supply therefore only serves to keep the temperatures in the smoldering chamber low.
  • the reduced air supply for temperature control is used here, with the aim of avoiding excessive gas pressure of the heavy metals. Due to the low air supply in the first combustion stage and the - targeted - low temperatures, there are high unburned proportions, so that in the second combustion phase not only the air required for combustion has to be supplied, but also a particularly good mixing of the air with the combustion air Gases must occur, which is why the arrangement of a technically complex cyclone is expressly required.
  • the invention is therefore based on the object to improve the fluidized bed technology and these realizing systems, that is to say steam generation using atmospheric, stationary fluidized bed boilers, in such a way that they meet the requirements for optimum air purity with regard to their emission behavior.
  • the additional heat is supplied in the free space above the fluidized bed, the amount of air to be fed to the fluidized bed is kept below the stoichiometrically required amount of air while maintaining the combustion temperature, and the air supply to the free space is increased while the system is in operation
  • the free space is assigned at least one heat source, for example a burner, for additional, targeted energy supply and a device for supplying additional air into the combustion gases located in the free space.
  • the free space temperature can be made independent of the operation of the fluidized bed temperature by the supply of heat to the free space and can be influenced in a targeted manner.
  • the reaction rate when converting the carbon monoxide with oxygen to carbon dioxide can be increased considerably. As experiments have shown, this achieves a considerably low level Lower levels of carbon monoxide in the exhaust gas and the temperature of the fluidized bed can be kept at low values.
  • the free space is a zone of the boiler which belongs to the cross section of the combustion chamber caused by the fluidized bed, i.e. is not a constriction in the exhaust gas flue gas duct, but a space in which the fuel particles are caused to do so due to a reduction in the gas velocity - fall back into the fluidized bed due to gravity. How much free space ultimately depends on the design conditions.
  • the air supply to the fluidized bed is not throttled in the invention for the purpose of reducing the fluidized bed temperature.
  • the fluidized bed should always be kept within the economically sensible limits, i.e. at approximately 850 °, in order to remain just below the sintering limit and to be able to keep the size of the system to a minimum in the design of the system.
  • the temperature in the fluidized bed should explicitly not be reduced, because such a drop in temperature would reduce the reaction rate in the conversion of CO and NO x to CO2 and N2.
  • the atmospheric, stationary fluidized bed boilers for all performance classes can comply with the legally prescribed values for CO of less than 250 mg / m3 flue gas and for NO x of less than 500 mg / m3 at full load and part load .
  • the heat can be applied directly above the fluidized bed.
  • the lowering of the temperature caused by the substoichiometric air supply can advantageously be compensated for by an increased supply of coal to the fluidized bed.
  • an increased supply of coal to the fluidized bed there is no loss of energy because the energy potential of the carbon that is not used in the fluidized bed is recovered in the oxidation of the CO in the free space.
  • this shift in energy conversion from the fluidized bed to the free space is only in the order of 1 - 3%.
  • air becomes air over an air boweinrichting 6 supplied controlled.
  • Above the fluidized bed there is a free space 3 for the rising combustion gases, as well as the usual steam generation system, which need not be described in more detail here.
  • Two burners 4 each, which are operated with natural gas, and two additional air supply devices 5 open into the free space.
  • the burners 4 serve to increase the free space temperature; any other heat sources, for example electrical ones, can of course also be used in their place.
  • the free space temperature is increased to values above 900 ° C and an effective conversion of CO in the flue gas to harmless CO2 is achieved.
  • the air supply via the air supply device 6 By reducing the air supply via the air supply device 6, the CO formation is initially increased by the accumulation in the fluidized bed during combustion Convert nitrogen oxides to elemental nitrogen, while the excess CO is then converted to CO2 by supplying air via the additional air supply devices 5 and supplying heat via the heat source 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

The fluidised bed technique is used in generating steam in heat power plants in order to avoid the aftertreatment of flue gases for the purpose of reducing toxic constituents. In this process, the coal is burned at relatively low temperatures of around 850 DEG C, none or scarcely any thermal nitrogen oxide being formed in the fluidised bed of coal and lime, and SO2 which forms being converted to calcium sulphate. However, due to the low temperatures there is a higher emission of CO, especially in part-load operation. In order to reduce the latter, heat is additionally supplied to the free space above the fluidised bed, with the result that it is possible to achieve the purpose of influencing the temperature of the free space independently of that of the fluidised bed, and substantially to increase the conversion of CO to CO2. A reduction in the NOx values can further be achieved by restricting the quantity of air to be supplied to the fluidised bed below the stoichiometrically necessary additional supply of air to the free space while simultaneously supplying heat. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Dampferzeugung, insbesondere in Heizkraftwerken, mittels Verbrennung fester Brennstoffe, insbesondere Kohle, durch ein Wirbel­schichtverfahren, bei dem in einer die Brennstoffe umfas­senden Wirbelschicht die Verbrennung bei - verhältnisma­ßig niedrigen - Temperaturen bis zu ca. 900 °C erfolgt, wobei den Gasen oberhalb des Wirbelbettes zusätzlich Wärme zugeführt wird, sowie eine Anlage zur Dampfer­zeugung mittels Verbrennens fester Brennstoffe in einem stationären Wirbelschichtkessel, wobei in dem Kessel oberhalb einer Wirbelschicht, in der Regel aus Kohle und Kalk, ein Freiraum für die erzeugten Heizgase gebildet ist. Bei Kohle als festem Brennstoff, also einem schwe­felhaltigen Material, wird sich bildendes SO₂ mittels des Kalks zu Kalziumsulfat umgesetzt.The invention relates to a method for generating steam, in particular in thermal power stations, by means of combustion of solid fuels, in particular coal, by a fluidized bed process in which the combustion takes place in a fluidized bed comprising the fuels at - relatively low - temperatures up to approx. 900 ° C., whereby the gases above the fluidized bed are additionally supplied with heat, and a system for generating steam by burning solid fuels in a stationary fluidized bed boiler, a space for the generated heating gases being formed in the boiler above a fluidized bed, generally made of coal and lime. In the case of coal as a solid fuel, that is to say a sulfur-containing material, SO₂ which forms is converted to calcium sulfate by means of the lime.

Die Wirbelschichttechnik findet in der Praxis insbeson­dere in Heizkraftwerken Anwendung mit dem Ziel, die Nach­behandlung von Rauchgasen zur Schadstoffreduktion zu ver­meiden, indem man die Verbrennung der festen Brennstoffe regelmäßig bei niedrigen Temperaturen um 850 °C durch­führt. Hierdurch erreicht man, daß einerseits kein bzw. kaum thermisches Stickoxid gebildet wird und anderer­seits beim Verbrennungsprozeß von Kohle sich bildendes SO₂ an Kalkstein optimal zu Kalziumsulfat umgesetzt wird. Als Nachteil der Verbrennung bei niedrigen Tempera­turen ergibt sich jedoch ein höherer Ausstoß an giftigem Kohlenmonoxid als bei herkömmlichen Rost- oder Kohle­staubfeuerungen.The fluidized bed technology is used in practice, in particular, in thermal power stations with the aim of avoiding the aftertreatment of flue gases to reduce pollutants by regularly burning the solid fuels at low temperatures of around 850 ° C. This ensures that, on the one hand, no or hardly any thermal nitrogen oxide is formed and, on the other hand, SO₂ on limestone which forms during the combustion process of coal is optimally converted to calcium sulfate. However, the disadvantage of burning at low temperatures is that toxic carbon monoxide emissions are higher than with conventional rust or coal dust furnaces.

Der in der Praxis übliche atmosphärische, stationäre Wir­belschichtkessel bildet infolge der Wirbelschicht einen chemischen Reaktor in einem Dampfkessel. Durch die Wär­meabfuhr aus der Wirbelschicht an die Heizflächen kann der wichtigste Parameter, die Temperatur der Wirbel­schicht, nicht unabhängig von der Kesselleistung verän­dert werden. Zum anderen kann man die Temperatur im Wir belbett nicht über 900 °C steigern, weil dann die Ascheerweichung einsetzt, die die Wirbelschichtverbren­nung zum Erliegen bringt. Zur Vermeidung dieser Nach­teile hat man eine zirkulierende Wirbelschicht entwik­kelt, bei der der Wirbelschicht-Reaktor, der Dampfkessel und der Aschekühler getrennte Apparate sind. Diese Tech­nologie ist in den Anschaffungskosten erheblich teuerer und daher nur für größere Dampfkessel (über 30 t/h) wirt­schaftlich einsetzbar.As a result of the fluidized bed, the atmospheric, stationary fluidized bed boiler which is customary in practice forms a chemical reactor in a steam boiler. By dissipating heat from the fluidized bed to the heating surfaces, the most important parameter, the temperature of the fluidized bed, cannot be changed independently of the boiler output. On the other hand, the temperature in the fluidized bed cannot be raised above 900 ° C, because then the ash softening sets in, which brings the fluidized bed combustion to a standstill. To avoid these disadvantages, a circulating fluidized bed has been developed in which the fluidized bed reactor, the steam boiler and the ash cooler are separate apparatuses. This technology is considerably more expensive to purchase and can therefore only be used economically for larger steam boilers (over 30 t / h).

Der Mangel dieses allgemeinen Standes der Technik in der Praxis ist, daß die vorhandenen atmosphärischen, statio­nären Wirbelschichtkessel den verschärften Forderungen des Immissionsschutzes speziell hinsichtlich des Kohlen­monoxidwertes im Rauchgas von höchstens 250 mg/m³ beson­ders im Teillastbereich nicht mehr genügen, so daß neue stationäre Wirbelschichtkessel zur Verbrennung von Kohle insbesondere im Bereich kleiner Leistungen nicht mehr wirtschaftlich gebaut werden können.The lack of this general state of the art in practice is that the existing atmospheric, stationary fluidized bed boilers no longer meet the stricter requirements of immission control, especially with regard to the carbon monoxide value in the flue gas of at most 250 mg / m³, especially in the part-load range, so that new stationary fluidized bed boilers for combustion coal can no longer be built economically, particularly in the area of small capacities.

Das Problem der Nachverbrennung von Schadstoffen ist auf den verschiedensten Gebieten bekannt.The problem of post-combustion of pollutants is known in a wide variety of areas.

So haben ein Verfahren sowie eine Anlage zur Dampferzeu­gung der eingangs beschriebenen Art (DE-PS 32 18 724) das Ziel, die Menge der aus der Wirbelschicht austreten­den, unverbrannten Brennstoffteilchen wesentlich zu ver­ringern, um die Belastung des nachgeschalteten Filters zu reduzieren. Mit anderen Worten sollen Feststoffteil­chen nachverbrannt werden. Diese Verbrennung erfolgt im Bereich eines eingezogenen Strömungsquerschnitts des Rauchgaszuges, also in einer Zone, die maßgeblich vom Wirbelbett entfernt liegt und in der bereits eine we­sentliche Verringerung der Temperatur der Abgase nach Austritt aus dem Wirbelbett stattgefunden hat. Um solche Feststoffteilchen zu verbrennen, ist eine erhebliche Er­höhung der Temperatur und vor allem auch die Verengung des Querschnittes für den Gaszug erforderlich, um die Feststoffteilchen durch die Flamme zu schicken und sie verbrennen zu können. Es muß zu diesem Zweck im Bereich der Nachbrenner im Mittel eine Temperatur von wesentlich mehr als 900°C herrschen, um die Verbrennung der Fest­stoffteilchen vollständig durchzuführen zu können. Diese Temperatur liegt in der Regel zwischen 1200 und 1600°C und die Teilchen müssen bei dieser Temperatur einige Zeit verweilen. Dafür ist ein relativ großer Raum erfor­derlich. Im Anschluß an diese Nachverbrennung sinken dann die Temperaturen durch Wärmeabfuhr an den Heizflä­chen. Dieses Verfahren zielt auf die Verbrennung von Feststoffteilchen, was konstruktive Vorkehrungen wie eine Verengung des Kesselquerschnittes und eine längere ungekühlte Verweilstrecke hinter der Flammenzone zur Er­zielung eines genügenden Ausbrandes erforderlich macht. Nachteilig ist, daß durch die notwendigen hohen Tempera­turen und den Luftüberschuß thermisches Stickoxid gebil­det wird.For example, a method and a plant for generating steam of the type described at the outset (DE-PS 32 18 724) aim to substantially reduce the amount of unburned fuel particles emerging from the fluidized bed in order to reduce the load on the downstream filter. In other words, solid particles should be combusted. This combustion takes place in the area of a drawn-in flow cross-section of the flue gas flue, that is to say in a zone which is largely dependent on Fluid bed is removed and in which there has already been a significant reduction in the temperature of the exhaust gases after exiting the fluid bed. In order to burn such solid particles, a considerable increase in the temperature and, above all, a narrowing of the cross section for the gas train is necessary in order to send the solid particles through the flame and to be able to burn them. For this purpose, an average temperature of substantially more than 900 ° C. must prevail in the afterburner area in order to be able to carry out the combustion of the solid particles completely. This temperature is usually between 1200 and 1600 ° C and the particles have to stay at this temperature for some time. This requires a relatively large space. Following this afterburning, the temperatures drop due to heat dissipation on the heating surfaces. This process aims at the combustion of solid particles, which necessitates constructive measures such as narrowing the cross-section of the boiler and a longer, uncooled residence zone behind the flame zone in order to achieve sufficient burnout. The disadvantage is that thermal nitrogen oxide is formed by the necessary high temperatures and excess air.

Weiterhin ist ein Verfahren bekannt (JP 59-81409), bei dem im Freiraum oberhalb eines Wirbelbettes unverbrannte Bestandteile, also sowohl gasförmige als auch feste, durch Zufuhr von Gas in Flammenform verbrannt werden sollen. Zu diesem Zwecke wird einerseits eine trockene Destillation von Kohle durchgeführt und das dadurch ent­stehende Gas über eine Klappe der Brennerdüse zugeführt. Als weitere Heizgasquelle dient ein Kohlenvorratsbehäl­ter, von dem Abgas auf dem Wege über eine Klappe einer weiteren Brennerdüse zugeführt wird. Ziel dieses Verfah­rens ist es, die Wirbelbettemperatur auf 700° abzusen­ken, um auf jeden Fall die Entstehung thermischer Sticko­xide, also zusätzlicher Stickoxide zu denen, die beim thermischen Zerfall der Kohle während der Verbrennung in­ folge der in dieser vorhandenen Stickstoffverbindungen entstehen, zu vermeiden. Diese ohnehin in der Kohle vor­handenen Stickstoffverbindungen sind nicht zu verwech­seln mit den thermischen Stickoxiden, die bei der Ver­brennung bei hohen Temperaturen durch die Verbindung des Luftstickstoffs mit dem Luftsauerstoff entstehen und ggf. durch Sekundärverfahren beseitigt werden müssen.Furthermore, a method is known (JP 59-81409) in which unburned constituents, that is to say both gaseous and solid, are to be burned in the free space above a fluidized bed by supplying gas in flame form. For this purpose, on the one hand a dry distillation of coal is carried out and the resulting gas is fed to the burner nozzle via a flap. A coal storage container serves as a further heating gas source, from which exhaust gas is fed to another burner nozzle via a flap. The aim of this process is to lower the fluidized bed temperature to 700 ° in order in any case to generate thermal nitrogen oxides, that is to say additional nitrogen oxides to those which occur when the coal decays thermally during combustion to avoid the result of the nitrogen compounds present in this. These nitrogen compounds, which are already present in the coal, should not be confused with the thermal nitrogen oxides that are formed during combustion at high temperatures due to the combination of the atmospheric nitrogen with the atmospheric oxygen and which may have to be eliminated by secondary processes.

Weiterhin ist eine Zweistufen-Feuerungsanlage mit einer ersten Stufe in Form einer Pyrolyse- oder Schwelkammer und einer zweiten Stufe in Form einer Nachverbrennungs­kammer bekannt (DE-A1 35 03 603), bei der letztere als Zyklon ausgebildet ist. Anders wäre die Abscheidung der Asche nicht möglich. Ziel der Zweistufigkeit der Verbren­nung ist es, das Verdampfen von Schwermetallen, wie sie insbesondere bei der Müllbeseitigung anfallen, zu vermei­den. Damit soll erreicht werden, daß an sich nicht ver­brennbare, umweltbelastende Stoffe wie Schwermetalle in die Gasphase gebracht und mit dem Abgas in die Umwelt ab­gegeben werden können oder durch aufwendige andere Ver­fahren wieder abgeschieden werden müssen. Bei dem Zwei­stufen-Verfahren entstehen solche Gefahren durch die nie­drige Temperatur in der ersten Verbrennungskammer nicht, und diese Stoffe können über die Asche ausgeschieden werden. Die niedrige Luftzufuhr dient mithin lediglich dazu, die Temperaturen in der Schwelkammer niedrig zu halten. Mit anderen Worten wird hier die reduzierte Luft­zuführung zur Temperatursteuerung, und zwar mit dem Zwek­ke der Vermeidung eines zu hohen Gasdruckes der Schwerme­talle, eingesetzt. Aufgrund der geringen Luftzufuhr in der ersten Verbrennungsstufe und den damit - gezielt - niedrigen Temperaturen ergeben sich hohe unverbrannte An­teile, so daß in der zweiten Verbrennungsphase nicht nur die zur Verbrennung erforderliche Luft zuzuführen ist, sondern zusätzlich eine besonders gute Vermischung der Luft mit den zu verbrennenden Gasen erfolgen muß, wes­halb auch ausdrücklich die Anordnung eines technisch auf­wendigen Zyklons erforderlich ist.Furthermore, a two-stage furnace with a first stage in the form of a pyrolysis or smoldering chamber and a second stage in the form of a post-combustion chamber is known (DE-A1 35 03 603), in which the latter is designed as a cyclone. Otherwise the ash would not be separated. The aim of the two-stage incineration is to avoid the evaporation of heavy metals, such as those that occur in particular during waste disposal. The aim of this is to ensure that non-combustible, environmentally harmful substances such as heavy metals can be brought into the gas phase and released into the environment with the exhaust gas or have to be separated again by means of complex other processes. With the two-stage process, such dangers do not arise from the low temperature in the first combustion chamber, and these substances can be excreted in the ashes. The low air supply therefore only serves to keep the temperatures in the smoldering chamber low. In other words, the reduced air supply for temperature control is used here, with the aim of avoiding excessive gas pressure of the heavy metals. Due to the low air supply in the first combustion stage and the - targeted - low temperatures, there are high unburned proportions, so that in the second combustion phase not only the air required for combustion has to be supplied, but also a particularly good mixing of the air with the combustion air Gases must occur, which is why the arrangement of a technically complex cyclone is expressly required.

Der Erfindung liegt deshalb die Aufgabe zugrunde, die Wirbelschichttechnik sowie diese realisierende Anlagen, also solche zur Dampferzeugung unter Einsatz von atmo­sphärischen, stationären Wirbelschichtkesseln so zu ver bessern, daß sie hinsichtlich ihres Emissionsverhaltens die Forderungen nach optimaler Reinhaltung der Luft er­füllen.The invention is therefore based on the object to improve the fluidized bed technology and these realizing systems, that is to say steam generation using atmospheric, stationary fluidized bed boilers, in such a way that they meet the requirements for optimum air purity with regard to their emission behavior.

Diese Aufgabe wird bei dem eingangs dargelegten Ver­fahren dadurch gelöst, daß die zusätzliche Wärmezufuhr in dem Freiraum oberhalb des Wirbelbetts erfolgt, die dem Wirbelbett zuzuführende Luftmenge unter Beibehaltung der Verbrennungstemperatur unter die stöchiometrisch er­forderliche Lufmenge gedrosselt und die Luftzufuhr zum Freiraum gesteigert wird während bei der Anlage die Lösung dadurch erfolgt, daß dem Freiraum mindestens je eine Wärmequelle, beispielsweise ein Brenner, zur zusätz­lichen, gezielten Energiezufuhr und eine Einrichtung zur Zufuhr von Zusatzluft in die im Freiraum befindlichen Verbrennungsgase zugeordnet ist. Durch diese Maßnahmen läßt sich, allgemein betrachtet, eine Optimierung der Verhältnisse im Wirbelbett hinsichtlich der Temperaturen und der Abgasbestandteile (letztere im Hinblick auf die Umweltbelastung) erreichen. Dabei ist zu beachten, daß die Wirbelbettemperatur nicht über ca. 900° gefahren werden darf, um vorrangig ein Sintern der Asche (mit der Folge der Klumpenbildung) zu vermeiden und außerdem die Stickoxidbildung in Grenzen zu halten. Zwar würde bei Temperaturen über 900° im Raum über dem Wirbelbett eine hinreichende Oxydation von CO zu CO₂ erfolgen können, jedoch nur mit dem vorerwähnten Nachteil der Klumpenbil­dung. Nach der Erfindung kann hingegen durch die Wärmezu­fuhr zu dem Freiraum die Freiraumtemperatur vom Betrieb der Wirbelschichttemperatur unabhängig gemacht und für sich gezielt beeinflußt werden. Durch die Erhöhung der Freiraumtemperatur kann die Reaktionsgeschwindigkeit bei der Umsetzung des Kohlenmonoxids mit Sauerstoff zu Koh­lendioxid erheblich gesteigert werden. Hierdurch er­reicht man, wie Versuche gezeigt haben, erheblich niedri­ gere Gehalte an Kohlenmonoxid im Abgas, und man kann die Temperatur der Wirbelschicht bei niedrigen Werten belas­sen.This object is achieved in the method described at the outset in that the additional heat is supplied in the free space above the fluidized bed, the amount of air to be fed to the fluidized bed is kept below the stoichiometrically required amount of air while maintaining the combustion temperature, and the air supply to the free space is increased while the system is in operation The solution is that the free space is assigned at least one heat source, for example a burner, for additional, targeted energy supply and a device for supplying additional air into the combustion gases located in the free space. These measures can, viewed generally, optimize the conditions in the fluidized bed with regard to the temperatures and the exhaust gas components (the latter with regard to environmental pollution). It should be noted that the fluidized bed temperature must not be raised above approx. 900 ° to avoid sintering the ash (with the result of lump formation) and also to keep the nitrogen oxide formation within limits. Sufficient oxidation of CO to CO₂ could take place at temperatures above 900 ° in the space above the fluidized bed, but only with the aforementioned disadvantage of lump formation. According to the invention, however, the free space temperature can be made independent of the operation of the fluidized bed temperature by the supply of heat to the free space and can be influenced in a targeted manner. By increasing the free space temperature, the reaction rate when converting the carbon monoxide with oxygen to carbon dioxide can be increased considerably. As experiments have shown, this achieves a considerably low level Lower levels of carbon monoxide in the exhaust gas and the temperature of the fluidized bed can be kept at low values.

Bei dem Freiraum handelt es sich um eine Zone des Kes­sels, die zum durch die Wirbelschicht bedingten Quer­schnitt des Brennraumes gehört, also nicht eine Einen­gung im Abgas-Rauchgaskanal ist, sondern ein Raum, in dem die Brennstoffteilchen infolge Verminderung der Gas­geschwindigkeit dazu gebracht werden, wieder - infolge Schwerkraft - in das Wirbelbett zurückzufallen. Wie hoch der Freiraum ist, hängt letztlich von den konstruktiven Gegebenheiten ab.The free space is a zone of the boiler which belongs to the cross section of the combustion chamber caused by the fluidized bed, i.e. is not a constriction in the exhaust gas flue gas duct, but a space in which the fuel particles are caused to do so due to a reduction in the gas velocity - fall back into the fluidized bed due to gravity. How much free space ultimately depends on the design conditions.

Infolge der Drosselung der dem Wirbelbett zuzuführenden Luftmenge unter die stöchiometrisch erforderliche und der Steigerung der Luftzufuhr zum Freiraum unter gleich­zeitiger Wärmezufuhr zu diesem ergibt sich eine beson­ders zweckmäßige Möglichkeit der Reduzierung der NOx-Wer­te, und zwar vor allem im Hinblick auf den nach neuen Richtlinien vorgeschriebenen Wert von weniger als 500 mg/m³ Rauchgas. Man nutzt dabei die reduzierende Wirkung des Kohlenmonoxids auf die Stickoxide, wobei zunächst durch Drosselung der Luftzufuhr zum Wirbelbett die CO-Bildung bewußt hochgetrieben wird, damit aufgrund der Gleichgewichtsverhältnisse eine stärkere Reduktion der Stickoxide zu elementarem Stickstoff durch das Kohlenmo­noxid stattfindet und dann das überschüssige Kohlenmono­xid mit der Zusatzluft an den Wärmequellen im Freiraum zu Kohlendioxid umgesetzt wird. Im Gegensatz zu der aus der DE-A1-3503603 bekannte Verfahrensweise erfolgt bei der Erfindung die Drosselung der Luftzufuhr zum Wirbel­bett nicht zum Zwecke der Herabsetzung der Wirbelbettem­peratur. Vielmehr soll das Wirbelbett immer innerhalb der wirtschaftlich sinnvollen Grenzen, also bei ca. 850°, gehalten werden, um gerade unterhalb der Sinter­grenze zu bleiben und in der Auslegung der Anlage deren Größe auf einem Minimum halten zu können. Die Temperatur im Wirbelbett soll ausdrücklich nicht abgesenkt werden, weil durch eine solche Temperaturabsenkung die Reak­tionsgeschwindigkeit bei der Umsetzung von CO und NOx zu CO₂ und N₂ absinken würde.As a result of throttling the amount of air to be supplied to the fluidized bed below the stoichiometrically required and increasing the air supply to the free space while simultaneously supplying heat to the latter, there is a particularly expedient possibility of reducing the NO x values, especially with regard to those prescribed by the new guidelines Value of less than 500 mg / m³ flue gas. One uses the reducing effect of the carbon monoxide on the nitrogen oxides, whereby initially the CO formation is deliberately increased by throttling the air supply to the fluidized bed, so that due to the equilibrium conditions there is a greater reduction of the nitrogen oxides to elemental nitrogen by the carbon monoxide and then the excess carbon monoxide the additional air at the heat sources in the open space is converted to carbon dioxide. In contrast to the procedure known from DE-A1-3503603, the air supply to the fluidized bed is not throttled in the invention for the purpose of reducing the fluidized bed temperature. Rather, the fluidized bed should always be kept within the economically sensible limits, i.e. at approximately 850 °, in order to remain just below the sintering limit and to be able to keep the size of the system to a minimum in the design of the system. The temperature in the fluidized bed should explicitly not be reduced, because such a drop in temperature would reduce the reaction rate in the conversion of CO and NO x to CO₂ and N₂.

Auf diese Weise wird es möglich, daß insgesamt die atmo­sphärischen, stationären Wirbelschichtkessel für alle Leistungsklassen die gesetzlich vorgeschriebenen Werte sowohl für CO von weniger als 250 mg/m³ Rauchgas als auch für NOx von weniger als 500 mg/m³ bei Volllast und Teillast einhalten können.In this way it is possible that the atmospheric, stationary fluidized bed boilers for all performance classes can comply with the legally prescribed values for CO of less than 250 mg / m³ flue gas and for NO x of less than 500 mg / m³ at full load and part load .

Die gegenständlichen Merkmale der Anlage lassen sich im übrigen sehr vorteilhaft im Wege der Nachrüstung beste­hender Kesselanlagen verwirklichen.The physical features of the system can also be realized very advantageously by retrofitting existing boiler systems.

Um die Abkühlung der Rauchgase zu vermeiden, kann in be­vorzugter Ausführung des Vorhabens die Wärmezufuhr unmit­telbar über der Wirbelschicht erfolgen.In order to avoid the cooling of the flue gases, in a preferred embodiment of the project the heat can be applied directly above the fluidized bed.

Die durch die unterstöchiometrische Luftzufuhr bewirkte Temperaturabsenkung kann vorteilhaft durch erhöhte Kohle­zufuhr zum Wirbelbett kompensiert werden. Dadurch tritt kein Energieverlust ein, weil man das im Wirbelbett nicht genutzte Energiepotential des Kohlenstoffs bei der Oxydation des CO im Freiraum zurückgewinnt. Diese Ver­schiebung der Energieumsetzung vom Wirbelbett in den Freiraum bewegt sich allerdings nur in der Größenordnung von 1 - 3 %.The lowering of the temperature caused by the substoichiometric air supply can advantageously be compensated for by an increased supply of coal to the fluidized bed. As a result, there is no loss of energy because the energy potential of the carbon that is not used in the fluidized bed is recovered in the oxidation of the CO in the free space. However, this shift in energy conversion from the fluidized bed to the free space is only in the order of 1 - 3%.

Zur näheren Erläuterung der Erfindung ist in der schema­tischen Zeichnung beispielhaft eine Ausführungsmöglich­keit einer Dampferzeugungsanlage gezeigt.To explain the invention in more detail, an exemplary embodiment of a steam generation system is shown in the schematic drawing.

Man erkennt im Schnitt einen Wirbelschichtkessel 1 her­kömmlichen Aufbaus mit einem im unteren Teil angeord­neten Wirbelbett aus Kohle und Kalk, in dem sich beim Verbrennungsproze bildendes SO₂ zu Kalziumsulfat umge­setzt und mit der durch einen Pfeil gekennzeichneten Asche abgezogen wird. Hier wird Luft über eine Luftzu­ fuhreinrichting 6 geregelt zugeführt. Oberhalb des Wir­belbetts befindet sich für die aufsteigenden Verbren­nungsgase ein Freiraum 3 sowie die übliche Dampferzeu­gungsanlage, die hier nicht näher beschrieben zu werden braucht. In den Freiraum münden je zwei Brenner 4, die hier mit Erdgas betrieben werden, sowie zwei Zusatzluft-­Zufuhreinrichtungen 5. Die Brenner 4 dienen der Erhöhung der Freiraumtemperatur; an ihrer Stelle können natürlich auch beliebige andere Wärmequellen, z.B. elektrische, zum Einsatz gelangen. Mit ihrer Hilfe wird die Freiraum­temperatur auf Werte über 900 °C gesteigert und eine wir­kungsvolle Umsetzung von CO im Rauchgas zu unschädlichem CO₂ erzielt Durch eine Reduzierung der Luftzufuhr über die Luftzufuhreinrichtung 6 wird zunächst die CO-Bildung erhöht, um die bei der Verbrennung im Wirbelbett anfal­lenden Stickoxide zu elementarem Stickstoff umzuwandeln, während anschließend das überschüssige CO durch Luftzu­fuhr über die Zusatzluft-Zufuhreinrichtungen 5 und Wärme­zufuhr über die Wärmequelle 4 wiederum zu CO₂ umgesetzt wird.One can see on average a fluidized bed boiler 1 of conventional construction with a fluidized bed of coal and lime arranged in the lower part, in which SO₂ forming during the combustion process is converted to calcium sulfate and is withdrawn with the ash marked by an arrow. Here air becomes air over an air fuhreinrichting 6 supplied controlled. Above the fluidized bed there is a free space 3 for the rising combustion gases, as well as the usual steam generation system, which need not be described in more detail here. Two burners 4 each, which are operated with natural gas, and two additional air supply devices 5 open into the free space. The burners 4 serve to increase the free space temperature; any other heat sources, for example electrical ones, can of course also be used in their place. With their help, the free space temperature is increased to values above 900 ° C and an effective conversion of CO in the flue gas to harmless CO₂ is achieved. By reducing the air supply via the air supply device 6, the CO formation is initially increased by the accumulation in the fluidized bed during combustion Convert nitrogen oxides to elemental nitrogen, while the excess CO is then converted to CO₂ by supplying air via the additional air supply devices 5 and supplying heat via the heat source 4.

Es ist selbstverständlich möglich, statt je zwei Wärme­quellen 4 und Luftdüsen 5 auch nur eine einzusetzen, wobei dann die sich ergebenden Schadstoffwerte etwas höher liegen, wie der folgenden Versuchsauswertung einer Anlage herkömmlicher Anordnung, d.h. ohne Brenner und Zu­satzluft-Zufuhr, sowie mit jeweils einem und zwei Bren­nern entnommen werden kann:

Figure imgb0001
It is of course possible to use only one heat source 4 and two air nozzles 5 instead of each, the resulting pollutant values then being somewhat higher, such as the following test evaluation of a system of conventional arrangement, ie without a burner and additional air supply, and with one and each can be taken from two burners:
Figure imgb0001

Claims (4)

1. Verfahren zur Dampferzeugung, insbesondere in Heiz­kraftwerken, mittels Verbrennung fester Brennstoffe, insbesondere Kohle, durch ein Wirbelschichtverfah­ren, bei dem in einer die Brennstoffe umfassenden Wirbelschicht die Verbrennung bei niedrigen Tempera­turen bis zu ca. 900 °C erfolgt, wobei den Gasen oberhalb des Wirbelbettes zusätzlich Wärme zugeführt wird, dadurch gekennzeichnet, daß die zusätzliche Wärmezufuhr in dem Freiraum ober­halb des Wirbelbetts erfolgt, die dem Wirbelbett zuzuführende Luftmenge unter Beibehaltung der Ver­brennungstemperatur unter die stöchiometrisch erfor­derliche Lufmenge gedrosselt und die Luftzufuhr zum Freiraum gesteigert wird.1. Process for generating steam, in particular in thermal power stations, by means of combustion of solid fuels, in particular coal, by a fluidized bed process in which combustion takes place in a fluidized bed comprising the fuels at low temperatures up to approximately 900 ° C., the gases above the fluidized bed additional heat is supplied, characterized in that the additional heat supply takes place in the free space above the fluidized bed, the amount of air to be supplied to the fluidized bed is kept below the stoichiometrically required amount of air while maintaining the combustion temperature, and the air supply to the free space is increased. 2. Verfahren nach Anspruch 1, dadurch ge­kennzeichnet, daß die Wärmezufuhr unmit­telbar über der Wirbelschicht erfolgt.2. The method according to claim 1, characterized in that the heat is applied directly above the fluidized bed. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Brennstoffzu­fuhr zum Wirbelbett zum Ausgleich einer Temperaturab­senkung bei unterstöchiometrischer Luftzufuhr erhöht wird.3. The method according to claim 1 or 2, characterized in that the fuel supply to the fluidized bed to compensate for a temperature drop with substoichiometric air supply is increased. 4. Anlage zur Dampferzeugung mittels Verbrennens fester Brennstoffe in einem stationären Wirbelschichtkes­sel, wobei in dem Kessel oberhalb einer Wirbel­schicht, in der Regel aus Kohle und Kalk, ein Frei­raum für die erzeugten Heizgase gebildet ist, da­durch gekennzeichnet, daß dem Freiraum (3) mindestens je eine Wärmequelle (4), bei spielsweise ein Brenner, zur zusätzlichen, gezielten Energiezufuhr und eine Einrichtung (5) zur Zufuhr von Zusatzluft in die im Freiraum befindlichen Ver­brennungsgase zugeordnet ist.4. Plant for steam generation by burning solid fuels in a stationary fluidized bed boiler, wherein in the boiler above a fluidized bed, usually made of coal and lime, a free space for the generated heating gases is formed, characterized in that the free space (3) at least each a heat source (4), for example a burner, for additional, targeted energy supply and a device (5) for supplying additional air into the combustion gases located in the free space.
EP19890118445 1988-10-10 1989-10-04 Method and installation for generating steam, especially in heat power plants Withdrawn EP0363812A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3834801 1988-10-10
DE3834801 1988-10-10

Publications (2)

Publication Number Publication Date
EP0363812A2 true EP0363812A2 (en) 1990-04-18
EP0363812A3 EP0363812A3 (en) 1991-02-27

Family

ID=6364978

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890118445 Withdrawn EP0363812A3 (en) 1988-10-10 1989-10-04 Method and installation for generating steam, especially in heat power plants

Country Status (1)

Country Link
EP (1) EP0363812A3 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005205A1 (en) * 1989-10-05 1991-04-18 L. & C. Steinmüller Gmbh PROCESS FOR REDUCING THE NOx CONTENT IN FURNACE FLUE GASES
WO1991016575A1 (en) * 1990-04-17 1991-10-31 A. Ahlstrom Corporation Method and apparatus for reducing emissions of n2o when burning nitrogen-containing fuels in fluidized bed reactors
WO1993022600A1 (en) * 1992-04-30 1993-11-11 Abb Carbon Ab Method for maintaining a nominal working temperature of flue gases in a pfbc power plant
DE4224959A1 (en) * 1992-07-24 1994-01-27 Ver Energiewerke Ag Method to operate combination power station - uses part flue gas flow, which is branched-off in substoichiometric combustion area, in front of secondary air supply
US5634329A (en) * 1992-04-30 1997-06-03 Abb Carbon Ab Method of maintaining a nominal working temperature of flue gases in a PFBC power plant
WO1997039280A1 (en) * 1996-04-12 1997-10-23 Abb Carbon Ab A method of combustion and a combustion plant for burning a complementary fuel in the free-board of a pressurized fluidized bed

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2023268A (en) * 1978-04-08 1979-12-28 Worsley & Co Ltd G P Fluidized bed furnaces
US4308810A (en) * 1980-04-09 1982-01-05 Foster Wheeler Energy Corporation Apparatus and method for reduction of NOx emissions from a fluid bed combustion system through staged combustion
JPS5981408A (en) * 1982-11-02 1984-05-11 Babcock Hitachi Kk Fluidized-bed type boiler
JPS59167608A (en) * 1983-03-15 1984-09-21 Babcock Hitachi Kk Fluidized-bed combustion device
US4543894A (en) * 1983-05-17 1985-10-01 Union Oil Company Of California Process for staged combustion of retorted oil shale
JPS61173012A (en) * 1985-01-24 1986-08-04 Hitachi Zosen Corp Fluidized bed boiler
GB2192141A (en) * 1986-07-04 1988-01-06 Politechnika Slaska Im Wincent Combustion of solid fuels

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2023268A (en) * 1978-04-08 1979-12-28 Worsley & Co Ltd G P Fluidized bed furnaces
US4308810A (en) * 1980-04-09 1982-01-05 Foster Wheeler Energy Corporation Apparatus and method for reduction of NOx emissions from a fluid bed combustion system through staged combustion
US4308810B1 (en) * 1980-04-09 1993-08-03 Foster Wheeler Energy Corp
JPS5981408A (en) * 1982-11-02 1984-05-11 Babcock Hitachi Kk Fluidized-bed type boiler
JPS59167608A (en) * 1983-03-15 1984-09-21 Babcock Hitachi Kk Fluidized-bed combustion device
US4543894A (en) * 1983-05-17 1985-10-01 Union Oil Company Of California Process for staged combustion of retorted oil shale
JPS61173012A (en) * 1985-01-24 1986-08-04 Hitachi Zosen Corp Fluidized bed boiler
GB2192141A (en) * 1986-07-04 1988-01-06 Politechnika Slaska Im Wincent Combustion of solid fuels

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 381 (M-547)[2438], 19. Dezember 1986; & JP-A-61 173 012 (HITACHI) 04-08-1986 *
PATENT ABSTRACTS OF JAPAN, Band 8, Nr. 191 (M-322)[1628], 4. September 1984; & JP-A-59 81 408 (BABCOCK) 11-05-1984 *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 22 (M-354)[1745], 30. Januar 1985; & JP-A-59 167 608 (BABCOCK) 21-09-1984 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005205A1 (en) * 1989-10-05 1991-04-18 L. & C. Steinmüller Gmbh PROCESS FOR REDUCING THE NOx CONTENT IN FURNACE FLUE GASES
WO1991016575A1 (en) * 1990-04-17 1991-10-31 A. Ahlstrom Corporation Method and apparatus for reducing emissions of n2o when burning nitrogen-containing fuels in fluidized bed reactors
WO1993022600A1 (en) * 1992-04-30 1993-11-11 Abb Carbon Ab Method for maintaining a nominal working temperature of flue gases in a pfbc power plant
US5634329A (en) * 1992-04-30 1997-06-03 Abb Carbon Ab Method of maintaining a nominal working temperature of flue gases in a PFBC power plant
DE4224959A1 (en) * 1992-07-24 1994-01-27 Ver Energiewerke Ag Method to operate combination power station - uses part flue gas flow, which is branched-off in substoichiometric combustion area, in front of secondary air supply
WO1997039280A1 (en) * 1996-04-12 1997-10-23 Abb Carbon Ab A method of combustion and a combustion plant for burning a complementary fuel in the free-board of a pressurized fluidized bed
US6260492B1 (en) 1996-04-12 2001-07-17 Abb Carbon Ab Method and apparatus for burning fuel in the free board of a pressurized fluidized bed with solids recirculation

Also Published As

Publication number Publication date
EP0363812A3 (en) 1991-02-27

Similar Documents

Publication Publication Date Title
DE69312229T2 (en) Glass melting furnace for the manufacture of flat glass
DE69107857T2 (en) FIRING SYSTEM WITH MULTIPLE BURNERS AND WITH TANGENTIAL AIR SUPPLY CONCENTRIC TO THE CENTRAL PART OF THE FIRE AREA.
DE3331989A1 (en) METHOD FOR REDUCING NO (DOWN ARROW) X (DOWN ARROW) EMISSIONS FROM THE COMBUSTION OF NITROGENOUS FUELS
EP0249255B1 (en) Combined steam-gas turbine cycle
DE2539546B2 (en) Process for incinerating carbonaceous materials
EP0544876B1 (en) Process for the combined incineration of sewage and rubbish
DE2261591A1 (en) INCINERATION PROCESS AND BURNER FOR CARRYING OUT THE PROCESS
DE69735410T2 (en) Fluid Bed Gasification and Combustion Furnace and Process
EP0001569A1 (en) Method and plant for generating electrical energy
DE69513106T2 (en) Renewal of industrial and power plant boilers with a circulating fluidized bed to reduce NOx and SOx emissions
EP0607210B1 (en) Process for incinerating solids
EP0132584B1 (en) Method and installation for reducing the emission of noxious matter in the flue gases of combustion plants
EP0302910B1 (en) Coal combustion with a fluidized incineration bed
EP0410118B1 (en) Combined cycle process
EP0363812A2 (en) Method and installation for generating steam, especially in heat power plants
WO1998054513A1 (en) METHOD FOR NOx-LOW COMBUSTION OF COAL IN DRY ASH STEAM GENERATORS
DE69313274T2 (en) METHOD FOR MAINTAINING A RATED OPERATING TEMPERATURE OF THE SMOKE GASES IN A POWER PLANT WITH A PRESSURE FLUID LAYER COMBUSTION
DD290042A5 (en) COMBUSTION METHOD FOR INHIBITING THE FORMATION OF NITROGEN OXIDES IN COMBUSTION AND ARRANGEMENT FOR IMPLEMENTING THE PROCESS
DE3317504C2 (en) Melting furnace
EP0496856B1 (en) Process and device for complete, dry desulphuration of combustion waste gases containing SO2 and dust
DE3933529C2 (en)
DE8915758U1 (en) Plant for generating steam, especially in combined heat and power plants
DE4337421C1 (en) Multi-stage high-temperature incineration of waste materials having inert constituents and apparatus for carrying out this process
DE3900977A1 (en) Method for burning fuels and burning installation for carrying out this method
DE4038878C1 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901228

17Q First examination report despatched

Effective date: 19920518

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19930716